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Our target is to obtain a reliable finite element solution of
quasi-Newtonian steady incompressible flows in an efficient way.
To reach this target we need:

@ computable quantities that tell us where the error in our
numerical solution is large: upper bound of the error;

@ computable quantities that tell us where the error in our
numerical solution is small: lower bound of the error;

@ an adaptive method that automatically refine the mesh where the
error in the numerical solution is large and coarsen the mesh
where the error is small.

refining ~» reliability of the numerical solution;
@ coarsening ~ efficiency on the numerical method.
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@ Model problem;

@ Weak formulation of the continuous problem and discrete weak
formulation;

@ Quasi-norm, uniform monotonicity and local Holder continuity;

@ Upper bounds of the error:

@ Upper bound in terms of residual functionals (weak residuals);
@ Upper bound in terms of computable residuals (strong residuals);

@ Lower bounds of the error:

o Lower bound in terms of residual functionals (weak residuals);
@ Lower bound in terms of computable residuals (strong residuals);

@ Numerical experiments:

o Adaptive method based on our a posteriori error estimates;
o Power-law problems;
o Carreau law problems.
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Model problem d und u | i problem Viscosity parameter Weak formulation

Model proble

—V.o = f, in €,
in 2,
0, on 9N =T,

<
=
Il
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where
o(x,u) = k(x, [e(u)|)e(u) — pI
is the stress tensor and

(u) 1 (Bu, n 6u,~> 1 d
elu).. = — _ l = oo .
ij 2 \ax; ax; 3 s 3 )

are the components of the strain tensor e(u) € RZX? .
@  bounded Lipschitz domain, |©2| = 1;
@ k(x, |e(u)]) is the viscosity coefficient.
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Model problem

We want to deal with:

@ pseudoplastic fluids: increasing viscosity when | e(u) | — 0;
@ dilatant fluids: decreasing viscosity when | e(u) | — 0;

@ degenerate constitutive laws: the viscosity function can tend to 0
orto oco;

@ non-degenerate constitutive laws: the viscosity function is
bounded away from 0 and from oc.
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Continuous problem Viscosity parameter Weak formulation

We assume thatk € C(2 x (0, 00)) and that, givenr € (1, c0), there
exist constants o € [0,1] and e, Ky, K, > 0 such that, for allx € Q,

(A1) Ki[(t+ )21+t + )17 2t — s) < k(x,0)t — k(x,s)s
forallt >s > 0
(A2) k(x,t) < K[t*(1+6)'=>]"=2  forallt > 0, and

(e, )t — k(x,)s] < Kal(t +5)*(1 + £ +5)' =2 5|

for alls,t > 0 satisfying |(s/t) — 1| < e.

When r # 2, the parameter a measures the degree of degeneracy in
k(-,-) for a given value of r € (1, co) in the sense that the closer « is
to 1 the more degenerate k(-, -) is. @
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Model problem Quasi-norm Upper bound Lower bound Numerical Resul| Continuous problem Viscosity parameter Weak formulation

Examples

(a) the classical linear Stokes equations which govern the stationary
flow of a viscous incompressible Newtonian fluid:

k(x,|e(u)]) = 2u,

corresponds to r = 2;

(b) the power-law model with
k(x,|e(u) |) = 2p|e(u) "~

corresponds to a = 1;

(c) the Carreau law
k(x, | e(u) ) = koo + (ko — koo) (1 + Al e(u) [})@=272,
With kg > koo > 0,1 > 0,60 € (1,00);
0 ifkoo = 0, then a = 0 withr = 6;

o ifkec > 0,thenr =2and 0 € (1, 2], (pseudoplastic behaviour).
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Model problem ope ume Continuous problem  Viscosity parameter Weak formulation

Continuo eak formulation

Findu € V and p € Q such that

a(u,v) +b(p,v) = (f,v) Vv ey,
b(g,u) 0 Vg € Q,

where
a(u,v) = /Q k(x, le(u))e(u) : e(v) AR,  b(g,v) = — /Q (V- v)qdQ,

V = [Wy" (€))%, with the norm ||v|lv = [le(¥)|l1r(e),
Q = Ly (2) = L7 (2)/R, with the norm [lgllo = inf llg + e[l (o).
and the bilinear form &(-, -) satisfies the following inf-sup condition:

M > Co Vq € Q
1€Qvev [lqllolIvllv — ?

