The fine-scale Green's Function

and the construction of variational multiscale methods

T.J.R. Hughes ${ }^{1}$ and G. Sangalli ${ }^{2}$

${ }^{1}$ The University of Texas at Austin - ICES Austin, TX
${ }^{2}$ Dipartimeno di Matematica - Università di Pavia, Pavia, Italy.
INdAM Workshop on Multiscale Problems:
Modeling, Adaptive Discretization, Stabilization, Solvers Cortona, September 18-22, 2006

Outline

(9) Introduction

- Abstract framework
- Typical multiscale approach
- New approach: fine scales optimization
(2) The 1D advection-diffusion problem
- H_{0}^{1}-optimality
- P1 coarse scales
- Higher-order coarse scales
- L2 -optimality
(3) The 2D advection-diffusion problem
- The 2D setting
- Numerical evaluation of $g^{\prime}\left(H_{0}^{1}, L^{2}\right.$, and nodal optimality)
- H_{0}^{1}-optimality and SUPG

The abstract problem and framework

Given a Hilbert space V, with norm $\|\cdot\|_{V}$ and s.p. $(\cdot, \cdot)_{V}$, dual space V^{*}, and $\mathcal{L}: V \rightarrow V^{*}$, we consider the problem:

$$
\left\{\begin{array}{l}
\text { find } u \in V: \\
\mathcal{L} u=f .
\end{array}\right.
$$

We split the space V, where the exact solution is, into:
$\bar{V}=$ space of coarse scales,
$V^{\prime}=$ space of fine scales,
and then consider:

The abstract problem and framework

Given a Hilbert space V, with norm $\|\cdot\|_{V}$ and s.p. $(\cdot, \cdot)_{V}$, dual space V^{*}, and $\mathcal{L}: V \rightarrow V^{*}$, we consider the problem:

$$
\left\{\begin{array}{l}
\text { find } u \in V: \\
\mathcal{L} u=f .
\end{array}\right.
$$

We split the space V, where the exact solution is, into:

$$
\begin{gathered}
\bar{V}=\text { space of coarse scales, }, \\
V^{\prime}=\text { space of fine scales },
\end{gathered}
$$

and then consider:

$$
\left\{\begin{array}{l}
\text { find } \bar{u} \in \bar{V}, u^{\prime} \in V^{\prime}: \\
\mathcal{L}\left(\bar{u}+u^{\prime}\right)=f .
\end{array}\right.
$$

Variational multiscale (VMS) formulation

The variational formulation of the problem is: find $\bar{u}+u^{\prime} \in V: \quad{ }_{v *}\left\langle\mathcal{L}\left(\bar{u}+u^{\prime}\right), v\right\rangle_{V}={ }_{v^{*}}\langle f, v\rangle_{V}, \quad \forall v \in V$. Then, we split the problem as:

VMS formulation (for \bar{u})
Find $\bar{u} \in \bar{V}$ such that:

Variational multiscale (VMS) formulation

The variational formulation of the problem is: find $\bar{u}+u^{\prime} \in V: \quad{ }_{v *}\left\langle\mathcal{L}\left(\bar{u}+u^{\prime}\right), v\right\rangle_{V}={ }_{v^{*}}\langle f, v\rangle_{V}, \quad \forall v \in V$.

Then, we split the problem as:

$$
\begin{aligned}
v^{*}\langle\mathcal{L}, \bar{v}\rangle_{v}+{ }_{v *}\left\langle\mathcal{L} u^{\prime}, \bar{v}\right\rangle_{V} & ={ }_{v *}\langle f, \bar{v}\rangle_{v,}, & & \forall \bar{v} \in \bar{V}, \\
v^{*}\left\langle\mathcal{L}, v^{\prime}\right\rangle_{V}+v^{*}\left\langle\mathcal{L} u^{\prime}, v^{\prime}\right\rangle_{V} & ={ }_{v^{*}}\left\langle f, v^{\prime}\right\rangle_{V}, & & \forall v^{\prime} \in V^{\prime} .
\end{aligned}
$$

VMS formulation (for \bar{u})
Find $\bar{u} \in \bar{V}$ such that:

Variational multiscale (VMS) formulation

The variational formulation of the problem is:
find $\bar{u}+u^{\prime} \in V: \quad v^{*}\left\langle\mathcal{L}\left(\bar{u}+u^{\prime}\right), v\right\rangle_{v}={ }_{v^{*}}\langle f, v\rangle_{v}, \quad \forall v \in V$.
Then, we split the problem as:

$$
\begin{array}{rlrl}
v^{*}\langle\mathcal{L}, \bar{u}\rangle_{v}+{ }_{v^{*}}\left\langle\mathcal{L} u^{\prime}, \bar{v}\right\rangle_{V} & ={ }_{v^{*}}\langle f, \bar{v}\rangle_{v}, & & \forall \bar{v} \in \bar{V}, \\
v^{*}\left\langle\overline{\mathcal{L}}, v^{\prime}\right\rangle_{v^{*}+v^{*}}\left\langle\mathcal{L u ^ { \prime } , v ^ { \prime } \rangle _ { v }}={ }_{v^{*}}\left\langle f, v^{\prime}\right\rangle_{V},\right. & & \forall v^{\prime} \in V^{\prime} .
\end{array}
$$

