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The model problem
Find u : Ω → R such that

β · ∇u + µu = f in Ω,

u = 0 on ∂Ω−.

I Let Ω be an open bounded and connected set in R2 with
Lipschitz boundary ∂Ω, let
∂Ω± = {x ∈ ∂Ω; ±β(x)·n(x) > 0}.

I Let T be a conforming triangulation of the domain Ω. Let h
denote the mesh size.

I Let Fi denote the set of interior faces of the mesh. The
sets F± denote the faces that are included in ∂Ω±

respectively and denote F = Fi ∪ F+ ∪ F−.
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Some notation

I W denotes the graph space (‖v‖2
W = ‖v‖2 + ‖β·∇v‖2),

I The average of v at F = κ1 ∩ κ2: {v}|F = v |κ1 + v |κ2 ,
I The jump of u at F = κ1 ∩ κ2: [[v ]]|F = v |κ1nκ1 + v |κ2nκ2 .
I (·, ·)Fi :=

∑
F∈Fi

(·, ·)F .
I βn = ‖β · n‖∞,F + ε‖β × n‖∞,F , with ε ≥ 0,
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The bilinear form
On W ×W define the discontinuous Galerkin bilinear form

a(v , w) =
(
(µ−∇·β)v , w

)
− (v , β·∇w)h,Ω + ({βv}, [[w ]])Fi∪F+ ,

We assume
I (µ− 1

2∇·β) > c0 > 0 (Coercivity)
I β Lipschitz. (For the model analysis we assume β

constant).
For sufficiently smooth v , w we define the jump penalty
operators

b0(v , w) = (γ0βn[[v ]], [[w ]])Fi ,

b1(v , w) = (γ1h2βn[[∇v ]], [[∇w ]])Fi
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The discrete problem

I The discontinuous finite element approximation:

Find ud ∈ W p
h such that

a(ud , vd) + b0(ud , vd) + b1(ud , vd) = (f , vd), ∀vd ∈ W p
h

for γ0 ≥ 0 and γ1 ≥ 0. W p
h denotes the space of piecewise

polynomial discontinuous functions of polynomial order p.

I The continuous finite element approximation:

Find uc ∈ V p
h such that

a(uc , vc) + b1(uc , vc) = (f , vc), ∀vc ∈ V p
h

for γ1 ≥ 0. V p
h denotes the space of piecewise polynomial

continuous functions of polynomial order p.
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Why do we need stabilized methods, CG, γ1 = 0

Find uc ∈ V p
h such that

a(uc , vc) = (f , vc), ∀vc ∈ V p
h

A priori error estimates are based on (Cea’s lemma), let
eh = uh − πhu (with πhu the L2-projection of u onto V p

h ).
I Coercivity L2-norm: ‖eh‖2 . a(eh, eh)

I Galerkin orthogonality: ‖eh‖2 . a(u − πhu, eh)

I Continuity H1-norm: ‖eh‖2 . ‖u − πhu‖ (‖eh‖+ ‖β · ∇eh‖)
I Bounding the H1-norm of the continuity by an L2 norm: the

inverse inequality leads to the loss of a power of h.
I Result: solution wildly oscillating at layers.
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Why stabilized methods, DG, γ0 = γ1 = 0
Find ud ∈ W p

h such that

a(ud , vd) = (f , vd), ∀vd ∈ W p
h

A priori error estimates are based on (Cea’s lemma), let
eh = uh − πhu (with πhu the L2-projection of u onto W p

h ).
I Coercivity L2-norm: ‖eh‖2 . a(eh, eh)

I Galerkin orthogonality: (u − πhu, β · ∇eh) = 0
‖eh‖2 . a(u−πhu, eh) = (u−πhu, eh)+({β(u−πhu)}, [[eh]])Fi

I Continuity discrete H1-norm:
‖eh‖2 . (‖u − πhu‖Ω + ‖u − πhu‖Fi ) (‖eh‖+ ‖[eh]‖Fi )

I Same problem as in the continuous case using a trace
inequality.
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L2-estimates, reconquering h
1
2

In order to optimize our estimates:
I Add stabilization, γ0 > 0 for DG and γ1 > 0 for CG
I perform analysis in the triple norm

|‖eh‖|2 = ‖eh‖2 + b0(eh, eh) + b1(eh, eh)

I Continuity in the continuous case, (recall πhu the
L2-projection):

