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DARCY’S LAW

• p = pressure

• u = velocities volumetric flow per unit area

• b = source

• K = material-depending (full) tensor

• u = −K∇p (Constitutive Equation)

• div u = b (Conservation Equation)

−div(K∇p) = b in Ω,

p = 0 on ∂ Ω, for simplicity.
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THE DOMAIN Ω

Ω

Space Q: pressure is taken as constant in each element
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GENERALITY OF THE APPROACH

Note that, in the following discussion, many figures will be

2-dimensional. This corresponds to a limitation of the speaker and

not of the method. Indeed, the method works in very general

situations (including curved faces), and has actually been conceived

in a three-dimensional framework.
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AN ACADEMIC BUT MORE REALISTIC DOMAIN
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THE DECOMPOSITION OF Ω

Space Q: pressure is taken as constant in each element
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DISCRETE PRESSURES

Space Q: pressure is taken as constant in each element
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DISCRETE FLUXES

Space X: F = u · n is taken constant on each edge (face)

Note that we do not discretize u inside each element, but only its

normal component on the edges (faces). The orientation of the

normal is chosen once and for all.
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THE DISCRETE DIVERGENCE OPERATOR

On each element P , from the knowledge of F = u ·n on the boundary

we can deduce ”the average of div u inside” by Gauss theorem
∫

P

divu dV =

∫

∂P

u · next dS.

This suggests to introduce a discrete divergence operator DIVh

which associates, to every G ∈ X, a piecewise constant DIVhG ∈ Q
′

defined in each P as

DIVhG|P :=
1

|P |

∫

∂P

Gext ds.

with obvious meaning for Gext (equal to plus or minus G, according

to the orientation that was chosen for the normal).
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DISCRETIZATION OF THE CONSERVATION EQUATION

In order to discretize the equation

div u = b,

assuming that b is piecewise constant, we can simply use our discrete

divergence operator DIVh : X → Q′. The conservation equation is

then discretized as

DIVhF = b,

or, in variational form, as

Q′〈DIVhF, q〉Q =

∫

Ω

b q dV ∀q ∈ Q.

This will be the same for Mimetic Finite Differences, Finite Volumes,

and Mixed Finite Elements.
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DISCRETIZATION OF THE CONSTITUTIVE EQUATION

The problem is now to discretize the equation

u = −K∇p

{To be precise, we should actually define a discrete gradient operator

(−DIVh)T : Q → X′ and then a (*- Hodge) operator K : X′ → X.}

The discretization of the Constitutive Equation is done with three

different approaches in Finite Volumes, in Mixed Finite Elements,

and in Mimetic Finite Differences. As we shall see, Mimetic Finite

Differences are somewhat in between Finite Volumes and Mixed

Finite Elements.
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FV DISCRETIZATION OF THE CONSTITUTIVE EQUATION

KCL C

The points CK and CL are the circumcenters of the triangles.

Assuming for simplicity that K = κI, the normal flux on the edge

eKL is defined, in (one of the most classical formulations of) Finite

Volumes, as

FKL := κ
pK − pL

|CK − CL|
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MFE DISCRETIZATION OF THE CONSTITUTIVE EQUATION

For Mixed Finite Elements, the passage from pressures to fluxes is

made through a suitable reconstruction of the fluxes inside each

element. More precisely in every triangle (tetrahedron) we consider

the (Raviart-Thomas) space

RT := {v| vi = ai + bxi (i = 1, 2, (3))}.

Then for each G ∈ X we reconstruct R(G) in Ω such that:

1) in every triangle, R(G) belongs to RT ,

2) the normal components of R(G) on edges (faces) coincide with G.

As G is single valued, this will imply the continuity of the normal

components of R(G).

3) divR(G) is a piecewise constant (hence equal to DIVhG).
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MFE DISCRETIZATION OF THE CONSTITUTIVE EQUATION

Once you have a reconstruction of the fluxes, you can introduce the

inner product in X, depending on K, as

[F,G]X :=

∫

Ω

K−1R(F) · R(G)dV.

Note that R(F) ∼ u.