VMS formulation (for \bar{u})
Find $\bar{u} \in \bar{V}$ such that:

Variational multiscale (VMS) formulation

The variational formulation of the problem is:
find $\bar{u}+u^{\prime} \in V: \quad v^{*}\left\langle\mathcal{L}\left(\bar{u}+u^{\prime}\right), v\right\rangle_{v}={ }_{v^{*}}\langle f, v\rangle_{v}, \quad \forall v \in V$.
Then, we split the problem as:

$$
\begin{aligned}
v^{*}\langle\mathcal{L}, \bar{v}\rangle_{V}+{ }_{v *}\left\langle\mathcal{L} u^{\prime}, \bar{v}\right\rangle_{V} & ={ }_{v *}\langle f, \bar{v}\rangle_{v,}, & & \forall \bar{v} \in \bar{V}, \\
v^{*}\left\langle\mathcal{L}, v^{\prime}\right\rangle_{V^{*}+v^{*}}\left\langle\mathcal{L} u^{\prime}, v^{\prime}\right\rangle_{V} & ={ }_{v^{*}}\left\langle f, v^{\prime}\right\rangle_{V}, & & \forall v^{\prime} \in V^{\prime} .
\end{aligned}
$$

$\rightsquigarrow u^{\prime}=\mathcal{G}^{\prime}(f-\mathcal{L} \bar{u})$

VMS formulation (for \bar{u})

Find $\bar{u} \in \bar{V}$ such that:

Variational multiscale (VMS) formulation

The variational formulation of the problem is:
find $\bar{u}+u^{\prime} \in V: \quad v^{*}\left\langle\mathcal{L}\left(\bar{u}+u^{\prime}\right), v\right\rangle_{v}={ }_{v^{*}}\langle f, v\rangle_{v}, \quad \forall v \in V$.
Then, we split the problem as:

$$
\begin{aligned}
v^{*}\langle\mathcal{L}, \bar{v}\rangle_{V}+{ }_{v *}\left\langle\mathcal{L} u^{\prime}, \bar{v}\right\rangle_{V} & ={ }_{v *}\langle f, \bar{v}\rangle_{v,}, & & \forall \bar{v} \in \bar{V}, \\
v^{*}\left\langle\mathcal{L}, v^{\prime}\right\rangle_{V}+v^{*}\left\langle\mathcal{L} u^{\prime}, v^{\prime}\right\rangle_{V} & ={ }_{v^{*}}\left\langle f, v^{\prime}\right\rangle_{V}, & & \forall v^{\prime} \in V^{\prime} .
\end{aligned}
$$

$\rightsquigarrow u^{\prime}=\mathcal{G}^{\prime}(f-\mathcal{L} \bar{u})$
VMS formulation (for $\bar{u})$
Find $\bar{u} \in \bar{V}$ such that:

Variational multiscale (VMS) formulation

The variational formulation of the problem is: find $\bar{u}+u^{\prime} \in V: \quad{ }_{v *}\left\langle\mathcal{L}\left(\bar{u}+u^{\prime}\right), v\right\rangle_{V}={ }_{v^{*}}\langle f, v\rangle_{V}, \quad \forall v \in V$. Then, we split the problem as:

$$
\begin{aligned}
& { }_{v *}\langle\mathcal{L} \bar{u}, \bar{v}\rangle_{v}+{ }_{v *}\left\langle\mathcal{L} u^{\prime}, \bar{v}\right\rangle_{v}={ }_{v *}\langle f, \bar{v}\rangle_{v}, \quad \forall \bar{v} \in \bar{V}, \\
& v^{*}\left\langle\mathcal{L} \bar{u}, v^{\prime}\right\rangle_{v}+v^{*}\left\langle\mathcal{L} u^{\prime}, v^{\prime}\right\rangle_{v}=v^{*}\left\langle f, v^{\prime}\right\rangle_{V}, \quad \forall v^{\prime} \in V^{\prime} .
\end{aligned}
$$

$\rightsquigarrow u^{\prime}=\mathcal{G}^{\prime}(f-\mathcal{L} \bar{u}) \rightsquigarrow$

VMS formulation (for \bar{u})

Find $\bar{u} \in \bar{V}$ such that:

$$
\begin{aligned}
v^{*}\langle\mathcal{L} \bar{u}, \bar{v}\rangle_{V} & -{ }_{v *}\left\langle\mathcal{L \mathcal { L }} \mathcal{G}^{\prime} \mathcal{L} \bar{u}, \bar{v}\right\rangle_{V} \\
& ={ }_{v *}\langle f, \bar{v}\rangle_{V}-v_{*}\left\langle\mathcal{L} \mathcal{G}^{\prime} f, \bar{v}\right\rangle_{V}, \quad \forall \bar{v} \in \bar{V} .
\end{aligned}
$$

