A posteriori error analysis of finite element approximation of quasi-Newtonian flows

Stefano Berrone

Dipartimento di Matematica Politecnico di Torino http://calvino.polito.it/~sberrone supported by INDAM: Istituto Nazionale di Alta Matematica *Francesco Severi*

> Joint work with Endre Süli University of Oxford, Computing Laboratory

Multiscale Problems: Modeling, Adaptive Discretization, Stabilization, Solvers, Cortona, September 18-22, 2006

Targets

Our target is to obtain a reliable finite element solution of quasi-Newtonian steady incompressible flows in an efficient way. To reach this target we need:

- computable quantities that tell us where the error in our numerical solution is large: upper bound of the error;
- computable quantities that tell us where the error in our numerical solution is small: lower bound of the error;
- an adaptive method that automatically refine the mesh where the error in the numerical solution is large and coarsen the mesh where the error is small.

Remark

- refining → reliability of the numerical solution;
- coarsening → efficiency on the numerical method.

Targets

Our target is to obtain a reliable finite element solution of quasi-Newtonian steady incompressible flows in an efficient way. To reach this target we need:

- computable quantities that tell us where the error in our numerical solution is large: upper bound of the error;
- computable quantities that tell us where the error in our numerical solution is small: lower bound of the error;
- an adaptive method that automatically refine the mesh where the error in the numerical solution is large and coarsen the mesh where the error is small.

Remark

- refining → reliability of the numerical solution;
- coarsening → efficiency on the numerical method.

Targets

Our target is to obtain a reliable finite element solution of quasi-Newtonian steady incompressible flows in an efficient way. To reach this target we need:

- computable quantities that tell us where the error in our numerical solution is large: upper bound of the error;
- computable quantities that tell us where the error in our numerical solution is small: lower bound of the error;
- an adaptive method that automatically refine the mesh where the error in the numerical solution is large and coarsen the mesh where the error is small.

Remark

- refining → reliability of the numerical solution;
- coarsening → efficiency on the numerical method.

Outline

- Model problem;
- Weak formulation of the continuous problem and discrete weak formulation;
- Quasi-norm, uniform monotonicity and local Hölder continuity;
- Upper bounds of the error:
 - Upper bound in terms of residual functionals (weak residuals);
 - Upper bound in terms of computable residuals (strong residuals);
- Lower bounds of the error:
 - Lower bound in terms of residual functionals (weak residuals);
 - Lower bound in terms of computable residuals (strong residuals);
- Numerical experiments:
 - Adaptive method based on our a posteriori error estimates;
 - Power-law problems;
 - Carreau law problems.

Model problem

Continuous strong form

$- abla\cdot\sigma$	=	f,	in Ω ,
$ abla \cdot \mathbf{u}$	=	0,	in Ω ,
u	=	0,	on $\partial \Omega = \Gamma$,

where

$$\sigma(x,\mathbf{u}) = k(x,|e(\mathbf{u})|)e(\mathbf{u}) - pI$$

is the stress tensor and

$$e(\mathbf{u})_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right), \quad i, j = 1, \dots, d.$$

are the components of the strain tensor $e(\mathbf{u}) \in \mathbb{R}^{d \times d}_{symm}$.

- Ω bounded Lipschitz domain, $|\Omega| = 1$;
- $k(x, |e(\mathbf{u})|)$ is the viscosity coefficient.

Viscosity coefficient $k(x, |e(\mathbf{u})|)$

We want to deal with:

- pseudoplastic fluids: increasing viscosity when $|e(u)| \rightarrow 0$;
- dilatant fluids: decreasing viscosity when $|e(u)| \rightarrow 0$;
- degenerate constitutive laws: the viscosity function can tend to 0 or to ∞ ;
- non-degenerate constitutive laws: the viscosity function is bounded away from 0 and from ∞.

Viscosity coefficient $k(x, |e(\mathbf{u})|)$

Assumption

ouasi-norm

We assume that $k \in C(\overline{\Omega} \times (0, \infty))$ and that, given $r \in (1, \infty)$, there exist constants $\alpha \in [0, 1]$ and ε , $K_1, K_2 > 0$ such that, for all $x \in \overline{\Omega}$,

- (A1) $K_1[(t+s)^{\alpha}(1+t+s)^{1-\alpha}]^{r-2}(t-s) \le k(x,t)t k(x,s)s$ for all $t \ge s > 0$
- (A2) $k(x,t) \le K_2[t^{\alpha}(1+t)^{1-\alpha}]^{r-2}$ for all t > 0, and

 $|k(x,t)t - k(x,s)s| \le K_2[(t+s)^{\alpha}(1+t+s)^{1-\alpha}]^{r-2}|t-s|$

for all s, t > 0 satisfying $|(s/t) - 1| \le \varepsilon$.

When $r \neq 2$, the parameter α measures the degree of degeneracy in $k(\cdot, \cdot)$ for a given value of $r \in (1, \infty)$ in the sense that the closer α is to 1 the more degenerate $k(\cdot, \cdot)$ is.