We then discretize the constitutive equation (∼ K−1R(F) = −∇p)

using the variational formulation

[F,G]X =

∫

Ω

p divR(G)dV ∀G ∈ X.
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FINAL MFE FORMULATION

Summarizing, the Mixed Finite Element formulation can be seen, in

the present context, as: find p ∈ Q and F ∈ X such that:

∫

Ω

K−1R(F) · R(G)dV =

∫

Ω

p divR(G)dV ∀G ∈ X

and

∫

Ω

divR(F) qdV =

∫

Ω

b q dV ∀q ∈ Q.

Note that, in the usual presentation of MFE, the velocity unknown is

considered to be, directly, u ∼ R(F) (while its normal components F

on the edges are just the degrees of freedom). In MFD, as we shall

see, we think instead that the unknown is F, and the reconstruction

u ∼ R(F) (if any) is used only to define the scalar product in X.
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MFD DISCRETIZATION OF THE CONSTITUTIVE EQUATION

We start by mimicking what is done in MFE. For this, we need a

suitable inner product in X (depending on K), that allow us to write

[F,G]X =

∫

Ω

pDIVhGdV ∀G ∈ X.

One possibility is again to reconstruct. For each element P , from G

on ∂P you reconstruct (somehow) RP (G) in P . Then you set

[F,G]X :=
∑

P

∫

P

K−1
P RP (F) · RP (G)dV.
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MFD IN VERY SIMPLE GEOMETRIES

If our elements are triangles (or tetrahedra), then the easiest way to

define the inner product in X is surely to use the Raviart-Thomas

(RT) reconstruction as in MFE (although other simple choices are

available). In that case, the MFD formulation will coincide with

MFE: the method will just be written differently:

[F,G]X

(
=

∑

P

∫

P

K−1
P RP (F) · RP (G)dV

)
=

∫

Ω

pDIVhGdV

for all G ∈ X, and
∫

Ω

DIVhF q dV =

∫

Ω

p q dV

for all q ∈ Q.
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WHAT TO DO FOR COMPLEX GEOMETRIES

In more complex geometries, simple spaces (as RT ) to be used for

the reconstruction are not available. Hence to build a suitable

reconstruction operator becomes cumbersome.

A very good idea to deal with the problem was proposed by Y.

Kuznetsov-S. Repin (2004) and generalized by S. Christiansen (2006).

It amounts to construct a subgrid made of triangles or tetrahedra and

reconstruct the fluxes according to the following rules

• In each triangle/tetrahedron the flux is a Raviart-Thomas field.

• The divergence of the flux is constant on the whole element.
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RECONSTRUCTION USING A SUBGRID

For each G ∈ X and for each element P , we use the subgrid to

construct a MFE (Raviart-Thomas) approximate solution (τh, φh) of

the Neumann problem

−divK∇φ = DIVhGP in P − K∇φ · next = (GP )ext on ∂P

and then we set RP (GP ) := τh.
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THE BASIC IDEA

We saw that there are various possibilities to build a reconstruction

operator, and then to define the scalar product in X accordingly.

However here the name of the game is to guess how a ”scalar

product based on reconstruction” should be, and then invent a

scalar product without actually building a reconstruction operator

(and to get away with that).
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Our scalar product in X will be defined as the sum of scalar products

[·, ·]XP
on individual elements P . To fix ideas, we assume that we are

in 2 dimensions, that P has 7 edges, and that KP is constant in P .

P

1

 2

 3

 4

 5

 6

 7

f

f

f

f

f

f

f

Assume that you represent the elements of XP in the canonical basis

E(1),E(2), ...E(7) by prescribing E(i)
|fj

= δi,j . Then every element G

in X|P will be represented as an element of R7 with G =

7∑

i=1

GiE
(i).
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ASSOCIATED MATRIX

P

1
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 5
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 7

f

f

f

f

f

f

f

Every possible reconstruction RP will produce a scalar product

[F,G]XP
=

∫

P

K−1
P RP (F) · RP (G)dV

which, in turn, will be representable as a 7 × 7 matrix MP , namely

[F,G]XP
=

∑
i,j MP i,jFiGj , with

MP i,j :=

∫

P

K−1
P RP (E(i)) · RP (E(j))dV.
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P0-COMPATIBLE RECONSTRUCTIONS

We shall now restrict our attention to reasonable reconstructions

(that we shall call P0-compatible reconstructions). These are linear

mappings RP defined on XP and having the following properties:

• For every G ∈ XP , we have that RP (G) ∈ L2(P ).

