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Motivation

Finite element methods which performs well with
source problems might fail to provide a correct
approximation of the corresponding eigenproblems

DG approximations of problems with associated
compact inverse operators: difficulties due to the use of
non-conforming approximation spaces

DG approximations of problems with associated
non compact inverse operators: difficulties due to the
use of non-conforming approximation spaces plus lack
of compactness
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Model Problem

The Maxwell Eigenproblem

Find u ∈ H(curl; Ω), u 6= 0, and k ∈ C s.t.

∇×∇× u = k2u in Ω ⊂ R
3

n × u = 0 on ∂Ω

We assume, for simplicity, ε = ε0, µ = µ0 and
“topologically trivial” domain; k = ω

√
ε0µ0
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Model Problem

The Maxwell Eigenproblem

Find u ∈ H(curl; Ω), u 6= 0, and k ∈ C s.t.

∇×∇× u = k2u in Ω ⊂ R
3

n × u = 0 on ∂Ω

We assume, for simplicity, ε = ε0, µ = µ0 and
“topologically trivial” domain; k = ω

√
ε0µ0

∇H1
0 (Ω) is an infinite dimensional eigenspace

associated with the essential spectrum σess = {0}
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Model Problem

Functional space and norm

Set V = H0(curl; Ω) with |v|V = ‖∇ × v‖0,Ω and

Set V = H0(curl; Ω) with ‖v‖2
V = ‖v‖2

0,Ω + |v|2V

Variational Formulation

Find (0 6= u, k) ∈ V × C, s.t.

a(u, v) := (∇× u,∇× v) = k2(u, v) ∀v ∈ V
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Spectral Properties

k2 = 0 is an eigenvalue with infinite dimensional

associated eigenspace

k2 = 0 is an isolated eigenvalue and all the other
eigenvalues are real and strictly positive and form a
sequence accumulating only at +∞
all the eigenspaces associated with eigenvalues 6= 0 are
finite dimensional

eigenfunctions associated with different eigenvalues are
L2–orthogonal and V–orthogonal

I. Perugia (Pavia, Italy) DG for the Maxwell Eigenproblem 6 / 50



DG for the Maxwell
Eigenproblem

I. Perugia

Introduction

Model Problem

DG Discretizations

DG for Compact
Operators

DG for Non
Compact Operators

The Maxwell
Source Problem

Concluding
Remarks

Spectrally Correct Approximation

Following [Descloux-Nassif-Rappaz, 1978]:

i) isolation of the discrete essential spectrum, i.e., all the
discrete eigenvalues approaching σess = {0} are
separated from the other ones
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discrete eigenvalues approaching σess = {0} are
separated from the other ones

ii) non-pollution of the spectrum, i.e., there are no
discrete spurious eigenvalues

iii) completeness of the spectrum, i.e., all continuous
eigenvalues smaller than an arbitrarily large fixed value
are approximated when the mesh is sufficiently fine
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Spectrally Correct Approximation

Following [Descloux-Nassif-Rappaz, 1978]:

i) isolation of the discrete essential spectrum, i.e., all the
discrete eigenvalues approaching σess = {0} are
separated from the other ones

ii) non-pollution of the spectrum, i.e., there are no
discrete spurious eigenvalues

iii) completeness of the spectrum, i.e., all continuous
eigenvalues smaller than an arbitrarily large fixed value
are approximated when the mesh is sufficiently fine

iv) non-pollution and completeness of the eigenspaces, i.e.,
there are no spurious eigenfunctions and the eigenspace
approximations associated with eigenvalues which are
not approaching σess = {0} have the right dimension

Lack of spectral correctness: we expect spurious solutions
for the associated parabolic or hyperbolic evolution problems
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Features of DG Methods

Non conforming methods based on completely discontinuous
polynomial approximation spaces

Flexibility in the mesh design
I non-matching grids (hanging nodes)
I non-uniform approximation degrees

Freedom in the choice of basis functions
I simpler than Nédélec’s elements, especially for high

orders

Capability to reproduce discontinuities of solutions
(e.g., due to coefficients, transport terms...)

