

Scalable FETI based algorithms for numerical solution of variational inequalities

Zdeněk DOSTÁL

Department of Applied Mathematics FEI VŠB-Technical University of Ostrava

Multiscale Problems: Modelling Adaptive Discretization, Stabilization, Solvers Cortona September, 2006

http://www.am.vsb.cz

David Horák, Vít Vondrák, Radek Kučera, M. Sadowská, O.Vlach, P. Beremlijski Department of Applied Mathematics FEI VŠB-Technical University of Ostrava

> P. Avery, C. Farhat Stanford

Dan Stefanica Baruch College, City University New York

> Michel Lesoinne University of Colorado, Boulder

Outline

- 1. Motivation, optimal algorithms
- 2. Contact problems and their FETI/BETI based discretization
- 3. Optimal quadratic programming algorithms
- 4. Scalable FETI/BETI based algorithms
- 5. Numerical experiments

Scalable (optimal) algorithms

Numerical scalability:

cost \approx number of unknowns

Parallel scalability:

time \approx 1/number of processors

Challenges

 Identify the active constraints for free

 Get rate of convergence independent of conditioning of constraints

Marry preconditioning with constraints

Composite with inserted inclusions

Contact problem of elasticity

FETI domain decomposition

H

Total FETI domain decomposition

Total BETI domain decomposition

H

FETI-DP domain decomposition

Coulomb and given (Tresca) friction

Coulomb and given (Tresca) friction

Model problems

Primal variational formulation

(P) Find min $J(\mathbf{v})$ for $\mathbf{v} \in K$

$$J(v) = \frac{1}{2}a(v, v) - l(v) \qquad \text{energy}$$

$$a: V \times V \rightarrow , \qquad l: V \rightarrow$$

$$V = V^{1} \times V^{2} \times ... \times V^{s}$$

$$V^{i} = \left\{ v \in H^{1}(\Omega^{i}) : v = 0 \quad on \quad \Gamma^{i} \cap \Gamma_{u} \right\}$$

$$K^{E} = \left\{ v \in V : v^{i} = v^{k} \quad on \quad \Gamma^{i} \cap \Gamma^{k} \right\} \qquad \text{gluing}$$

$$K^{I} = \left\{ v \in V : (n^{k}, v^{i} - v^{k}) \le g \quad on \quad \Gamma^{i} \cap \Gamma_{c} \right\} \quad \text{non-penetration}$$

$$K = K^{E} \cap K^{I} \qquad \text{closed convex}$$

Stiffness matrices

Discretized primal problem

 $J_{\mu}(\mathbf{u}) = \mathbf{u}^{T} \mathbf{K} \mathbf{u} - \mathbf{f}^{T} \mathbf{u}$ convex and coercive "gluing" $u_i - u_k = 0 \iff [\cdots^i 1 \cdots - 1^k \cdots] \begin{vmatrix} \cdot \\ u_i \\ \vdots \\ u_k \\ \vdots \end{vmatrix} = 0 \implies \mathbf{B}^E \mathbf{u} = \mathbf{0},$ \Rightarrow B^{*i*}u \leq g non-penetration $K_{h} = \left\{ \mathbf{u} : \mathbf{B}^{E} \mathbf{u} = \mathbf{o} \text{ and } \mathbf{B}^{I} \mathbf{u} \leq \mathbf{g} \right\}$ (P_h) Find min $J_h(\mathbf{v})$ for $\mathbf{v} \in K_h$

Mixed (saddle point) formulation

$$L_h(\mathbf{u},\lambda) = \frac{1}{2}\mathbf{u}^T\mathbf{K}\mathbf{u} - \mathbf{u}^T\mathbf{f} + \lambda_I^T\mathbf{B}'\mathbf{u} + \lambda_E^T\mathbf{B}^E\mathbf{u} = J_h(\mathbf{u}) + \mathbf{u}^T\mathbf{B}^T\lambda$$

$$\mathbf{B} = \begin{bmatrix} \mathbf{B}' \\ \mathbf{B}^{E} \end{bmatrix}, \quad \lambda = \begin{bmatrix} \lambda' \\ \lambda^{E} \end{bmatrix}, \quad \lambda' \ge 0$$