• For every G ∈ XP , we have that divRP (G) is constant in P .

• For every G ∈ XP and for every face f i of ∂P , we have

RP (G)|fi
· n|fi

= G|fi
(hence divRP (G) = DIVhG).

• For every constant vector c, setting for all faces Gc
|fi

:= c · n|fi

we have that RP (Gc) ≡ c. Note the difference between c ∈ R2

and Gc ∈ R7 !!!
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SCALAR PRODUCTS ASSOCIATED WITH

P0-COMPATIBLE RECONSTRUCTIONS

We claim now that: if c is a constant vector and Gc has been

constructed as before, and if RP is a P0-compatible reconstruction,

then for every G ∈ XP the result of
∫

P

K−1
P RP (Gc) · RP (G)dV

depends on P , K, c and G, but not on the choice of the

reconstruction (among all possible P0-compatible reconstructions).

Indeed...
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Set q1(x) := (K−1
P c) · (x − xB) (where xB is the barycenter of P ).

Then we have
∫

P

K−1
P RP (Gc) · RP (G)dV =

∫

P

K−1
P c · RP (G)dV =

∫

P

∇q1 · RP (G)dV =

−

∫

P

divRP (G) q1dV +

∫

∂P

q1 RP (G) · next dS =

−

∫

P

DIVhG q1dV +

∫

∂P

q1 Gext dS

= 0 +

∫

∂P

(K−1
P c) · (x − xB)Gext dS.
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Let us summarize the previous result. We found that if the scalar

product in XP is obtained through a P0-compatible reconstruction,

and if Gc is associated to a constant vector, c, then

[Gc,G]XP
=

∫

∂P

(K−1
P c) · (x − xB)Gext dS.

It is also simple to check that taking two constant vectors in the

canonical basis of R2 , e1 = (1, 0) and e2 = (0, 1), then we must have

[Gei

,Gej

]XP
=

∫

P

K−1
P RP (Gei

) · RP (Gej

)dV =

∫

P

K−1
P ei · ejdV = (K−1

P )i,j |P |.
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It seems now natural to change the basis in XP We take

Ẽ
1

:= Ge1

, Ẽ
2

:= Ge2

,

and then we complete the basis with vectors in R7

Ẽ
3
, Ẽ

4
, ... Ẽ

7

such that

[Gei

, Ẽ
j
]XP

=

∫

∂P

(K−1
P ei)·(x−xB) Ẽ

j

ext dS = 0 (i = 1, 2 j = 3, .., 7)

Note that all this does not depend on the choice of the reconstruction.
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In the new basis Ẽ1, ..., Ẽ7 the matrix associated to any scalar

product obtained with a P0-compatible reconstruction will then have

the form

PK 0

0 ?

−1

and the 5 × 5 diagonal block ”?” will depend on the reconstruction.
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Theorem. There exists an α0 > 0 such that: for every symmetric

and positive definite 5 × 5 matrix S with smallest eigenvalue ≥ α0

there exists a P0-compatible reconstruction whose associated scalar

product corresponds, in the basis Ẽ1, ..., Ẽ7, to the matrix

0K

0

−1
P

S

In other words: I know that the matrix comes from a reconstruction.

I don’t care to know ”which one”.
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In all our experiments we took the matrix as

I

K

0

−1
P 0

α

with α = |P |trace(K−1), and we got very good results.
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ERROR ESTIMATES (B.-Lipnikov-Shashkov-Simoncini)

Assume that:

• Ω has a Lipschitz continuous boundary.

• Every element is uniformly strictly starshaped.

• The number of faces per element is uniformly bounded.

• Every face is uniformly strictly starshaped.

• The number α of the previous slide verifies α ≃ |P |.

Then

‖p − ph‖0 + ‖FI − Fh‖X ≤ C h.

