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Introduction

Local fluid dynamics is related to
the development of vascular dis-
eases

Peculiarities

Pulsatile flow (heart beat ∼ 1sec)

Relatively large displacements
=⇒ fluid domain movement non negligible

Wave propagation due to fluid structure interaction
=⇒ characteristic time: t = L

v ≈
0.25m
5m/s = 0.05sec
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Fluid equations defined in the moving domain Ωf
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in Eulerian form

Structure equations typically written in Lagrangian form on the
reference domain Ωs

0.
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Physical Model – Fluid

•Blood can be treated as a homogeneous, incompressible, Newtonian
fluid in large arteries.

Navier-Stokes equations
%f

∂u

∂t
+ %f div(u⊗ u)− div σf(u, p) = f f

div u = 0

+ suitable initial and boundary conditions

in Ωf
t ,

u: fluid velocity D(u) = ∇u+∇T u
2 : strain tensor

p: fluid pressure σf(u, p) = 2µD(u)− pI: fluid stress tensor
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Physical Model – Structure

Arteries are (relatively) thin, multilayered structures, which deform
principally in the radial direction.

Deformations can reach up to 10% of the artery diameter

Several models have been proposed: 3D non-linear elasticity, shell
(membrane) models, simplified models only for radial displacement.

Non-linear elasticity

Unknown: Structure displacement η(t, ξ) = x(t, ξ)− ξ
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Physical Model – Structure

Non-linear elasticity

%0
s

∂2η

∂t2
− div0 [F(η)S(η)] = f s

0 , in Ωs
0,

where F = I +∇0η: deformation gradient

J(η) = det(F (η)): change of volume

E = 1
2 (FTF− I): Green strain tensor

S: second Piola-Kirchhoff stress tensor

Constitutive law

Hyperelastic materials S = ∂W (E)
∂E , (W : elastic energy)

St. Venant-Kirchhoff materials S = λ tr(E)I + 2µE
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Physical Model – Coupling conditions

On reference interface Γ0

•Continuity of velocity (kinematic condition)

u ◦ x(ξ) =
∂η

∂t

•Continuity of normal stress (dynamic condition)

J(η)σf (u, p)F−T (η)nf
0 = −F (η)S(η)ns

0

with nf
0 = −ns

0.
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A global weak formulation

Fluid eqs. Multiply by (v , q) ∈ H1
ΓD

(Ωf
t )× L2(Ωf

t )

∫
Ωf

t

%f

(
∂u

∂t
+ div(u⊗ u)

)
·v+σf : ∇v+div uq =

∫
Ωf

t

f f ·v+

∫
Γt

(σf · nf ) · v

Structure eq. Multiply by φ ∈ H1
ΓD

(Ωs
0)

∫
Ωs

0

%0
s

∂2η

∂t2
· φ + F(η)S(η) : ∇0φ =

∫
Ωs

0

f s
0 · φ +

∫
Γ0

(F(η)S(η) · ns
0) · φ
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Global weak formulation - cont.

•If we take matching test functions at the interface: v ◦ x(ξ) = φ(ξ) and
thanks to the coupling condition (continuity of stresses), the interface
terms perfectly cancel.

Fluid-Structure functional space

V ≡ {(v, q,φ) : v ◦ x(ξ) = φ(ξ) on Γ0}

∫
Ωf

t

%f

(
∂u

∂t
+ div(u⊗ u)

)
· v + σf (u, p) : ∇v + div uq+∫

Ωs
0

%0
s

∂2η

∂t2
· φ + F(η)S(η) : ∇0φ =

∫
Ωf

t

f f · v +

∫
Ωs

0

f s
0 · φ

+ coupling condition u ◦ x(ξ) = ∂η
∂t
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Energy inequality

•Taking as test functions (v, q,φ) = (u, p, η̇) we can derive an Energy
inequality

Fluid Structure Energy (kinetic + elastic)

E(t) ≡ %f

2
‖u(t)‖2

L2(Ωf
t )

+
%s

0

2
‖∂η

∂t
(t)‖2

L2(Ωs
0)

+

∫
Ωs

0

W (η)(t)

Then (homogeneous problem)

EFS(T ) + 2µ

∫ T

0

∫
Ωf

t

D(u) : D(u) dΩ dt ≤ EFS(0)
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Energy Inequality

Key points in deriving an energy inequality:

Perfect balance of work at the interface∫
Γt

(σf · nf ) · u = −
∫

Γ0

(F(η)S(η) · ns
0) ·

∂η

∂t

No kinetic flux through the interface

(time der.)

