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Introduction
Multiscale problems

A broad range of scientific problems involve multiple scales
and multi-scale phenomena (material science, chemistry,
fluid dynamics, biology...). These involve different physical
laws which govern the processes at different scales.

On the computational side, several important classes of
numerical methods have been developed which address
explicitly the multiscale nature of the solutions (wavelets,
multigrid, domain decomposition, stiff solvers, adaptive
mesh refinements...).

For many problems, representation or solution on the
fine-scale is impossible because of the overwhelming
costs.
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Multiscale methods

Couplings of atomistic or molecular, and more generally
microscopic stochastic models, to macroscopic
deterministic models based on ODEs and PDEs is highly
desirable in many applications. Similar arguments apply
also to numerical methods1.

A classical field where this coupling play an important rule
is that of hyperbolic system with relaxation and kinetic
equations. In such system the time scale is proportional to
the relaxation time ε and a strong model (and dimension)
reduction is obtained when ε → 0.

1W.E, B.Engquist CMS ’03, N. AMS ’03
Lorenzo Pareschi Hybrid multiscale methods
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Examples
Jin-Xin system

A simple prototype example of relaxation system is given by

S.Jin, Z.Xin CPAM ’95
{

∂tu + ∂xv = 0,

∂tv + ∂xau = − 1
ε
(v − f (u)),

(microscale)

where u = u(x , t), v = v(x , t), (x , t) ∈ R × R+.
For small values of ε we get the local equilibrium

v = f (u)

and (subcharacteristic condition a > f ′(u)2) we obtain at O(ε)

∂tu + ∂x f (u) = ε∂x((a − f ′(u)2)∂xu). (macroscale)
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Broadwell model

A simple kinetic model for a gas was introduced by Broadwell

J.E.Broadwell Phys. Fluids ’64






∂t f + ∂x f =
1
ε
(h2 − fg),

∂tg + ∂xg =
1
ε
(h2 − fg),

∂th = −1
ε
(h2 − fg),

(microscale)

Here f , h, and g denote the mass densities of particles with
speed 1, 0, and −1, respectively.
The fluid variables are density ̺ = f + 2h + g and momentum
ρu = f − g. In addition we define z = f + g.
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A local equilibrium is obtained when the state variables satisfy

̺2 + (ρu)2 − 2̺z = 0,⇒ z =
1
2
̺(1 + u2)

Thus as ε → 0 one gets the set of Euler equations







∂t̺ + ∂x(̺u) = 0,

∂t(̺u) +
1
2
∂x(̺(1 + u2)) = 0.

(macroscale)

To the next order, a model Navier-Stokes equation can be
derived via the Chapmann-Enskog expansion.
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Hyperbolic relaxation systems

We consider the general case of hyperbolic relaxation systems

[G.Chen, D.Levermore, T.P.Liu, CPAM ’94]

∂tU + ∂xF (U) =
1
ε

R(U), x ∈ R, (microscale)

where R : R
N → R

N is a relaxation operator if there exists a n × N
matrix Q with rank(Q) = n < N such that QR(U) = 0 ∀ U ∈ R

N .
This gives n independent ”conserved” quantities u = QU that
uniquely determine a local equilibrium

U = E(u), R(E(u)) = 0.

For ε → 0 ⇒ R(U) = 0 ⇒ U = E(u) and under a suitable
subcharacteristic condition on F(u) we have

∂tu + ∂xF(u) = 0, F(u) = QF (E(u)). (macroscale)
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The Hybrid Method
Hybrid cell representation

The solution in each space cell is represented as a combination of a
nonequilibrium part (microscale) and an equilibrium part (macroscale)

pi(xj)

Ei(xj)

xj−1/2 xj+1/2

equilibriumequilibrium

nonequilibrium
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The starting point in the construction of the methods is the
following2

Definition (I-hybrid function)

Given a discrete probability density pi , i = 1, . . . , N (i.e. pi ≥ 0,
∑

i pi = 1) and a discrete probability density Ei , i = 1, . . . , N
called equilibrium density, we define wi ∈ [0, 1] and p̃i ≥ 0 in
the following way

wi =

{ pi

Ei
, pi ≤ Ei 6= 0

1, pi ≥ Ei

and p̃i = pi − wiEi . Thus pi can be represented as

pi = p̃i + wiEi .

2L.P. ESAIM ’05, G.Dimarco, L.P. CMS ’06
Lorenzo Pareschi Hybrid multiscale methods
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Note that if we take β = mini{wi}, and p̃i = pi − βEi , we have

∑

i

p̃i = 1 − β.

Let us define for β 6= 1 the discrete probability density

pp
i =

p̃i

1 − β
.

The case β = 1 is trivial since it implies pi = Ei , i = 1, . . . , N.
Thus the discrete probability density pi , i = 1, . . . , N can be
written as a convex combination of two probability densities3

pi = (1 − β)pp
i + βEi .