Drawback: high number of degrees of freedom
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DG Discretizations

Th shape-regular tetrahedral mesh, Fh set of all faces

Vh := {v ∈ L2(Ω)3 : v|K ∈ P`(K )3 ∀K ∈ Th}

Vh 6⊂ V
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DG Discretizations

Th shape-regular tetrahedral mesh, Fh set of all faces

Vh := {v ∈ L2(Ω)3 : v|K ∈ P`(K )3 ∀K ∈ Th}

Vh 6⊂ V

Averages and jumps:

K−
K+ n

n−
+

I {{v}} := (v+ + v−)/2

I [[v]]T := n+ × v+ + n− × v−
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DG Discretizations

|v|2V(h) =
∑

K∈Th

‖∇ × v‖2
0,K +

∑

f∈Fh

h
−1‖[[v]]T ‖2

0,f

‖v‖2
V(h) = ‖v‖2

0,Ω + |v|2V(h)
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|v|2V(h) =
∑

K∈Th

‖∇ × v‖2
0,K +

∑

f∈Fh

h
−1‖[[v]]T ‖2

0,f

‖v‖2
V(h) = ‖v‖2

0,Ω + |v|2V(h)

ah(·, ·) bilinear from obtained by discretizing a(·, ·)
(curl-curl operator) by any (either symmetric or
unsymmetric) DG method
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DG Discretizations

|v|2V(h) =
∑

K∈Th

‖∇ × v‖2
0,K +

∑

f∈Fh

h
−1‖[[v]]T ‖2

0,f

‖v‖2
V(h) = ‖v‖2

0,Ω + |v|2V(h)

ah(·, ·) bilinear from obtained by discretizing a(·, ·)
(curl-curl operator) by any (either symmetric or
unsymmetric) DG method

DG Method

Find (0 6= uh, kh) ∈ Vh × C such that

ah(uh, vh) = k2
h (uh, vh) ∀vh ∈ Vh
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Example: Interior Penalty Family

∇×∇× u = k2u in Ω u × u = 0 on ∂Ω
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Example: Interior Penalty Family

∇×∇× u = k2u in Ω u × u = 0 on ∂Ω

Integration by parts (element-by-element)

∫

K

∇×∇× u · v =

∫

K

∇× u · ∇× v +

∫

∂K

nK × (∇×u) · v
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Example: Interior Penalty Family

∇×∇× u = k2u in Ω u × u = 0 on ∂Ω

Integration by parts (element-by-element)

∫

K

∇×∇× u · v =

∫

K

∇× u · ∇× v +

∫

∂K

nK × (∇×u) · v

Key formula
∑

K∈Th

∫

∂K

nK × (∇× u) · v

= −
∑

f∈Fh

∫

f

[[v]]T · {{∇h × u}} +
∑

f ∈FI

h

{{v}} · [[∇h × u]]T
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Key formula
∑

K∈Th

∫

∂K

nK × (∇× u) · v

= −
∑

f∈Fh

∫

f

[[v]]T · {{∇h × u}} +
∑

f ∈FI

h

{{v}} · [[∇h × u]]T

u analytical solution ⇒ [[∇h × u]]T = 0
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Example: Interior Penalty Family

IP Bilinear Forms

ah(u, v) :=
∑

K∈Th

∫

K

∇× u · ∇ × v −
∑

f∈Fh

∫

f

[[v]]T · {{∇h × u}}
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Example: Interior Penalty Family

IP Bilinear Forms

ah(u, v) :=
∑

K∈Th

∫

K

∇× u · ∇ × v −
∑

f∈Fh

∫

f

[[v]]T · {{∇h × u}}

− k
∑

f∈Fh

∫

f

[[u]]T · {{∇h × v}} +
∑

f∈Fh

∫

f

α h
−1 [[u]]T · [[v]]T
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IP Bilinear Forms

ah(u, v) :=
∑

K∈Th

∫

K

∇× u · ∇ × v −
∑

f∈Fh

∫

f

[[v]]T · {{∇h × u}}

− k
∑

f∈Fh

∫

f

[[u]]T · {{∇h × v}} +
∑

f∈Fh

∫

f

α h
−1 [[u]]T · [[v]]T

α stability parameter independent of the mesh size

k = −1 SIP (Douglas, Wheeler, Arnold)
k = −1 NIP (Baumann-Oden, Rivière-Wheeler-Girault)
k = −0 IIP (Dawson-Sun-Wheeler)
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∇×∇× u = k2u in Ω u × u = 0 on ∂Ω