∫
Ωf

t

%f
∂u

∂t
· u =

%f

2

d

dt

∫
Ωf

t

|u|2 − %f

2

∫
Γt

|u2|w · n

(convective term)

∫
Ωf

t

%f div(u⊗ u) · u =
%f

2

∫
Γt

|u2|u · n

where w is the velocity at which the interface moves.
Since w = u = η̇, the kinetic flux %f

2

∫
Γt
|u2|(u−w) · n vanishes.

This does not hold if one couples Stokes with a non-linear structure.
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Other structure models

Assuming a cylindrical reference configuration, simpler models have
been proposed, accounting only for radial displacement η : Γ0 → R.
They reproduce correctly the pressure wave propagation.

Independent ring: %s
0hs

∂2η

∂t2
+

Ehs

(1− ν2)R2
0

η = fs

Algebraic law:
Ehs

(1− ν2)R2
0

η = fs

Coupling conditions: u ◦ x(ξ) = ∂η
∂t er , fs = eT

r

[
Jσf(u, p)F−T

t

]
er

Global weak formulations and energy inequalities can be derived in
these cases as well

Well posedness. Only partial results available even for 2D problems
and simple structure models. (Y. Maday, C. Grandmont, B.
Desjardens, M, Esteban, H. Beirao da Veiga, D. Coutand, ...)
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Numerical Approximation

•Space discretization by Finite Elements both for the fluid and the
structure.

Major difficulties

Discretize fluid equations on a moving domain ⇒ ALE
formulation

Find stable time discretization schemes and coupling strategies.
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ALE Formulation

•The moving domain is recast at each time t to a fixed configuration Ωf
0

through the ALE mapping At :

Ω Ω
0

t

Y
x

tx = A  (Y)

At : Ω0 −→ Ωt ,

x(ξ, t) = At(ξ)
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ALE Formulation

•The moving domain is recast at each time t to a fixed configuration Ωf
0

through the ALE mapping At :

Ω Ω
0

t

Y
x

tx = A  (Y)

At : Ω0 −→ Ωt ,

x(ξ, t) = At(ξ)

Navier-Stokes ALE%f
∂u

∂t

∣∣∣∣
ξ

+ %f (u−w · ∇)u− div σf(u, p) = 0

div u = 0

in Ωt
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Finite Element ALE approximation

We introduce a mesh Th0 in the reference domain. The ALE
mapping induces a mesh Tht in Ωt at each time t.

Given the deformation of the boundary, the ALE mapping can be
built by interpolation or solution of a differential problem (e.g.
harmonic extension of the boundary displacement)

The unknowns are associated to the nodes of Tht , which move in
time.

The ALE derivative is the derivative of the unknowns along the
trajectories of the nodes; it can be easily discretized

The discretization of the spatial operators is done on the current
configuration Ωt (much easier).
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Partitioned algorithms

•The fluid-structure coupled system is highly non linear since the fluid
domain Ωf

t , the ALE mapping At and the domain velocity w all depend
on the unknown displacement η. A direct solution of the global
non-linear system (monolithic approach) is very costly.

•Partitioned time marching algorithms are based on subsequent solutions
of fluid and structure subproblems

allow one to reuse existing computational codes.

each subproblem can be solved with the most efficient available
numerical algorithms (e.g. projection schemes for Navier-Stokes,
updated Lagrangian for structure dynamics, ....)
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Explicit partitioned algorithms
also called “loosely coupled” or “staggered”

In each time step solve only once (or just a few times) the fluid and
structure problems

Example

1. Solve structure pb. with Neumann b.cs (ηn = ηn(σf (un−1, pn−1)))

2. Update fluid mesh (Atn = Atn(ηn))

3. Solve fluid pb. with Dirichelet b.cs (compute (un, pn))

4. go to next time step

Typically obtained by combining an explicit discretization for the
structure and an implicit discr. for the fluid.

The continuity of the stresses at the interface is not satisfied exactly.
⇒ Energy is not perfectly balanced.