(a) the classical linear Stokes equations which govern the stationary flow of a viscous incompressible Newtonian fluid:

$$k(x, |e(\mathbf{u})|) = 2\mu_{\mathbf{u}}$$

corresponds to r = 2;

(b) the power-law model with

$$k(x, |e(\mathbf{u})|) = 2\mu |e(\mathbf{u})|^{r-2}$$

corresponds to $\alpha = 1$;

(c) the Carreau law

 $k(x, |e(\mathbf{u})|) = k_{\infty} + (k_0 - k_{\infty})(1 + \lambda |e(\mathbf{u})|^2)^{(\theta - 2)/2},$

with $k_0 > k_\infty \ge 0, \lambda > 0, \theta \in (1,\infty);$

- if $k_{\infty} = 0$, then $\alpha = 0$ with $r = \theta$;
- if $k_{\infty} > 0$, then r = 2 and $\theta \in (1, 2]$, (pseudoplastic behaviour).

 (a) the classical linear Stokes equations which govern the stationary flow of a viscous incompressible Newtonian fluid:

 $k(x, |e(\mathbf{u})|) = 2\mu,$

corresponds to r = 2;

(b) the power-law model with

$$k(x, |e(\mathbf{u})|) = 2\mu |e(\mathbf{u})|^{r-2}$$

corresponds to $\alpha = 1$;

(c) the Carreau law

 $k(x, |e(\mathbf{u})|) = k_{\infty} + (k_0 - k_{\infty})(1 + \lambda |e(\mathbf{u})|^2)^{(\theta - 2)/2},$

with $k_0 > k_\infty \ge 0, \lambda > 0, \theta \in (1,\infty);$

- if $k_{\infty} = 0$, then $\alpha = 0$ with $r = \theta$;
- if $k_{\infty} > 0$, then r = 2 and $\theta \in (1, 2]$, (pseudoplastic behaviour).

(a) the classical linear Stokes equations which govern the stationary flow of a viscous incompressible Newtonian fluid:

$$k(x, |e(\mathbf{u})|) = 2\mu,$$

corresponds to r = 2;

(b) the power-law model with

$$k(x, |e(\mathbf{u})|) = 2\mu |e(\mathbf{u})|^{r-2}$$

corresponds to $\alpha = 1$;

(c) the Carreau law

 $k(x, |e(\mathbf{u})|) = k_{\infty} + (k_0 - k_{\infty})(1 + \lambda |e(\mathbf{u})|^2)^{(\theta - 2)/2},$

with $k_0 > k_\infty \ge 0, \lambda > 0, \theta \in (1,\infty);$

- if $k_{\infty} = 0$, then $\alpha = 0$ with $r = \theta$;
- if $k_{\infty} > 0$, then r = 2 and $\theta \in (1, 2]$, (pseudoplastic behaviour).

(a) the classical linear Stokes equations which govern the stationary flow of a viscous incompressible Newtonian fluid:

$$k(x, |e(\mathbf{u})|) = 2\mu_{\mathbf{u}}$$

corresponds to r = 2;

(b) the power-law model with

$$k(x, |e(\mathbf{u})|) = 2\mu |e(\mathbf{u})|^{r-2}$$

corresponds to $\alpha = 1$;

(c) the Carreau law

 $k(x, |e(\mathbf{u})|) = k_{\infty} + (k_0 - k_{\infty})(1 + \lambda |e(\mathbf{u})|^2)^{(\theta - 2)/2},$

with $k_0 > k_{\infty} \ge 0$, $\lambda > 0$, $\theta \in (1, \infty)$;

- if $k_{\infty} = 0$, then $\alpha = 0$ with $r = \theta$;
- if $k_{\infty} > 0$, then r = 2 and $\theta \in (1, 2]$, (pseudoplastic behaviour).

Continuous weak formulation

Find $\mathbf{u} \in \mathbf{V}$ and $p \in \mathbf{Q}$ such that

$$egin{array}{rcl} a(\mathbf{u},\mathbf{v})+b(p,\mathbf{v})&=&(\mathbf{f},\mathbf{v})&\quad\forall\mathbf{v}\in\mathbf{V},\ b(q,\mathbf{u})&=&\mathbf{0}&\quad\forall q\in\mathbf{Q}, \end{array}$$

where

$$a(\mathbf{u},\mathbf{v}) = \int_{\Omega} k(x,|e(\mathbf{u})|)e(\mathbf{u}): e(\mathbf{v}) \,\mathrm{d}\Omega, \quad b(q,\mathbf{v}) = -\int_{\Omega} (\nabla \cdot \mathbf{v}) \,q \,\mathrm{d}\Omega,$$

$$\begin{split} \mathbf{V} &= [\mathbf{W}_0^{1,r}(\Omega)]^d, \text{ with the norm } \|\mathbf{v}\|_{\mathbf{V}} = \|\boldsymbol{e}(\mathbf{v})\|_{L^r(\Omega)}, \\ \mathbf{Q} &= \mathbf{L}_0^{r'}(\Omega) = \mathbf{L}^{r'}(\Omega)/\mathbb{R}, \text{ with the norm } \|\boldsymbol{q}\|_{\mathbf{Q}} = \inf_{\boldsymbol{c} \in \mathbb{R}} \|\boldsymbol{q} + \boldsymbol{c}\|_{\mathbf{L}^{r'}(\Omega)}, \\ \text{and the bilinear form } \boldsymbol{b}(\cdot, \cdot) \text{ satisfies the following inf-sup condition:} \end{split}$$

$$\inf_{q\in \mathbf{Q}}\sup_{\mathbf{v}\in \mathbf{V}}rac{b(q,\mathbf{v})}{\|q\|_{\mathbf{Q}}\|\mathbf{v}\|_{\mathbf{V}}}\geq c_{0}\qquad orall q\in \mathbf{Q}.$$

Let V' and Q' denote the dual spaces of V and Q.