Mixed form: s = ∇× u ∇× s = k2u
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A Second Example: LDG

∇×∇× u = k2u in Ω u × u = 0 on ∂Ω

Mixed form: s = ∇× u ∇× s = k2u

DG spaces: Σh = Vh = P`(Th)
3
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A Second Example: LDG

∇×∇× u = k2u in Ω u × u = 0 on ∂Ω

Mixed form: s = ∇× u ∇× s = k2u

DG spaces: Σh = Vh = P`(Th)
3

LDG method:
∫

K

sh · t =

∫

K

uh · ∇ × t −
∫

∂K

ûh · nK × t

∫

K

sh · ∇ × v −
∫

∂K

ŝh · nK × v = k2

∫

K

uh · v dx

ûh and ŝh: numerical fluxes
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A Second Example: LDG

Numerical fluxes
{

ŝ = {{s}} − α h
−1 [[u]]T + b[[s]]T

û = {{u}} + b[[u]]T

α stability parameter; b independent of h

I. Perugia (Pavia, Italy) DG for the Maxwell Eigenproblem 15 / 50



DG for the Maxwell
Eigenproblem

I. Perugia

Introduction

Model Problem

DG Discretizations

DG for Compact
Operators

DG for Non
Compact Operators

The Maxwell
Source Problem

Concluding
Remarks

A Second Example: LDG

Numerical fluxes
{

ŝ = {{s}} − α h
−1 [[u]]T + b[[s]]T

û = {{u}} + b[[u]]T

α stability parameter; b independent of h

Elimination of the auxiliary variable sh:

sh = ∇h × uh −L([[uh]]T )

(L lifts functions on faces into functions in Σh)
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A Second Example: LDG

Numerical fluxes
{

ŝ = {{s}} − α h
−1 [[u]]T + b[[s]]T

û = {{u}} + b[[u]]T

α stability parameter; b independent of h

Elimination of the auxiliary variable sh:

sh = ∇h × uh −L([[uh]]T )

(L lifts functions on faces into functions in Σh)

LDG bilinear form

ah(u, v) :=

∫

Ω

[
∇h × u −L([[u]]T )

]
·
[
∇h × v −L([[v]]T )

]

+

∫

Fh

α h
−1 [[u]]T · [[v]]T
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Some Results on DG

The Maxwell Eigenproblem

Find (0 6= u, k) ∈ V × C, s.t.

a(u, v) := (∇× u,∇× v) = k2(u, v) ∀v ∈ V
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Some Results on DG

The Maxwell Eigenproblem

Find (0 6= u, k) ∈ V × C, s.t.

a(u, v) := (∇× u,∇× v) = k2(u, v) ∀v ∈ V

Positive Definite Source Problem

Find us ∈ V s.t.

b(us , v) := (∇× us ,∇× v) + (us , v) = (f, v) ∀v ∈ V

us ∈ Hr (curl; Ω), r > 1/2
[Amrouche-Bernardi-Dauge-Giralut, 1998]
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Some Results on DG

DG Method for the Positive Definite Source Problem

Find uh ∈ Vh s.t.

bh(uh, vh) := ah(uh, vh) + (uh, vh) = (f, vh) ∀vh ∈ Vh
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Some Results on DG

DG Method for the Positive Definite Source Problem

Find uh ∈ Vh s.t.

bh(uh, vh) := ah(uh, vh) + (uh, vh) = (f, vh) ∀vh ∈ Vh

Quasi-optimality [Perugia-Schötzau, 2003]:

‖us − uh‖V(h) ≤ Chmin{`,r}‖us‖Hr (curl;Ω)

For symmetric DG methods (adjoint consistent):
optimality also in L2–norm
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DG for Compact Operators (Overview)

The Laplace Eigenproblem

Find u ∈ H1(Ω), u 6= 0, and λ ∈ C s.t.

−∆u = λu in Ω ⊂ R
2

u = 0 on ∂Ω
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DG for Compact Operators (Overview)

The Laplace Eigenproblem

Find u ∈ H1(Ω), u 6= 0, and λ ∈ C s.t.