(u − πhu, β · ∇eh) = min
ξh∈V p

h

(u − πhu, β · ∇eh − ξh)

. ‖h−
1
2 (u − πhu)‖ min

ξh∈V p
h

‖h
1
2 (β · ∇eh − ξh)‖

. ‖h−
1
2 (u − πhu)‖b1(eh, eh)

1
2
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L2-estimates, reconquering h
1
2

I We recall that for DG

(u − πhu, β · ∇eh) = 0

I and hence
a(u − πhu, eh) = (u − πhu, eh) + ({β(u − πhu)}, [[eh]])Fi

I Continuity in the discontinuous case:

({β(u − πhu)}, [[eh]])Fi ≤ ‖β‖∞‖u − πhu‖Fi b0(eh, eh)
1
2
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L2-estimates, reconquering h
1
2

L2-norm convergence now follows by
1. Coercivity in the triple norm
2. Galerkin orthogonality
3. Modified continuity: a(u − πhu, eh) ≤ ‖u − πhu‖∗|‖eh‖|

where ‖u − πhu‖∗ ≤ c hp+ 1
2 ‖u‖p+1,Ω
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A more general convergence result
I Let ‖u‖2

K =
∑

κ∈K ‖u‖2
κ.

I By proving an inf-sup condition we may include
‖h

1
2 β·∇u‖K in the triple norm

I We then have the following stronger result

Theorem: The continuous method with γ1 > 0 and the
discontinuous method with γ0 > 0 both have the same order of
convergence in h. If the exact solution u satisfies u ∈ Hp+1(Ω),
then:

‖u− uh‖L2(Ω) + ‖h
1
2 β·∇(u− uh)‖K + B(uh, uh) ≤ c hp+ 1

2 ‖u‖p+1,Ω

where B(uh, uh) =
∑2

i=1 bi(uh, uh)
1
2 , c > 0 is a constant

independent of h.
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Some numerical results
I Let Ω be the sector defined by

Ω = {(x , y) ∈ R+ × R+| 0.1 ≤
q

x2 + y2 ≤ 1}.

I The problem consists of seeking u such that(
µu + β·∇u = 0,

u|∂Ω− = g(y).

where

β(x , y) =

„
y
−x

«
1√

x2+y2
and g(y) = arctan

“
y−0.5

ε

”
.

Then, the solution writes

u(x , y) = e
µ
√

x2+y2 arcsin( y√
x2+y2

)

arctan

 p
x2 + y2 − 0.5

ε

!
.

E. Burman, B. Stamm IP-FEM for DG or CG



Outline
Problem setting

Some theoretical and numerical aspects
Towards a minimal stabilization procedure for DG

Comparison CG/DG-methods
CG-method as limit of the DG-method
Local mass conservation

Numerical results - the model problem in pictures
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I Left: exact solution with ε = 0.1
I Right: exact solution with ε = 0.001
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Numerical example: the smooth solution
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I Note that for p = 2 the DG method stabilized using the
gradient jumps yields optimal convergence. Min. stab. for DG
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Numerical example: the non-smooth solution
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I Left: L2-error against degrees of freedom, P1
I Right: L2-error against degrees of freedom, P2
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Asymptotic limit γ0 →∞:

Theorem
Let ud and uc be the solutions of the method using discontinuous resp. continuous
approximation respectively with γ1 ≥ 0. Let u ∈ Hp+1(Ω), with p ≥ 1, solve the model
problem. Then

ud → uc as γ0 →∞.

More precisely there is a constant c > 0, independent of γ0, such that

‖uc − ud‖L2(Ω) ≤
c
γ0

.

Proof.
The proof follows a similar result for the elliptic problem by Larson and Niklasson,
modified to account for the nonsymmetry of the transport operator.
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Numerical results
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(a) Difference between the solutions of the discontinuous method and of the
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Different stabilization operators for DG, p = 2
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(a) L2-error for various stabilization terms.

(b) Number of GMRes iterations needed to solve the linear system for various
stabilization terms (without preconditionner).
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Local mass conservation for DG-methods
I The exact solution u of the model problem satisfies the following local mass

conservation property: Z
∂K

β · nK u =

Z
K

f . (1)

I Discontinuous Galerkin stabilized with γ0 > 0 and γ1 ≥ 0:Z
∂K

Σd
K ,γ0

(ud ) =

Z
K

f ,

with the numerical flux defined by

Σd
K ,γ0

(w) =

8<: β · nK {w}+ γ0βn[[w ]] on Fi ∩ ∂K
β · nK w on F+ ∩ ∂K
0 on F− ∩ ∂K

I Discontinuous Galerkin stabilized with γ0 = 0, γ1 > 0 and p ≥ 2:Z
∂K

β · nK {ud} =

Z
K

f .