 $\begin{array}{ll} (\mathsf{SP}_h) & \textit{Find} & \min\max L_h(\mathbf{u},\lambda) = \max\min L_h(\mathbf{u},\lambda) \\ & \mathbf{u} & \lambda' \ge 0 & \lambda' \ge 0 & \mathbf{u} \end{array}$

Drawback : 2 sets of variables

Dual formulation (1): coercive FETI-DP

Convexity of $L(.,\lambda)$ and gradient argument: $\mathbf{K}\mathbf{x} - \mathbf{f} + \mathbf{B}^T \lambda = \mathbf{o}$ $\mathbf{x} = \mathbf{K}^{-1}(\mathbf{f} - \mathbf{B}^T \lambda)$ ($\mathbf{D}_{\mathbf{C}}$) Find min $\lambda^T \mathbf{B} \mathbf{K}^{-1} \mathbf{B}^T \lambda - \lambda^T (\mathbf{B} \mathbf{K}^{-1} \mathbf{f} - \hat{\mathbf{c}})$ for $\lambda^I \ge \mathbf{o}$

Optimal estimates for coercive FETI-DP model problem (nodal/normalized mortar multipliers)

Z.D., D.Horák, D.Stefanica IMA J. Numer. Anal. 2005

Dual formulation (2): semicoercive FETI-DP coercive/semicoercive FETI1 and Total FETI

Convexity of $L(.,\lambda)$ and gradient argument: $\mathbf{K}\mathbf{x} \cdot \mathbf{f} + \mathbf{B}^T \lambda = \mathbf{o}$ \mathbf{R} full rank matrix, $\operatorname{Im} \mathbf{R} = \operatorname{Ker} \mathbf{K}$ Solvable for $\mathbf{f} - \mathbf{B}^T \lambda \in \operatorname{Im} \mathbf{K} \iff \mathbf{R}^T (\mathbf{f} - \mathbf{B}^T \lambda) = \mathbf{o}$ \mathbf{K}^+ generalized inverse $\mathbf{K} \mathbf{K}^+ \mathbf{K} = \mathbf{K}$, $\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^T & \mathbf{c} \end{bmatrix}^+ = \begin{bmatrix} \mathbf{A}^{-1} & \mathbf{o} \\ \mathbf{o} & \mathbf{o} \end{bmatrix}$

FETI notation and homogenization

Notation :

- $\mathbf{F} = \mathbf{B}\mathbf{K}^{\mathsf{+}}\mathbf{B}^{\mathsf{T}} \qquad \mathbf{G} = \mathbf{R}^{\mathsf{T}}\mathbf{B}^{\mathsf{T}}$ $\hat{\mathbf{d}} = \mathbf{B}\mathbf{K}^{\mathsf{+}}\mathbf{f} \hat{\mathbf{c}} \qquad \mathbf{e} = \mathbf{R}^{\mathsf{T}}\mathbf{f}$
 - $\frac{1}{2}\lambda^{T}\mathbf{F}\lambda \lambda^{T}\hat{\mathbf{d}} \to \min$
subject to $\lambda_{I} \ge 0$ and $\mathbf{G}\lambda = \mathbf{e}$

Homogenization:

- $\mathbf{G}\hat{\lambda} = \mathbf{e} \qquad \qquad \lambda = \mu + \hat{\lambda}$
- $\mathbf{G}\lambda = \mathbf{e} \qquad \Leftrightarrow \qquad \mathbf{G}\mu = \mathbf{O}$
- $\lambda \ge \mathbf{o} \qquad \iff \qquad \mu \ge -\hat{\lambda}$

(FETI) $\frac{1}{2}\lambda^{T}\mathbf{F}\lambda - \lambda^{T}\mathbf{d} \rightarrow \min$ subject to $\lambda_{l} \geq -\hat{\lambda}_{l}$ and $\mathbf{G}\lambda = \mathbf{0}$ Natural coarse grid projectors (semicoercive FETI-DP, FETI1, total FETI) and penalty approximation

Natural coarse grid projectors : $\mathbf{Q} = \mathbf{G}^T (\mathbf{G}\mathbf{G}^T)^{-1}\mathbf{G}$ $\mathbf{P} = \mathbf{I} - \mathbf{Q}$ Im $\mathbf{Q} = \operatorname{Im} \mathbf{G}^T$ Im $\mathbf{P} = \operatorname{Ker} \mathbf{G}$