Let V' and Q’ denote the dual spaces of V and Q.



Continuous problem  Viscosity parameter Weak formulation

Find u, € V, and p;, € Q;, such that

a(uh,vh) +b(ph,Vh) = (f, Vh) Vv, € Vi,
b(gn,wm,) = 0 Van € Qn-

@ 7, shape-regular partition of €2;

@ V;, C V continuous velocity F.E. space defined on 7y;

@ Q, C Q continuous/discontinuous pressure F.E. space on Zy;
@ the pair (V, Qp) satisfies the following inf-sup condition:

g b (qh ’ Vh)
inf sup

————~ >¢/, cpindependent of A.
a€v,ev, [lgnllollvally =
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m  Quasi-norm = Definition Properties Monotonicity and Continuity

uasi-norm in Sobolev space

To derive upper and lower bounds in the general case of a viscosity
coefficient satisfying only the general assumptions described before
we need to introduce a new family of tools.

Fora € [0,1] andt € (0, c0), let be
Ea(r) =r*(14+r)'-2,

forany o € [0,1], r — E,(r) is a strictly monotonic increasing and
concave function ofr € (0, co).

Stefano Berrone A posteriori error bounds for incompressible quasi-Newtonian flows



Quasi-norm  Uppe ume ul =g Definition Properties Monotonicity and Continuity

I-norm in Sobolev space

We assume thatk € C(£2 x (0, 00)) and that, givenr € (1, cc), there
exist constants a € [0,1] and e, K;, K, > 0 such that, for allx € €,

(A1) K1 [Ba(t + )72t —s) < k(x,0)t — k(x,s)s, Vt>s5>0,
(R2) k(x,6) < Ka[Eu()~2 Vi > 0, and
|k(x, )t — k(x,s)s| < Kx[Eq(t +5)]" 72|t —s|
for alls,t > 0 satisfying |(s/t) — 1| < e.

For all v, w € [WH(€Q2)]? with 1 < r < oo, let us define the following
quasi-norm:

Ve, 0 = /ﬂ Ea(le)] + [e(W)DI 2 le(v) ? de2.

[Barret-Liu 1993, Barrett-Liu 1994]




Quasi-norm  Upp u = Definition Properties Monotonicity and Continuity

si-norms in Sobolev space

Proposition (part I)

Suppose thatr € (1,00), a € [0,1] and w € [W!"(Q)]%;
(i) Vv € [Wl’r(ﬂ)]di |V|(w,r,a) Z 0;

(i) vv € [W ()], |V|(wyr,a) = 0 iffv=10;

(i) (Quasi-triangle-inequality): there exists a constant C = C(r)
such that

|V1 aF V2|(w,r,a) <cC (|V1|(w,r,a) A |V2|(w,r,a))

for all vy, v, € [Wh(Q)]%;
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Quasi-norm  Upp: = Definition Properties Monotonicity and Continuity

si-norms in Sobolev space

Proposition (Part II)
(iv) For1 <r <2,

2/r
VI o < lle(v)

(Wr,a) —

le)llr(0) < [Eallle™) @) + lle(W) @) 72 V] w,ra)

for allv € [WbH(€2)]4.
For2 <r < oo,

L7(22)

2
le)Ilray < Mlwre

IVl wirey < [Eallle)lir ) + lle(W)lli )]/

le(V) |l (o)

for allv € [Whr(€2)]°.
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m  Quasi-norm | B d = Definition  Properties  Monotonicity and Continuity

si-norms in So olev space

Lemma

Suppose thatr € (1,00) and define the constants C; = 2~ 1"—2K;
and C3 = 2Ir—21/max{2+'Y g, - then, fori = 1,2, and all v, va, w in V,