This property can be considered as generalization of (1) for functions which are
double valued on faces.
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Some conclusions so far

I Similar a priori error estimates for CG and DG.
I For smooth solutions the CG method requires much less

degrees of freedom than the DG method for a given
precision.

I For non-smooth solution both method require the same
amount of degrees of freedom.

I ud
h → uc

h as γ0 →∞.
I For p = 2 numerical experiments show optimal

convergence order for DG stabilized using the gradient
jumps only.

I Reduced stabilization → improved local mass
conservation.
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Reducing the stabilization by projection
I Question: How can the stabilization of the gradient jumps

give control of the solution jumps? recall graphics .
I Answer: We can use some additional stability obtained by

the term ({βv}, [[w ]])Fi∪F+

I If the projection satisfies (πhu, 1)Fi = (u, 1)Fi we may use
the continuity (compare CG/IP !)

({β(u − πhu)}, [[eh]])Fi = min
r∈R

({β(u − πhu)}, [[eh]]− r)Fi

≤ ‖u − πhu‖Fi min
r∈R

‖[[eh]]− r‖Fi

≤ ‖u − πhu‖Fi‖h[[∇eh × n]]‖Fi
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Generalization: a discontinuous Galerkin method
We propose a method where we only penalize the projection of
the solution jumps onto the upper part of the polynomial
spectrum:

Find uh ∈ W p
h , with p ≥ 2, such that

a(uh, vh) + j(uh, vh) = (f , vh), ∀vh ∈ W p
h ,

where j(v , w) = γs(|β·n|∞(I − Pλ)[v ], (I − Pλ)[w ])Fi

I L2-projection on face: Pλ : L2(F ) → Pλ(F )

I λ = bp+1
3 c − 1

I Local mass conservation holds independently of γs.
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Recovering the solution jumps

I Observe that ‖(I − P0)[[uh]]‖Fi . ‖h[[∇uh × n]]‖Fi

I Control of solution jumps → Poincaré inequality
I We want graph-norm convergence, i.e. in the triple norm:

|‖v‖|2 = ‖v‖2
K + ‖h

1
2 β·∇v‖2

K + ‖|β·n|
1
2 [[v ]]‖2

F .

I We need to prove an inf-sup condition to recover control of

‖h
1
2 β·∇v‖2

K and ‖|β|
1
2 [[v ]]‖2

F

E. Burman, B. Stamm IP-FEM for DG or CG
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An inf-sup condition

Theorem: Assume that β is Lipschitz continuous, then there
exists a constant c > 0, independent of the mesh size h, such
that for p ≥ 2

c |‖vh‖| ≤ sup
v ′h∈W p

h

a(vh, v ′h) + j(vh, v ′h)
|‖v ′h‖|

∀vh ∈ W p
h ,

where the stabilization operator is defined by

j(v , w) = γs(|β·n|∞(I − Pλ)[[v ]], (I − Pλ)[[w ]])Fi ,

and 0 ≤ λ ≤ bp+1
3 c − 1.
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Some comments on the proof of the inf-sup condition

1. Prove: For all vh ∈ W p
h there exists v ′h ∈ W p

h and c > 0
such that

|‖vh‖|2 . a(vh, v ′h) + j(vh, v ′h).

2. Prove: Fix vh ∈ W p
h and let v ′h ∈ W p

h be the function
defined in the previous point, then there exists a constant
c > 0 such that

|‖v ′h‖| . |‖vh‖|.

3.

c |‖vh‖| .
a(vh, v ′h) + j(vh, v ′h)

|‖vh‖|
.

a(vh, v ′h) + j(vh, v ′h)
|‖v ′h‖|
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A projection operator in 2D on triangles

Theorem: Let v1 ∈ L2(Ω) and v2 ∈ L2(F), then there exists a
projection Πh = Πh(v1, v2) ∈ W p

h (K) such that∫
K
(Πh − v1) wh = 0 ∀wh ∈ W p−1

h (K),∫
F

({Πh} − v2) zh = 0 ∀zh ∈ W λ
h (F),

for all 0 ≤ λ ≤ bp+1
3 c − 1.