(FETI-NCG): $\frac{1}{2}\lambda^T \mathbf{PFP}\lambda - \lambda^T \mathbf{Pd} \rightarrow \min$ subject to $\lambda_l \ge -\hat{\lambda}_l$ and $\mathbf{G}\lambda = \mathbf{0}$

 $(\mathsf{FETI}\mathsf{-NCG}_{\rho}): \quad \frac{1}{2}\lambda^{\mathsf{T}}(\mathsf{PFP} + \rho\mathbf{Q})\lambda - \lambda^{\mathsf{T}}\mathsf{Pd} \to \min$ subject to $\lambda_{l} \ge -\hat{\lambda}_{l}$

Optimal estimates for semicoercive FETI-DP – model problem

Proof in Z.D., D.Horak, D.Stefanica 2005

Optimal estimates for FETI1, TFETI and BETI (D2, D3)

Theorem : The following bounds for F hold :

$$C_{1} \leq \lambda_{\min} (\mathbf{F} \mid \operatorname{Im} \mathbf{F})$$
$$\|\mathbf{F}\| \leq C_{2} \frac{H}{h}$$
$$\kappa(\mathbf{F} \mid \operatorname{Im} \mathbf{F}) \leq C_{3} \frac{H}{h}$$

Proof in C.Farhat, J.Mandel and F.-X.Roux CMAME 1994 BETI J.Bouchala, Z.D., M.Sadowska in preparation

Optimality of dual penalty for FETI1, semicoercive FETI-DP and Total FETI

Theorem : For
$$H/h \le C_1$$
 $\left\| \mathbf{G} \lambda_{\rho}^{H,h} \right\| \le C_2 \frac{1+\varepsilon}{\sqrt{\rho}} \| \mathbf{P} \mathbf{d} \|$

Moreover, $\left\| \mathbf{G} \lambda_{\rho}^{H,h} \right\| \leq C_2(H,h) \frac{1+\varepsilon}{\rho} \| \mathbf{Pd} \|$

Proof in Z.D. and D. Horak Num.Lin.Alg.Appl. 2004 (coercive) and Contemporary Math. 2004 (semicoercive)

	$\ \mathbf{G}\boldsymbol{\lambda}\ / \ \mathbf{P}\mathbf{d}\ $ for varying $\boldsymbol{\rho}$ and H / h		
ρ	1152/591	139392/7551	2130048/29823
1	1.32e-1	1.20e-1	1.12e-1
1000	1.40e-3	1.28e-3	1.19e-3
100 000	1.40e-5	1.28e-5	1.19e-5

Primal formulation of problems with given (Tresca) friction

(P) Find min
$$J(\mathbf{v})$$
 for $\mathbf{v} \in K$

$$J(\mathbf{v}) = \frac{1}{2} \mathbf{a}(\mathbf{v}, \mathbf{v}) - I(\mathbf{v}) + j(\mathbf{v})$$

$$\mathbf{a}: \mathbf{V} \times \mathbf{V} \rightarrow , \qquad I, j: \mathbf{V} \rightarrow \mathbf{V} = \mathbf{V}^{1} \times \mathbf{V}^{2} \times \dots \times \mathbf{V}^{s}$$

$$j(\mathbf{v}) = \int_{\Gamma_{c}} g|\mathbf{v}_{i}| d\Gamma$$

$$\mathbf{V}^{i} = \left\{\mathbf{v} \in H^{1}(\Omega^{i}): \mathbf{v} = \mathbf{o} \quad on \ \Gamma^{i} \cap \Gamma_{u}\right\}$$

$$K^{E} = \left\{\mathbf{v} \in \mathbf{V}: \mathbf{v}^{i} = \mathbf{v}^{k} \quad on \ \Gamma^{i} \cap \Gamma^{k}\right\} \qquad \text{gluing}$$

$$K^{I} = \left\{\mathbf{v} \in \mathbf{V}: (\mathbf{n}^{k}, \mathbf{v}^{i} - \mathbf{v}^{k}) \leq \mathbf{g} \quad on \ \Gamma^{i} \cap \Gamma^{k} \cap \Gamma_{c}\right\} \quad \text{non-penetration}$$

$$K = K^{E} \cap K^{I} \qquad \text{closed convex}$$

Discretized primal problem

$$J_{h}(\mathbf{u}) = \mathbf{u}^{T}\mathbf{K}\mathbf{u} - \mathbf{f}^{T}\mathbf{u} + \dot{J}_{h}(\mathbf{u})$$

$$j_{h}(\mathbf{u}) = g\mathbf{e}^{T}|\mathbf{u}|, \mathbf{u} = [|u_{1}|, ..., |u_{1}|], \quad \mathbf{e} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \quad \text{non-differentiable}$$

