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Relaxed schemes for non linear diffusion problems
Non linear (degenerate) diffusion equation
Advection-diffusion problems
Reaction-diffusion equations

%:DA(p(u)), xeR%,t>0

We aim at a numerical approximation such that:
o treats non-linear p(u)

* does not exploit the form of p(u)
o treats singular p(u), as well, 1.e. p(0)=0
e high order

For example, p(u) = u™ (for m > 1) is the porous media equation



Multiscale Hyperbolic system
Goldstein-Taylor Model

@t :%(V—U) Kinetic model
| Microscopic world e, <+ e
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el =0 Maxwell-Cattaneo Model
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T Teve .. 82
Fluid dynamical limit 5 .
‘ P W
Linear diffusion equation, Macroscopic level
=0
-»‘\ p = temperature , J= flux
J = Diffusive limit

L
See i.e. review work of Natalini and Marcati or the survey of S. Jin




Non linear diffusion

ou+cou=K(u+v,x)(v-u) | diffusive scaling
o,v—co,v=K(Uu+v,Xx)(u-v)

Macroscopic variable

(0, p+0xJ =0
< | 2
Okt =08 0= K (pyX):]
& &
asymptotic state

See'i.e. P.L. Lions and G. Toscani, Rev. Mat. Iberoamericana, 13:473-513, 1997



Relaxation scheme for conservation laws

Jin and Xin! (1995) proposed a kinetic system

ur +Jjx =0
Jr +au, = —1 — f(u))

to approximate the solutions of the scalar conservation laws
ur+f(u)x =0

provided that a = (f'(u))? (subcharacteristic condition).
The numerical integration consists on alternation of relaxation steps

ug =0 i r N — Flul- ")) = f(uy"
VT o0 =) =)

and transport steps, i.e. get u(-, t"!) integrating on [t", t"1]

Ur + jx =0
Je +au, =0

LJin, S. and Xin, Z., The relaxation schemes for systems of conservation laws in arbitrary
space dimensionsComm. Pure Appl. Math., 48(3):235-276, 1995.



Relaxation of the Laplacian operator

First introduce the auxiliary variable v(x,t) and the system

e

ou :
— +div(v)=0
o (V)

1
—+— VpU) =——V
Lot ¢ P) g

Formally, in the small relaxation limit, e—>0*, the system above approximates to leading
order the nonlinear diffusion equation.

In order to have a non degenerate charcteristic velocities as e—0*, a suitable

parameter ¢ Is introduced and

-

ou s
— +div(v)=0
- (V)

oV 1 D
—+¢° Vp(u) =——V+(¢2 ——ij(U)
el 3 &



Relaxation of the non-linearity

So far we turned the (degenerate) nonilnear diffusion operator into a nonlinear hyperbolic
system with stiff source terms

We now introduce another variable w and rewrite the system above as

ou :
— +div(v)=0
: (V)
<@+gp2 Vw :—£v+((p2—BjVW
ot P £
@miv(v) =—1(w— p(u))
ot £

This is now a semilinear hyperbolic system with stiff source terms of the kind usually exploited
in relaxation schemes.



Relaxed schemes for non linear diffusion problems

Advantages of the method

* the (degenerate) non-linear problem becomes (non degenerate) semi-linear
fronts and discontinuities should be tracked faithfully by methods designed
for hyperbolic equations

*no need for nonlinear solvers nor Riemann solvers

e very simple to generalize for different p(u)

o easy implementation on parallel computer

A first/second order scheme had been already studied by Naldi, Pareschi
(SINUM 2000) and Naldi, Pareschi, Toscani (Surv. Ind. Math., 2002)

Preliminary work on high order schemes for this relaxation system in
Proceedings ENUMATH2005.



Relaxed schemes for non linear diffusion problems
Outline

We studied and implemented the relaxed schemes obtained by choosing
¢ = 0 In the above relaxation system with:

e high order spatial reconstructions (ENO/WENO)

e appropriate time integrators (IMEX of matching accuracy)

¢ semidiscrete scheme

¢ proof of convergence

¢ nonlinear stability for the low order scheme
¢ linear stability for the higher order schemes
¢ numerical accuracy and convergence tests




Relaxed schemes for non linear diffusion problems
Semidiscrete relaxed IMEX Runge-Kutta scheme

The relaxation system may be cast in the form z,+div f (z) = g(z)/e
and we integrate in time as (with uniform time step At)

sy _Atzgl q (Z(i)) +§ Zbl g(Z(i))
i=1 8)( € ig
where

A g AtZak z<k))+At Zak 9(z")

Here (&« B0d (a;,b;) are a pair of Butcher’s tableaux (for nonzero & we
need IMEX SSP).