If moreover Ω is convex and α ≥ α0, then

‖pI − ph‖0 ≤ C h2,

where pI is the (element by element) mean value of p.
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CURVED FACES IN 3 DIMENSIONS

To deal with curved faces we must use, inside each domain, three

unknowns per face (the three components of a constant vector).

The face e is called moderately curved if, at every point of e, we have

|ñ − n| ≤
σ∗

L
|e|1/2 where ñ :=

∫
e
ndS

|e|
.

Here σ∗ is a (chosen) positive number and L a characteristic length.

A face that is not moderately curved will be called strongly curved.

Clearly, the bigger we choose σ∗, the bigger will be the number of

moderately curved faces, and the smaller that of strongly curved ones.

In assembling the global matrix, we require only the continuity of the

averaged normal component on moderately curved faces, but we

require the continuity of all three components on the strongly curved

faces.
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CURVED FACES

The total number of flux unknowns will then equal the number of

moderately curved faces plus three times the number of strongly

curved faces.

Hence, strongly curved faces are more expensive. From the point of

view of cost we have then the convenience to take σ∗ very big, so that

the number of strongly curved faces will be small.

As usual, however, you pay somewhere else: actually the error

estimates go like

‖p − ph‖0 + ‖FI − Fh‖X ≤ C (1 + σ∗) h.

Finally, we point out that the same trick (actually, better) for

computing the scalar products holds for curved faces.
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NUMERICAL EXPERIMENTS

Example 1. Let us consider the Dirichlet boundary value problem

in the unit square [0, 1]2 with the exact solution

p(x, y) = x3y2 + x sin(2πxy) sin(2πy)

and the full diffusion tensor

K =




(x + 1)2 + y2 −xy

−xy (x + 1)2


 .
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Polygonal mesh
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The table below shows the errors for different refinements.

Table 1: Convergence analysis on polygonal meshes.

1/h ||pI − ph||0 ||FI − Fh||X ||pI − ph||∞ ||FI − Fh||∞

16 5.17e-2 7.38e-1 1.61e-1 5.25e-0

32 1.18e-2 2.44e-1 4.54e-2 2.80e-0

64 2.76e-3 8.45e-2 1.28e-2 1.46e-0

128 6.65e-4 2.89e-2 3.06e-3 7.79e-1

rate 2.09 1.56 1.90 0.92
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Isolines of the solution
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Errors as a function of α

The spectral properties of the matrix MP defining the scalar product

in P depend on a balance between the extreme eigenvalues of K and

α. The figure in the next slide shows errors (vertical axis) as

functions of α−1 (horizontal axis) for the case 1/h = 32. There is a

quite big interval α−1 ∈ [2, 80] where the errors vary only 3 times.

What is remarkable here is that for all values of α we observed

second order convergence rate for ph in L2 and 1.5 convergence rate

for Fh in L2.
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Example 2. Let us consider a problem in the unit square [0, 1]2

with mixed boundary conditions. On the bottom (y = 0) and top

(y = 1) boundaries, we impose the Dirichlet boundary condition.

Homogeneous Neumann boundary conditions are set on the other

(vertical) boundaries. Let the tensor K be scalar and equal to K1I in

the region defined by y < 0.5 and K2I in the rest of the domain. The

source term is chosen in such a way that the exact solution is given by

p(x, y) =





7
16 − K2

12K1

+ 2K2

3K1

y3, y < 0.5,

y − y4, y ≥ 0.5

and hence, in particular, depends only on y.
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The meshes we used come from non-matching mesh methods but we

treat them as conformal polygonal meshes. The mesh below is

obtained as a random perturbation of an originally ”uniform, non

matching” mesh.
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In the numerical experiments we used K1 = 10, K2 = 1. We observe

superconvergence of the scalar variable in both norms. The lack of

flux superconvergence is typical for random meshes and is observed

in other similar discretization schemes on simplicial meshes.

Table 2: Convergence analysis on non-matching meshes.

#cells ||pI − ph||0 ||FI − Fh||X ||pI − ph||∞ ||FI − Fh||∞

780 1.01e-2 1.12e-1 2.82e-2 7.80e-1

3286 2.36e-3 4.72e-2 6.70e-3 3.51e-1

13482 5.73e-4 2.24e-2 1.78e-3 1.38e-1

54610 1.41e-4 1.09e-2 4.37e-4 7.70e-2

rate 2.01 1.09 1.95 1.11
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Isoline plot of the solution
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Example 3. Let us consider the Dirichlet boundary value problem

with the exact solution

p(x, y, z) = x3y2z + x sin(2πxy) sin(2πyz) sin(2πz).