−∆u = λu in Ω ⊂ R
2

u = 0 on ∂Ω

Set V = H1
0 (Ω) with ‖v‖V = ‖∇v‖L2(Ω)

Variational Formulation

Find (0 6= u, λ) ∈ V × C s.t.

a(u, v) := (∇u,∇v) = λ(u, v) ∀v ∈ V
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DG for Compact Operators (Overview)

The Laplace Eigenproblem

Find u ∈ H1(Ω), u 6= 0, and λ ∈ C s.t.

−∆u = λu in Ω ⊂ R
2

u = 0 on ∂Ω

Set V = H1
0 (Ω) with ‖v‖V = ‖∇v‖L2(Ω)

Variational Formulation

Find (0 6= u, λ) ∈ V × C s.t.

a(u, v) := (∇u,∇v) = λ(u, v) ∀v ∈ V

DG Method

Find (0 6= uh, λh) ∈ Vh × C such that

ah(uh, vh) = λh(uh, vh) ∀vh ∈ Vh
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Symmetric DG Methods, ` = 1

[Antonietti-Buffa-Perugia, 2005]

Ω = (0, π) × (0, π)
λmn = m2 + n2 m, n ∈ N \ {0}
umn(x , y) = sin(mx) sin(ny)
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Symmetric DG Methods, ` = 1

[Antonietti-Buffa-Perugia, 2005]

Ω = (0, π) × (0, π)
λmn = m2 + n2 m, n ∈ N \ {0}
umn(x , y) = sin(mx) sin(ny)

Convergence rates SIP and LDG methods
(mesh of 1024 el. to mesh of 4106 el.)

H
H

H
H

H

ev
2 5 8 10 13 17

SIP 1.9982 1.9999 1.9998 1.9993 1.9994 1.9988
LDG 2.0000 2.0005 2.0007 2.0012 2.0010 2.0020

On unstructured grids: the 2 sequences converging to
an eigenvalue of multiplicity 2 are not identical
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Unsymmetric DG Methods, ` = 1

Convergence rates NIP method
(mesh of 1024 el. to mesh of 4106 el.)

H
H

H
H

H

ev
2 5 8 10 13 17

α = 10 1.9755 1.9789 1.9792 1.9820 1.9816 1.9858
α = 1 2.0347 2.0327 2.0326 2.0313 2.0315 2.0295

On unstructured grids: complex eigenvalues
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Symmetric DG Methods, ` > 1

Convergence rates SIP method
(mesh of 1024 el. to mesh of 4106 el.)

H
H

H
H

H

ev
2 5 8 10 13 17

` = 2 3.9844 3.9815 3.9814 3.9765 3.9769 3.9696
` = 3 5.7614 5.9804 5.9868 5.9798 5.9804 5.9653
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Unsymmetric DG Methods, ` > 1

Convergence rates NIP method
(mesh of 1024 el. to mesh of 4106 el.)

H
H

H
H

H

ev
2 5 8 10 13 17

` = 2 2.0478 2.0373 2.0367 2.0190 2.0190 2.0217
` = 3 4.0397 4.0416 4.0417 4.0448 4.0445 4.0488
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Summary

Optimal rates: 2`

SIP LDG NIP IIP

` = 1 2 2 2 2
` = 2 4 4 2 2
` = 3 6 6 4 4
` = 4 8 8 4 4
` = 5 10 10 6 6

Computed rates for unsymm. methods: 2`
Computed rates for unsymm. methods: `, for even `
Computed rates for unsymm. methods: ` + 1, for odd `

(see also [Harriman-Houston-Senior-Süli, 2003])
(see also convergence in L2–norm)
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Eigenfunctions

Optimal and computed rates: ` in V (h)–norm

NIP 1st eigenfunction: errors (` = 1, 2, 3)
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Assumptions

Poincaré Inequality

‖v‖L2(Ω) ≤ C‖v‖V (h) ∀v ∈ Vh + H1
0 (Ω)
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Assumptions

Poincaré Inequality

‖v‖L2(Ω) ≤ C‖v‖V (h) ∀v ∈ Vh + H1
0 (Ω)

Approximation Property of Vh

lim
h→0

inf
vh∈Vh

‖v − vh‖V (h) = 0 ∀v ∈ V
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Assumptions

