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Relaxed schemes for non linear diffusion problems
Non linear (degenerate) diffusion equation

Advection-diffusion problems
Reaction-diffusion equations

We aim at a numerical approximation such that:
• treats non-linear p(u)
• does not exploit the form of p(u)
• treats singular p(u), as well, i.e. p(0)=0 
• high order

For example, p(u) = um (for m > 1) is the porous media equation
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Goldstein-Taylor Model
Multiscale Hyperbolic system
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Mesoscopic scale
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1 Linear diffusion equation,  Macroscopic level

ρ = temperature , J= flux

                 ε             0+

See i.e. review work of Natalini and Marcati or the survey of S. Jin

Microscopic world

Fluid dynamical limit

Diffusive limit



Non Non linear diffusionlinear diffusion
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See i.e. P.L. Lions and G. Toscani, Rev. Mat. Iberoamericana, 13:473–513, 1997





First introduce the auxiliary variable v(x,t) and the system

Relaxation of the Laplacian operator

⎪
⎪
⎩

⎪
⎪
⎨

⎧

−=∇+
∂
∂

=+
∂
∂

vupD
t
v

vdiv
t
u

εε
1)(

0)(

Formally, in the small relaxation limit, ε→0+, the system above  approximates  to leading
order the nonlinear diffusion equation.
In order to have a non degenerate charcteristic velocities as ε→0+, a suitable
parameter ϕ is introduced and
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Relaxation of the non-linearity

So far we turned the (degenerate) nonilnear diffusion operator into a nonlinear hyperbolic
system with stiff source terms

We now introduce another variable w and rewrite the system above as
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This is now a semilinear hyperbolic system with stiff source terms of the kind usually exploited
in relaxation schemes.



Relaxed schemes for non linear diffusion problems

Advantages of the method

• the (degenerate) non-linear problem becomes (non degenerate) semi-linear
•fronts and discontinuities should be tracked faithfully by methods designed 
for hyperbolic equations
•no need for nonlinear solvers nor Riemann solvers
• very simple to generalize for different p(u) 
• easy implementation on parallel computer

A first/second order scheme had been already studied by Naldi, Pareschi 
(SINUM 2000) and  Naldi, Pareschi, Toscani (Surv. Ind. Math., 2002)

Preliminary work on high order schemes for this relaxation system in
Proceedings ENUMATH2005.



Relaxed schemes for non linear diffusion problems
Outline

We studied and implemented the relaxed schemes obtained by choosing
ε = 0 in the above relaxation system with: 
• high order spatial  reconstructions (ENO/WENO) 
• appropriate time integrators (IMEX of matching accuracy)

♦semidiscrete scheme
♦ proof of convergence
♦ nonlinear stability for the low order scheme
♦ linear stability for the higher order schemes
♦ numerical accuracy and convergence tests



The relaxation system may be cast in the form zt +div f (z) = g(z)/ε
and we integrate in time  as (with uniform time step Δt)

Relaxed schemes for non linear diffusion problems
Semidiscrete relaxed IMEX Runge-Kutta scheme
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Here and (aik,bi) are a pair of Butcher’s tableaux (for nonzero ε we 
need IMEX SSP).
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For i = 1, we let ε-->0 in (now Φ2 is a diagonal matrix times ϕ2)

Relaxed schemes for non linear diffusion problems 
Semidiscrete relaxed IMEX Runge-Kutta scheme (II)

and therefore



Relaxed schemes for non linear diffusion problems 
Semidiscrete relaxed IMEX Runge-Kutta scheme (III)

For i =2,

Summarizing, the relaxed scheme reduces to an alternation of relaxation steps

and transport steps.



