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The shell deformation problem
A shell is a material body in which one of the characteristic dimensions
(the "thickness") is remarkably smaller than the other two.

Given an (homogeneous) thickness t, the shell body is uniquely
determined by its middle surface S ∈ R

3. We assume that S is
described as the image of a C2 map

Φ : Ω ∈ R
2 −→ S ∈ R

3

– p. 3/19



The shell deformation problem

We assume an isotropic, homogeneous, linearly elastic material in the
realm of small deformations.
We are interested in the displacement of the shell, given a load and
some boundary conditions at the shell edges.

In order to fix the ideas, we are going to consider a particular shell
model, the well known Koiter model.
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Koiter model - variational formulation
{

Find ut ∈ V := [H1
BC

(Ω)]2 × H2
BC

(Ω) such that

t3Ab(ut, v) + tAm(ut, v) =< f, v > ∀v ∈ V

where

Ω is the domain of the shell map

Φ : Ω ∈ R
2 −→ S ∈ R

3

Note that the original three dimensional domain of the problem is
reduced to the bi-dimensional domain Ω.
The problem is written on the middle surface of the shell and the
thickness 0 < t << |S| becomes a parameter.
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Koiter model - variational formulation
{

Find ut ∈ V := [H1
BC

(Ω)]2 × H2
BC

(Ω) such that

t3Ab(ut, v) + tAm(ut, v) =< f, v > ∀v ∈ V

where

V is the space of admissible displacements of the middle surface,
written in the contravariant tangent basis of Φ completed with the
normal direction.

f ∈ V ′ represents the applied load
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Koiter model - variational formulation
{

Find ut ∈ V := [H1
BC

(Ω)]2 × H2
BC

(Ω) such that

t3Ab(ut, v) + tAm(ut, v) =< f, v > ∀v ∈ V

where

Ab and Am are two symmetric and continuous bilinear forms on the
space V .

Ab is the bending form, and takes into account the elastic energy
related to the "flexion" (change in curvature) of the shell.

Am is the membrane form, and takes into account the elastic energy
related to the "stretching" (change in metric) of the shell.
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Koiter model - variational formulation
{

Find ut ∈ V := [H1
BC

(Ω)]2 × H2
BC

(Ω) such that

t3Ab(ut, v) + tAm(ut, v) =< f, v > ∀v ∈ V

NOTE : due to the coercivity on V of Ab + Am, there is one and only
one solution of the problem for all values of the parameter t > 0.
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Asymptotic behavior of shells
Let the space of in-extensional displacements

V0 = {v ∈ V : Am(v, v) = 0} .

Moreover let W the closure of the orthogonal space

{w ∈ V : Ab(w, v) + Am(w, v) = 0 ∀v ∈ V0}

with respect to the norm weaker norm

‖v‖W = Am(w, w)1/2 .

Then the classical theory singles out two families of shells in
dependance of the asymptotic behavior (t → 0):

∃v ∈ V0 : < f, v >6= 0 =⇒ bending dominated

< f, v >= 0 ∀v ∈ V0 , f ∈ W ′ =⇒ membrane dominated
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Bending dominated shell problems
∃v ∈ V0 : < f, v >6= 0

The solution ut of the scaled problem
{

Find ut ∈ V such that

t3Ab(ut, v) + tAm(ut, v) = t3 < f, v > ∀v ∈ V

converges in V to u0, solution of
{

Find u0 ∈ V0 such that

Ab(u0, v) =< f, v > ∀v ∈ V0

Moreover the bending part of the energy dominates the problem

lim
t→0+

R(t) := lim
t→0+

t3Ab(ut, ut)

t3Ab(ut, ut) + tAm(ut, ut)
= 1 .

– p. 7/19



Membrane dominated shell problems
< f, v >= 0 ∀v ∈ V0 , f ∈ W ′

The solution ut of the scaled problem
{

Find ut ∈ V such that

t3Ab(ut, v) + tAm(ut, v) = t < f, v > ∀v ∈ V

converges in W to u0, solution of
{

Find u0 ∈ W such that

Am(u0, w) =< f, w > ∀w ∈ W

Moreover the membrane part of the energy dominates the problem

lim
t→0+

R(t) := lim
t→0+

t3Ab(ut, ut)

t3Ab(ut, ut) + tAm(ut, ut)
= 0 .
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Locking in shells ("small" t)
Bending dominated shell problems

{

Find ut ∈ V such that

t3Ab(ut, v) + tAm(ut, v) = t3 < f, v > ∀v ∈ V

{

Find ut ∈ V such that

Ab(ut, v) + t−2Am(ut, v) =< f, v > ∀v ∈ V

are almost-constrained problems and therefore subjected to LOCKING
in finite element analysis.