A predictor corrector strategy can be added to the algorithm [see C.
Farhat, S. Piperno, ...] to reduce the “energy error”
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Implicit partitioned algorithms

•At each time step enforce exactly both coupling conditions at the
interface (Energy balanced)

•All the equations are coupled in each time step =⇒ need
subiterations

Example: Fixed point (or Dirichlet Neumann) iterations

In each time step [tn, tn+1], and ∀k > 0 solve

1. Solve structure pb. with Neumann b.cs (ηk = ηk(σf (uk−1, pk−1)))

2. Update fluid mesh (Ak = Ak(η
k))

3. Solve fluid pb. with Dirichlet b.cs (compute (uk , pk))

4. Recompute structure (ηk+1 = ηk+1(σf(uk, pk)))

5. if ‖ηk+1 − ηk‖ < tol then go to next time step
else relax the solution ηk+1 and go to 2.
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Numerical observations

In haemodymanics applications (thin structure in cylindrical
configuration) numerical tests [Nobile, Ph.D] show that explicit
algorithms become unstable when

• %0
shs/%f small

• L/D large (L=length, D=diameter of the tube)

irrespectively of the time step chosen!!!

•Under the same conditions, implicit Block Gauss-Seidel iterative
algorithms need very small relaxation parameters to converge.
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How to get stable implicit schemes: example IE+BDF

•Let us start from the global weak (ALE) formulation and consider as
time discretization: Implicit Euler (fluid) and BDF1 (structure)

%f
d

dt

∫
Ωf (t)

(u + div(u⊗ (u−w))) · v + σf (u, p) : ∇v + div uq+∫
Ωs

0

%0
s

∂2η

∂t2
· φ + F(η)S(η) : ∇0φ =

∫
Ωf

t

f f · v +

∫
Ωs

0

f s
0 · φ

+ coupling condition un ◦ x(ξ) = ∂η
∂t

%f

∆t

∫
Ωf (tn)

un·v− %f

∆t

∫
Ωf (tn−1)

un−1·v+

∫
Ωf (tn)

%f div(un ⊗ (un −wn)) · v+∫
Ωf (tn)

σf (u
n, pn) : ∇v + div unq +

∫
Ωs

0

%0
s

ηn − 2ηn−1 + ηn−2

∆t2
· φ+

F(ηn)S(ηn) : ∇0φ =

∫
Ωf (tn)

f f (tn) · v +

∫
Ωs

0

f s
0 (tn) · φ

+ coupling condition un ◦ x(ξ) = ηn−ηn−1

∆t
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How to get stable implicit schemes: example IE+BDF

To get global stability, the ALE-convective term has to be integrated
on intermediate configurations so as to satisfy the so called
Geometric Conservation Laws (GCL) [Formaggia-Nobile, ’99, ’04]

Stability Result for homogeneous problem [Nobile, PhD]

%f

2
‖un‖2

L2(Ωf (tn)) +
%s

0

2
‖ηn − ηn−1

∆t
‖2

L2(Ωs
0)

+

∫
Ωs

0

W (ηn) dΩ

+
∑

i

∆t

∫
Ωf (t i )

D(ui ) : D(ui ) dΩ

≤ %f

2
‖u0‖2

L2(Ωf
0)

+
%s

0

2
‖η̇0‖2

L2(Ωs
0)

+

∫
Ωs

0

W (0) dΩ

Fabio Nobile fluid-structure in haemodynamics



Introduction
Mathematical problem

Numerical approximation and stability analysis
Absorbing boundary conditions

Numerical results

ALE framework
Partitioned algorithms
Added mass effect

Mathematical explanation of instabilities

We consider an over-simplified model:

Fluid model: potential flow (no viscous and convective terms; only
the incompressibility of the fluid is kept)

Fluid geometry is kept fixed

Independent rings model for the structure

•This model features the same numerical instabilities as the more
complex (and non-linear) one.

Conclusions: the source of the instability is the incompressibility of the
fluid
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Simple FSI model

u n=0.symmetry axisΓ3
F :

p=p(t)
_

:Γ1
F

p=p(t)
_

:Γ2
FΩF

Σ

L

R

Structure ρwhs∂
2
ttη − a∂2

xxη + bη = p on Σ

Fluid


ρf ∂tu +∇p = 0 on ΩF

div u = 0

u · n = ∂tη on Σ

+ b.c .

div−→


∆p = 0

∂np = −ρf ∂
2
tt η

+ b.c .
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Functional setting

For any w ∈ H−1/2(Σ), we denote by Rw solution to the following
problem 

−∆Rw = 0 in ΩF ,
∂Rw

∂n
= w on Σ

+ homogeneous b.c. on Γ1
F , Γ2

F , Γ3
F

Added mass operator: (inverse of Steklov-Poincaré)

MA : H−1/2(Σ) → H1/2(Σ), MAw = Rw |Σ.