"gluing" $\Rightarrow \mathbf{B}^{E}\mathbf{u} = \mathbf{o}$
non-penetration $\Rightarrow \mathbf{B}'\mathbf{u} \leq \mathbf{g}$

$$K_{lh} = \left\{ \mathbf{u} : \mathbf{B}^{\mathcal{E}} \mathbf{u} = \mathbf{o} \text{ and } \mathbf{B}^{\prime} \mathbf{u} \leq \mathbf{g} \right\}$$

(
$$P_h$$
) Find min $J_h(\mathbf{v})$ for $\mathbf{v} \in K_h$

A simple observation (2D)

$$g|u| = \max{\lambda u: \lambda \in [-g,g]}$$

$$J(\mathbf{v}) = \frac{1}{2}a(\mathbf{v},\mathbf{v}) - I(\mathbf{v}) + \max_{-g \le \lambda \le g} \mathbf{\lambda}^{\mathsf{T}}\mathbf{v}$$

Mixed (saddle point) formulation

$$L_h(\mathbf{u},\lambda) = \frac{1}{2}\mathbf{u}^T\mathbf{K}\mathbf{u} - \mathbf{u}^T\mathbf{f} + \lambda_{IN}^T(\mathbf{B}^{IN}\mathbf{u} - \mathbf{g}_N) + \lambda_{IT}^T\mathbf{B}^{IT}\mathbf{u} + \lambda_E^T\mathbf{B}^E\mathbf{u}$$

$$\mathbf{B} = \begin{bmatrix} \mathbf{B}^{IN} \\ \mathbf{B}^{IT} \\ \mathbf{B}^{E} \end{bmatrix}, \quad \lambda = \begin{bmatrix} \lambda_{IN} \\ \lambda_{IT} \\ \lambda_{E} \end{bmatrix}, \quad \frac{\lambda_{IN} \ge \mathbf{0}}{-\mathbf{g}_{T} \le \lambda_{IT} \le \mathbf{g}_{T}}, \qquad \lambda_{I} = \begin{bmatrix} \lambda_{IN} \\ \lambda_{IT} \\ \lambda_{IT} \end{bmatrix}$$

Drawback : 2 sets of variables

Dual formulation (3): coercive/semicoercive FETI1 and Total FETI with given friction 2D

Convexity of $L(.,\lambda)$ and gradient argument:

 $\mathbf{K}\mathbf{x} - \mathbf{f} + \mathbf{B}^{\mathsf{T}}\lambda = \mathbf{o}$ $\mathbf{R} \text{ full rank matrix, Im } \mathbf{R} = \mathbf{K}\mathbf{er} \mathbf{K}$ Solvable for $\mathbf{f} - \mathbf{B}^{\mathsf{T}}\lambda \in \mathrm{Im} \mathbf{K} \iff \mathbf{R}^{\mathsf{T}} \left(\mathbf{f} - \mathbf{B}^{\mathsf{T}}\lambda\right) = \mathbf{o}$ $\mathbf{K}^{\mathsf{+}} \text{ generalized inverse } \mathbf{K}\mathbf{K}^{\mathsf{+}}\mathbf{K} = \mathbf{K}, \quad \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^{\mathsf{T}} & \mathbf{C} \end{bmatrix}^{\mathsf{+}} = \begin{bmatrix} \mathbf{A}^{-1} & \mathbf{o} \\ \mathbf{o} & \mathbf{o} \end{bmatrix}$

FETI notation and homogenization

Notation :

$\mathbf{F} = \mathbf{B}\mathbf{K}^{+}\mathbf{B}^{T}$	$\mathbf{G} = \mathbf{R}^{T} \mathbf{B}^{T}$
–BK⁺f₋ĉ	$\mathbf{o} - \mathbf{R}^T \mathbf{f}$

 $\frac{1}{2}\lambda^{T}\mathbf{F}\lambda - \lambda^{T}\hat{\mathbf{d}} \rightarrow \min$

subject to $\lambda_{IN} \ge 0, -\mathbf{g}_T \le \lambda_{IT} \le \mathbf{g}_T$ and $\mathbf{G}\lambda = \mathbf{e}$