We take the diffusion tensor as:

K =




1 + y2 + z2 −xy −xz

−xy 1 + x2 + z2 −yz

−xz −yz 1 + x2 + y2




.

It is not difficult to check that K is a positive definite matrix for all

values of x, y and z.
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We consider a sequence of uniform cubic meshes in the unit cube

[0, 1]3 and generate a corresponding sequence of hexahedral meshes

using the following linear transformation:

x̃ = x + εz, ỹ = y + εz, z̃ = z.

An example of a modified mesh is shown in the next figure. It

corresponds to ε = 0.25 and h = 1/8, where h is the size of a cubic

element in the original mesh.
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The results presented in the table below show the superconvergence

of the scalar variable in both norms and the superconvergence of the

vector variable in the discrete L2-norm.

Table 3: Convergence analysis on polyhedral meshes.

1/h ||pI − ph||0 ||FI − Fh||X ||pI − ph||∞ ||FI − Fh||∞

8 3.83e-2 5.35e-1 1.55e-1 6.07e-0

16 1.10e-2 1.43e-1 4.83e-2 2.48e-0

32 2.86e-3 3.58e-2 1.26e-2 1.11e-0

64 7.21e-4 8.94e-3 3.28e-3 5.42e-1

rate 1.91 1.97 1.86 1.16
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Approximation of eigenvalues
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square ]0, 1[2, on a uniform mesh of squares, for different values of

α = 0.01, 1, 10. By A. Cangiani and M. Manzini.
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3D-Curved faces

Here we have K=Identity. The exact solution is

p(x, y, z) = x2y3z + 3x sin(yz).

Now we compare: Mixed Finite Elements, Mimetic Finite Differences

treating all faces as moderately curved, and Mimetic Finite

Differences with σ∗ = 0.2.
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We do the same for a polyhedral mesh (distorted inside as in the 2-d

case). Here we have no Mixed Finite Elements available for

comparison.
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CONCLUSIONS

• Mimetic Finite Differences aim at a better representation of

fundamental physical laws.

• The present approach allows an enormous freedom in the type of

decomposition. The treatment of non-matching grids and of

curved faces is also allowed.

• The basic ideas could be generalized to other problems, involving

gradients and curls (in the framework of cochain approximations

of differential forms).

• We still have to understand how to make the best use of the

freedom allowed by our construction: indeed S does not need to

be a diagonal matrix αI.

• For curved faces we need more indications on the optimal choice

for the parameter σ∗.
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APPENDIX
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A ONE-DOMAIN SETTING

We consider a Polyhedron, with its Vertices, its Edges, and its Faces

Edges

11 Edges

Faces

6 Faces

Vertices

7 Vertices

Space Q: pressure is taken as constant in each element
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We consider, to start with, a single polyhedron P with vertices

V 1, V 2, ...V 7, edges e1, e2, ..., e11, and faces f1, f2, ..., f6. The

numbers (7, 11, 6) are taken from the example of the previous figure,

but of course they change from one geometry to another.

The motivation for working on a single element is that we want to

discuss scalar products. All the scalar products that are going to be

used on the whole structure (made, obviously, of several polyhedra)

will be constructed separately in each element, and then summed over

the elements.
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We are going to consider four types of unknowns:

• node unknowns (whose values are defined only at the vertices

and are to be interpreted as the values of a scalar function at

each node)

• edge unknowns (whose value is defined only on the edges and are

to be interpreted as the integral of the tangential component of a

vector valued-function on each edge)

• face unknowns (whose values are defined only on the faces and

are to be interpreted as the integral of the outward normal

component of a vector-valued function on each face)

• element unknowns (whose values are defined only inside the

element and are to be interpreted as the integral of a scalar

function over the element)
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Accordingly, we denote

• by N the space of all node unknowns

• by E the space of all edge unknowns

• by F the space of all face unknowns

• by P the space of all element unknowns

The dimensions of the above spaces will be, in our case, 7, 11, 6 and

1, respectively.