Discrete weak formulation

Find $\mathbf{u}_h \in \mathbf{V}_h$ and $p_h \in \mathbf{Q}_h$ such that

$$egin{array}{rcl} a(\mathbf{u}_h,\mathbf{v}_h)+b(p_h,\mathbf{v}_h)&=&(\mathbf{f},\mathbf{v}_h)&orall \mathbf{v}_h\in\mathbf{V}_h,\ b(q_h,\mathbf{u}_h)&=&\mathbf{0}&orall \mathbf{v}_h\in\mathbf{Q}_h. \end{array}$$

- \mathcal{T}_h shape-regular partition of Ω ;
- $V_h \subset V$ continuous velocity F.E. space defined on \mathcal{T}_h ;
- Q_h ⊂ Q continuous/discontinuous pressure F.E. space on T_h;
- the pair (V_h, Q_h) satisfies the following inf-sup condition:

$$\inf_{q_h\in \mathbf{Q}_h}\sup_{\mathbf{v}_h\in \mathbf{V}_h}\frac{b(q_h,\mathbf{v}_h)}{\|q_h\|_{\mathbf{Q}}\|\mathbf{v}_h\|_{\mathbf{V}}}\geq c_0',\quad c_0' \text{ independent of }h.$$

To derive upper and lower bounds in the general case of a viscosity coefficient satisfying only the general assumptions described before we need to introduce a new family of tools.

For $\alpha \in [0,1]$ and $t \in (0,\infty)$, let be

$$\Xi_{\alpha}(r)=r^{\alpha}(1+r)^{1-\alpha},$$

for any $\alpha \in [0, 1]$, $r \mapsto \Xi_{\alpha}(r)$ is a strictly monotonic increasing and concave function of $r \in (0, \infty)$.

Assumptions on k(x, t)

Assumption

We assume that $k \in C(\bar{\Omega} \times (0, \infty))$ and that, given $r \in (1, \infty)$, there exist constants $\alpha \in [0, 1]$ and ε , $K_1, K_2 > 0$ such that, for all $x \in \bar{\Omega}$, (A1) $K_1[\Xi_{\alpha}(t+s)]^{r-2}(t-s) \leq k(x,t)t - k(x,s)s, \quad \forall t \geq s > 0$, (A2) $k(x,t) \leq K_2[\Xi_{\alpha}(t)]^{r-2} \quad \forall t > 0$, and $|k(x,t)t - k(x,s)s| \leq K_2[\Xi_{\alpha}(t+s)]^{r-2}|t-s|$ for all s, t > 0 satisfying $|(s/t) - 1| \leq \varepsilon$. MonotaCont

Definition

For all $\mathbf{v}, \mathbf{w} \in [\mathbf{W}^{1,r}(\Omega)]^d$ with $1 < r < \infty$, let us define the following quasi-norm:

$$|\mathbf{v}|^2_{(\mathbf{w},r,\alpha)} = \int_{\Omega} [\Xi_{\alpha}(|\boldsymbol{e}(\mathbf{v})| + |\boldsymbol{e}(\mathbf{w})|)]^{r-2} |\boldsymbol{e}(\mathbf{v})|^2 \, \mathrm{d}\Omega.$$

[Barret-Liu 1993, Barrett-Liu 1994]

Proposition (part I)

Suppose that $r \in (1, \infty)$, $\alpha \in [0, 1]$ and $w \in [W^{1,r}(\Omega)]^d$;

(i)
$$\forall \mathbf{v} \in [\mathbf{W}^{1,r}(\Omega)]^d$$
, $|\mathbf{v}|_{(\mathbf{w},r,\alpha)} \ge 0$;

(ii)
$$\forall \mathbf{v} \in [\mathbf{W}^{1,r}(\Omega)]^d$$
, $|\mathbf{v}|_{(\mathbf{w},r,\alpha)} = \mathbf{0}$ iff $\mathbf{v} = \mathbf{0}$;

(iii) (Quasi-triangle-inequality): there exists a constant C = C(r) such that

$$|v_1 + v_2|_{(w,r,\alpha)} \le C \left(|v_1|_{(w,r,\alpha)} + |v_2|_{(w,r,\alpha)} \right)$$

for all $\mathbf{v}_1, \mathbf{v}_2 \in [\mathbf{W}^{1,r}(\Omega)]^d$;

Proposition (Part II)

```
(iv) For 1 < r < 2,
                   \|\mathbf{v}\|_{(\mathbf{w},r,\alpha)}^{2/r} \leq \|\boldsymbol{e}(\mathbf{v})\|_{\mathbf{L}^{r}(\Omega)}
           \|e(\mathbf{v})\|_{L^{\prime}(\Omega)} \leq \left[\Xi_{\alpha}(\|e(\mathbf{v})\|_{L^{\prime}(\Omega)} + \|e(\mathbf{w})\|_{L^{\prime}(\Omega)})\right]^{(2-r)/2} |\mathbf{v}|_{(\mathbf{w},r,\alpha)}
           for all \mathbf{v} \in [\mathbf{W}^{1,r}(\Omega)]^d.
           For 2 < r < \infty,
           \|e(\mathbf{v})\|_{L^{r}(\Omega)}^{r/2} \leq |\mathbf{v}|_{(\mathbf{w},r,\alpha)}
            \|\mathbf{v}\|_{(\mathbf{w},r,\alpha)} \leq [\Xi_{\alpha}(\|e(\mathbf{v})\|_{L^{r}(\Omega)} + \|e(\mathbf{w})\|_{L^{r}(\Omega)})]^{(r-2)/2} \|e(\mathbf{v})\|_{L^{r}(\Omega)}
           for all \mathbf{v} \in [\mathbf{W}^{1,r}(\Omega)]^d.
```