Relaxed schemes for non linear diffusion problems
Semidiscrete relaxed IMEX Runge-Kutta scheme (11)

Fori=1, we let e-->0 in (now ®?is a diagonal matrix times ¢?)

1"

V!

W
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Relaxed schemes for non linear diffusion problems
Semidiscrete relaxed IMEX Runge-Kutta scheme (111)

H.: . B . - Y : ; i | | ! | _' |
._.I' 'I:._.II_Ar”:_Lf'._._IlIJ+%”:_|.[-{[— |—|—i‘—_”:ljl[_{l_ |
""_q'.‘.-"I

- (1]

' = u" — Atar vy

pl2) = —f]‘]l'l.l-_ll

%

Summarizing, the relaxed scheme reduces to an alternation of relaxation steps

and transport steps.



Relaxed schemes for non linear diffusion problems
Semidiscrete relaxed IMEX Runge-Kutta scheme (1V)

relaxation steps

transport steps (we advance for time &, At)

z+div(z) =0

with initial data z = zO, retain only the first component and assign it to ui+d),
Finally the value of u™? is computed as u"+Y b, u®.



Relaxed schemes for non linear diffusion problems
Convergence theorem

-

%:DA(p(u)), xeR%,t>0

Let u(x, t) be the weak solution of )

u(x,0)=u’(x)

u"(-,t) be the semidiscrete approximate solution obtained for time t as
described. Assume y° <L ||u® || = M and that p be a non-decreasing Lipschitz
continuous on [-M,M]. If the following conditions hold

o = 0,Bi = 0,

o = 0= Py =0,

Z}i._ || o = | (consistency),
HT

ML _c::.-- = “_.'.In . e .
L op = Mg, 20 Bit {hm[‘}lllt} ).

then lim, . u™ =u(t) in L. Moreover the convergence is uniform for t in
any given bounded interval.



Relaxed schemes for non linear diffusion problems
relaxed IMEX scheme: implicit part

Introduce a regular grid with x; = a - h/2+ jh at the centre of the
computational cells, for j = 1,...,,N and h = (b-a)/N. Let u; = u(x;),

The implicit part of the scheme, in the relaxed version simplyfies to the
resolution of a triangular system, which may be obtained using only function
evaluations.

1||~|_ () _ f:” ”[ i) | ||‘I' 0 —D?_yl'l"l' i

For second order, we use simply the Heun method and for third order the
scheme with the followin tableaux

p—

0
0

:'\-l— _l_.l— [am— [ ]
"xl_ _|_|_



Relaxed schemes for non linear diffusion problems
relaxed IMEX scheme: explicit part

The transport steps, may be thougth as the time advancement of the first
component of the system

_ u 0 1 0 _ 1
i 1o 0 a2 |2 0
— Y )y 0 D | — v —(
ot dx
W 0 1 () W

The characteristic variables that diagonalize the system are

[/ = ”f” ' = ""'?"x W =u—w _ )
- - and u=U+4V
speed=D speed=—D  speed=0

| I 1— _{

u.;r."-:' =} — &rE‘;L._ 'l d; k [{I:- (f‘w P :rrll ,,) ) (V;TII.; _ I:—Ill,_)]
n+l _ on  av L U AU i) — ()
Ui =u; —AY: b [(L.H i l“ |_.':) — (L’_,e'—l__ — l; | ﬁ)]

Where ,31/2 and V,+1/z are suitable non-oscillatory reconstructions
(limiters, ENO, WENO).

pr—



Relaxed schemes for non linear diffusion problems
Non-linear stability

We performed non-linear stability analysis on the first order scheme for
u, - A(p(u))=0 (piecewise constant reconstructions and Euler timestepping)

. )

v AN .
¥ _ _J.' Iy _ Iy _r'.r % ) _ i .i. || '. . '. r _r'.r 5 -5 i .F." '. Iy _J.' '.
W =l — S A p(u )| j41 —Ixplad” }|j—1 )+ ;{I:' U?’UF_H ) —aplu;) +plu;_y ))

One may prove that (when using central differences to approximate o, p(u))
TVu™t) <TV(@u")
provided that At < 2h? /u, where n IS the Lipshitz constant of the function p.