•The operator MA is continuous on H1/2(Σ) and compact, self-adjoint
and positive on L2(Σ).
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Functional setting – cont.

We also introduce the particular solution p∗ to the problem with
non-homogeneous boundary conditions:

−∆p∗ = 0 in ΩF ,

∂p∗

∂n = 0 on Γ3
F ∪ Σ,

p∗ = p̄ on Γ1
F ∪ Γ2

F

We have that p = p∗ − ρfR
∂2η

∂t2
.

and, setting pext = p∗|Σ

p|Σ = pext − ρfMA
∂2η

∂t2
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Added-mass equation

Substituting the previous expression in the structure equation we get

(ρshsI + ρfMA)
∂2η

∂t2
− a

∂2η

∂x2
+ bη = pext (*)

•Equation (*) is similar to the structure equation except for the extra
term ρfMA.

•This operator represents the interaction of the fluid on the structure and
acts as an extra mass (→ “added-mass” effect).

•Problem (*) admits a unique solution η ∈ C([0,∞),H1(Σ)).
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Spectrum of the added-mass operator

It is useful to study the behaviour of the maximum eigenvalue µmax of
MA

The inverse of µmax is the smallest eigenvalue of the standard
Steklov-Poincaré operator.

µmax is a purely geometric quantity.

It can be computed analytically in simple cases:

•2D fluid in rectangle: µmax = L
πth(πR

L )
.

•2D axi-symmetric fluid in cylinder µmax =
LI0(πR

L )
πI ′0(πR

L )
where I0 is the

modified Bessel function. For R/L small, µmax ≈ 2L2

π2R .
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Spectrum of the added-mass operator
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Instability of explicit algorithms

Prototype of explicit algorithm: Leap-frog for the structure and Implicit
Euler for the fluid (LF-IE).


ρf

un − un−1

∆t
+∇pn = 0

div un = 0

un =
ηn − ηn−1

∆t
n

div→

{
∆pn = 0

∂np
n = −ρf

ηn−2ηn−1+ηn−2

∆t2

ρwhs
ηn+1 − 2ηn + ηn−1

∆t2
+ bηn = pn + pn

ext on Σ
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This algorithm is equivalent to the 3 steps difference eq.

ρwhs
ηn+1 − 2ηn + ηn−1

∆t2
+ bηn = −ρfMA

ηn − 2ηn−1 + ηn−2

∆t2
+ pn

ext

Proposition 1 [Causin, Gerbeau, Nobile 2004]

The explicit Leap-Frog/Implicit Euler algorithm is unconditionally unstable
if

%shs

ρf µmax
< 1

the scheme is unstable when %shs/%f small or µmax large.

Fabio Nobile fluid-structure in haemodynamics



Introduction
Mathematical problem

Numerical approximation and stability analysis
Absorbing boundary conditions

Numerical results

ALE framework
Partitioned algorithms
Added mass effect

This algorithm is equivalent to the 3 steps difference eq.

ρwhs
ηn+1 − 2ηn + ηn−1

∆t2
+ bηn = −ρfMA

ηn − 2ηn−1 + ηn−2

∆t2
+ pn

ext

Proposition 1 [Causin, Gerbeau, Nobile 2004]

The explicit Leap-Frog/Implicit Euler algorithm is unconditionally unstable
if

%shs

ρf µmax
< 1

the scheme is unstable when %shs/%f small or µmax large.

Fabio Nobile fluid-structure in haemodynamics



Introduction
Mathematical problem

Numerical approximation and stability analysis
Absorbing boundary conditions

Numerical results

ALE framework
Partitioned algorithms
Added mass effect

This algorithm is equivalent to the 3 steps difference eq.

ρwhs
ηn+1 − 2ηn + ηn−1

∆t2
+ bηn = −ρfMA

ηn − 2ηn−1 + ηn−2

∆t2
+ pn

ext

Proposition 1 [Causin, Gerbeau, Nobile 2004]

The explicit Leap-Frog/Implicit Euler algorithm is unconditionally unstable
if

%shs

ρf µmax
< 1

the scheme is unstable when %shs/%f small or µmax large.