Poincaré Inequality

‖v‖L2(Ω) ≤ C‖v‖V (h) ∀v ∈ Vh + H1
0 (Ω)

Approximation Property of Vh

lim
h→0

inf
vh∈Vh

‖v − vh‖V (h) = 0 ∀v ∈ V

Convergence for the Source Problem

Let us be s.t. −∆us = f in Ω, us = 0 on ∂Ω, with
f ∈ L2(Ω), and let uh its the DG approximation; whenever
us ∈ H1+t (Ω), 1/2 < t ≤ `,

‖us − uh‖V (h) ≤ C ht‖us‖L2(Ω)
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Results

Spectral Correctness and Convergence Rates

Non-pollution and completeness of spectrum and
eigenspaces

Optimal eigenfunction approximation

Optimal eigenvalue approximation for symmetric DG
methods, suboptimal eigenvalue approximation for
unsymmetric DG methods
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DG for Non Compact Operators

[Buffa-Perugia, to appear]

Set W := H0(curl; Ω) ∩ {∇H1
0 (Ω)}⊥

Standard Assumptions

Approximation property of Vh:

lim
h→0

inf
vh∈Vh

‖v − vh‖V(h) = 0 ∀v ∈ W

Coercivity in seminorm and continuity:

Re [ah(v, v)] ≥ α |v|2V(h) ∀v ∈ Vh

|ah(u, v)| ≤ γ‖u‖V(h)‖v‖V(h) ∀u, v ∈ Vh

Convergence for the positive definite source problem
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Additional Assumptions

Discrete kernel and its V(h)–orthogonal complement:

Kh = {v ∈ Vh : ah(v,w) = 0 ∀w ∈ Vh}
K⊥

h = {v ∈ Vh : (v,w)V(h) = 0 ∀w ∈ Kh}.
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Additional Assumptions

Discrete kernel and its V(h)–orthogonal complement:

Kh = {v ∈ Vh : ah(v,w) = 0 ∀w ∈ Vh}
K⊥

h = {v ∈ Vh : (v,w)V(h) = 0 ∀w ∈ Kh}.

Discrete Friedrichs Inequality (DFI)

‖v‖2
0,Ω ≤ C Re [ah(v, v)] ∀v ∈ K⊥

h
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Additional Assumptions

Discrete kernel and its V(h)–orthogonal complement:

Kh = {v ∈ Vh : ah(v,w) = 0 ∀w ∈ Vh}
K⊥

h = {v ∈ Vh : (v,w)V(h) = 0 ∀w ∈ Kh}.

Discrete Friedrichs Inequality (DFI)

‖v‖2
0,Ω ≤ C Re [ah(v, v)] ∀v ∈ K⊥

h

Gap Property (GAP)

For h small enough, for any wh ∈ K⊥
h , ∃ w ∈ {∇H1

0 (Ω)}⊥
s.t.

‖w − wh‖0,Ω ≤ ηh‖wh‖V(h)

with ηh → 0 as h → 0
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Results

Define the solution operators:

T : L2(Ω)3 → V b(T f, v) = (f, v)

Th : L2(Ω)3 → Vh bh(Thf, vh) = (f, vh)

(u, k) Maxwell eigenpair ⇔ (u, λ = 1
k2+1

) eigenpair of T
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Results

Define the solution operators:

T : L2(Ω)3 → V b(T f, v) = (f, v)

Th : L2(Ω)3 → Vh bh(Thf, vh) = (f, vh)

(u, k) Maxwell eigenpair ⇔ (u, λ = 1
k2+1

) eigenpair of T

(DFI) is equivalent to

Isolation of the Discrete Essential Spectrum

If 1 6= λh ∈ σ(Th), then

Re [λh] ≤ β < 1
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Results

(GAP) implies convergence of Th → T , as h → 0, in
mesh-dependent norm, which implies

Non-Pollution of the Spectrum

Let 0 6= z ∈ ρ(T ); then, for h small enough,

‖(z − Th)f‖V(h) ≥ C‖f‖V(h)

In words: if z is in the resolvent set of T , then, for h small
enough, it is also in the resolvent set of Th (no spurious
eigenvalues)
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Results