Homogenization:

 $\mathbf{G}\hat{\lambda} = \mathbf{e} \qquad \qquad \lambda = \mu + \hat{\lambda}$

 $\mathbf{G}\lambda = \mathbf{e} \qquad \Leftrightarrow \qquad \mathbf{G}\mu = \mathbf{O}$

 $\lambda \ge \mathbf{o} \qquad \iff \qquad \mu \ge -\hat{\lambda}$

(FETI) $\frac{1}{2}\lambda^{T}\mathbf{F}\lambda - \lambda^{T}\mathbf{d} \rightarrow \min$ subject to $\lambda_{IN} \ge \mathbf{g}_{N} - \mathbf{g}_{T} \le \lambda_{IT} \le \mathbf{g}_{T}$ and $\mathbf{G}\lambda = \mathbf{o}$ Natural coarse grid projectors (semicoercive FETI-DP, FETI1, total FETI) and penalty approximation

Natural coarse grid projectors : $\mathbf{Q} = \mathbf{G}^T (\mathbf{G}\mathbf{G}^T)^{-1}\mathbf{G}$ $\mathbf{P} = \mathbf{I} - \mathbf{Q}$ Im $\mathbf{Q} = \operatorname{Im} \mathbf{G}^T$ Im $\mathbf{P} = \operatorname{Ker} \mathbf{G}$

(FETI-NCG-TF): $\frac{1}{2}\lambda^T \mathbf{PFP}\lambda - \lambda^T \mathbf{Pd} \rightarrow \min$ subject to $\lambda_{IN} \ge \mathbf{g}_N, -\mathbf{g}_T \le \lambda_{IT} \le \mathbf{g}_T$ and $\mathbf{G}\lambda = \mathbf{0}$

 $(\mathsf{FETI}\mathsf{-NCG}_{\rho}\mathsf{-}\mathsf{TF}): \ \frac{1}{2}\lambda^{\mathsf{T}}(\mathsf{PFP}+\rho\mathbf{Q})\lambda - \lambda^{\mathsf{T}}\mathsf{Pd} \to \min$ subject to $\lambda_{\mathsf{IN}} \ge \mathbf{g}_{\mathsf{N}} - \mathbf{g}_{\mathsf{T}} \le \lambda_{\mathsf{IT}} \le \mathbf{g}_{\mathsf{T}}$

Bound constrained problems

For
$$i \in T$$
 let

$$f_{i}(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{T} \mathbf{A}_{i} \mathbf{x} - \mathbf{b}_{i}^{T} \mathbf{x}, \quad \Omega_{i} = \{\mathbf{x} : \mathbf{x} \ge \mathbf{c}_{i}\},$$

$$\mathbf{A}_{i} = \mathbf{A}_{i}^{T}, \quad \mathbf{x}^{T} \mathbf{A}_{i} \mathbf{x} > 0 \text{ for } \mathbf{x} \neq \mathbf{0}$$

$$C_{1} \|\mathbf{x}\|^{2} \le \mathbf{x}^{T} \mathbf{A}_{i} \mathbf{x} \le C_{2} \|\mathbf{x}\|^{2} \text{ and } \|\mathbf{c}_{i}^{+}\| \le C_{3}$$

$$(\mathsf{QPB}_{i}) \qquad \text{Find: } \min f_{i}(\mathbf{x})$$

$$\Omega_{i}$$

Goal: find approximate solution at O(1) iterations !!!

KKT conditions and active set method

KKT and minimization on the face with the solution:

$$x^{k} \qquad \Omega$$

$$-g(x^{k}) = -\varphi(x^{k})$$

$$W$$

$$x^{k+1} \qquad \bar{x}$$

$$-g(x^{k+1}) \qquad -g(\bar{x})$$

Typical minimization:

Proportioning

x proportional:

$$\Gamma^{2} \widetilde{\boldsymbol{\varphi}}^{T}(x) \boldsymbol{\varphi}(x) \leq \left\| \boldsymbol{\beta}(x) \right\|^{2}$$

Reduction of the active set for nonproportional iterations

Proportional iterations

Projection step: expansion of the active set

Feasible conjugate gradient step:

Optimality of MPRGP

Theorem:

Let $\Gamma > 0$, $\hat{\Gamma} = \max\{\Gamma, \Gamma^{-1}\}$, $\overline{\mathbf{x}}_i$ solution of (QPB_i) , $\{\mathbf{x}_i^k\}$ generated with $\overline{\alpha} \in (0, C_2^{-1}]$ and $\mathbf{x}_i^0 = \max\{\mathbf{c}_i, \mathbf{o}\}$. Then \mathbf{x}_i^k that satisfies $\|\mathbf{x}_i^k - \overline{\mathbf{x}}_i\| \le \varepsilon \|\mathbf{b}_i\|$ and $\|g^P(\mathbf{x}_i^k)\| \le \varepsilon \|\mathbf{b}_i\|$

is found at

O(1) matrix-vector multiplications

Z.D., J. Schoeberl, Comput. Opt. Appl. (2005), Z.D. (2004)

Optimality of FETI-DP for coercive model problem (frictionless/Tresca friction)

Theorem:

The solutions of the discretized coercive model problem with

$H/h \leq C$

to a given precision by SMALBE/MPRGP may be obtained at

O(1) matrix/vector multiplications

frictionles Z.D., D. Horak, D.Stefanica IMA J. Num. Mat. 2005 Tresca friction (2D) in preparation

Bound and equality constrained problems

For
$$i \in T$$
 let
 $f_i(\mathbf{x}) = \frac{1}{2} \mathbf{x}^T \mathbf{A}_i \mathbf{x} - \mathbf{b}_i^T \mathbf{x}$
 $\Omega_i = \{\mathbf{x} : \mathbf{x} \ge \mathbf{c}_i \text{ and } \mathbf{D}_i \mathbf{x} = \mathbf{o}\}, \quad \|\mathbf{D}_i\| \le C_0$
 $\mathbf{A}_i = \mathbf{A}_i^T, \ \mathbf{x}^T \mathbf{A}_i \mathbf{x} > 0 \text{ for } \mathbf{x} \neq \mathbf{o}$
 $C_1 \|\mathbf{x}\|^2 \le \mathbf{x}^T \mathbf{A}_i \mathbf{x} \le C_2 \|\mathbf{x}\|^2 \text{ and } \|\mathbf{c}_i^+\| \le C_3$
(QPBE_i) Find: $\min f_i(\mathbf{x})$
 Ω_i

Goal: find approximate solution at O(1) iterations !!!

Augmented Lagrangian and projected gradient

$$L(\mathbf{x}, \mu, \rho) = f(\mathbf{x}) + \mu^{T} \mathbf{D} \mathbf{x} + \frac{1}{2} \rho \left\| \mathbf{D} \mathbf{x} \right\|^{2}$$
$$g(\mathbf{x}, \mu, \rho) = \nabla_{x} L(\mathbf{x}, \mu, \rho)$$
$$g^{P} = g^{P}(\mathbf{x}, \mu, \rho) = \varphi(\mathbf{x}, \mu, \rho) + \beta(\mathbf{x}, \mu, \rho)$$

Effect of penalization

Modification of linear term (Lagrange multipliers)

Computational engine II: SMALBE
(Semimonotonic augmented Lagrangians)
(Initialization)
Step 0
$$1 < \beta, \rho_0 > 0, \eta > 0, M > 0, \mu^0$$

(Approximate solution of bound constrained problem)
Step 1 Find $x^k \ge c$ such that $\|g^r(x^k, \mu^k, \rho_k)\| \le \min\{M \|Dx^k\|, \eta\}$
(Test)
Step 2 If $\|g^r(x^k, \mu^k, \rho_k)\|$ and $\|Dx^k\|$ are small then x^k is solution
(Update Lagrange multipliers)
Step 3 $\mu^{k+1} = \mu^k + \rho_k(Dx^k)$
(Update penalty parameter)
Step 4 If $L(x^{k+1}, \mu^{k+1}, \rho_{k+1}) \le L(x^k, \mu^k, \rho_k) + \frac{\rho_{k+1}}{2} \|Dx^{k+1}\|^2$
then $\rho_{k+1} = \beta\rho_k$
else $\rho_{k+1} = \rho_k$
(Repeat loop)
Step 5 $k = k + 1$ and return to Step 1

Basic relations for SMALBE

Theorem:

Let $\{\mathbf{x}^k\}, \{\mu^k\}$ and $\{\rho^k\}$ be generated with $\overline{\alpha} \in (0, \|\mathbf{A}\|^{-1}]$ and $\Gamma > 0$.