Relaxed schemes for non linear diffusion problems 
Semidiscrete relaxed IMEX Runge-Kutta scheme (IV)

relaxation steps

transport steps (we advance for time      )ta ki Δ,
~

with initial data z = z(i), retain only the first component and assign it to u(i+1).
Finally the value of un+1 is computed as .~ )(i

i
n ubu ∑+



Relaxed schemes for non linear diffusion problems
Convergence theorem

Let u(x, t) be the weak  solution of  
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un(·,t) be the  semidiscrete approximate solution obtained for time t as 
described. Assume                and that p be a non-decreasing Lipschitz 
continuous on [-M,M]. If the following conditions hold

MuLu =∈ ∞
∞ ||||, 00

then                            in L1. Moreover the convergence is uniform for t in 
any given bounded interval.
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Relaxed schemes for non linear diffusion problems
relaxed IMEX scheme: implicit part

Introduce a regular grid with x j = a - h/2+ jh at the centre of the
computational cells, for j = 1,…,,N and h = (b-a)/N. Let uj = u(xj),
The implicit part of the scheme, in the relaxed version simplyfies to the 
resolution of a triangular system, which may be obtained using only function 
evaluations.

For second order, we use simply the Heun method and for third order the 
scheme with the followin tableaux



Relaxed schemes for non linear diffusion problems
relaxed IMEX scheme: explicit part

The transport steps, may be thougth as the time advancement of the first 
component of the system

The characteristic variables that diagonalize the system are

Where    and           are suitable non-oscillatory  reconstructions
(limiters, ENO, WENO).
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Relaxed schemes for non linear diffusion problems
Non-linear stability

We performed non-linear stability analysis on the first order scheme for
ut - Δ(p(u))=0 (piecewise constant reconstructions and Euler timestepping)

One may prove that (when using central differences to approximate ∂x p(u))

TV(un+1 ) ≤ TV(un)

provided that Δt ≤ 2h2 /μ, where μ is the Lipshitz constant of the function p.

(Using upwind/downwind approximations for ∂x in order to reduce the stencil
gives much stronger stability constraints)



Relaxed schemes for non linear diffusion problems
Linear stability

Regarding the higher order schemes, we performed a linear stability analysis, 
setting p(u)=u and computing the amplification factors of each Fourier mode in
a VonNeumann analysis. Varying Φ and the constant C such that Δt =C h2

we obtain:



Relaxed schemes for non linear diffusion problems
Non periodic boundary conditions

Dirichlet or Neumann boundary conditions in 1D may be easily implemented 
with the following procedure:

•add extra points to the computational grid outside the domain Ω;
•(e.g. at the left boundary x = 0 of the domain Ω) choose a polynomial p(k)(x)
of degree k that fits the points u1

n, u2
n,…, uk

n and that satisfies the given b.c. on 
the border x =0; 
•use the polynomial p(k)(x) to set the values of the points u0

n, u-1
n,…;

•apply the algorithm in Ω. The values of u0
n, u-1

n,... will be used in the 
calculations.

The number of points to add depends on the degree of the scheme and on 
the implementation, but only the given boundary condition for u(x) is used 
to set the values.



Relaxed schemes for non linear diffusion problems
1D results (1): linear equation with Neumann b.c.



Relaxed schemes for non linear diffusion problems

1D results (2): ut +Δu2 = 0



Relaxed schemes for non linear diffusion problems

Ω ⊆ Rd

One may obtain schemes for regular grids in Rd by addittive dimensional splittin
Let un

J be the values of u(xJ ,tn), where J=(j1, j2,…, jd) is a multi-index of d 
integers. The relaxation steps are straightforward.
For each Euler step of the transport equation, consider the collection of 1D 
problems for un (…, jm-1,• ,jm+1,...) where only the mth spatial variable is left 
and all the  others are fixed. Save the corresponding increment 
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Applying this procedure for each stage value of the Ringe-Kutta scheme, we are
able to generalize our schemes to 



Relaxed schemes for non linear diffusion problems
2D results: simmetry



Relaxed schemes for non linear diffusion problems
2D results: two bumps



Parallel Algorithms (I)

Implementation on a cluster of parallel processors (thanks to www.petsc.org 
and the IT staff of the Department of Mathematics - Milano)

The problem is broken into subproblems solved by distinct processors, that 
exchange information on the boundary nodes at each integration step. This is 
needed in the ENO reconstruction procedure that has a stencil
(k-1) nodes wide and for boundary conditions.