Fabio Nobile fluid-structure in haemodynamics



Introduction
Mathematical problem

Numerical approximation and stability analysis
Absorbing boundary conditions

Numerical results

ALE framework
Partitioned algorithms
Added mass effect

Sketch of the Proof. Expand η and pext on the basis of eigenvectors of
MA. For each component, the characteristic polynomial χ(s) ∈ P3 of
the 3 step difference equation is s.t.

χ(−∞) = −∞, χ(−1) = b + 4(ρf µi − ρwh)/∆t2

Hence, if %f µmax ≥ %shs , then

χ(−1) ≥ 0 =⇒ ∃s∗ ≤ −1 s.t. χ(s∗) = 0, ∀∆t!!!!
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Implicit algorithms

Prototype of implicit algorithm: Implicit Euler for the fluid and first order
BDF for the structure (BDF+IE)


ρf

un+1 − un

∆t
+∇pn+1 = 0

div un+1 = 0

un+1 =
ηn+1 − ηn

∆t
n

div→

{
∆pn+1 = 0

∂np
n+1 = −ρf

ηn+1−2ηn+ηn−1

∆t2

ρwhs
ηn+1 − 2ηn + ηn−1

∆t2
+ bηn+1 = pn+1 + pn+1

ext on Σ
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equivalent to the 2 step difference equation

(ρwhsI + ρfMA)
ηn+1 − 2ηn + ηn−1

∆t2
+ bηn+1 = pn+1

ext

•Stable discretization for any ∆t.

•Implicit discretization −→ need subiterations.
Partitioned algorithms: let’s consider the two strategies

Dirichlet/Neumann (D-N): at each iteration solve the fluid with
imposed velocity at the interface and the structure with imposed
loads.

Neumann/Dirichlet (N-D): solve the fluid equations subjected to the
structure load and update structure displacement.
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Dirichlet-Neumann method

given an initial guess ηn+1
0 , we solve for each k = 1, 2, . . .

i. ∆pk = 0 in ΩF

∂npk = −ρf
ηk−1 − 2ηn + ηn−1

∆t2
on Σ

ii. ρwhs
η̃k − 2ηn + ηn−1

∆t2
+ bη̃k = pk + pn+1

ext on Σ

iii. ηk = ωη̃k + (1− ω)ηk−1

•equivalent to a fixed point algorithm on ηn+1.
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Proposition 2

The Dirichlet-Neumann iterative algorithm converges iff

0 < ω <
2 + ε

1 + ρf µmax/%shs + ε
where ε = b∆t2/%shs

•In the limit ∆t → 0, whenever the explicit algorithm diverges
(ρf µmax > ρshs), the D-N iterative method needs a relaxation parameter
strictly smaller than 1 to converge.

•The algorithm needs more relaxation for ρs/ρf small and µmax large.
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Neumann-Dirichlet subiterations

given an initial guess ηn+1
0 , we solve for each k = 1, 2, . . .

i. φk = ρshs
ηk−1 − 2ηn + ηn−1

∆t2
+ aηk−1 − pn+1

ext in Σ

ii. ∆pk = 0 in ΩF

pk = φk on Σ,

iii. η̃k = ∆tuk · n + ηn in Σ

iv. ηk = ωη̃k + (1− ω)ηk−1.

•Again, this iterative algorithm can be seen as a fixed point method on
ηn+1.
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Proposition 3

The N-D iterative method converges to the solution of BDF1+IE if and
only if, for all i = 1, 2, . . .,

0 < ω <
2ρf

ρf + (ρshs + a∆t2)/µi

•At the continuous level, inf i µi = 0.

•At the discrete level, µmin = O(h). Hence, the relaxation parameter
needed to have convergence tends to zero with h !!
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Back to the non linear problem - ongoing research

Implicit coupling is needed for stability purposes. The non-linear
problem can be written at each time step as an interface equation
on the structure displacement and velocity

Several techniques have been proposed to solve efficiently the
coupled non-linear problem:

Fixed point iterations with Aitken extrapolation [S. Deparis, M.
Fernandez]
Non linear Domain Decomposition algorithms (DN, ND, NN) [M.
Discacciati, S. Deparis, A. Quarteroni]
Exact Newton on the interface equation [M. Fernandez, Moubachir]
+ GMRES to solve the tangent operator
Quasi-Newton; tangent operator approximated with the added mass
model [J.F. Gerbeau, M. Vidrascu]