(i) If
$$\rho_k \ge M^2 / \lambda_{\min}(\mathbf{A})$$
 then
 $L(\mathbf{x}^{k+1}, \mu^{k+1}, \rho_{k+1}) \ge L(\mathbf{x}^k, \mu^k, \rho_k) + \frac{\rho_{k+1}}{2} \|\mathbf{D}\mathbf{x}^{k+1}\|^2$

(ii) There is $C = C(C_1, C_2, \overline{\alpha}, \Gamma, M)$ such that

$$\sum_{k=1}^{\infty} \frac{\rho_k}{2} \left\| \mathbf{D} \mathbf{x}^k \right\|^2 \leq C$$

Z.D. SINUM (2005), Z.D. (2004)

Optimality of SMALBE

Corollary:

Let $\{\mathbf{x}_{i}^{k}\}, \{\mu\}$ and $\{\rho^{k}\}$ be generated with $\overline{\alpha} \in (0, \|\mathbf{A}_{i}\|^{-1}], \Gamma > 0.$ (i) $\rho_{k} \leq \beta M^{2} / \lambda_{\min}(\mathbf{A})$ (ii) SMALBE generates \mathbf{x}^{k} that satisfies

 $\|g^{P}(\mathbf{x}^{k})\| \le \varepsilon \|\mathbf{b}_{i}\|$ and $\|\mathbf{D}_{i}\mathbf{x}^{k}\| \le \varepsilon \|\mathbf{b}_{i}\|$

at O(1) outer iterations

(ii) SMALBE with MPRGP in inner loop generates \mathbf{x}^{k} that satisfies $\|g^{P}(\mathbf{x}^{k})\| \le \varepsilon \|\mathbf{b}_{i}\|$ and $\|\mathbf{D}_{i}\mathbf{x}^{k}\| \le \varepsilon \|\mathbf{b}\|$

at O(1) matrix-vector multiplications

Z.D. SINUM (2005), Z.D.(2004)

Computational engine II: SMALBE Semimonotonic augmented Lagrangians

Theorem: $H/h \le C \Rightarrow$ SMALBE finds $\overline{\lambda}, \mu$ such that $\mathbf{g}^{P}(\overline{\lambda}, \mu, 0) \le \varepsilon \| \mathbf{b}_{H,h} \|$ and $\| \mathbf{G} \overline{\lambda}_{H,h} \| \le \varepsilon \| \mathbf{b}_{H,h} \|$ in O(1) iterations **Z.D., SINUM (2005)**

Optimality of FETI/BETI for semicoercive/coercive problems (Tresca 2D, frictionless 2D/3D)

Theorem:

The solutions of the discretized model problem with

 $H/h \leq C$

to a given relative precision by SMALBE/MPRGP may be obtained at

O(1) matrix/vector multiplications

Z.D, D.Horak, submitted J. Bouchala, Z.D., M.Sadowská, in preparation

Convergence of Lagrange multipliers

- Lagrange multipliers $\lambda^k \rightarrow \lambda_{LS}$ when

 $\lambda^0 \in \text{Im} \mathbf{B}$ and λ_{LS} is range regular (i.e $\text{Im} \mathbf{B}_{F(\lambda_{\text{LS}}),*} = \text{Im} \mathbf{B}$)

Lagrange multipliers are unique when
 B is full row rank

FETI-DP: Numerical experiments for nodal Lagrange multipliers

н	1/2	1/4	1/8
H/h=4	200/33/10	800/161/42	3200/705/154
	17	21	27
H/h=8	648/73/10	2592/369/42	10365/1633/154
	22	36	38
H/h=16	2312/153/10	9248/785/42	36992/3489/154
	27	48	51

н	1/2	1/4	1/8
H/h=4	200/33/10	800/161/42	3200/705/154
	24	24	31
H/h=8	648/73/10	2592/369/42	10365/1633/154
	27	39	46
H/h=16	2312/153/10	9248/785/42	36992/3489/154
	41	57	63

FETI-DP: Numerical experiments for mortars (orthogonalized constraints)