Cylvy — vzl%v,»,r,a) <a(vi,vi — v2) —a(vz,vi — v2),

min{l,%,}||

(Viryo)

ax =2
X[Ea(llvilly + [[v2llv)]™" =2

la(vi, w) — a(va, w)| < Cs|vi— V2 wlly

We are going to use these inequalities with vi = u and v, = u,. ) @
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Quasi-norm  Up ume = Definition  Properties  Monotonicity and Continuity

uasi-norms Sobolev space

Lemma

Let (u,p) € V x Q and (w,pr) € Vi X Qp denote the solutions to
the continuous and discrete problems, respectively, and let
r € (1,00); then

laly < GTGEIflIv),

lually < G GhlIElv),
1 _

lplle < (Ul + Ka(H 0 67 (G ltlv))
1 —1 1

alle < = (Illv + Ko(H 0 G~ GEIflIV) )

0

where ¢y and c; are the continuous and discrete inf-sup constants,
respectively, and G and H are continuous strictly monotonic
increasing functions defined on [0, co).
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I = Definition  Properties  Monotonicity and Continuity

uasi-norms in So olev space

Lemma

Suppose thatr € (1, co) and define the constants C, = 2-Ir=2K,
and Cy = 2Ir—21/max{2"}YK, - then, fori = 1,2, and all vi, va,w in V,

Cylu — uhl%u,r’a) <a(u,u—uy) —a(uy,u —u),

m'n{l,rl,}
la(u, w) — a(up, w)| < Calu—wy| gy IWllv

where Cy = C52"("53[(Eq 0 G—1) (& [[fllv)]™>E5
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norm  Upper boun u Functional upper bound Computable residuals Residual upper bound

Upper bound in terms of reS|duaI functionals

We define S; € V' by
(S1,w) = (f,w) — a(uy, w) — b(pp, w), Vw € V.
Similarly, we define S, € Q' by

(S2,9) = —b(q,u), Vg € Q.

Theorem

Let (u,p) € V X Q and (ws,pr) € Vi X Qu denote the solutions to
continuous and discrete problems, respectively. Then, there exists a
positive constant C depending on K, K, co, ¢y, 1, ||f||v: such that

R R{ ’
la — wl§ + llp —pall§ < € (ISINE + 12118 )

where Ry = max{r,2}, R = max{r’,2},1/ vy +1/r; = 1,
1/r+1/r = 1.

v
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Functional upper bound Computable residuals Residual upper bound

Rr([un,pn]) = V- (k(x,|e(us)]) e(ur)) — Vp + £y VT € Ty,
Je([unspn]) = [Ag - (k (x, le(u)]) e(ur) —pr D]y VE € Enas

V -y,

@ IIyRr([up,pr]) polynomial approx. of Rr([ws,pn]) onT € Ty;
@ IIpJe([us,pr]) polynomial approx. of Jg([ws,ps]) ONE € &p .

@ 7, shape-regular partition of €2;
@ VT €7, £(T) set of its (d — 1)-dimensional faces;

0 & = Upeg, E(T) be the set of all faces of 7j; @
0 &o={Ec€& : EZON}.

Stefano Berrone A posteriori error bounds for incompressible quasi-Newtonian flows




n  Upper boun u Functional upper bound Computable residuals Residual upper bound

Upper bound in terms of computable G [VES

Theorem

Let (u,p) € V x Q and (un,pr) € Vi, X Qy denote the solution to the
continuous and discrete problems, respectively. Then, there exists a
positive constant Cy; depending on Ky, K, co, cg, 1, ||f||v- and on the
minimal angle of the triangulation such that

|u—u, ”V +lp —pn ”Q<CU

Ry
(Z i || TR ([, pal) 'L,,(,)>
TET,

Ry,

P4

+ 1 D0 ke I Tedp([uns o)) L ) 1V - i [lf gy -
Ecénn
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norm  Upper boun u esul Functional upper bound Computable residuals Residual upper bound

Upper bound in terms of computable residuals

R}
+ (Z Hy || Rz ([wn, pr]) — TRy ([0s, pal) ||rL'r'(T))
TE€T,
R}
+ | X0 hell 3w pal) — Dede(unspi)) i ||