(GAP) implies convergence of Th → T , as h → 0, in
mesh-dependent norm, which implies

Non-Pollution of the Spectrum

Let 0 6= z ∈ ρ(T ); then, for h small enough,

‖(z − Th)f‖V(h) ≥ C‖f‖V(h)

In words: if z is in the resolvent set of T , then, for h small
enough, it is also in the resolvent set of Th (no spurious
eigenvalues)

Completeness of the spectrum

Non-pollution and completeness of the eigenspaces

Eigenvalue and eigenfunction convergence rates
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Convergence Rates

Eigenvalue Approximation

Let λ 6= 1 be an eigenvalue of T with multiplicity m; for h

small enough, there exist m discrete eigenvalues λi ,h s.t.

sup1≤i≤m |λ − λi ,h| ≤ Cht

sup1≤i≤m |λ − λi ,h| ≤ Ch2t for symmetric methods

t = min{`, σλ}, with σλ s.t. v ∈ Hσλ(curl; Ω) for all v ∈ Eλ
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Convergence Rates

Eigenvalue Approximation

Let λ 6= 1 be an eigenvalue of T with multiplicity m; for h

small enough, there exist m discrete eigenvalues λi ,h s.t.

sup1≤i≤m |λ − λi ,h| ≤ Cht

sup1≤i≤m |λ − λi ,h| ≤ Ch2t for symmetric methods

t = min{`, σλ}, with σλ s.t. v ∈ Hσλ(curl; Ω) for all v ∈ Eλ

Distance between closed subspaces of V + Vh:

δ(Y ,Z ) := supy∈Y , ‖y‖V(h)=1 infz∈Z ‖y − z‖V(h)

δ̂(Y ,Z ) := max{δ(Y ,Z ), δ(Z ,Y )}

Eigenfunction Approximation

For h small enough, δ̂(Eλ,E{λi,h}) ≤ Cht
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Example 1
[Buffa-Houston-Perugia, 2006]

Ω = (0, π) × (0, π)
ε = I , µ = I

λmn = m2 + n2, m, n ∈ N
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Example 1
[Buffa-Houston-Perugia, 2006]

Ω = (0, π) × (0, π)
ε = I , µ = I

λmn = m2 + n2, m, n ∈ N

SIP, conforming triangular mesh, ` = 1
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SIP, error 8th eigenv. and eigenfct. on conforming meshes
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SIP, error 8th eigenv. on k–irregular meshes

10
1

10
2

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

2
1

4
1

6

1

8

1

l=1
l=2
l=3
l=4

PSfrag replacements

|λ
−

λ
h
|

√
Degrees of Freedom

10
2

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

2
1

4
1

6

1

8

1

l=1
l=2
l=3
l=4

PSfrag replacements

|λ
−

λ
h
|

√
Degrees of Freedom

I. Perugia (Pavia, Italy) DG for the Maxwell Eigenproblem 34 / 50



DG for the Maxwell
Eigenproblem

I. Perugia

Introduction

Model Problem

DG Discretizations

DG for Compact
Operators

DG for Non
Compact Operators

The Maxwell
Source Problem

Concluding
Remarks

Example 1

NIP, error 8th eigenv. and eigenfct. on conforming meshes
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NIP, error 8th eigenv. on 1–irregular and 3–irregular meshes
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NIP, firts 36 eigenvalues on (confroming) structured,
1–irregular, 3–irregular and unstructured meshes, resp.
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SIP, square mesh, Q1 elements
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Spurious modes as for the underlying
H(curl)-conforming finite element approximation
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SIP, general non-conforming meshes
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Ω = (−1, 1)2 \ [0, 1) × (−1, 0]

ε = I , µ = I
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[M. Dauge’s webpage]First 5 eigenvalues:
1.4756, 3.5340, π2, π2, 11.3895

First 5 eigenfunctions:
strongly sing., H1(Ω)2, analytic, analytic, strongly sing.
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SIP (right) and NIP (left), 1st and 2nd eigenvalues
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SIP (right) and NIP (left), 3rd eigenvalues
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1st eigenv.: computed rate 1.33 for both SIP and NIP

2nd eigenv.: computed rate min{2`, 2.67} for SIP; for
NIP with ` = 2, inferior rate 2