VMS formulation

Find $\bar{u} \in \bar{V}$ such that:

$$
\begin{aligned}
& { }^{*} *\langle\mathcal{L} \bar{u}, \bar{v}\rangle_{v}-{ }_{v *}\left\langle\mathcal{L} \mathcal{G}^{\prime} \mathcal{L} \bar{u}, \bar{v}\right\rangle_{v} \\
& ={ }_{v *}\langle f, \bar{v}\rangle_{V}-{ }_{v *}\left\langle\mathcal{L} \mathcal{G}^{\prime} f, \bar{v}\right\rangle_{V}, \quad \forall \bar{v} \in \bar{V} .
\end{aligned}
$$

- the fine-scale effect is determined by the fine scale Green's operator $\mathcal{G}^{\prime}: V^{*} \rightarrow V^{\prime}$ which gives $V^{\prime} \ni u^{\prime}=\mathcal{G}^{\prime} r$ such that
- \mathcal{G}^{\prime} is not the classical Green's operator $\mathcal{G} \equiv \mathcal{L}^{-1}: V^{*} \rightarrow V$,
- in order to derive a VMS formulation, we need $\bar{V} \cap V^{\prime}=\{0\}$, that is we need a direct sum of $\bar{V} \oplus V^{\prime}$.

VMS formulation

Find $\bar{u} \in \bar{V}$ such that:

$$
\begin{aligned}
v^{*}\langle\mathcal{L} \bar{u}, \bar{v}\rangle_{V} & -{ }_{v *}\left\langle\mathcal{L \mathcal { L }} \mathcal{G}^{\prime} \mathcal{L}, \bar{u}, \bar{v}\right\rangle_{V} \\
& ={ }_{v *}\langle f, \bar{v}\rangle_{V}-{ }_{V^{*}}\left\langle\mathcal{L} \mathcal{G}^{\prime} f, \bar{v}\right\rangle_{V}, \quad \forall \bar{v} \in \bar{V} .
\end{aligned}
$$

- the fine-scale effect is determined by the fine scale Green's operator $\mathcal{G}^{\prime}: V^{*} \rightarrow V^{\prime}$ which gives $V^{\prime} \ni u^{\prime}=\mathcal{G}^{\prime} r$ such that $v_{*}\left\langle\mathcal{L} u^{\prime}, v^{\prime}\right\rangle_{v}={ }_{v *}\left\langle r, v^{\prime}\right\rangle_{v}, \forall v^{\prime} \in V^{\prime}$,
- \mathcal{G}^{\prime} is not the classical Green's operator $\mathcal{G} \equiv \mathcal{L}^{-1}$
- in order to derive a VMS formulation, we need $\bar{V} \cap V^{\prime}=\{0\}$, that is we need a direct sum of

VMS formulation

Find $\bar{u} \in \bar{V}$ such that:

$$
\begin{aligned}
v^{*}\langle\mathcal{L} \bar{u}, \bar{v}\rangle_{V} & -{ }_{v *}\left\langle\mathcal{L \mathcal { L }} \mathcal{G}^{\prime} \mathcal{L}, \bar{u}, \bar{v}\right\rangle_{V} \\
& ={ }_{v *}\langle f, \bar{v}\rangle_{V}-{ }_{v^{*}}\left\langle\mathcal{L} \mathcal{G}^{\prime} f, \bar{v}\right\rangle_{V}, \quad \forall \bar{v} \in \bar{V} .
\end{aligned}
$$

- the fine-scale effect is determined by the fine scale Green's operator $\mathcal{G}^{\prime}: V^{*} \rightarrow V^{\prime}$ which gives $V^{\prime} \ni u^{\prime}=\mathcal{G}^{\prime} r$ such that $v_{*}\left\langle\mathcal{L} u^{\prime}, v^{\prime}\right\rangle_{V}=v^{*}\left\langle r, v^{\prime}\right\rangle_{v}, \forall v^{\prime} \in V^{\prime}$,
- \mathcal{G}^{\prime} is not the classical Green's operator $\mathcal{G} \equiv \mathcal{L}^{-1}: V^{*} \rightarrow V$,
- in order to derive a VMS formulation, we need $\bar{V} \cap V^{\prime}=\{0\}$, that is we need a direct sum of

VMS formulation

Find $\bar{u} \in \bar{V}$ such that:

$$
\begin{aligned}
v_{*}\langle\mathcal{L} \bar{u}, \bar{v}\rangle_{v} & -{ }_{v *}\left\langle\mathcal{L \mathcal { L }} \mathcal{G}^{\prime} \mathcal{L} \bar{u}, \bar{v}\right\rangle_{V} \\
& ={ }_{v *}\langle f, \bar{v}\rangle_{V}-{ }_{v *}\left\langle\mathcal{L} \mathcal{G}^{\prime} f, \bar{v}\right\rangle_{V}, \quad \forall \bar{v} \in \bar{V} .
\end{aligned}
$$