EE€€Ey

where Ry = max{r, 2}, R = max{r’,2}, 1/re +1/Rr, =1,
1/r+1/r = 1.
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norm  Upper bound Lower bound Num Functional lower bound Residual upper bound

bound in terms of reS|duaI functionals

Theorem

Let (u,p) € V x Q and (un,pr) € Vi, X Qy denote the solution to the
continuous and discrete problems, respectively Then, there exists a
positive constant ¢ depending on Ky, K,,r, ||f||v. such that

R{ / R R
e [IStIvt + 1S208 ] < lw—wi I + 12 —p 1§

where R, = min{r,2}, R = max{r’,2},1/r, +1/r, =1,
1/r+1/® =1, and S and S, are residual functionals which are
computably bounded.

@ R, = min{r,2};

@ Ry = max{r,2}.
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norm  Upper bound Lower bound Num Functional lower bound  Residual upper bound

bound in terms computable residuals

Theorem

Let (u,p) € V x Q and (u,pr) € Vi X Qy denote the solution to the
continuous and discrete problems, respectively. Then, there exists a
positive constant c; depending on Ky, K»,r, ||f||v, and on the minimal
angle of the triangulation such that

(Z h'; ” HTRT([“h?Fh]) ||£r'(T)>

T€T,

+ | D0 ke I Tedp([uns pa)) I e + 11V - I
Ecénn

R R
S e—w iy +llp =pullg -
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Functional lower bound  Residual upper bound

computable residuals

bound in terms

r/
L’ (T) >

> i || Je(uns pal) — Tede([wnspa]) ||'L',,(E)

Ecénn

YR

+ (Z Ky || Re([un, pa]) — DRz (s, pa])
TeT,

4R

+

where r, = min{r,2}, R = max{r’,2},1/r. +1/Rr, =1
1/r+1/r = 1.
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Numerical Resul  Adaptive algorithm Overview Power-law Carreau law Thank you

'From two- S|des bounds to the adaptive method

We have proved
@ upper and lower bounds in terms of residual functionals;
@ upper and lower bounds in terms of computable residuals;
@ (remarks....)

now we are ready to use them in our adaptive algorithm that is based
on the local information given by:
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ound  Numerical Resul|  Adaptive algorithm Overview Power-law Carreau law Thank you

Foe each T € 7, let us define the following elemental error indicators:

Rmom,T — hrTI H HTRT([uh’ph]) ”;ﬂ (T)

1 /
+5 > eI pa)) )
Ece(T) N &pn

+ > e | Tede(wnpa)) Il g
Ece(T)NéEnn

Rcont,T = || V. uy

r
L (T) *
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und Numerical Resul,  Adaptive algorithm Overview Power-law Carreau law Thank you

Adaptive algorithm

@ Solve the problem on the given mesh;

o’
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Adaptive algorithm

@ Solve the problem on the given mesh;
Q compute the elemental error indicators Rumom,r and Reent,

o’
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orm  Upper bound bound Numerical Resul.  Adaptive algorithm Overview Power-law Carreau law Thank you

Adaptlve algorithm

@ Solve the problem on the given mesh;
Q compute the elemental error indicators Rumom,r and Reent,
©Q sort the vectors R.mom[T], R.cont[T], VT € Ty

o’
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ound Numerical Resul’  Adaptive algorithm Overview Power-law Carreau law Thank you

.Adaptlve algorlthm

Algorithm

@ Solve the problem on the given mesh;
Q compute the elemental error indicators Rumom,r and Reent,
@ sort the vectors R.mom[T], R.cont[T], VT € Ty;

© mark for refinement the p% of the elements with the larger
values of R.mom;

o’
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ound  Numerical Resul|  Adaptive algorithm Overview Power-law Carreau law Thank you

Algorithm

@ Solve the problem on the given mesh;
compute the elemental error indicators Rmem,r @nd Reont, 1
sort the vectors R.mom[T], R.cont[T], VT € Ty;

mark for refinement the p% of the elements with the larger
values of R.mom;

mark for refinement the p% of the elements with the larger
values of R.cont;

2
o
o
Q

o’
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1d  Numerical Resul.  Adaptive algorithm Overview Power-law Carreau law Thank you