This is false for membrane dominated shells
{

Find ut ∈ V such that

t2Ab(ut, v) + Am(ut, v) =< f, v > ∀v ∈ V

which are essentially singularly perturbed problems.
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Shell eigenvalue problems
Can a similar asymptotic classification be introduced for the
problem of shell vibration?

What kind of energy do we expect to dominate the problem?

When can locking be expected in the finite element analysis of
shell vibration?

The shell eigenvalue problem :














Find ut ∈ V, λt ∈ R
+ such that

t3Ab(ut, v) + tAm(ut, v) = λt(ut, v) ∀v ∈ V

||ut||L2(Ω) = 1 .
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Shell eigenvalue problems
Can a similar asymptotic classification be introduced for the
problem of shell vibration?

What kind of energy do we expect to dominate the problem?

When can locking be expected in the finite element analysis of
shell vibration?

In the sequel we will restrict our attention to the first vibration modes
(i.e. lowest eigenvalue and related eigenfunctions).
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"Flexural" shells
In the case

V0 6= {0}

the lowest modes are, as expected, the "weaker" bending modes.

PROPOSITION

There exist constants C1 and C2, independent of t, such that

C1t
3 ≤ λt ≤ C2t

3 .

Furthermore, it holds

lim
t→0+

R(t, ut) = lim
t→0+

t3Ab(ut, ut)

t3Ab(ut, ut) + tAm(ut, ut)
= 1 .
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"Non-Flexural" shells
On the contrary, the condition

V0 = {0}

is NOT sufficient to guarantee a membrane dominated behavior of the
first vibration modes.

PROPOSITION (BdV and Lovadina, submitted)

Let

α = inf
{

2θ + 1 : L2(Ω) ⊆ (W ′, V ′)θ,∞

}

.

Then

inf{β : tβλ−1
t ∈ L∞(0, 1)} = α (λt ∼ tα) .

Furthermore, under additional reasonable assumptions, it holds

lim
t→0+

R(t, ut) = lim
t→0+

t3Ab(ut, ut)

t3Ab(ut, ut) + tAm(ut, ut)
=

α − 1

2
.
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"Non-Flexural" shells
COROLLARY

If

W ⊆ L2(Ω) (∗)

then the first vibration modes are membrane modes, i.e.

λt ∼ t , lim
t→0+

R(t, ut) = 0 .

Otherwise the first modes are expected to behave in a ”mixed” way.

• Note that condition (∗) above is in general true only for elliptic
shaped shells with sufficiently strong boundary conditions.

• LOCKING may be present even if V0 = {0}!
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Clamped cylindrical shells
We consider the eigenvalue problem of a clamped cylindrical shell.

x
y

L

Clamped

Clamped 1

It holds
V0 = {0} .

‖v‖2
W := Am(v, v) ' ‖v1,x‖

2
L2(Ω) + ‖v1,y + v2,x‖

2
L2(Ω) + ‖v2,y + v3‖

2
L2(Ω)
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Clamped cylindrical shells

Applying the previous result and interpolation space theory, it can be
proved that for the smaller eigenvalue and related eigenfunctions

λt ∼ t2 , lim
t→0+

R(t, ut) =
1

2

Therefore the first vibration modes present an even mix of bending and
membrane behavior.

We will now analyze this classical engineering problem more in deep
using different techniques.
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Clamped cylindrical shells
The Euler equations of the problem are















−β11,x − 2β12,y = t−1λ u1

−2β12,x − β22,y = t−1λ u2

t2(u3,xxxx + u3,yyyy) + β22 = t−1λ u3 ,

where the membrane operators

β11 = u1,x , β12 =
1

2
(u1,y + u2,x) , β22 = u2,y +

u3

R
.