- the fine-scale effect is determined by the fine scale Green's operator $\mathcal{G}^{\prime}: V^{*} \rightarrow V^{\prime}$ which gives $V^{\prime} \ni u^{\prime}=\mathcal{G}^{\prime} r$ such that $v_{*}\left\langle\mathcal{L} u^{\prime}, v^{\prime}\right\rangle_{V}=v^{*}\left\langle r, v^{\prime}\right\rangle_{v}, \forall v^{\prime} \in V^{\prime}$,
- \mathcal{G}^{\prime} is not the classical Green's operator $\mathcal{G} \equiv \mathcal{L}^{-1}: V^{*} \rightarrow V$,
- in order to derive a VMS formulation, we need $\bar{V} \cap V^{\prime}=\{0\}$, that is we need a direct sum of $\bar{V} \oplus V^{\prime}$.

Example of typical VMS methods

For 2D advection-diffusion problems, various choices for $\bar{V} \oplus V^{\prime}$ have been proposed in literature:

In all cases,

Example of typical VMS methods

For 2D advection-diffusion problems, various choices for
$\bar{V} \oplus V^{\prime}$ have been proposed in literature:

- P1 \oplus residual-free bubbles: [F. Brezzi and A. Russo, '94], [T. J. R. Hughes, '95], [F. Brezzi, L. P. Franca, T. J. R. Hughes, and A. Russo, '97], ...

In all cases,

$$
\bar{V} \oplus V^{\prime} \subset V \equiv \text { all-scale space }
$$

Example of typical VMS methods

For 2D advection-diffusion problems, various choices for
$\bar{V} \oplus V^{\prime}$ have been proposed in literature:

- P1 \oplus residual-free bubbles: [F. Brezzi and A. Russo, '94], [T. J. R. Hughes, '95], [F. Brezzi, L. P. Franca, T. J. R. Hughes, and A. Russo, '97], ...
- P2ゅresidual-free bubbles: [M. I. Asensıo, A. Russo, and G. Sangalli, '04]

In all cases,

Example of typical VMS methods

For 2D advection-diffusion problems, various choices for
$\bar{V} \oplus V^{\prime}$ have been proposed in literature:

- P1 \oplus residual-free bubbles: [F. Brezzi and A. Russo, '94], [T. J. R. Hughes, '95], [F. Brezzi, L. P. Franca, T. J. R. Hughes, and A. Russo, '97], ...
- P2円residual-free bubbles: [M. I. Asensıo, A. Russo, and G. SANGALLI, '04]
- $P 1 \oplus$ (r.-f. bubbles $+\ldots$): [F. Brezzi and L.D. Marini, '02][A.Cangiani and E. Süli, 05], [L. P. Franca, A. L. Madureira and F. Valentin, 05], ...
In all cases,

Example of typical VMS methods

For 2D advection-diffusion problems, various choices for
$\bar{V} \oplus V^{\prime}$ have been proposed in literature:

- P1 \oplus residual-free bubbles: [F. Brezzi and A. Russo, '94], [T. J. R. Hughes, '95], [F. Brezzi, L. P. Franca, T. J. R. Hughes, and A. Russo, '97], ...
- P2円residual-free bubbles: [M. I. Asensıo, A. Russo, and G. SANGALLI, '04]
- $P 1 \oplus$ (r.-f. bubbles $+\ldots$): [F. Brezzi and L.D. Marini, '02][A.Cangiani and E. SüLi, 05], [L. P. Franca, A. L. Madureira and F. Valentin, 05], ...
In all cases,

$$
\bar{V} \oplus V^{\prime} \subsetneq V \equiv \text { all-scale space. }
$$

New approach to VMS: error optimization

New approach to VMS: error optimization

$$
\text { Minimize } \Phi\left(u^{\prime}\right) \text { subject to }\left\{\begin{array}{l}
\bar{u} \in \bar{V} \\
u^{\prime} \in V \\
\mathcal{L}\left(\bar{u}+u^{\prime}\right)=f
\end{array}\right.
$$

- we do not assume a-priori constraints on the fine scales,
- we minimize the fine scale u^{\prime} (i.e., the numerical error $u-\bar{u} \equiv u^{\prime}$) w.r.t. a functional $\Phi(\cdot)$,
- then \bar{u} and u^{\prime} are uniquely determined, and the numerical solution \bar{u} is optimal ($\Phi(u-\bar{u})$ is minimized) by design,
- here, we consider $\Phi(\cdot)=\|\cdot\|^{2}$ (for example, $\|\cdot\|=\|\cdot\|_{H_{0}^{1}}$ or $\left.\|\cdot\|=\|\cdot\|_{L^{2}}\right)$.
- other possibilities: $\Phi(\cdot)$ is not a quadratic form.