There is space left for further improvement.
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Numerical results – pressure pulse in a pipe

(A. Moura, MOX)

Solved with linear 3D elasticity + exact Newton iterations +
Homogeneous Neumann b.cs on the outflow section

Fabio Nobile fluid-structure in haemodynamics
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Numerical results – Carotid bifurcation

(A. Moura, MOX)

Solved with linear 3D elasticity + exact Newton iterations +
Homogeneous Neumann b.cs on the outflow sections

Fabio Nobile fluid-structure in haemodynamics


carotide_ref.mpg
Media File (video/mpeg)


carotide_ref_vel.mpg
Media File (video/mpeg)



Introduction
Mathematical problem

Numerical approximation and stability analysis
Absorbing boundary conditions

Numerical results

1D hyperbolic model
Absorbing boundary conditions

Outline

1 Introduction

2 Mathematical problem
Governing equations
Global weak formulation
Energy inequality

3 Numerical approximation and stability analysis
ALE framework
Partitioned algorithms
Added mass effect

4 Absorbing boundary conditions
1D hyperbolic model
Absorbing boundary conditions

5 Numerical results

Fabio Nobile fluid-structure in haemodynamics



Introduction
Mathematical problem

Numerical approximation and stability analysis
Absorbing boundary conditions

Numerical results

1D hyperbolic model
Absorbing boundary conditions

1D hyperbolic model

The fluid-structure problem behaves like a propagative system

For a cylindrical pipe, the propagative nature can be seen by
integrating the equations on each transversal section.

Averaged variables

flux: Q(z) =

∫
S(z)

uz

Area: A(Z ) = |S(z)|

mean pressure: p̄(z) =
1

A(z)

∫
S(z)

p
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1D hyperbolic model

Solve for z ∈ (a, b), t > 0
∂A

∂t
+

∂Q

∂z
= 0, (mass equation)

∂Q

∂t
+

∂

∂z

(
Q2

A

)
+

A

ρ

∂p

∂z
= −Kr

Q

A
, (momentum equation)

p(A;A0, β) = β

√
A−

√
A0

A0
with β =

√
πh0E

1− ν2
(algebraic law)

It is a full hyperbolic system with characteristic speeds λ1,2 = Q
A ± c ,

and c2 = A
ρ

∂p
∂A (in physiological conditions λ1 > 0 and λ2 < 0)

It admits the characteristic variables W1,2 = Q
A ±

∫ A

A0

c(s)
s ds
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It admits the characteristic variables W1,2 = Q
A ±

∫ A

A0

c(s)
s ds
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Absorbing boundary condition

The condition W2 = 0 is an absorbing boundary condition for the
1D model (no information entering the domain from the right)

Idea: apply the same condition to the 3D problem

Absorbing boundary condition

W2(Q, p̄) =
Q

A
− 2√

%s
0

(√
p̄ + β

√
A0 −

√
β
√

A0

)
= 0 on Γout

Use an explicit approach:

either impose a Neumann boundary condition σn+1
f · n = p̄n+1n such

that W2(p̄
n+1, Qn) = 0

or impose a outflow flux Qn+1 such that W2(Q
n+1, p̄n) by a Lagrange

Multiplier
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Axisymmetric formulation

Algebraic structure law

Inlet pressure:

Pin =

{
5000 dyne

cm3 t ≤ 5ms
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Numerical results – Womersley flow

A very well known analytical
solution in vascular dynamics is
the Womersley profile

Prototype of pulsatile flow
Feature flow reversal

Same geometry as before but
with rigid wall

Inlet pulsatile flow rate

Qin = sin(2πt)cm3/sec

Outlet stress free cond.

(C. Vergara, MOX)

•Axial velocity profile on
(any) cross section
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Numerical results – Fluid-structure equivalent

The fluid-structure solution
on Γout looks delayed by
≈ 9 ms.

We superpose in the plot
the Womersley solutions
delayed by 9 ms

(C. Vergara, MOX)

Black: Womersley profile uW (t)

Red: Fluid-structure solution uFS(t)

Blue: Delayed Womersley sol. uW (t − 9ms)
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Numerical results – A more realistic case

(A. Moura, MOX)

Solved with linear 3D elasticity + exact Newton iterations + absorbing
boundary conditions
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