Solve the problem on the given mesh;
compute the elemental error indicators Rmem,r @nd Reont, 1
sort the vectors R.mom[T], R.cont[T], VT € T3,

mark for refinement the p% of the elements with the larger
values of R.mom;

mark for refinement the p% of the elements with the larger
values of R.cont;

pre-mark for coarsening the v% of the elements with the smaller
values of R.mom;

© 0 000OC

o’
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I Numerical Resul’  Adaptive algorithm Overview Power-law Carreau law Thank you

Algorithm

Solve the problem on the given mesh;
compute the elemental error indicators Rmem,r @nd Reont, 1
sort the vectors R.mom[T], R.cont[T], VT € Ty;

mark for refinement the p% of the elements with the larger
values of R.mom;

mark for refinement the p% of the elements with the larger
values of R.cont;

pre-mark for coarsening the v% of the elements with the smaller
values of R.mom;

pre-mark for coarsening the v% of the elements with the smaller
values of R.cont;

© 0 0 0000

o’
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I Numerical Resul’  Adaptive algorithm Overview Power-law Carreau law Thank you

Algorithm

Solve the problem on the given mesh;
compute the elemental error indicators Rmem,r @nd Reont, 1
sort the vectors R.mom[T], R.cont[T], VT € Ty;

mark for refinement the p% of the elements with the larger
values of R.mom;

mark for refinement the p% of the elements with the larger
values of R.cont;

pre-mark for coarsening the v% of the elements with the smaller
values of R.mom;

pre-mark for coarsening the v% of the elements with the smaller
values of R.cont;

mark for coarsening the element (compatibility rule);

© © 06 0 ©000OC

o’
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I Numerical Resul’  Adaptive algorithm Overview Power-law Carreau law Thank you

Algorithm

@ Solve the problem on the given mesh;
compute the elemental error indicators Rmem,r @nd Reont, 1
sort the vectors R.mom[T], R.cont[T], VT € Ty;

mark for refinement the p% of the elements with the larger
values of R.mom;

mark for refinement the p% of the elements with the larger
values of R.cont;

Q
o
Q
Q
© pre-mark for coarsening the v% of the elements with the smaller
values of R.mom;

o

o

o

pre-mark for coarsening the v% of the elements with the smaller
values of R.cont;

mark for coarsening the element (compatibility rule);

p=p/f,vy=7/f;

o’
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I Numerical Resul’  Adaptive algorithm Overview Power-law Carreau law Thank you

Algorithm

Solve the problem on the given mesh;
compute the elemental error indicators Rmem,r @nd Reont, 1
sort the vectors R.mom[T], R.cont[T], VT € Ty;

mark for refinement the p% of the elements with the larger
values of R.mom;

mark for refinement the p% of the elements with the larger
values of R.cont;

pre-mark for coarsening the v% of the elements with the smaller
values of R.mom;

pre-mark for coarsening the v% of the elements with the smaller
values of R.cont;

mark for coarsening the element (compatibility rule);

Q p=p/f,y=1/f;
Q@ adapt the mesh and back to point 1;

© © 06 0 ©000OC

o’
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Numerical Resul  Adaptive algorithm Overview Power-law Carreau law Thank you

Linear test problem

Figure: Starting and ending meshes for a linear singular problem, we use
P2-P1 elements
[Verfurth 1989, Carstensen-Funken 2000]
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Linear test problem

. -

osk Héééé-
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Figure: Velocity and pressure for a linear singular problem
[Verfiirth 1989, Carstensen-Funken 2000]
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-norm  Upper bound Lo ound Numerical Resul Adaptive algorithm Overview Power-law Carreau law Thank you

Numerlcal results on adapted meshes

In the following we consider:
@ two different geometries €©; and €,;
@ for each of them, a power-law model and a Carreau law model;
@ for each of them, a problem with r = 1.3 and one with r = 3.3.
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Figure: Velocity profiles for the power-law fully developed flow @
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Numerical results on adapted meshes

Figure: Starting mesh on the domain  Figure: Starting mesh on the domain
(o) 973
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Power-law: r=1.3, =102

Overview Power-law Carreau law Thank you
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Figure: Power-law, r = 1.3: final