Lemma

Suppose that $r \in (1, \infty)$ and define the constants $C_2 = 2^{-|r-2|}K_1$ and $C_3 = 2^{|r-2|/\max\{2,r'\}}K_2$; then, for i = 1, 2, and all v_1, v_2, w in V,

$$C_2|\mathbf{v}_1-\mathbf{v}_2|^2_{(\mathbf{v}_i,r,\alpha)} \leq a(\mathbf{v}_1,\mathbf{v}_1-\mathbf{v}_2)-a(\mathbf{v}_2,\mathbf{v}_1-\mathbf{v}_2),$$

$$\begin{aligned} |a(\mathbf{v}_{1},\mathbf{w}) - a(\mathbf{v}_{2},\mathbf{w})| &\leq C_{3} |\mathbf{v}_{1} - \mathbf{v}_{2}|_{(\mathbf{v}_{i},r,\alpha)}^{\min\{1,\frac{2}{r'}\}} ||\mathbf{w}||_{\mathbf{V}} \\ &\times [\Xi_{\alpha}(||\mathbf{v}_{1}||_{\mathbf{V}} + ||\mathbf{v}_{2}||_{\mathbf{V}})]^{\max\{0,\frac{r-2}{2}\}} \end{aligned}$$

• Assumptions on k(x, t)

We are going to use these inequalities with $\mathbf{v}_1 = \mathbf{u}$ and $\mathbf{v}_2 = \mathbf{u}_h$.

Lemma

Let $(\mathbf{u}, p) \in \mathbf{V} \times \mathbf{Q}$ and $(\mathbf{u}_h, p_h) \in \mathbf{V}_h \times \mathbf{Q}_h$ denote the solutions to the continuous and discrete problems, respectively, and let $r \in (1, \infty)$; then

$$\begin{aligned} \|\mathbf{u}\|_{\mathbf{V}} &\leq G^{-1}(\frac{1}{K_{1}}\|\mathbf{f}\|_{\mathbf{V}'}), \\ \|\mathbf{u}_{h}\|_{\mathbf{V}} &\leq G^{-1}(\frac{1}{K_{1}}\|\mathbf{f}\|_{\mathbf{V}'}), \\ \|p\|_{\mathbf{Q}} &\leq \frac{1}{c_{0}}\left(\|\mathbf{f}\|_{\mathbf{V}'} + K_{2}(H \circ G^{-1})(\frac{1}{K_{1}}\|\mathbf{f}\|_{\mathbf{V}'})\right), \\ \|p_{h}\|_{\mathbf{Q}} &\leq \frac{1}{c_{0}'}\left(\|\mathbf{f}\|_{\mathbf{V}'} + K_{2}(H \circ G^{-1})(\frac{1}{K_{1}}\|\mathbf{f}\|_{\mathbf{V}'})\right), \end{aligned}$$

where c_0 and c'_0 are the continuous and discrete inf-sup constants, respectively, and *G* and *H* are continuous strictly monotonic increasing functions defined on $[0, \infty)$.

Lemma

Suppose that $r \in (1, \infty)$ and define the constants $C_2 = 2^{-|r-2|}K_1$ and $C_3 = 2^{|r-2|/\max\{2,r'\}}K_2$; then, for i = 1, 2, and all v_1, v_2, w in V,

$$C_2|\mathbf{u}-\mathbf{u}_h|^2_{(\mathbf{u},r,\alpha)} \leq a(\mathbf{u},\mathbf{u}-\mathbf{u}_h) - a(\mathbf{u}_h,\mathbf{u}-\mathbf{u}_h),$$

$$|a(\mathbf{u},\mathbf{w})-a(\mathbf{u}_h,\mathbf{w})| \leq C_4 |\mathbf{u}-\mathbf{u}_h|_{(\mathbf{u},r,\alpha)}^{\min\{1,\frac{2}{r'}\}} \|\mathbf{w}\|_{\mathbf{V}}$$

where
$$C_4 = C_3 2^{\max\{0, \frac{r-2}{2}\}} [(\Xi_{\alpha} \circ G^{-1})(\frac{1}{K_1} \|\mathbf{f}\|_{V'})]^{\max\{0, \frac{r-2}{2}\}}.$$

Upper bound in terms of residual functionals

We define $S_1 \in V^\prime$ by

$$\langle \mathbf{S}_1, \mathbf{w}
angle = (\mathbf{f}, \mathbf{w}) - a(\mathbf{u}_h, \mathbf{w}) - b(p_h, \mathbf{w}), \qquad orall \mathbf{w} \in \mathbf{V}.$$

