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Find u : Q — R such that

G-Vu+uu = f inQ,
u = 0 onoQ .

Let Q be an open bounded and connected set in R? with
Lipschitz boundary 012, let

o0+ = {x € 09; £8(x)-n(x) > 0}.

Let 7 be a conforming triangulation of the domain Q. Let h
denote the mesh size.

Let F; denote the set of interior faces of the mesh. The
sets F. denote the faces that are included in 9Q*
respectively and denote 7 = F; U F, U F_.
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Towards a minimal stabilization procedure for DG P Y P

W denotes the graph space (||v||%, = ||[v]|2 + ||3-VV|?),
The average of v at F = k1 Nko: {V}F = V]k, + Vl]kys
The jump of u at F = k1 N k2: [V]|F = V]k, Mk, + V]kpNk,-

(" ')J:i = ZFG]—',-(" ')F'

Bn =118 - Nllos,F + €llB X Nl|so,F, With € > 0,
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On W x W define the discontinuous Galerkin bilinear form

a(v, W) = ((:u - V‘B)V’ W) - (Va 6'vw)h,§2 + ({/BV}> |[W]])7'7U7:+7 J

We assume
(u— 3V-B) > co > 0 (Coercivity)
G Lipschitz. (For the model analysis we assume 3
constant).

For sufficiently smooth v, w we define the jump penalty
operators

bo(v,w) = (vbnlVv], [WD)7
b1 (V7 W) = (71 hzﬁn[[VV]], [[VW]])]::

E. Burman, B. Stamm IP-FEM for DG or CG
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The discontinuous finite element approximation:

Find uy € W} such that
a(Ug, va) + bo(Ug, Va) + b1 (Ug, V) = (f,va), Vvge€ W)

for o > 0and v > 0. W,’f denotes the space of piecewise
polynomial discontinuous functions of polynomial order p.
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The discontinuous finite element approximation:

Find uy € Wf such that
a(Ug, va) + bo(Ug, Va) + b1 (Ug, V) = (f,va), Vvg€ W)

for o > 0and v > 0. W,‘,’ denotes the space of piecewise
polynomial discontinuous functions of polynomial order p.

The continuous finite element approximation:
Find u; € V{ such that ]

a(Ug, Vo) + b1 (Ug, vo) = (f, ve), Vvee VP

for v > 0. V,’f denotes the space of piecewise polynomial
continuous functions of polynomial order p.
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Find ue € Vf such that J

a(uc, ve) = (f,ve), Vvee VP

A priori error estimates are based on (Cea’s lemma), let

en = Up — mpu (With U the [2-projection of u onto V,’;").
Coercivity L?-norm: ||ep||® < a(en, ep)
Galerkin orthogonality: ||es||? < a(u — mpu, ep)
Continuity H'-norm: [len||? < llu — mnul| (|lenll + 115 - Venl)
Bounding the H'-norm of the continuity by an L2 norm: the
inverse inequality leads to the loss of a power of h.

Result: solution wildly oscillating at layers.

E. Burman, B. Stamm IP-FEM for DG or CG
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Find ug € WP such that
a(ug, vq) = (f,vq), Vvge W}

A priori error estimates are based on (Cea’s lemma), let

en = Up — TpU (With m,u the L2-projection of u onto WY).
Coercivity L?-norm: ||ep||® < a(en, en)
Galerkin orthogonality: (v — mpu, 5 - Vep) =0

lenll® S a(u—mpu, en) = (u—mhu, en) +({B(u—mpu)}, [en])

Continuity discrete H'-norm:
lenll? S (lu = mhulla + lu = mnull 7) (lleall + ll[enlll )
Same problem as in the continuous case using a trace
inequality.