(Using upwind/downwind approximations for ox in order to reduce the stencil
gives much stronger stability constraints)



Relaxed schemes for non linear diffusion problems
Linear stability

Regarding the higher order schemes, we performed a linear stability analysis,
setting p(u)=u and computing the amplification factors of each Fourier mode in
a VonNeumann analysis. Varying @ and the constant C such that At =C h?

we obtain:

Eigenvalues, phi=1 Eigenvaluss, cfl=4




Relaxed schemes for non linear diffusion problems
Non periodic boundary conditions

Dirichlet or Neumann boundary conditions in 1D may be easily implemented
with the following procedure:

sadd extra points to the computational grid outside the domain Q;

o(e.g. at the left boundary x = 0 of the domain €2) choose a polynomial p®)(x)

of degree k that fits the points u;", u,",..., u," and that satisfies the given b.c. on
the border x =0;

euse the polynomial p(k)(x) to set the values of the points u,", u_",...;

apply the algorithm in Q. The values of u,", u_,",... will be used in the
calculations.

The number of points to add depends on the degree of the scheme and on
the implementation, but only the given boundary condition for u(x) iIs used
to set the values.



Relaxed schemes for non linear diffusion problems
1D results (1): linear equation with Neumann b.c.

i ,
1"
%,
# Ty
10 ‘H‘*ﬁh
i_ ¥
. 90— O . M
Linear diffusion equation . RIS
i‘ .‘\-I“'.‘-HHH
/ }‘“'x, Tk
Hp = Uyy O0 [0 ]] 10" i ""m*
§ uplx)=x4cos(2mx) | F Bies i N
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(The reduced rate of the ENO6/RK3 scheme 1s due to the implementation of the boundary conditions)



Relaxed schemes for non linear diffusion problems

1D results (2): u, +Au? =0

We took initial data of class C' with com-
pact support and set the final time of in-
tegration such that no front had developed
yet.

With smoother initial data one recovers the
higher convergence rates.

Even after the front develops (uy becomes
discontinuous in finite time), the higher or-

der schemes provide reduced errors.
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Relaxed schemes for non linear diffusion problems

Q c R

One may obtain schemes for regular grids in RY by addittive dimensional splittin
Let u"; be the values of u(x; ,t"), where J=(jy, J,  Jq) Is @ multi-index of d
Integers. The relaxation steps are straightforward.

For each Euler step of the transport equation, consider the collection of 1D
problems for u” (..., jm-1,e ,jm+1,...) where only the m® spatial variable is left
and all the others are fixed. Save the corresponding increment

ArEm),J e [(D (U j_m+1/2 -U j_m—1/2 )_ CD(VjJrrn+1/2 _VjJrrn—1/2 ) ]

Then update St (A
ups=uf+ ) A
=1

Applying this procedure for each stage value of the Ringe-Kutta scheme, we are
able to generalize our schemes to B¢



Relaxed schemes for non linear diffusion problems
2D results: simmetry

2 . " 7 9 . e
We tested that the scheme of second order for wy + Aw® = 0, with the Barenblatt initial data
maintain the spherical symmetry in time. Below 12 a superposition of two cross-sections along

x=0andy =nx.
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Relaxed schemes for non linear diffusion problems

2D results: two bumps




Parallel Algorithms (1)

Implementation on a cluster of parallel processors (thanks to www.petsc.org
and the IT staff of the Department of Mathematics - Milano)

The problem is broken into subproblems solved by distinct processors, that
exchange information on the boundary nodes at each integration step. This is
needed in the ENO reconstruction procedure that has a stencil

(k-1) nodes wide and for boundary conditions.

1 | 2
Our code: .
o exploits PETSC libraries and parallel linpack/lapack libraries ‘subdomains and
e our ENO library: can reconstruct in any degree k. It uses only . ghost values

MatVec multiplies, so scales essentially linearly with the number
of processors.
*\We implemented schemes of order 2,3,5,6 for 1D and 2D



Parallel Algorithms (11)

The algorithm shows a good (linear!) scaling behaviour, until the
subproblems assigned to each processor become too small and the time spent
exchanging MPI messages among the processors become predominant (the
overhead of MPI communications among processors shows up as reduced
speedup on the smaller grid).

Scaling on the cluster ULISSE

350
325
300
275
250
225
200

175 > 4
150 =
125

100
75

50

Grid 200x200
-

-~
- Grid 100x 100

Mflops/sec
5,

T T I I I 1
1 2 3 4 5 6 7 8

Number of processors



Conclusions

relaxation removes the degeneracy of the differential operator
relaxation moves the non-linearity from the differential operator and into the
source terms
swe use high order schemes for hyperbolic equations
the schemes involve only function evaluations and matrix-vector products;
for the relaxed schemes, no need to solve linear or nonlinear systems.
scasy extension to more space dimensions
scasy to implement on parallel computers
sconvergence proof
elinear stability for high order schemes, nonlinear stability for the first order
scheme
- upcoming more general stability results
- 70
- possible extensions to convection-diffusion equations

More complex problem Advection-diffusion problem



A more complex application ...