Similarly, we define $S_2 \in Q'$ by

$$\langle \mathbf{S}_2, q \rangle = -b(q, \mathbf{u}_h), \quad \forall q \in \mathbf{Q}.$$

Theorem

Let $(\mathbf{u}, p) \in \mathbf{V} \times \mathbf{Q}$ and $(\mathbf{u}_h, p_h) \in \mathbf{V}_h \times \mathbf{Q}_h$ denote the solutions to continuous and discrete problems, respectively. Then, there exists a positive constant *C* depending on $K_1, K_2, c_0, c'_0, r, \|\mathbf{f}\|_{\mathbf{V}'}$ such that

$$\|\mathbf{u} - \mathbf{u}_{h}\|_{V}^{\mathbf{R}_{U}} + \|p - p_{h}\|_{Q}^{\mathbf{R}} \leq C \left(\|\mathbf{S}_{1}\|_{V'}^{\mathbf{R}'_{U}} + \|\mathbf{S}_{2}\|_{Q'}^{\mathbf{R}'} \right),$$

where
$$R_U = \max\{r, 2\}$$
, $R = \max\{r', 2\}$, $1/R_U + 1/R'_U = 1$, $1/R + 1/R' = 1$.

Computable residuals

Definition

$$\mathbf{R}_{T}([\mathbf{u}_{h},p_{h}]) = \nabla \cdot (k(x,|e(\mathbf{u}_{h})|) e(\mathbf{u}_{h})) - \nabla p + \mathbf{f}|_{T}, \forall T \in \mathcal{T}_{h},$$

 $\mathbf{J}_{E}([\mathbf{u}_{h},p_{h}]) = \llbracket \hat{n}_{E} \cdot (k (x, |e(\mathbf{u}_{h})|) e(\mathbf{u}_{h}) - p_{h} \mathbf{I}) \rrbracket_{E}, \quad \forall E \in \mathcal{E}_{h,\Omega},$

 $\nabla \cdot \mathbf{u}_h$

- $\Pi_T \mathbf{R}_T([\mathbf{u}_h, p_h])$ polynomial approx. of $\mathbf{R}_T([\mathbf{u}_h, p_h])$ on $T \in \mathcal{T}_h$;
- $\Pi_E \mathbf{J}_E([\mathbf{u}_h, p_h])$ polynomial approx. of $\mathbf{J}_E([\mathbf{u}_h, p_h])$ on $E \in \mathcal{E}_{h,\Omega}$.
- \mathcal{T}_h shape-regular partition of Ω ;
- $\forall T \in \mathcal{T}_h, \mathcal{E}(T)$ set of its (d-1)-dimensional faces;
- $\mathcal{E}_h = \bigcup_{T \in \mathcal{T}_h} \mathcal{E}(T)$ be the set of all faces of \mathcal{T}_h ;
- $\mathcal{E}_{h,\Omega} = \{ E \in \mathcal{E}_h : E \not\subset \partial \Omega \}.$

Upper bound in terms of computable residuals

Theorem

Let $(\mathbf{u}, p) \in \mathbf{V} \times \mathbf{Q}$ and $(\mathbf{u}_h, p_h) \in \mathbf{V}_h \times \mathbf{Q}_h$ denote the solution to the continuous and discrete problems, respectively. Then, there exists a positive constant C_U depending on $K_1, K_2, c_0, c'_0, r, ||\mathbf{f}||_{\mathbf{V}'}$ and on the minimal angle of the triangulation such that

$$\| \mathbf{u} - \mathbf{u}_{h} \|_{\mathbf{V}}^{\mathbf{R}_{U}} + \| p - p_{h} \|_{\mathbf{Q}}^{\mathbf{R}} \leq C_{U}$$

$$\times \left[\left(\sum_{T \in \mathcal{T}_{h}} h_{T}^{r'} \| \Pi_{T} \mathbf{R}_{T}([\mathbf{u}_{h}, p_{h}]) \|_{L^{r'}(T)}^{r'} \right)^{\frac{\mathbf{R}_{U}^{\prime}}{r'}} + \left(\sum_{E \in \mathcal{E}_{h,\Omega}} h_{E} \| \Pi_{E} \mathbf{J}_{E}([\mathbf{u}_{h}, p_{h}]) \|_{L^{r'}(E)}^{r'} \right)^{\frac{\mathbf{R}_{U}^{\prime}}{r'}} + \| \nabla \cdot \mathbf{u}_{h} \|_{L^{r'}(\Omega)}^{\mathbf{R}_{U}^{\prime}} \dots$$

Upper bound in terms of computable residuals

Theorem

$$\dots + \left(\sum_{T \in \mathcal{I}_h} h_T^{r'} \| \mathbf{R}_T([\mathbf{u}_h, p_h]) - \mathbf{\Pi}_T \mathbf{R}_T([\mathbf{u}_h, p_h]) \|_{\mathbf{L}^{r'}(T)}^{p'}\right)^{\frac{\mathbf{R}'_U}{r'}} + \left(\sum_{E \in \mathcal{E}_{h,\Omega}} h_E \| \mathbf{J}_E([\mathbf{u}_h, p_h]) - \mathbf{\Pi}_E \mathbf{J}_E([\mathbf{u}_h, p_h]) \|_{\mathbf{L}^{r'}(E)}^{p'}\right)^{\frac{\mathbf{R}'_U}{r'}} \right],$$

where
$$R_U = \max\{r, 2\}$$
, $R = \max\{r', 2\}$, $1/R_U + 1/R'_U = 1$, $1/R + 1/R' = 1$.