E. Burman, B. Stamm IP-FEM for DG or CG
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Simplified analysis of the model problem

[2-estimates, reconquering hz

lenll? = |lenll® + bo(en, en) + bi(en, en)

enevl

(u—mpu,3-Vep) = min (U—mpu, B - Ve —Ep)

1 i 1
S lhz2(u — mpu)|| min [[h2(8 - Ven — &)l
8%

< |2 (U — mhu) || b1 (eh, )2

E. Burman, B. Stamm IP-FEM for DG or CG
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Problem setting

Simplified analysis of the model problem
. - 1
L?-estimates, reconquering hz

(u—mpu,B-Vep) =0
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The model problem
A framework for interior penalty methods
Simplified analysis of the model problem

L2-norm convergence now follows by
1. Coercivity in the triple norm
2. Galerkin orthogonality
3. Modified continuity: a(u — wpu, ep) < [[u — mhull«|llenl|
where [|u — mhull. < ¢HPF2|[Uflpr10

E. Burman, B. Stamm IP-FEM for DG or CG
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Let [ul% = Cpex IUllz-

By proving an inf-sup condition we may include
||z 8-V ul|x in the triple norm

We then have the following stronger result

Theorem: The continuous method with vy > 0 and the
discontinuous method with v¢ > 0 both have the same order of
convergence in h. If the exact solution u satisfies u € HP+1(Q),
then:

1 1
lu— unll 2(q) + [|h2 B-V (U — up) ||k + B(un, un) < ¢ hP2]ul|pi1.0

where B(up, up) = 2?21 bi(up, uh)%, ¢ > 0 is a constant
independent of h.

E. Burman, B. Stamm IP-FEM for DG or CG
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Let Q be the sector defined by

Q={(x,y) ERT xRT| 0.1 </x2+y2 <1}

The problem consists of seeking u such that

pu+pB-Vu=0,
{ Ulaa- = 9(¥)-
where
B(x,y) = ( _yx ) X21+y2 and g(y) = arctan (f"‘sﬂ)

Then, the solution writes

A/ x2+y? arcsin(—=%£ /x2 2 _
u(x,y)=e Ve arctan + y .

E. Burman, B. Stamm IP-FEM for DG
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Comparison CG/DG-methods

Some theoretical and numerical aspects

Numerical example: the smooth solution

0.02
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Some theoretical and numerical aspects

Comparison CG/DG-methods

Numerical example: the non-smooth solution
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Theorem

Let uy and u; be the solutions of the method using discontinuous resp. continuous
approximation respectively with vy > 0. Let u € HPt1(Q), with p > 1, solve the model
problem. Then

Ug — Uc as 7o — o0.

More precisely there is a constant ¢ > 0, independent of ~, such that

c
llue — Uglli2(@y < —-
F@) 70

The proof follows a similar result for the elliptic problem by Larson and Niklasson,
modified to account for the nonsymmetry of the transport operator.

E. Burman, B. Stamm IP-FEM for DG or CG



. . CG-method as limit of the DG-method
Some theoretical and numerical aspects

Numerical results
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. . CG-method as limit of the DG-method
Some theoretical and numerical aspects

Different stabilization operators for DG, p = 2

tabilization
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The exact solution u of the model problem satisfies the following local mass

conservation property:
/ B~nKu:/f. (1)
oK K

E. Burman, B. Stamm EM for DG or CG
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The exact solution u of the model problem satisfies the following local mass

conservation property:
/ B-ngu= / f. (1)
oK K

Discontinuous Galerkin stabilized with 49 > 0 and vy > 0:

) u :/f7
L Tt = [,

with the numerical flux defined by

B nx{w} + v0Bn[w] onF;iN oK
%, (W) =4 B-nkw on Fy N oK
0 on F_ NOK

Burman, B. Stamm IP-FEM for DG or CG
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The exact solution u of the model problem satisfies the following local mass

conservation property:
/ B-ngu= / f. (1)
oK K

Discontinuous Galerkin stabilized with 49 > 0 and vy > 0:

d _
[ v = [ 1

with the numerical flux defined by

B nx{w} + v0Bn[w] onFiNoK
T, (W) =4 B-nkw on Fy N oK
0 on F_ NOK

Discontinuous Galerkin stabilized with 9 = 0, vy > 0and p > 2:

/DKS-nK{ud}:/}‘(f. J

This property can be considered as generalization of (1) for functions which are
double valued on faces.