I Orthogonality against polynomials of order p − 1 on
elements

I Orthogonality against polynomials of order λ on faces
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The first step of the proof, (β constant)

For every vh find v ′h such that

|‖vh‖|2 . a(vh, v ′h) + j(vh, v ′h).

1. Testing with w0,h = uh:
‖uh‖2 + j(uh, uh) = a(uh, w0,h) + j(uh, w0,h)

2. Testing with w1,h = Πh(0, [[uh]]):
‖|β·n|Pλ[[uh]]‖2

Fi
− ‖uh‖2 − j(uh, uh) . a(uh, w1,h) + j(uh, w1,h)

3. Testing with w2,h = hβ·∇uh:
‖h

1
2 β·∇uh‖2 − ‖uh‖2 − ‖|β·n|[[uh]]‖2

Fi

. a(uh, w2,h) + j(uh, w2,h)

4. Take v ′h =
∑3

i=1 ciwi,h with carefully chosen ci .

E. Burman, B. Stamm IP-FEM for DG or CG



Outline
Problem setting

Some theoretical and numerical aspects
Towards a minimal stabilization procedure for DG

High pass filtering of the solution jumps
Graph-norm analysis, the inf-sup condition
Numerical examples

The second step of the proof

Fix vh, for v ′h given in point one, show that

|‖v ′h‖| . |‖vh‖|

1. |‖v ′h‖| = |‖
∑3

i=1 ciwi,h‖| .
∑3

i=1 |‖wi,h‖|
2. |‖wi,h‖| . |‖vh‖| for i = 1, 2, 3 by inverse inequalities, trace

inequalities and by the stability of the projection.
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Some conclusions:

I We derive the a priori error estimate

|‖πhu − uh‖| . hk+ 1
2 ‖u‖k+1,Ω

in the standard fashion.
I The method will work whenever the projection Πh is well

defined.
I So far only triangles and p ≥ 2 are OK, (proof very

technical)
I Thetrahedra are expected to work, possibly with a different

definition of λ.
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Some remarks:

I As the polynomial order increases an increasingly large
portion of the polynomial spectrum is in the kernel of the
stabilization operator.
Example of λ for 2 ≤ p ≤ 17

p 2 - 4 5 - 7 8 - 10 11 - 13 14 - 16
λ 0 1 2 3 4

I Stability constant non-uniform in λ:

‖Πh(0, u)‖∂κ ≤ c(p, λ) 2(2λ+1) ‖u‖∂κ

I Could cause degeneration for high λ.
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A model case with smooth solution

β · ∇u + µu = f in Ω,

u = g on ∂Ω−.

I Ω = (−1, 1)2

I β = (1, 0)

I µ = 0.01
I f = 0
I g(y) = sin(π

2 y)

I u(x , y) = exp(−µx)g(y) ∈ C∞(Ω)
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A model case with smooth solution, λ = bp+1
3 c − 1
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A model case with non-smooth solution

β · ∇u + µu = f in Ω,

u = g on ∂Ω−.

I Ω = (−1, 1)2

I β = (1, 0)

I µ = 1
I g = 1
I f chosen to get u(x , y)

I u(x , y) = exp(x + 1) + (x + 1)2.5 ∈ H3−ε(Ω)
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A model case with non-smooth solution, λ = bp+1
3 c − 1
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A discontinuous case

β · ∇u = 0 in Ω,

u = g on ∂Ω−.

I Ω = (−1, 1)2

I β = (1, 0)

I f = 0, µ = 0

I g(y) =

{
1, y > 0
0, y < 0

I u(x , y) =

{
1, y > 0
0, y < 0
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A discontinuous case, P2: upwind vs. filtered fluxes
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I Left: p = 2, standard upwind
I Right: p = 2, λ = 0, γs = 0.5
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A discontinuous case, P5: upwind vs. filtered fluxes
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I Left: p = 5, standard upwind
I Right: p = 5, λ = 0, γs = 0.5
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A discontinuous case, P5: violating the limit for λ
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I Left: p = 5, λ = 1, γs = 0.5
I Right: p = 5, λ = 2, γs = 0.5
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Concluding remarks

I It seems to be possible to shift the stabilization to the high
polynomial modes for high order DG methods.

I This leads to improved local mass conservation.
I Extension of the analysis to first order systems

straightforward.
I In general: many open questions.
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