Figure: Power-law, r = 1.3: final
mesh on the domain 9,

mesh on the domain Q,
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Power-law: r=1.3, =102

Figure: Power-law, r = 1.3: pressure  Figure: Power-law, r = 1.3: u
on the final mesh on ©; component of the velocity on €24
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Power-law: r=1.3, =102

Figure: Power-law, r = 1.3: pressure  Figure: Power-law, r = 1.3: u
on the final mesh on 4 component of the velocity on ©;
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Power-law: r=1.3, =102

Figure: Power-law, r = 1.3: u profile  Figure: Power-law, r = 1.3: u profile
on the final mesh on ©; of the velocity on €2,
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Numerical Resul Adaptive algorithm

Power-law: r=1.3, =102
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Figure: Power-law, r = 1.3: u profile  Figure: Power-law, r = 1.3: u profile
on the final mesh on 4, detail in the of the velocity on €., detail in the
cavity cavity
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Power-law: r=1.3, =102

; -8 18 2

e

Figure: Power-law, r = 1.3: u component on the final mesh on Q,, detail in
the cavity
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onitoring the adaptive process

Definitions (Total upper residual)

Ry

tot.R.U = (Z hrT, || HTRT([uhaph]) ;,r’(T))
TET,

’
Ry

7

+ Z he || TLeJe([wns pa]) [l )

E€&n,a,ry

R’
+IIV-w g
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Definitions (Total lower residual)

tot.R.L = <Z Ky || TRy ([wh, pa]) ||rLr'(T))

TET,

e Z he || Dee([w,pal) |1 (E)

E€&n,a,ry

R/
+IV -l
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Power-law: r=1.3, =102

—+— totR.U —#— totRU
tot.R.L tot.R.L

10720 2000 4000 Gé)()fo 8000 10000 12000 10720 5000 ot 10000 15000
Figure: Power-law, r = 1.3: total Figure: Power-law, r = 1.3: total
residuals during the adaptive process residuals during the adaptive process
on 3 on 2,
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Power-law: r=3.3, =102

Figure: Power-law, r = 3.3: pressure  Figure: Power-law, r = 3.3: u
on the final mesh on ©; component of the velocity on €24
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Power-law: r=3.3, =102

Figure: Power-law, r = 3.3: pressure  Figure: Power-law, r = 3.3: u
on the final mesh on 4 component of the velocity on ©;
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Power-law: r=3.3, =102

Figure: Power-law, r = 3.3: u profile  Figure: Power-law, r = 3.3: u profile
on the final mesh on ©; of the velocity on €2,
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Power-law: r=3.3, =102

Figure: Power-law, r = 3.3: u profile ~ Figure: Power-law, r = 3.3: u
of the velocity on €2,, detail in the component of the velocity on €2,
cavity detail in the cavity
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Power-law: r=3.3, =102
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10730 2000 4000 dot 6000 8000 10000 10730 2000 4000 ot 6000 8000 10000
Figure: Power-law, r = 3.3: total Figure: Power-law, r = 3.3: total
residuals during the adaptive process residuals during the adaptive process
on 94 on 2,
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Carreau law: 0 =r=1.3,ky=3-10"2%, k.. =0, A\=10"*
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Figure: Carreau law, r = 1.3: final Figure: Carreau law, r = 1.3: final
mesh on the domain 9, mesh on the domain Q,
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Carreau law: 0 =r=1.3,ky=3-10"2%, k.. =0, A\=10"*
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Figure: Carreau law, r = 1.3: total Figure: Carreau law, r = 1.3: total
residuals during the adaptive process residuals during the adaptive process
on 4 on 0, @
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Carreau law: 0 =r=3.3,ky=3-10"2%, k.. =0, A\=10"*
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Figure: Carreau law, r = 3.3: final
mesh on the domain €4
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Carreau law: 0 =r=3.3,ky=3-10"2%, k.. =0, A\=10"*
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Figure: Carreau law, r = 3.3: total Figure: Carreau law, r = 3.3: total
residuals during the adaptive process residuals during the adaptive process
on 4 on 0, @
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Thank you

Thank you for your attention
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