New approach to VMS: error optimization

$$
\text { Minimize } \Phi\left(u^{\prime}\right) \text { subject to }\left\{\begin{array}{l}
\bar{u} \in \bar{V}, \\
u^{\prime} \in V, \\
\mathcal{L}\left(\bar{u}+u^{\prime}\right)=f
\end{array}\right.
$$

- we do not assume a-priori constraints on the fine scales,
- we minimize the fine scale u^{\prime} (i.e., the numerical error $u-\bar{u} \equiv u^{\prime}$) w.r.t. a functional $\Phi(\cdot)$,
- then \bar{u} and u^{\prime} are uniquely determined, and the numerical
solution \bar{u} is optimal $(\Phi(u-\bar{u})$ is minimized) by design,
- here, we consider $\Phi(\cdot)=\|\cdot\|^{2}$ (for example, $\|\cdot\|=\|\cdot\|_{H_{0}^{+}}$ or \mid
- other possibilities: $\Phi($.$) is not a quadratic form.$

New approach to VMS: error optimization

$$
\text { Minimize } \Phi\left(u^{\prime}\right) \text { subject to }\left\{\begin{array}{l}
\bar{u} \in \bar{V}, \\
u^{\prime} \in V, \\
\mathcal{L}\left(\bar{u}+u^{\prime}\right)=f
\end{array}\right.
$$

- we do not assume a-priori constraints on the fine scales,
- we minimize the fine scale u^{\prime} (i.e., the numerical error $u-\bar{u} \equiv u^{\prime}$) w.r.t. a functional $\Phi(\cdot)$,
- then \bar{u} and u^{\prime} are uniquely determined, and the numerical solution \bar{u} is optimal $(\Phi(u-\bar{u})$ is minimized) by design,
- other possibilities: $\Phi(\cdot)$ is not a quadratic form.

New approach to VMS: error optimization

$$
\text { Minimize } \Phi\left(u^{\prime}\right) \text { subject to }\left\{\begin{array}{l}
\bar{u} \in \bar{V}, \\
u^{\prime} \in V, \\
\mathcal{L}\left(\bar{u}+u^{\prime}\right)=f
\end{array}\right.
$$

- we do not assume a-priori constraints on the fine scales,
- we minimize the fine scale u^{\prime} (i.e., the numerical error $u-\bar{u} \equiv u^{\prime}$) w.r.t. a functional $\Phi(\cdot)$,
- then \bar{u} and u^{\prime} are uniquely determined, and the numerical solution \bar{u} is optimal $(\Phi(u-\bar{u})$ is minimized) by design,
- here, we consider $\Phi(\cdot)=\|\cdot\|^{2}$ (for example, $\|\cdot\|=\|\cdot\|_{H_{0}^{1}}$ or $\left.\|\cdot\|=\|\cdot\|_{L^{2}}\right)$.
- other possibilities: $\Phi(\cdot)$ is not a quadratic form.

New approach to VMS: error optimization

$$
\text { Minimize } \Phi\left(u^{\prime}\right) \text { subject to }\left\{\begin{array}{l}
\bar{u} \in \bar{V}, \\
u^{\prime} \in V, \\
\mathcal{L}\left(\bar{u}+u^{\prime}\right)=f
\end{array}\right.
$$

- we do not assume a-priori constraints on the fine scales,
- we minimize the fine scale u^{\prime} (i.e., the numerical error $u-\bar{u} \equiv u^{\prime}$) w.r.t. a functional $\Phi(\cdot)$,
- then \bar{u} and u^{\prime} are uniquely determined, and the numerical solution \bar{u} is optimal $(\Phi(u-\bar{u})$ is minimized) by design,
- here, we consider $\Phi(\cdot)=\|\cdot\|^{2}$ (for example, $\|\cdot\|=\|\cdot\|_{H_{0}^{1}}$ or $\left.\|\cdot\|=\|\cdot\|_{L^{2}}\right)$.
- other possibilities: $\Phi(\cdot)$ is not a quadratic form.

$$
\left\{\begin{array}{l}
\bar{u} \in \bar{V}, \\
u^{\prime} \in V, \\
\mathcal{L}\left(\bar{u}+u^{\prime}\right)=f
\end{array} \quad \Leftrightarrow u^{\prime} \in u+\bar{V}\right.
$$

Then, under suitable condition on $\Phi(\cdot)$:

$$
\Phi\left(u^{\prime}\right)=\min _{v^{\prime} \in u+\bar{V}} \Phi\left(v^{\prime}\right) \quad \Leftrightarrow \quad D \Phi\left(u^{\prime} ; \delta u^{\prime}\right)=0, \quad \forall \delta u^{\prime} \in \bar{V} .
$$