3rd eigenv. (analytic eigenfct.): 2` for SIP, ` (even) or
` + 1 (odd) for NIP
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Ω = (−1, 1)2

ε = εr I , µ = I
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Example 3

Ω = (−1, 1)2

ε = εr I , µ = I

PSfrag replacements

εr = 1

εr = 1

εr = 0.1

εr = 0.1

Strongest singularity: r−0.6 as r → 0 (r = dist. form
origin); the eigenfct. corresponding to the 2nd eigenv.
contains such a singularity ([M. Dauge’s webpage])
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SIP (right) and NIP (left), 2nd and 3rd eigenvalues
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(DFI) and (GAP) are also necessary for spurious-free
DG approximations
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Remarks

(DFI) and (GAP) are also necessary for spurious-free
DG approximations

K⊥
h is approximating in W:

lim
h→0

inf
wh∈K⊥

h

‖w − wh‖V(h) = 0 ∀w ∈ W

Kh is approximating in ∇H1
0 (Ω):

lim
h→0

inf
kh∈Kh

‖k − kh‖V(h) = 0 ∀k ∈ ∇H1
0 (Ω)

(approx. property of Vh required for the whole V)
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On meshes with no hanging nodes and on k–irregular
meshes, all DG methods in literature satisfy all the
assumptions
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On meshes with no hanging nodes and on k–irregular
meshes, all DG methods in literature satisfy all the
assumptions

(GAP) is related to the Discrete Compactness Property,
which plays a key role in the analysis of conforming

approximations → on quads there are the same
problems as for conforming methods
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meshes, all DG methods in literature satisfy all the
assumptions

(GAP) is related to the Discrete Compactness Property,
which plays a key role in the analysis of conforming

approximations → on quads there are the same
problems as for conforming methods

All the theory can be extended to the Maxwell operator
on non-trivial domains and with piecewise smooth

coefficients
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Remarks

On meshes with no hanging nodes and on k–irregular
meshes, all DG methods in literature satisfy all the
assumptions

(GAP) is related to the Discrete Compactness Property,
which plays a key role in the analysis of conforming

approximations → on quads there are the same
problems as for conforming methods

All the theory can be extended to the Maxwell operator
on non-trivial domains and with piecewise smooth

coefficients

Non-dispersive version of LDG (stab. parameter = 0)?
[Embree, Hesthaven, Warburton, 2004-2005]
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Remarks

On meshes with no hanging nodes and on k–irregular
meshes, all DG methods in literature satisfy all the
assumptions

(GAP) is related to the Discrete Compactness Property,
which plays a key role in the analysis of conforming

approximations → on quads there are the same
problems as for conforming methods

All the theory can be extended to the Maxwell operator
on non-trivial domains and with piecewise smooth

coefficients

Non-dispersive version of LDG (stab. parameter = 0)?
[Embree, Hesthaven, Warburton, 2004-2005]

Locally divergence-free elements?
[Baker-Jureidini-Karakashian, 1990]

I. Perugia (Pavia, Italy) DG for the Maxwell Eigenproblem 46 / 50



DG for the Maxwell
Eigenproblem

I. Perugia

Introduction

Model Problem

DG Discretizations

DG for Compact
Operators

DG for Non
Compact Operators

The Maxwell
Source Problem

Concluding
Remarks

Application: the Maxwell Source Problem

Indefinite Maxwell Problem

Find u ∈ H(curl; Ω) s.t.

∇× (µ−1∇× u) − k2εu = f in Ω ⊂ R
3

n × u = 0 on ∂Ω

Assume k not a Maxwell eigenvalue

I. Perugia (Pavia, Italy) DG for the Maxwell Eigenproblem 47 / 50



DG for the Maxwell
Eigenproblem

I. Perugia

Introduction

Model Problem

DG Discretizations

DG for Compact
Operators

DG for Non
Compact Operators

The Maxwell
Source Problem

Concluding
Remarks

Application: the Maxwell Source Problem

Indefinite Maxwell Problem

Find u ∈ H(curl; Ω) s.t.