Collaboration with A. Gamba (Politecnico Torino), D. Valdembri and G. Serini
(Institute for Cancer Research and Treatment, Candiolo)

Vascular Networks form by the spontaneous aggregatlon of endothellal cells mlgratlng
toward vascularization sites.
We have #lan FAllAavnmiimnAa ArnAaAanntiAl AvkAnnA ta #HlhA AAavhv AbAAaA AF HILA nlnenomena
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pruning
< \\
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Starting point: EXPERIMENTAL OBSERVATIONS in 2D

In vitro vascularization experiments.

.........
“H '."u_."""

From G. Serini et al.
The EMBO Journal Vol. 22 No. 8
pp. 1771-1779, 2003

3 hours 9 hours

Capillary patterns are closely mimicked by endothelial cells cultured on
Matrigel, a preparation of basement membrane proteins. On the Matrigel
surface, single randomly dispersed endothelial cells self-organize into

vascular networks.




The process of formation of a vascular-type network follows three
main steps:
(i) endothelial cells migrate independently, adhere with closest neighbours,

and eventually form a continuous multicellular network.

(i11) Finally, individual cells fold up to form capillary-like tubes.

Total time: 12/15 h




Observation of cell trajectories

Tracking of individue |  in the direction of
cell motion, withasr | ed

(Serinietal,, 2003):1 = | lly directed toward
zones of higher conct |

wn
X ()

b

This suggests that a mechanism of cell crosstalk is present in the system.
Recent works (Carmeliet, 2000; Helmlinger et al., 2000) confirm that
endothelial cells in the process of vascular network formation exchange
signals by the release and absorption of VEGF-A.

]

This growth factor can bind to specific receptors on the cell surface and induce
motion along Its concentration gradients (chemotaxis phenomena)




It is possible to describe cellular matter by means of a continuous density
field n(x,t) and the corresponding velocity field v(x,t)

The cells are triggered by chemical gradients due to the presence of a
chemical concentration field c(x,t) (chemoattractant created by the cells

themselves).

xeQ=[0,L]"=R%,d =23
t >0,
periodic boundary conditions

(Gamba et al., PRL, 90, 2003)

/\

on

—+V-(nv)=0

~ V()

oV

Y Vv = u(c) Ve -Vp(n)- B(c) v
X . DAcrafe) fm -2

ot T



Mass conservation and cells motion

o)
>
_I_
<
A~
=
<
—’
|
o

Multidimensional
Burger’s equation
(Amoeboid cell
movements)

Conservation
law




Forces
[ ~10 s

Pressure Friction

o

~——+v-Vv =lu(c)Vc —\Vp(n)—ﬂ(CSV

ot \

Chemotactic force




Diffusion of chemoctactic factor

Diffusion \@C\D
AC+a(C)n——

D ~10 °mm?/s Ot

C
D ~c’/r~107°

degradation

7 =~ 4000s

source
a,=0.4
o, =0.001




2D S I MULATIONS Experiments

from IRCC

200 cell / mm ?2

400 cell / mm 2




2D SIMULATIONS Experiments

from IRCC

2

50 cell / mm

100 cell / mm ?




A

. 3D SIMULATIONS
Experimental data

Fig. 1. Vascular networks formed by vasculogenesis in chick embryo brain, at varivos stages of
development, classified according to Hamilton and Hamburger (HH). A: HH stage 17; B: HH
stage 20: C: HH stage 26; D: HH stage 26.



Convection diffusion equation

ou N U:.‘"(u) _ Uzp(u)_

xeR t>0

Ot ix ()x2

We want that our numerical approximation

@ treats non-linear p(u) (Lipshitz continuous, non decreasing) and non-linear
f(u) (Lipshitz continuous)

@ treats the degenerate parabolic regime p(u) = 0 as well as the purely
diffusive one, i.e. f(u) =0

@ high order in space and time

@ does not exploit the form of the non linearities p(u), f(u)




Relaxation scheme for the convection diffusion equation

Starting equations

du N of(u)  9*p(u)
Jt ox  ox2

Relaxation of the diffusion term

xceR, t>0

[ du  Ov  Of(u)
=0
@fr er;:_ ax ] N\ 8
v Jw v
R Y b2 — | —
1 2t 7Y Ox s”( '“)i}x

aw  dv 1

| Br Tox = e )