Lower bound in terms of residual functionals

Theorem

Let $(\mathbf{u}, p) \in \mathbf{V} \times \mathbf{Q}$ and $(\mathbf{u}_h, p_h) \in \mathbf{V}_h \times \mathbf{Q}_h$ denote the solution to the continuous and discrete problems, respectively Then, there exists a positive constant *c* depending on $K_1, K_2, r, \|\mathbf{f}\|_{\mathbf{V}'}$ such that

$$c\left[\left\|\mathbf{S}_{1}\right\|_{\mathbf{V}'}^{\mathbf{R}'_{L}}+\left\|\mathbf{S}_{2}\right\|_{\mathbf{Q}'}^{\mathbf{R}'}\right]\leq\left\|\left.\mathbf{u}-\mathbf{u}_{h}\right.\right\|_{\mathbf{V}}^{\mathbf{R}_{L}}+\left\|\left.p-p_{h}\right.\right\|_{\mathbf{Q}}^{\mathbf{R}}$$

where $R_L=min\{r,2\}$, $R=max\{r',2\}$, $1/R_L+1/R_L'=1$, 1/R+1/R'=1, and S_1 and S_2 are residual functionals which are computably bounded.

•
$$R_L = \min\{r, 2\};$$

• $R_U = \max\{r, 2\}.$

▶ upper

Lower bound in terms of computable residuals

Theorem

Let $(\mathbf{u}, p) \in \mathbf{V} \times \mathbf{Q}$ and $(\mathbf{u}_h, p_h) \in \mathbf{V}_h \times \mathbf{Q}_h$ denote the solution to the continuous and discrete problems, respectively. Then, there exists a positive constant c_L depending on $K_1, K_2, r, ||f||_{V'}$ and on the minimal angle of the triangulation such that

$$\begin{split} & \boldsymbol{\mathcal{C}_{\boldsymbol{L}}}\left[\left(\sum_{T\in\mathcal{T}_{h}}\boldsymbol{h}_{T}^{r'} \| \boldsymbol{\Pi}_{T}\boldsymbol{\mathrm{R}}_{T}([\boldsymbol{\mathrm{u}}_{h},\boldsymbol{p}_{h}]) \|_{L^{r'}(T)}^{r'}\right)^{\frac{\mathbf{R}_{L}^{\prime}}{r'}} \\ &+ \left(\sum_{E\in\mathcal{E}_{h,\Omega}}\boldsymbol{h}_{E} \| \boldsymbol{\Pi}_{E}\boldsymbol{\mathrm{J}}_{E}([\boldsymbol{\mathrm{u}}_{h},\boldsymbol{p}_{h}]) \|_{L^{r'}(E)}^{r'}\right)^{\frac{\mathbf{R}_{L}^{\prime}}{r'}} + \| \boldsymbol{\nabla}\cdot\boldsymbol{\mathrm{u}}_{h} \|_{L^{r'}(\Omega)}^{\mathbf{R}_{L'}}\right] \\ &\leq \| \boldsymbol{\mathrm{u}}-\boldsymbol{\mathrm{u}}_{h} \|_{V}^{\mathbf{R}_{L}} + \| \boldsymbol{p}-\boldsymbol{p}_{h} \|_{Q}^{\mathbf{R}} \dots \end{split}$$

Lower bound in terms of computable residuals

Theorem

$$+ \left(\sum_{T \in \mathcal{I}_h} h_T^{r'} \| \mathbf{R}_T([\mathbf{u}_h, p_h]) - \Pi_T \mathbf{R}_T([\mathbf{u}_h, p_h]) \|_{\mathbf{L}^{r'}(T)}^{r'}\right)^{\frac{\mathbf{R}'_L}{r'}} \\ + \left(\sum_{E \in \mathcal{E}_h, \Omega} h_E \| \mathbf{J}_E([\mathbf{u}_h, p_h]) - \Pi_E \mathbf{J}_E([\mathbf{u}_h, p_h]) \|_{\mathbf{L}^{r'}(E)}^{r'}\right)^{\frac{\mathbf{R}'_L}{r'}}$$

where ${\bf R}_{\rm L}=\min\{r,2\},\, {\bf R}=\max\{r',2\},\, 1/\, {\bf R}_{\rm L}+1/\, {\bf R}_{\rm L}'=1,\, 1/\, {\bf R}+1/\, {\bf R}'=1.$

verview Power-law Carreau law Thank you

From two-sides bounds to the adaptive method

We have proved

- upper and lower bounds in terms of residual functionals;
- upper and lower bounds in terms of computable residuals;
- (remarks....)

now we are ready to use them in our adaptive algorithm that is based on the local information given by:

Definition

Foe each $T \in T_h$ let us define the following elemental error indicators:

$$\begin{split} \mathbf{R}_{\text{mom},\text{T}} &= h_T^{r'} \parallel \Pi_T \mathbf{R}_T([\mathbf{u}_h, p_h]) \parallel_{\mathbf{L}^{r'}(T)}^{r'} \\ &+ \frac{1}{2} \sum_{E \in \mathcal{E}(T) \cap \mathcal{E}_{h,\Omega}} h_E \parallel \Pi_E \mathbf{J}_E([\mathbf{u}_h, p_h]) \parallel_{\mathbf{L}^{r'}(E)}^{r'} \\ &+ \sum_{E \in \mathcal{E}(T) \cap \mathcal{E}_{h,N}} h_E \parallel \Pi_E \mathbf{J}_E([\mathbf{u}_h, p_h]) \parallel_{\mathbf{L}^{r'}(E)}^{r'}, \\ \mathbf{R}_{\text{cont},\text{T}} &= \parallel \nabla \cdot \mathbf{u}_h \parallel_{\mathbf{L}^{r}(T)}^{r}. \end{split}$$

Algorithm

Solve the problem on the given mesh;

- Solve the problem on the given mesh;
- ${f O}$ compute the elemental error indicators $R_{mom,T}$ and $R_{cont,T}$

- Solve the problem on the given mesh;
- Compute the elemental error indicators R_{mom,T} and R_{cont,T}
- Sort the vectors R.mom[T], R.cont[T], $\forall T \in \mathcal{T}_h$;

- Solve the problem on the given mesh;
- \bigcirc compute the elemental error indicators $R_{mom,T}$ and $R_{cont,T}$
- **③** sort the vectors R.mom[*T*], R.cont[*T*], $\forall T \in \mathcal{T}_h$;
- mark for refinement the ρ% of the elements with the larger values of R.mom;

- Solve the problem on the given mesh;
- \bigcirc compute the elemental error indicators $R_{mom,T}$ and $R_{cont,T}$
- **③** sort the vectors R.mom[*T*], R.cont[*T*], $\forall T \in T_h$;
- mark for refinement the ρ% of the elements with the larger values of R.mom;
- mark for refinement the ρ% of the elements with the larger values of R.cont;

- Solve the problem on the given mesh;
- Compute the elemental error indicators R_{mom,T} and R_{cont,T}
- **③** sort the vectors R.mom[*T*], R.cont[*T*], $\forall T \in T_h$;
- mark for refinement the ρ% of the elements with the larger values of R.mom;
- mark for refinement the ρ% of the elements with the larger values of R.cont;
- pre-mark for coarsening the γ% of the elements with the smaller values of R.mom;

- Solve the problem on the given mesh;
- Compute the elemental error indicators R_{mom,T} and R_{cont,T}
- **③** sort the vectors R.mom[*T*], R.cont[*T*], $\forall T \in T_h$;
- mark for refinement the ρ% of the elements with the larger values of R.mom;
- mark for refinement the ρ% of the elements with the larger values of R.cont;
- pre-mark for coarsening the γ% of the elements with the smaller values of R.mom;
- pre-mark for coarsening the γ% of the elements with the smaller values of R.cont;

- Solve the problem on the given mesh;
- Compute the elemental error indicators R_{mom,T} and R_{cont,T}
- **③** sort the vectors R.mom[*T*], R.cont[*T*], $\forall T \in T_h$;
- mark for refinement the ρ% of the elements with the larger values of R.mom;
- mark for refinement the ρ% of the elements with the larger values of R.cont;
- pre-mark for coarsening the γ% of the elements with the smaller values of R.mom;
- pre-mark for coarsening the $\gamma\%$ of the elements with the smaller values of R.cont;
- Mark for coarsening the element (compatibility rule);

Algorithm

- Solve the problem on the given mesh;
- Compute the elemental error indicators R_{mom,T} and R_{cont,T}
- **③** sort the vectors R.mom[*T*], R.cont[*T*], $\forall T \in T_h$;
- mark for refinement the ρ% of the elements with the larger values of R.mom;
- mark for refinement the ρ% of the elements with the larger values of R.cont;
- pre-mark for coarsening the $\gamma\%$ of the elements with the smaller values of R.mom;
- pre-mark for coarsening the $\gamma\%$ of the elements with the smaller values of R.cont;
- mark for coarsening the element (compatibility rule);

Stefano Berrone

Algorithm

- Solve the problem on the given mesh;
- Compute the elemental error indicators R_{mom,T} and R_{cont,T}
- **③** sort the vectors R.mom[*T*], R.cont[*T*], $\forall T \in T_h$;
- mark for refinement the ρ% of the elements with the larger values of R.mom;
- mark for refinement the ρ% of the elements with the larger values of R.cont;
- pre-mark for coarsening the $\gamma\%$ of the elements with the smaller values of R.mom;
- pre-mark for coarsening the $\gamma\%$ of the elements with the smaller values of R.cont;
- Imark for coarsening the element (compatibility rule);

)
$$ho=
ho/f$$
 , $\gamma=\gamma/f$;

adapt the mesh and back to point 1;

Linear test problem

Figure: Starting and ending meshes for a linear singular problem, we use P2-P1 elements [Verfürth 1989, Carstensen-Funken 2000]

Linear test problem

Figure: Velocity and pressure for a linear singular problem [Verfürth 1989, Carstensen-Funken 2000]

Model problem Quasi-norm Upper bound Lower bound Numerical Result Adaptive algorithm Overview Power-law Carreau law Thank you

Numerical results on adapted meshes

In the following we consider:

- two different geometries Ω_1 and Ω_2 ;
- for each of them, a power-law model and a Carreau law model;
- for each of them, a problem with r = 1.3 and one with r = 3.3.