E. Burman, B. Stamm IP-FEM for DG or CG
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Similar a priori error estimates for CG and DG.

For smooth solutions the CG method requires much less
degrees of freedom than the DG method for a given
precision.

For non-smooth solution both method require the same
amount of degrees of freedom.

ug—>uﬁaS”yo—>oo.

For p = 2 numerical experiments show optimal
convergence order for DG stabilized using the gradient
jumps only.

Reduced stabilization — improved local mass
conservation.

E. Burman, B. Stamm IP-FEM for DG or CG



High pass filtering of the solution jumps

Towards a minimal stabilization procedure for DG

Reducing the stabilization by projection

>

({8(u = mnu)}, [enl)7 = min({B(u — mnu)}, [en] - 1)

< = - min —rl||l=
< [lu = mullz min [ea] - ]l

< |lu = mhull 7 |A[Ven x nll 7

o & = = E 9wae
E. Burman, B. Stamm IP-FEM for DG or CG
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We propose a method where we only penalize the projection of
the solution jumps onto the upper part of the polynomial
spectrum:

Find uy, € WP, with p > 2, such that
a(Un, V) + j(Un, Vi) = (f, V), Vvh€ WP,

where j(v, W) = vs(|3-Ne (I = Py)[V], (I — P\)[W]) £

L2-projection on face: Py : L2(F) — Py(F)
A= (B 1
Local mass conservation holds independently of ~s.

E. Burman, B. Stamm IP-FEM for DG or CG
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Observe that [|(/ — Po)[uslll7 < I1A[Vun x ||
Control of solution jumps — Poincaré inequality
We want graph-norm convergence, i.e. in the triple norm:

1 1
IVII® = IVIE + 1h23-V V(I + [|]8-nl2 [v]]|F- J

We need to prove an inf-sup condition to recover control of

1 1
|-V v||2 and |||612[v]||% J

E. Burman, B. Stamm IP-FEM for DG or CG
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Theorem: Assume that 3 is Lipschitz continuous, then there
exists a constant ¢ > 0, independent of the mesh size h, such
that forp > 2

a(va, vi,) + j(Vh, vf)

clllvalll < sup Vv, € WP,

cewe VAl

where the stabilization operator is defined by
J(v, w) =3s(|8-nloo (! = PA)IVI, (1 = PA) WD) 7,

and0 <A< [BE) -1,

E. Burman, B. Stamm IP-FEM for DG or CG
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Prove: For all v, € WP there exists vj, € W7 and ¢ > 0
such that
Ivall® < @i, vh) + j(Vi, Vh)-
Prove: Fix v, € WF and let v; € W/ be the function
defined in the previous point, then there exists a constant
¢ > 0 such that
VAl < NlHvalll

a(Vh, Vh) +J(Vh: Vh)  @(Vh, Vi) +J(Vh, Vi)
[Ivall - VAl

cllIvalll <

E. Burman, B. Stamm IP-FEM for DG or CG
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Theorem: Let v; € L?(Q) and v, € L2(F), then there exists a
projection My, = Mp(vy, v2) € WE(K) such that

/K(n,,— ws, = 0 Ve WPTT(K),

/F({”h} — ) Z Vzp € Wj(F),

forall0 < A < |B5H] —1.