N ₁ N ₂	1x2 1x3	2x4 2x5	4x8 4x11
H ₁ /h ₁ =4	242/23/6	840/122/25	3616/620/97
$H_2/h_2 = 7$	15	34	49
H ₁ /h ₁ =8	750/47/6	2608/256/25	11216/1298/97
H ₂ /h ₂ =13	29	49	59
$H_{1}/h_{1}=16$	2606/95/6	9072/524/25	38992/2654/97
H ₂ /h ₂ =25	33	57	78

N ₁ N ₂	1x2 1x3	2x4 2x5	4x8 4x11
$H_1/h_1=4$	242/23/6	840/122/25	3616/620/97
H ₂ /h ₂ =7	20	37	52
H ₁ /h ₁ =8	750/47/6	2608/256/25	11216/1298/97
H ₂ /h ₂ =13	36	56	70
H ₁ /h ₁ =16	2606/95/6	9072/524/25	38992/2654/97
$H_2/h_2 = 25$	39	65	84

Solution and numerical scalability of FETI for *n* ranging from 50 to 2 130 048 (C/PETSc)

н	1/2	1/4	1/8
H/h=8	648/87	2592/447	10365/1983
	20	23	27
H/h=32	8712/327	34848/1695	139392/7551
	33	30	37
H/h=128	133128/1287	532512/6687	2130048/29823
	59	36	47

Numerical scalability

h=1/256, H=1/4, primal dimension 135 200, dual dimension 3359 2 outer iterations, 33 cg iterations

Best results for FETI with SMALBE

primal dimension	2 130 048	8 454 272
dual dimension	29 823	59 519
number of subdomains	128	128
number od SGI-Origin processors	32	64
number of outer iterations	2	2
number of cg iterations	47	65
time [sec]	167	1281

Benchmark for 2D Tresca friction

$$E = 21.19$$

 $v = 0.277$
 $tol = 1e - 5$

FETI-DP 2D contact problem frictionless and with given (Tresca) friction

subdomains	Primal dimension	Dual dimension	Iterations frictionless	Iterations Tresca
16	3872	512	50	63
64	15488	2176	62	87
144	34846	4992	77	130
256	61952	8960	81	129
400	96800	14080	101	175
900	217800	31920	107	187

BETI for 2nd kind variational inequality

$H/h \setminus H$	1/2	1/4	1/6	1/8
24	384/100/0.04	1536/592/0.86	3456/1476/9.40	6144/2752/25.40
	14	21	25	25
16	256/68/0.02	1024/400/0.36	2304/996/2.54	4096/1856/6.50
	10	14	20	17
8	128/36/0.02	512/208/0.12	1152/516/0.59	2048/960/1.52
	8	11	15	12
4	64/20/0.04	256/112/0.06	576/276/0.17	1024/512/0.39
	7	9	10	10

2D coercive test

3D 2 blocks problem matching grids

	inner	outer
SMALBE	13	29

3D 2 blocks problem:non-matching grids

		outer
SMALBE	10	29

FETI-DP 3D elasticty Hertz model problem

55666	DOFs
47	iterations
61	matrix-vector OPs
38.5 s	time

Optimal preconditioner and adaptive strategy for $\overline{\alpha}$ (proposed by M. Lesoinne)

Related research in variational inequalities

- FETI-NCG by C. Farhat, Duraiseix (based on FETI)
- FETI-C C. Farhat, M. Lesoinne, P. Avery, ... (based on FETI-DP)
- Optimal dual penalty Z. D., D. Horák
- Large deformation J. Dobias, V. Vondrák, ...
- Applications to contact shape optimization V. Vondrák, Z. D.
- Applications in composites Z.D., O. Vlach
- Quasistatic problems J. Haslinger, O. Vlach, Z.D.,
- Applications in biomechanics V. Vondrák, J.Rasmussen, ...
- Problems with Coulomb friction R. Kučera, J. Haslinger, Z.D., ...
- Some others (R. Kornhuber, R. Krause, B. Wohlmuth, ...) gave evidence of optimality of various algorithms, J. Schoeberl even the first proof.

Conlusions

- New algorithms for bound and equality constrained QP problems were introduced
- 2. Qualitatively new results were shown
- 3. The results were applied to develop scalable algorithms for elliptic boundary variational inequalities including contact problems
- 4. Theoretical results are in agreement with numerical experiments
- Engineering application in progress (joint with C. Farhat)
- 6. Recently extended to 3D Tresca