Figure: Velocity profiles for the power-law fully developed flow

Numerical results on adapted meshes

Figure: Starting mesh on the domain Ω_1

Figure: Starting mesh on the domain Ω_2

Figure: Power-law, r = 1.3: final mesh on the domain Ω_1

Figure: Power-law, r = 1.3: final mesh on the domain Ω_2

Figure: Power-law, r = 1.3: pressure on the final mesh on Ω_1 Figure: Power-law, r = 1.3: *u* component of the velocity on Ω_1

Figure: Power-law, r = 1.3: pressure on the final mesh on Ω_1 Figure: Power-law, r = 1.3: *u* component of the velocity on Ω_1

Figure: Power-law, r = 1.3: *u* profile on the final mesh on Ω_1 Figure: Power-law, r = 1.3: *u* profile of the velocity on Ω_2

side vortex view 33

Figure: Power-law, r = 1.3: *u* profile on the final mesh on Ω_1 , detail in the cavity Figure: Power-law, r = 1.3: *u* profile of the velocity on Ω_2 , detail in the cavity

Figure: Power-law, r = 1.3: *u* component on the final mesh on Ω_2 , detail in the cavity

Monitoring the adaptive process

Definitions (Total upper residual)

$$\text{tot.R.U} = \left(\sum_{T \in \mathcal{I}_h} h_T^{r'} \| \Pi_T \mathbf{R}_T([\mathbf{u}_h, p_h]) \|_{L^{r'}(T)}^{r'} \right)^{\frac{\mathbf{R}'_U}{r'}} \\ + \left(\sum_{E \in \mathcal{E}_h, \Omega, \Gamma_N} h_E \| \Pi_E \mathbf{J}_E([\mathbf{u}_h, p_h]) \|_{L^{r'}(E)}^{r'} \right)^{\frac{\mathbf{R}'_U}{r'}} \\ + \| \nabla \cdot \mathbf{u}_h \|_{L^{r'}(\Omega)}^{\mathbf{R}'}$$

Monitoring the adaptive process

Definitions (Total lower residual)

$$\begin{aligned} \text{tot.R.L} &= \left(\sum_{T \in \mathcal{I}_h} h_T^{r'} \| \Pi_T \mathbf{R}_T([\mathbf{u}_h, p_h]) \|_{\mathbf{L}^{r'}(T)}^{r'} \right)^{\frac{\mathbf{R}'_1}{r'}} \\ &+ \left(\sum_{E \in \mathcal{E}_{h,\Omega,\Gamma_N}} h_E \| \Pi_E \mathbf{J}_E([\mathbf{u}_h, p_h]) \|_{\mathbf{L}^{r'}(E)}^{r'} \right)^{\frac{\mathbf{R}'_1}{r'}} \\ &+ \| \nabla \cdot \mathbf{u}_h \|_{\mathbf{L}^{r}(\Omega)}^{\mathbf{R}'} \end{aligned}$$

Figure: Power-law, r = 1.3: total residuals during the adaptive process on Ω_1

Figure: Power-law, r = 1.3: total residuals during the adaptive process on Ω_2

Figure: Power-law, r = 3.3: final mesh on the domain Ω_1

Figure: Power-law, r = 3.3: final mesh on the domain Ω_2

profiles

Figure: Power-law, r = 3.3: pressure on the final mesh on Ω_1 Figure: Power-law, r = 3.3: *u* component of the velocity on Ω_1

Figure: Power-law, r = 3.3: pressure on the final mesh on Ω_1 Figure: Power-law, r = 3.3: *u* component of the velocity on Ω_1

Figure: Power-law, r = 3.3: *u* profile on the final mesh on Ω_1 Figure: Power-law, r = 3.3: *u* profile of the velocity on Ω_2

Figure: Power-law, r = 3.3: *u* profile of the velocity on Ω_2 , detail in the cavity Figure: Power-law, r = 3.3: *u* component of the velocity on Ω_2 , detail in the cavity

Figure: Power-law, r = 3.3: total residuals during the adaptive process on Ω_1

Figure: Power-law, r = 3.3: total residuals during the adaptive process on Ω_2

Carreau law: $\theta = r = 1.3, k_0 = 3 \cdot 10^{-2}, k_\infty = 0, \lambda = 10^{-4}$

Figure: Carreau law, r = 1.3: final mesh on the domain Ω_1

Figure: Carreau law, r = 1.3: final mesh on the domain Ω_2

Carreau law: $\theta = r = 1.3, k_0 = 3 \cdot 10^{-2}, k_\infty = 0, \lambda = 10^{-4}$

Figure: Carreau law, r = 1.3: total residuals during the adaptive process on Ω_1

Figure: Carreau law, r = 1.3: total residuals during the adaptive process on Ω_2

Carreau law: $\theta = r = 3.3, k_0 = 3 \cdot 10^{-2}, k_\infty = 0, \lambda = 10^{-4}$

Figure: Carreau law, r = 3.3: final mesh on the domain Ω_1

Figure: Carreau law, r = 3.3: final mesh on the domain Ω_2

Carreau law: $\theta = r = 3.3, k_0 = 3 \cdot 10^{-2}, k_\infty = 0, \lambda = 10^{-4}$

Figure: Carreau law, r = 3.3: total residuals during the adaptive process on Ω_1

Figure: Carreau law, r = 3.3: total residuals during the adaptive process on Ω_2

Thank you

Thank you for your attention