∇× (µ−1∇× u) − k2εu = f in Ω ⊂ R
3

n × u = 0 on ∂Ω

Assume k not a Maxwell eigenvalue

DG for the Indefinite Maxwell Problem

Find uh ∈ Vh s.t.

ah(uh, vh) − k2(εuh, vh) = (f, vh) ∀vh ∈ Vh

k might be a discrete eigenvalue...
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Application: the Maxwell Source Problem

ah(uh, vh) − k2(εuh, vh) = (f, vh) ∀vh ∈ Vh

Recall the definition of the solution operators T and Th:

b(Tw, v) := a(Tw, v) + (εTw, v) = (εw, v)

bh(Thw, vh) := ah(Thw, vh) + (εThw, vh) = (εw, vh)
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Application: the Maxwell Source Problem

ah(uh, vh) − k2(εuh, vh) = (f, vh) ∀vh ∈ Vh

Recall the definition of the solution operators T and Th:

b(Tw, v) := a(Tw, v) + (εTw, v) = (εw, v)

bh(Thw, vh) := ah(Thw, vh) + (εThw, vh) = (εw, vh)

Set z := 1
k2+1

(k not Maxwell eigenv. ⇒ z ∈ ρ(T ))

Let gh be s.t. (εgh, vh) = (f, vh) ∀vh ∈ Vh
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Application: the Maxwell Source Problem

ah(uh, vh) − k2(εuh, vh) = (f, vh) ∀vh ∈ Vh

Recall the definition of the solution operators T and Th:

b(Tw, v) := a(Tw, v) + (εTw, v) = (εw, v)

bh(Thw, vh) := ah(Thw, vh) + (εThw, vh) = (εw, vh)

Set z := 1
k2+1

(k not Maxwell eigenv. ⇒ z ∈ ρ(T ))

Let gh be s.t. (εgh, vh) = (f, vh) ∀vh ∈ Vh

bh(uh, vh) − (1 + k2)(εuh, vh) = (εgh, vh) ∀vh ∈ Vh

bh(zuh, vh) − bh(Thuh, vh) = bh(zThgh, vh) ∀vh ∈ Vh
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Application: the Maxwell Source Problem

ah(uh, vh) − k2(εuh, vh) = (f, vh) ∀vh ∈ Vh

Recall the definition of the solution operators T and Th:

b(Tw, v) := a(Tw, v) + (εTw, v) = (εw, v)

bh(Thw, vh) := ah(Thw, vh) + (εThw, vh) = (εw, vh)

Set z := 1
k2+1

(k not Maxwell eigenv. ⇒ z ∈ ρ(T ))

Let gh be s.t. (εgh, vh) = (f, vh) ∀vh ∈ Vh

bh(uh, vh) − (1 + k2)(εuh, vh) = (εgh, vh) ∀vh ∈ Vh

bh(zuh, vh) − bh(Thuh, vh) = bh(zThgh, vh) ∀vh ∈ Vh

bh(·, ·) coercive ⇒ (z − Th)uh = zThgh
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Application: The Maxwell Source Problem

(z − Th)uh = zThgh
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Application: The Maxwell Source Problem

(z − Th)uh = zThgh

Recall:

Non-Pollution of the Spectrum

Let 0 6= z ∈ ρ(T ); then, for h small enough,

‖(z − Th)f‖V(h) ≥ C‖f‖V(h)
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Application: The Maxwell Source Problem

(z − Th)uh = zThgh

Recall:

Non-Pollution of the Spectrum

Let 0 6= z ∈ ρ(T ); then, for h small enough,

‖(z − Th)f‖V(h) ≥ C‖f‖V(h)

Then:

Well-Posedness and Convergence

∃ ! of the solution uh, for h small enough

continuous dependence on the datum f

well-posedness → inf-sup condition

inf-sup condition → quasi-optimal error estimates
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Concluding Remarks

Asymptotic analysis of DG spectral approximations of
second order operators with non-compact inverse
(Maxwell, grad-div)

Sufficient (and necessary) conditions for spectral
correctness, provided that the considered DG method is
well-posed and convergent for the corresponding
positive definite source problem

Optimality of eigenfunction approximation; optimality
of eigenvalue approximation for symmetric methods
(suboptimality for unsymmetric methods)

Application to the indefinite Maxwell source problem
with piecewise smooth coefficients

Relations betwen our analysis and standard analyzes of
conforming approximations
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