Our code:
• exploits PETSC libraries and parallel linpack/lapack libraries
• our ENO library: can reconstruct in any degree k. It uses only
MatVec multiplies, so scales essentially linearly with the number
of processors.
•We implemented schemes of order 2,3,5,6 for 1D and 2D



Parallel Algorithms (II)

The algorithm shows a good (linear!) scaling behaviour, until the
subproblems assigned to each processor become too small and the time spent 
exchanging MPI messages among the processors become predominant (the 
overhead of MPI communications among processors shows up as reduced 
speedup on the smaller grid).



Conclusions

•relaxation removes the degeneracy of the differential operator
•relaxation moves the non-linearity from the differential operator and into the 
source terms
•we use high order schemes for hyperbolic equations
the schemes involve only function evaluations and matrix-vector products; 
for the relaxed schemes, no need to solve linear or nonlinear systems.
•easy extension to more space dimensions
•easy to implement on parallel computers
•convergence proof
•linear stability for high order schemes, nonlinear stability for the first order
scheme

- upcoming more general stability results
- ε≠0
- possible extensions to convection-diffusion equations

More complex problem Advection-diffusion problem



Vascular Networks form by the spontaneous aggregation of endothelial cells migrating
toward vascularization sites.
We have the following essential steps in the early stage of the phenomena:

•the birth of angioblasts (the endothelial cell precursors);

•angioblast aggregation;

•elongation of angioblasts into cord-like structures;

•the organization of isolated vascular segments into capillary like network and 
concomitant with this step, endothelialization.

A more complex application ...

Collaboration with A. Gamba (Politecnico Torino), D. Valdembri and G. Serini 

(Institute for Cancer Research and Treatment, Candiolo)



Capillary patterns are closely mimicked by endothelial cells cultured on 
Matrigel, a preparation of basement membrane proteins. On the Matrigel 
surface, single randomly dispersed endothelial cells self-organize into 
vascular networks.

Starting point: EXPERIMENTAL OBSERVATIONS in 2D

From G. Serini et al.
The EMBO Journal Vol. 22 No. 8
pp. 1771-1779, 2003

in vitro vascularization experiments.



The process of formation of a vascular-type network follows three
main steps:
(i)  endothelial cells migrate independently, adhere with closest neighbours,
and eventually form a continuous multicellular network.

(ii) In the second step  the network just undergoes a slow deformation;

(iii) Finally, individual cells fold up to form capillary-like tubes.

Total time: 12/15 h



Tracking of individual cell trajectories shows persistence in the direction of
cell motion, with a small random component superimposed
(Serini et al., 2003): in most cases the motion is apparently directed toward 
zones of higher concentration of cells.

Observation of cell trajectories

This suggests that a mechanism of cell crosstalk is present in the system. 
Recent works (Carmeliet, 2000; Helmlinger et al., 2000) confirm that 
endothelial cells in the process of vascular network formation exchange 
signals by the release and absorption of VEGF-A.

This growth factor can bind to specific receptors on the cell surface and induce
motion along its concentration gradients (chemotaxis phenomena)



It is possible to describe cellular matter by means of a continuous density 
field n(x,t) and the corresponding velocity field v(x,t)

The cells are triggered by chemical gradients due to  the presence of a 
chemical concentration field c(x,t) (chemoattractant created by the cells 
themselves).
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Forces
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Diffusion of chemoctactic factor
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2/200 mmcell

2/400 mmcell

2D SIMULATIONS Experiments
from IRCC



2D SIMULATIONS Experiments
from IRCC

2/50 mmcell

2/100 mmcell



3D SIMULATIONSExperimental data
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