These spaces can obviously be interpreted as well as discretizations of

the spaces of 0 − forms, 1 − forms, 2 − forms, and 3 − forms,

respectively.
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Although we did not say it explicitly, the space E will require an

orientation of the tangent vector to edges, and, if more than one

element is considered, the space F will require an orientation of faces.

Here we have only one element, and we can choose the outward

normal to each face, once and for all.
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THE GRADh operator

It is now natural (according to our interpretation) to construct three

basic differential operators:

• The GRADh operator, from N to E , defined as follows:

for each edge e with vertices V 1 and V 2, and for each element

u ∈ N , we define GRADhu on e in the direction from V 1 to V 2

as

GRADhu|e = u(V 2) − u(V 1)

63



THE CURLh operator

• The CURLh operator, from E to F, defined as follows:

for each element ϕ ∈ E and for each face f we orient the edges

e1, e2, ..., en of f in the counterclockwise direction (seen from

outside the element), and then we consider the corresponding

values ϕ1, ϕ2, ..., ϕn of ϕ with the sign corresponding to the

orientation just chosen. Then the value of CURLhϕ on the face f

is defined as

CURLhϕ|f =

n∑

i=1

ϕi
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THE DIVh operator

• The DIVh operator, from F to P, defined as follows:

let f1, ..., fk be all the faces of our element P , and for each σ ∈ F

let σ1, ..., σk be its values on each face. Then DIVhσ is defined as

DIVhσ =

k∑

i=1

σi

Note: in our example, k = 6. Of course. If we had more than one

element, the same construction would be done for each element,

taking care to use the values of σ corresponding to the outward

direction.
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THE ASSOCIATED MATRICES

It is interesting to note that, taking in the spaces N , E , F, P the

obvious canonical basis (after choosing an orientation of the edges in

an arbitrary way, but once and for all), then the matrices associated

with each one of the operators GRADh, CURLh, and DIVh are just

made of zeroes, ones, and minus ones.

All this can by now be considered as classical. I will just mention the

works of Shashkov and co-authors, Kuznetsov, Bochev, Yotov,

Wheeler, Christiansen, Buffa, and many others.
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THE INTERPOLANTS

Along the same way of thought, for each smooth scalar function u

and for each smooth vector valued function θ we can define the

following interpolants

• uI,node ∈ N defined by

uI,node(V ) = u(V ) for all vertex V

• θI,edge ∈ E defined by

θI,edge|e =

∫

e

θ · tds for all edge e

where the unit tangent vector t indicates the orientation of e
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THE INTERPOLANTS-2

• θI,face ∈ F defined by

θI,face|f =

∫

f

θ · ndS for all face f

where n is the unit normal outward vector to f

• uI,poly ∈ P defined by

uI,poly =

∫

P

udP.
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THE COMMUTATION PROPERTIES

Note that the interpolation operators and the differential operators

introduced above have interesting commutation properties. Namely

• GRADh(uI,node) = (gradu)I,edge

• CURLh(θI,edge) = (curlθ)I,face

• DIVh(θI,face) = (divθ)I,poly.
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THE COMMUTING DIAGRAM

The above properties could be summarized saying that the following

diagram

grad
−−−→

curl−−→ div−−→C∞(P )
(
C∞(P )

)3 (
C∞(P )

)3

C∞(P )

↓ ↓ ↓ ↓

GRADh

−−−−−→
CURLh

−−−−−→ DIVh

−−−→N E F P

(where the vertical arrows are the interpolation operators just

defined), commutes.

All this should be related to the approximation of differential

complexes intensively studied, among others, by Arnold, Falk, and

Winther. See the recent review in Acta Numerica.
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TRANSPOSED OPERATORS

As we are dealing with finite dimensional spaces, we can introduce

immediately the dual spaces of the spaces N , E , F, P, and transpose

the operators GRADh, CURLh, and DIVh.

It seems rather natural (although one might question it) to denote by

G̃RAD
h

: P ′ → F′ the transposed of the operator −DIVh, and by

D̃IV
h

: E ′ → N ′ the transposed of the operator −GRADh. Similarly

we shall denote by C̃URL
h

: F′ → E ′ the transposed of CURLh.