Orthogonality against polynomials of order p — 1 on
elements

Orthogonality against polynomials of order A on faces

E. Burman, B. Stamm IP-FEM for DG or CG



Graph-norm analysis, the inf-sup condition

Towards a minimal stabilization procedure for DG

The first step of the proof, (6 constant)

For every vj, find v}, such that

IVallP < a(Vi, vi) + j(Va, V).
Testing with wg p, = Up:
[Unl[? + j(un, un) = a(un, Wo,p) + j(Un, Wo,n)
Testing with wy p, = Mp(0, [up]):

18-l PALunlllZ, — lunll® — j(un, un) < alun, wi p) + j(Un, w1 p)
Testing with wy , = h3-Vup:
12 8-F up2 — |un2 — |[15-nl[unlliZ,
< a(up, we,p) + j(Un, wa,p)

Take v, = 57 | c;w; », with carefully chosen ¢;.

E. Burman, B. Stamm IP-FEM for DG or CG
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Fix v, for v}, given in point one, show that

VAl < Hlivall

LIVl = Il ciwinlll S S8y [l wiall
2. |[lwinlll < |llvall| for i = 1,2,3 by inverse inequalities, trace
inequalities and by the stability of the projection.

E. Burman, B. Stamm IP-FEM for DG or CG
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» We derive the a priori error estimate

1
llmnu — unlll S K2 ullir1 .0

in the standard fashion.

» The method will work whenever the projection I, is well
defined.

» So far only triangles and p > 2 are OK,

» Thetrahedra are expected to work, possibly with a different
definition of A.

E. Burman, B. Stamm IP-FEM for DG or CG



Outline

Problem setting

Some theoretical and numerical aspects
Towards a minimal stabilization procedure for DG

High pass filtering of the solution jumps
Graph-norm analysis, the inf-sup condition
Numerical examples

» As the polynomial order increases an increasingly large
portion of the polynomial spectrum is in the kernel of the
stabilization operator.

Example of A for2 < p <17

p|2-4|5-7[8-10|11-13
A0 1 2 3

» Stability constant non-uniform in A:

MR, U)lax < c(p, X) 2BX1) ||u]las

» Could cause degeneration for high .

E. Burman, B. Stamm IP-FEM for DG or CG
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B-Vu+uu = f in
u = g onoQ .

Q= (<1,1)2
u=0.01

f=0
9(y) = sin(3y)
u(x, y) = exp(—ux)g(y) € C=(Q)

E. Burman, B. Stamm IP-FEM for DG or CG
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A model case with smooth solution, A = L%J — 1

p=2, upwind DG
p=2, new stabilization
p=3, upwind DG
p=3, new stabilization
p=4, upwind DG
p=4, new stabilization
p=5, upwind DG
p=5, new stabilization

= &
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G-Vu+uu = f inQ,
u = g onoQ .

chosen to get u(x, y)
u(x,y) = exp(x + 1) + (x + 1)25 € H3—<(Q)

E. Burman, B. Stamm IP-FEM for DG or CG
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A model case with non-smooth solution, A = L%J — 1

upwind DG
new stabilization
upwind DG
new stabilization
upwind DG
new stabilization

E. Burman, B. Stamm IP-FEM for DG or CG
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G-Vu = 0 inQ,
u = g onoQ .

Q= (1,17
f=0, =0

1,y>0
gwr:{Q§<0

1,y>0
U(X,y):{ 0 §<0

E. Burman, B. Stamm IP-FEM for DG or CG
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Numerical examples

A discontinuous case, P2: upwind vs. filtered fluxes

E. Burman, B. Stamm
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Numerical examples

A discontinuous case, P5: upwind vs. filtered fluxes

E. Burman, B. Stamm
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Towards a minimal stabilization procedure for DG

Numerical examples

A discontinuous case, P5: violating the limit for A

E. Burman, B. Stamm
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It seems to be possible to shift the stabilization to the high
polynomial modes for high order DG methods.

This leads to improved local mass conservation.

Extension of the analysis to first order systems
straightforward.

In general: many open questions.

E. Burman, B. Stamm IP-FEM for DG or CG
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B
B
B
B
B
B
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