Given the particular form of the problem, it is not restrictive to assume
a Fourier expansion in the angular variable:

u(x, y) =
∑

K∈N









uK
1 (x) cos (Ky)

± uK
2 (x)± sin (Ky)

uK
3 (x) cos (Ky)









, K ∈ N .
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Clamped cylindrical shells
Due to orthogonality properties of the above functions, the problem
decouples into a sequence of one dimensional problems, each
associated to a single wave number K:















−β′
11 − 2Kβ12 = t−1λKuK

1

−2β′
12 + Kβ22 = t−1λKuK

2

t2(uK
3

′′′′ + K4uK
3 ) + β22 = t−1λKuK

3

where now

β11 = uK
1

′ , β12 =
1

2
(−KuK

1 + uK
2

′) , β22 = KuK
2 + uK

3 .
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Clamped cylindrical shells
Essentially with the use of scaling arguments, we can prove the
following asymptotic (t → 0) result:

PROPOSITION (BdV, Hakula and Pitkäranta)

Assuming that λ ∼ tγ for some γ ∈ R, we get the following amplitude scalings

λ ∼ t2 , K ∼ t−1/4 , Lng ∼ 1 ,

u1 ∼ t1/2 , u2 ∼ t1/4 , u3 ∼ 1 ,

β11 ∼ t1/2 , β12 ∼ t3/4 , β22 ∼ t .

Note: the simplified eigenvalue behaves as λ ∼ t3K4 + tK−4 which suggests

K ∼ t−1/4 and an even balance between the two energies.
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Presence of locking
Introducing the aforementioned scalings (in t) into the definition of the
elastic energy, we get

1 ∼ Ē := t E ∼ ‖ū3,yy‖
2
L2(ω) + t‖ū3,xx‖

2
L2(ω) + ‖ū1,x‖

2
L2(ω)

+t−1/2‖ū1,y + ū2,x‖
2
L2(ω) + t−1‖ū2,y + ū3‖

2
L2(ω) ,

where all the barred quantities above

Ē , ū3,yy , ū3,xx , ū1,x , ...... , ū3 ∼ 1 .

Introducing the aforementioned scalings (in t) into the definition of the
elastic energy, we get

1 ∼ Ē := t E ∼ ‖ū3,yy‖
2
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2
L2(ω) + ‖ū1,x‖

2
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2
L2(ω) + t−1‖ū2,y + ū3‖

2
L2(ω) ,

where all the barred quantities above

Ē , ū3,yy , ū3,xx , ū1,x , ...... , ū3 ∼ 1 .

Then, the negative powers of t above represent a constraint (at the
limit) and therefore a source of locking.

Note: in classical bending dominated shells the "locking factor" is
typically t−2.
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ONE DIMENSIONAL TESTS
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Minimum λ (divided by t) as function of t. Log-

arithmic scale.
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Logarithmic scale.
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TWO DIMENSIONAL TESTS

Mesh D.o.f K λ
10∗ × 70 3905 4 4.50
20∗ × 70 7455 4 3.83
30∗ × 70 11005 4 3.72
10∗ × 140 7755 5 3.60
20∗ × 140 14805 5 2.91
30∗ × 140 21855 5 2.79
10∗ × 280 15455 6 3.06
20∗ × 280 29505 6 2.36
30∗ × 280 43555 6 2.22
Target 7 0.99

Rectangular elements, p=1. Minimum com-

puted λ and related K. Thickness t = 10−2.



Mesh D.o.f K λ
10∗ × 150 8305 5 2.78
20∗ × 150 15855 5 1.97
30∗ × 150 23405 5 1.47
10∗ × 300 16555 7 2.16
20∗ × 300 31605 7 1.30
30∗ × 300 46655 7 1.70
10∗ × 450 24805 8 1.86
20∗ × 450 47355 8 1.04
30∗ × 450 69905 8 0.92
Target 15 0.12

Rectangular elements, p=1. Minimum com-

puted λ and related K. Thickness t = 10−3.



Mesh D.o.f K λ
10∗ × 24 3945 6 1.33
20∗ × 24 7645 6 1.31
30∗ × 24 11345 6 1.31
10∗ × 50 8105 7 1.04
20∗ × 50 15705 7 1.04
30∗ × 50 23305 7 1.04
10∗ × 70 11305 7 1.02
20∗ × 70 21905 7 1.02
30∗ × 70 32505 7 1.02
Target 7 0.99

Rectangular elements, p=2. Minimum com-

puted λ and related K. Thickness t = 10−2.



Mesh D.o.f K λ
10∗ × 38 6185 9 0.44
20∗ × 38 11985 10 0.42
30∗ × 38 17785 10 0.41
10∗ × 75 12105 13 0.18
20∗ × 75 23455 14 0.17
30∗ × 75 34805 14 0.17
10∗ × 150 24105 15 0.13
20∗ × 150 46705 15 0.13
30∗ × 150 69305 15 0.13
Target 15 0.12

Rectangular elements, p=2. Minimum com-

puted λ and related K. Thickness t = 10−3.
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