3R.E.Caflisch, L.P. JCP’99
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The general methodology

For hyperbolic system with relaxation we recall that
U(x , t) ∈ R

N denotes the solution and E(v(x , t)) ∈ R
N denotes

the equilibrium state where v(x , t) ∈ R
n are the conserved

variables.
We have the following representation

U(x , t) = Ũ(x , t)
︸ ︷︷ ︸

nonequilibrium

+ W (x , t)E(v(x , t))
︸ ︷︷ ︸

equilibrium

,

where W (x , t) = diag(w1(x , t), w2(x , t), . . . , wN(x , t)),
0 ≤ wi(x , t) ≤ 1 is a N × N matrix that characterizes the
equilibrium fraction and Ũ(x , t) the non equilibrium part of the
solution.
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The nonequilibrium part is represented stochastically, whereas
the equilibrium part deterministically. The general methodology
is the following.

Solve the evolution of the non equilibrium part by Monte
Carlo methods. Thus Ũ(x , t) will be represented by a set of
samples (particles) in the computational domain.

Solve the evolution of the equilibrium part by deterministic
methods. Thus W (x , t)E(v(x , t)) will be represented on a
suitable grid in the computational domain.
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A simple example: Jin-Xin system

We rewrite the system in diagonal form

∂t f +
√

a∂x f = −1
ε
(f − Ef (u))

∂tg −
√

a∂xg = −1
ε
(g − Eg(u)).

f =

√
au + v
2
√

a
, g =

√
au − v
2
√

a
, Ef (u) =

√
au + F (u)

2
√

a
, Eg(u) =

√
au − F (u)

2
√

a
.

Splitting

(R)







∂t f r = −1
ε
(f r − Ef (u

r ))

∂tgr = −1
ε
(gr − Eg(ur ))

(C)

{

∂t f c +
√

a∂x f c = 0

∂tgc −
√

a∂xgc = 0
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”Ansatz” on the solution structure

f (x , t) = f̃ (x , t) + wf (x , t)Ef (u(x , t)),
g(x , t) = g̃(x , t) + wg(x , t)Eg(u(x , t)).

The relaxation step (R) preserves the solution structure (the local
equilibrium state is unchanged) and we obtain

f̃ r (x , t) = e−t/ε f̃ (x , 0), w r
f (x , t) = e−t/εwf (x , 0) + 1 − e−t/ε ,

g̃r (x , t) = e−t/εg̃(x , 0), w r
g(x , t) = e−t/εwg(x , 0) + 1 − e−t/ε .

The convection step (C) destroys the structure of the solution since
we have the deterministic fractions

w r
f (x −

√
at , t)Ef (u(x −

√
at , 0)), w r

g(x +
√

at , t)Eg(u(x +
√

at , 0)).

Starting from the above terms we construct the new values of
wc

f (x , t), f̃ c(x , t), wc
g (x , t) and g̃c(x , t) using the Definition of discrete

hybrid function.
Lorenzo Pareschi Hybrid multiscale methods
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1D Example: Jin-Xin model

Initial data sum of sines and wf , wg = 0, with F (u) = u2/2.
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0
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Solution at t = 1 for ε = 0.1 (left) and ε = 0.01 (right).
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2D Example: Jin-Xin model

Initial data sine square and wf , wg = 0, with F (u) = u2/2.

0
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1

0

0.2

0.4

0.6

0.8

1
0

0.1
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y 0
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0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.1

0.2

0.3

0.4
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x
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y

Solution at t = 3.0 for ε = 0.01 (left) and ε = 10−6 (right).
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Remarks

The methods developed for hyperbolic systems with
relaxation can be directly extended to general discrete
velocity models (DVM) of the Boltzmann equation.

The limiting scheme ε → 0 is by construction a relaxation
scheme (kinetic scheme) for the equilibrium system of
conservation laws (Euler equations).

For more general kinetic equations it is desirable to have a
scheme that can deal with the infinite velocity range of the
model and that are based on an arbitrary fluid solver.

These constraints can be satisfied only if the weights of the
equilibrium fraction are component (velocity) independent.
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Kinetic equations

Kinetic equations

∂t f + v∇x f =
1
ε

Q(f , f ), x , v ∈ R
d , d ≥ 1

Here f = f (x , v , t) ≥ 0 is the particle density and Q(f , f ) describes the
particle interactions. In rarefied gas dynamics the equilibrium
functions M for which Q(M, M) = 0 are local Maxwellian

M(ρ, u, T )(v) =
ρ

(2πT )d/2
exp

(

−|u − v |2
2T

)

,

ρ =

∫

Rd
f dv , u =

1
ρ

∫

Rd
vf dv , T =

1
dρ

∫

Rd
[v − u]2f dv .