In case of $\Phi(\cdot)=\|\cdot\|^{2}$, then $D \Phi\left(u^{\prime} ; \delta u^{\prime}\right)=\left(u^{\prime}, \delta u^{\prime}\right)=0$, for all $\delta u^{\prime} \in \bar{V}$, that is, u^{\prime} is orthogonal to \bar{V},

$$
\left\{\begin{array}{l}
\bar{u} \in \bar{V}, \\
u^{\prime} \in V, \\
\mathcal{L}\left(\bar{u}+u^{\prime}\right)=f
\end{array} \quad \Leftrightarrow u^{\prime} \in u+\bar{V} \quad \rightsquigarrow \delta u^{\prime} \in \bar{V} .\right.
$$

Then, under suitable condition on $\Phi(\cdot)$:

$$
\Phi\left(u^{\prime}\right)=\min _{v^{\prime} \in u+\bar{V}} \Phi\left(v^{\prime}\right) \quad \Leftrightarrow \quad D \Phi\left(u^{\prime} ; \delta u^{\prime}\right)=0, \quad \forall \delta u^{\prime} \in \bar{V} .
$$

In case of $\Phi(\cdot)=\|\cdot\|^{2}$, then $D \Phi\left(u^{\prime} ; \delta u^{\prime}\right)=\left(u^{\prime}, \delta u^{\prime}\right)=0$, for all $\delta u^{\prime} \in \bar{V}$, that is, u^{\prime} is orthogonal to \bar{V},

$$
\left\{\begin{array}{l}
\bar{u} \in \bar{V}, \\
u^{\prime} \in V \\
\mathcal{L}\left(\bar{u}+u^{\prime}\right)=f
\end{array} \quad \Leftrightarrow u^{\prime} \in u+\bar{V} \quad \rightsquigarrow \delta u^{\prime} \in \bar{V}\right.
$$

Then, under suitable condition on $\Phi(\cdot)$:

$$
\Phi\left(u^{\prime}\right)=\min _{v^{\prime} \in u+\bar{V}} \Phi\left(v^{\prime}\right) \Leftrightarrow D \Phi\left(u^{\prime} ; \delta u^{\prime}\right)=0, \quad \forall \delta u^{\prime} \in \bar{V} .
$$

$$
\left\{\begin{array}{l}
\bar{u} \in \bar{V}, \\
u^{\prime} \in V, \\
\mathcal{L}\left(\bar{u}+u^{\prime}\right)=f
\end{array} \quad \Leftrightarrow u^{\prime} \in u+\bar{V} \quad \rightsquigarrow \delta u^{\prime} \in \bar{V}\right.
$$

Then, under suitable condition on $\Phi(\cdot)$:

$$
\Phi\left(u^{\prime}\right)=\min _{v^{\prime} \in u+\bar{V}} \Phi\left(v^{\prime}\right) \Leftrightarrow D \Phi\left(u^{\prime} ; \delta u^{\prime}\right)=0, \quad \forall \delta u^{\prime} \in \bar{V} .
$$

In case of $\Phi(\cdot)=\|\cdot\|^{2}$, then $D \Phi\left(u^{\prime} ; \delta u^{\prime}\right)=\left(u^{\prime}, \delta u^{\prime}\right)=0$, for all $\delta u^{\prime} \in \bar{V}$, that is, u^{\prime} is orthogonal to \bar{V}, that is,

$$
\left\{\begin{array}{l}
\bar{u} \in \bar{V}, \\
u^{\prime} \in V, \\
\mathcal{L}\left(\bar{u}+u^{\prime}\right)=f
\end{array} \quad \Leftrightarrow u^{\prime} \in u+\bar{V} \quad \rightsquigarrow \delta u^{\prime} \in \bar{V} .\right.
$$

Then, under suitable condition on $\Phi(\cdot)$:

$$
\Phi\left(u^{\prime}\right)=\min _{v^{\prime} \in u+\bar{V}} \Phi\left(v^{\prime}\right) \Leftrightarrow D \Phi\left(u^{\prime} ; \delta u^{\prime}\right)=0, \quad \forall \delta u^{\prime} \in \bar{V} .
$$

In case of $\Phi(\cdot)=\|\cdot\|^{2}$, then $D \Phi\left(u^{\prime} ; \delta u^{\prime}\right)=\left(u^{\prime}, \delta u^{\prime}\right)=0$, for all $\delta u^{\prime} \in \bar{V}$, that is, u^{\prime} is orthogonal to \bar{V}, that is,

$$
\mathcal{P} u^{\prime}=0,
$$

where $\mathcal{P}: V \rightarrow \bar{V}$ is the orthogonal projector on \bar{V}.