The dual spaces P ′, F′, E ′ N ′ could then be thought as (weird)

approximations of 0− forms, 1− forms, 2− forms, and 3− forms,

respectively.

71



TRANSPOSED OPERATORS

In this way, we have the following diagram

grad
−−−→

curl−−→ div−−→C∞(P )
(
C∞(P )

)3 (
C∞(P )

)3

C∞(P

↓ ↓ ↓ ↓

GRADh

−−−−−→
CURLh

−−−−−→ DIVh

−−−→N E F P

l l l l

N ′ E ′ F′ P ′D̃IV
h

←−−−− C̃URL
h

←−−−−− G̃RAD
h

←−−−−−
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DISCRETE DIFFERENTIAL FORMS

The previous diagram can be thought as made of discretized

differential forms

DIV

u
a
l
i
t
y

d
u
a
l
i
t
y

d
u
a
l
i
t
y

d
u
a
l
i
t
y

0

0

vertices

’

1 2 3
elementsfacesedges

GRAD CURL DIV

1 2 3’ ’ ’

vertices edges faces elements

GRADCURLDIV

0123
GRADCURL

d
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INNER PRODUCTS

The previous discretizations of differential forms is quite appealing

(and meaningful) on the first line. In order to transform the last two

lines in a useful instrument, we need however to introduce suitable

inner products in the spaces N , E , F, P.

If these inner products will be consistent with the L2(Ω) inner

product (for scalars) or with the (L2(Ω))2 inner product (for

vectors), then the adjoint operators will start to make sense in a

more familiar way.

In doing this, however, it will be more convenient to insert the

material properties into our inner products. This will lead us to a

discretization of the ∗ − Hodge operator.

All this is vague. Let us consider a particular case in order to make it

clearer.
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SCALAR PRODUCTS in N (L2-TYPE)

We already saw convenient scalar products in the spaces of

3 − forms (elements) and of 2 − forms (faces). Let us see some

other scalar products.

First one might think of an L2-inner product. For that it seems

reasonable to request a 7 × 7 matrix. Denoting by MN such matrix,

it seems reasonable to require that

7∑

i=1

7∑

j=1

(MN )i,ju(V i)v(V j) =

∫

P

u v dP

whenever u and v are the interpolant of two polynomials of degree

≤ 1 (u and v, respectively). To construct such a matrix MN we can

proceed as before (solving explicitly with a semi-positive definite

matrix, and then adding a suitable correction that makes it positive

definite).
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SCALAR PRODUCTS in N (H1-TYPE)

We proceed to introduce a scalar product in E for gradients. The

dimension of the subspace of gradients is clearly 6 (or, the number of

vertices minus one). We denote by EG the subspace of E made of

gradients. We would like to construct a symmetric 11 × 11 matrix

MG
E (SPD on EG) such that: for every polynomial v of degree ≤ 1,

and for every ϕ = GRADhu (with u ∈ N ), setting ψ := (gradv)I,edge

≡ GRADhvI,node we have

11∑

i=1

11∑

j=1

(MG
E )i,jϕi ψj =

∫

∂P

u
∂v

∂n
.

There is a problem with the above formula: Since u is only defined at

the nodes, we cannot evaluate the integral over the faces. Hence we

need to pick up a numerical integration formula. In most cases we

only need such formula to be exact for linear functions.
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SCALAR PRODUCTS in N (H1-TYPE)

If the matrix MG
E satisfies the previous formula one can prove that:

there exists a lifting linear mapping r : N → C0(P̄ ) such that

i) (r(w))I,node ≡ w for each w ∈ N ,

ii) the value of r(u) on each face f depends only on the values of u at

the nodes belonging to f ,

iii) for every linear function v we have r(vI,node) = v,

iv) and moreover:

11∑

i=1

11∑

j=1

(MG
E )i,j(GRADh(u))i (GRADh(vI,node))j =

∫

∂P

r(u)
∂v

∂n
.
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The best way to complete the scalar product in E beyond the

gradients is still a rather open question.

MUMBLE GRUMBLE.
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