We have to introduce another auxiliary variable z to relax the convection term:
we have two choiches

e z=1(u)
@ z=v+f(u)



Relaxation scheme for the convection diffusion equation

We choose z = v + f(u), gaining

Advantages of z = v + f(u) versus z = f(u):
@ A less diffusive numerical scheme

@ Full freedom in picking ¢

@ Only two characteristic variables to reconstruct as z = U + V




Semidiscrete relaxed IMEX Runge-Kutta scheme

The relaxation system can be cast in the form

Time integration

i

. )
sl —gn_ ,&rzrk 115‘: ;{—g '[k}) + Za, kh(s k} i=1..... %

)
" =" = AtY B (s th(s”)

\

Here (3i. b;) and (ax, b;) are a pair of Butcher's tableaux of an explicit and a
diagonally implicit RK. (For nonzero = we need IMEX S5P)




Semidiscrete relaxed IMEX Runge-Kutta scheme

T o] [ u" ] T oot . e

(1 v At _ ( vil) \ B vh At ! 1) | (e {1,_“- 1} - | 1)
ey wh ' ; d1,18 (1) — Wi + - a1 () (v )
z(1) zn k J ZN 2(1) 4 (D) ff_u‘l:‘}

we let = — 0 and therefore |
(1] (15 (1) [ 1 .:' (1 (1] (1]
ult) = yn wl) = p(ull)) vl = —wy zW =y 4 f(u)

Second step: | = 2

At . AT
arq h(s')+

s(2) = s" — At3 1g(sM), +

[ % o _\"_._"
0
[ ,(2) n (1)
uts) = " — Atds 1z
= — 0 yields )=
= v LI' | : I _L:‘ I._ _'l |
z(2) = v(@ 4 f(u@)




Semidiscrete relaxed IMEX Runge-Kutta scheme

The semidiscrete relaxed scheme

The scheme reduces to an alternation of relaxation steps

IM[ﬂ-’_‘; _ p(”{f']}
(i)

h(S{IJ) =0 l.e. v i) — — Wy
7)) — (7) AL {u': l]

and transport steps where we advance for time 3; At
st +g(s)x =0

with initial data s = s{/), retain only the first component and assign it to u(*1),

Finally only the value of u™! is computed.




Fully discrete relaxed IMEX scheme: implicit part

Spatial discretization

X1 X2 X3 XN

@ Introduce a (regular) grid with x; = a4+ h/2 4 jhfor j =1,..., N
e h=(b—-a)/N

n__ A n__ {,ny.
o uf' = u(x;, t"), and denote u" = (u')j=1..n, etc

@ The implicit step can be treated using only function evaluations and
matrix-vector multiplication

e —

@ Select a formula for the numerical gradient, to preserve stability and accuracy:
Central finite differences formulas produce the most stable schemes.




Relaxed IMEX scheme: explicit part

Transport steps

U 0o 0 0 1 L
3, v 0 0 @& 0| o v
- + = =0
ot | w 0 1 0 0 oax!| w

z | A° 0 0 0 | z

Diagonalization

Eigenvalues: £&®. £A
Characteristic variables :

(i) _ n i—1 (i)— (7)

;" =ty — At) 4 3ikA [ Ui UL m) + (""f+1;2
+1 __ v (1)— (1)— (7

Uit =0t =AY L biA [(bﬂﬂxz - U}—l_;z) T (L‘:'+l-’2

where Ui_1 -




Von Neumann stability analysis

Linear stability

On higher order schemes, we studied stability linearizing both the equation and
the scheme and computing the amplification factors of each Fourier mode in a
VonNeumann analysis. We obtain a timestep restriction like

) Cl C’:

At < E(l—flh‘i}}h -+ . h

| %

Diffusive regime D > uh

The parabolic CFL is dominant and we have (; as in the following table:
RK1 | RK2 | RK3
P-wise constant 2 2 2.51
P-wise linear 094 | 094 | 1.18
linearized WENOS5 | 0.79 | 0.79 1




Von Neumann stability analysis

Amplification factor, WENO5 RK3 D=1 =1 h=0.01

Canection diffusion

Hyperbolic regime D = 0

The subcharacteristic condition A = |f’(u)| holds




Conclusions

Figura: Solution obtained as steady state with ENO reconstructions of order 2, N = 50
coupled with second order Dirichlet boundary conditions: left ¢ = 1072, right ¢ = 10~ *.

F. Cavalli, PhD Thesis, to appear, 2006