Scales splitting + optimization

Find \bar{u} and u^{\prime} such that:

$$
\begin{aligned}
& \bar{u} \in \bar{V}, \\
& u^{\prime} \in V, \text { with } \mathcal{P} u^{\prime}=0, \\
& \mathcal{L}\left(\bar{u}+u^{\prime}\right)=f
\end{aligned}
$$

- the fine scale space is implicitly defined by the optimality condition:

$$
V^{\prime}=\{V \in V: \mathcal{P} V=0\} ;
$$

- we have $\bar{V} \oplus V^{\prime}$;
- when $\Phi(\cdot)=\|\cdot\|^{2}$., i.e., \mathcal{P} is an orthogonal projector, V^{\prime} is the orthogonal complement of $\bar{V}($ in $V)$ and $\bar{u}=\mathcal{P} u$;
- how do we eliminate u^{\prime} ? \rightsquigarrow

Scales spliting + optimization

Find \bar{u} and u^{\prime} such that:

$$
\left\{\begin{array}{l}
\bar{u} \in \bar{V}, \\
u^{\prime} \in V, \text { with } \mathcal{P} u^{\prime}=0, \\
\mathcal{C}\left(\bar{u}+u^{\prime}\right)=f
\end{array}\right.
$$

- the fine scale space is implicitly defined by the optimality condition:

$$
V^{\prime}=\{v \in V: \mathcal{P} v=0\}
$$

- we have $\bar{V} \oplus V^{\prime}$;
- when $\Phi(\cdot)=\|\cdot\|^{2}$, i.e., \mathcal{P} is an orthogonal projector, V^{\prime} is the orthogonal complement of \bar{V} (in V) and $\bar{u}=\mathcal{P} u$;
- how do we eliminate u^{\prime} ? \rightsquigarrow

Scales spliting + optimization

Find \bar{u} and u^{\prime} such that:

$$
\left\{\begin{array}{l}
\bar{u} \in \bar{V}, \\
u^{\prime} \in V, \text { with } \mathcal{P} u^{\prime}=0, \\
\mathcal{C}\left(\bar{u}+u^{\prime}\right)=f
\end{array}\right.
$$

- the fine scale space is implicitly defined by the optimality condition:

$$
V^{\prime}=\{v \in V: \mathcal{P} V=0\} ;
$$

- we have $\bar{V} \oplus V^{\prime}$;
- when $\Phi(\cdot)=\|\cdot\|^{2}$,, i.e., \mathcal{P} is an orthogonal projector, V^{\prime} is the orthogonal complement of \bar{V} (in V) and $\bar{u}=\mathcal{P} u$;
- how do we eliminate u^{\prime} ? \rightsquigarrow

Scales spliting + optimization

Find \bar{u} and u^{\prime} such that:

$$
\left\{\begin{array}{l}
\bar{u} \in \bar{V}, \\
u^{\prime} \in V, \text { with } \mathcal{P} u^{\prime}=0, \\
\mathcal{L}\left(\bar{u}+u^{\prime}\right)=f
\end{array}\right.
$$

- the fine scale space is implicitly defined by the optimality condition:

$$
V^{\prime}=\{v \in V: \mathcal{P} V=0\} ;
$$

- we have $\bar{V} \oplus V^{\prime}$;
- when $\Phi()=.\|\cdot\|^{2}$, i.e., \mathcal{P} is an orthogonal projector, V^{\prime} is the orthogonal complement of \bar{V} (in V) and $\bar{u}=\mathcal{P} u$;
- how do we eliminate u^{\prime} ? \rightsquigarrow

Scales splitting + optimization

Find \bar{u} and u^{\prime} such that:

$$
\left\{\begin{array}{l}
\bar{u} \in \bar{V}, \\
u^{\prime} \in V, \text { with } \mathcal{P} u^{\prime}=0, \\
\mathcal{L}\left(\bar{u}+u^{\prime}\right)=f
\end{array}\right.
$$

- the fine scale space is implicitly defined by the optimality condition:

$$
V^{\prime}=\{v \in V: \mathcal{P} v=0\} ;
$$

- we have $\bar{V} \oplus V^{\prime}$;
- when $\Phi(\cdot)=\|\cdot\|^{2}$, i.e., \mathcal{P} is an orthogonal projector, V^{\prime} is the orthogonal complement of \bar{V} (in V) and $\bar{u}=\mathcal{P} u$;
- how do we eliminate u^{\prime} ?

Scales spliting + optimization

Find \bar{u} and u^{\prime} such that:

$$
\left\{\begin{array}{l}
\bar{u} \in \bar{V}, \\
u^{\prime} \in V, \text { with } \mathcal{P} u^{\prime}=0, \\
\mathcal{L}\left(\bar{u}+u^{\prime}\right)=f
\end{array}\right.
$$

- the fine scale space is implicitly defined by the optimality condition:

$$
V^{\prime}=\{v \in V: \mathcal{P} v=0\} ;
$$

- we have $\bar{V} \oplus V^{\prime}$;
- when $\Phi(\cdot)=\|\cdot\|^{2}$, i.e., \mathcal{P} is an orthogonal projector, V^{\prime} is the orthogonal complement of \bar{V} (in V) and $\bar{u}=\mathcal{P} u$;
- how do we eliminate u^{\prime} ?