As ε → 0 the distribution function approaches M. Higher order
moments can be computed as function of ρ, u, and T . To the leading
order we obtain the compressible Euler equations.
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Hybrid representation

The solution is represented at each space point as a combination of a
nonequilibrium part (microscale) and an equilibrium part (macroscale)

w(v)M(v)

nonequilibrium

equilibrium

f(v)

v
 

equilibrium

f(v)
nonequilibrium

βM(v)

v
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The starting point is the following7

Definition II - hybrid function

Given a probability density f (v), v ∈ R
d (i.e. f (v) ≥ 0,

∫
f (v)dv = 1) and a probability density M(v), v ∈ R

d called
equilibrium density, we define w(v) ∈ [0, 1] and f̃ (v) ≥ 0 in the
following way

w(v) =







f (v)

M(v)
, f (v) ≤ M(v) 6= 0

1, f (v) ≥ M(v)

and f̃ (v) = f (v) − w(v)M(v). Thus f (v) can be represented as

f (v) = f̃ (v) + w(v)M(v).

7L.P. ESAIM ’05, L.P., G.Dimarco CMS ’06
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Taking β = minv{w(v)}, and f̃ (v) = f (v) − βM(v), we have
∫

f̃ (v)dv = 1 − β.

Let us define for β 6= 1 the probability density

fp(v) =
f̃ (v)

1 − β
.

The case β = 1 is trivial since it implies f ≡ M. Thus we
recover the hybrid representation8 as

f (v) = (1 − β)fp(v) + βM(v).

8R.E.Caflisch, L.P. JCP ’99
Lorenzo Pareschi Hybrid multiscale methods



Introduction
Hyperbolic relaxation systems

Kinetic equations
Conclusions

Hybrid representation
The hybrid method
Generalizations
Numerical results

Outline
1 Introduction

Multiscale problems
Examples

2 Hyperbolic relaxation systems
Hybrid cell representation
The hybrid method
Numerical examples
Remarks

3 Kinetic equations
Hybrid representation
The hybrid method
Generalizations
Numerical results

4 Conclusions

Lorenzo Pareschi Hybrid multiscale methods



Introduction
Hyperbolic relaxation systems

Kinetic equations
Conclusions

Hybrid representation
The hybrid method
Generalizations
Numerical results

The hybrid method

Again the methods are based on a time splitting of the equation and
on the hybrid representation

f (x , v , t) = f̃ (x , v , t)
︸ ︷︷ ︸

nonequilibrium

+ w(x , v , t)M(f )(x , v , t)
︸ ︷︷ ︸

equilibrium

.

The main difference is that the continuum part requires a grid (and
artificial boundaries) in the velocity space (i.e. a kinetic scheme). The
sample values can then take any value of the velocity grid.

Except for BGK-like models where the collision term has the form
Q(f , f ) = M(f ) − f , one needs a suitable solver for the stiff nonlinear
collision operator9.

9E.Gabetta, L.P., G.Toscani SINUM ’97
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Generalization

The macroscale process is described by the conserved
quantities U = (ρ, u, T ) whereas the microscale process is
described by f . The two processes and state variables are
related by compression and reconstruction operators P
and R, such that P(f ) = U and R(U) = f , with the property
PR = I, where I is the identity operator.

The compression operator is a projection to low order
moments). The reconstruction operator does the opposite
and it is under-determined, except close to the local
equilibrium state when Q(f , f ) = 0 implies f = M(U).
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We use the following decomposition on the averaged quantities

P(f ) = U = P(f − M(U))
︸ ︷︷ ︸

nonequilibrium

+ PM(U)
︸ ︷︷ ︸

equilibrium

= Up + βUE ,

where Up is obtained by standard Monte Carlo and the equilibrium
part UE is computed by any deterministic scheme.
This is obtained by solving the whole microscopic scale for f by Monte
Carlo (and then computing averaged quantities) and the macroscopic
scale for PM(U) both by Monte Carlo and the deterministic scheme.
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Sketch of the method

1 Solve the relaxation process by DSMC

1 with probability e−t/ε the samples are unchanged
2 with probability 1 − e−t/ε the samples are replaced with

equilibrium samples.
3 Compute the effective β = 1 − Np

N

2 Compute the macroscopic quantities U

3 Solve the Euler equations for U to obtain UE

4 Transport the ”particle fraction”

5 Compute the stochastic term Up using particles that were not in
equilibrium before the transport

6 Compute the new solution U = Up + βUE
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Sod test

Comparison of results for ρ, DSMC (left), HMC (right)10.
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ε is such that 50% of the solution is represented by particles in HMC.
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BGK equation: flow past an ellipse

Comparison of results for T , DSMC (left), HMC (right).
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BGK equation: flow past an ellipse

Comparison of results for T , DSMC (left), HMC (right).
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Boltzmann equation: 2D channel flow

Comparison of results for ρ (left), T (right), DSMC (left), HMC
(right)10.
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Conclusions

Hybrid multiscale methods can be applied successfully to
hyperbolic relaxation systems and kinetic equations.

They have better efficiency and accuracy property with
respect to standard Monte Carlo or particle methods.

For systems with a finite number of components such as
hyperbolic relaxation system and discrete velocity models
a componentwise strategy permits to maximize the
deterministic fraction of the solution.

For more general systems the equilibrium fraction is
component (velocity) independent. This choice
characterize the most promising methods for realistic
applications.

Extension to convection diffusion problems is under study.
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