Scales spliting + optimization

Find \bar{u} and u^{\prime} such that:

$$
\left\{\begin{array}{l}
\bar{u} \in \bar{V}, \\
u^{\prime} \in V, \text { with } \mathcal{P} u^{\prime}=0, \\
\mathcal{L}\left(\bar{u}+u^{\prime}\right)=f
\end{array}\right.
$$

- the fine scale space is implicitly defined by the optimality condition:

$$
V^{\prime}=\{v \in V: \mathcal{P} v=0\} ;
$$

- we have $\bar{V} \oplus V^{\prime}$;
- when $\Phi(\cdot)=\|\cdot\|^{2}$, i.e., \mathcal{P} is an orthogonal projector, V^{\prime} is the orthogonal complement of \bar{V} (in V) and $\bar{u}=\mathcal{P} u$;
- how do we eliminate u^{\prime} ?

Scales splitting + optimization

Find \bar{u} and u^{\prime} such that:

$$
\left\{\begin{array}{l}
\bar{u} \in \bar{V}, \\
u^{\prime} \in V, \text { with } \mathcal{P} u^{\prime}=0, \\
\mathcal{L}\left(\bar{u}+u^{\prime}\right)=f
\end{array}\right.
$$

- the fine scale space is implicitly defined by the optimality condition:

$$
V^{\prime}=\{v \in V: \mathcal{P} v=0\} ;
$$

- we have $\bar{V} \oplus V^{\prime}$;
- when $\Phi(\cdot)=\|\cdot\|^{2}$, i.e., \mathcal{P} is an orthogonal projector, V^{\prime} is the orthogonal complement of \bar{V} (in V) and $\bar{u}=\mathcal{P} u$;
- how do we eliminate u^{\prime} ?

Scales splitting + optimization

Find \bar{u} and u^{\prime} such that:

$$
\left\{\begin{array}{l}
\bar{u} \in \bar{V}, \\
u^{\prime} \in V, \text { with } \mathcal{P} u^{\prime}=0, \\
\mathcal{L}\left(\bar{u}+u^{\prime}\right)=f
\end{array}\right.
$$

- the fine scale space is implicitly defined by the optimality condition:

$$
V^{\prime}=\{v \in V: \mathcal{P} v=0\} ;
$$

- we have $\bar{V} \oplus V^{\prime}$;
- when $\Phi(\cdot)=\|\cdot\|^{2}$, i.e., \mathcal{P} is an orthogonal projector, V^{\prime} is the orthogonal complement of \bar{V} (in V) and $\bar{u}=\mathcal{P} u$;
- how do we eliminate u^{\prime} ?

The fine-scale problem reads: find u^{\prime} such that $\mathcal{P} u^{\prime}=0$ and

$$
v^{*}\left\langle\mathcal{L} u^{\prime}, v^{\prime}\right\rangle_{V}={ }_{v *}^{*}\left\langle r, v^{\prime}\right\rangle_{V}, \quad \forall v^{\prime} \in V \text { with } \mathcal{P} v^{\prime}=0,
$$

where $r:=f-\mathcal{L} \bar{u}$. It can be written in unconstrained form
introducing a Lagrange multiplier: find $u^{\prime} \in V$, and $\bar{\lambda} \in \bar{V}^{*}$ s.t.

where $\mathcal{P}^{\top}: \bar{V}^{*} \rightarrow V^{*}$. We want \mathcal{G}^{\prime} such that $u^{\prime}=\mathcal{G}^{\prime} r$.
Theorem
Let $\mathcal{G} \equiv \mathcal{L}^{-1}$ be the Green's operator. Then,

Moreover: $\mathcal{G}^{\prime} \mathcal{P}^{\top}=0, \mathcal{P} \mathcal{G}^{\prime}=0$.

The fine-scale problem reads: find u^{\prime} such that $\mathcal{P} u^{\prime}=0$ and

$$
v^{*}\left\langle\mathcal{L} u^{\prime}, v^{\prime}\right\rangle_{V}=v^{*}\left\langle r, v^{\prime}\right\rangle_{V}, \quad \forall v^{\prime} \in V \text { with } \mathcal{P} v^{\prime}=0
$$

where $r:=f-\mathcal{L} \bar{u}$. It can be written in unconstrained form introducing a Lagrange multiplier: find $u^{\prime} \in V$, and $\bar{\lambda} \in \bar{V}^{*}$ s.t.

$$
\begin{aligned}
& \mathcal{L} u^{\prime}+\mathcal{P}^{T} \bar{\lambda}=r, \\
& \mathcal{P} u^{\prime}=0,
\end{aligned}
$$

where $\mathcal{P}^{T}: \bar{V}^{*} \rightarrow V^{*}$.
We want \mathcal{G}^{\prime} such that $u^{\prime}=\mathcal{G}^{\prime} r$.
Theorem
Let $\mathcal{G} \equiv \mathcal{L}^{-1}$ be the Green's operator. Then,

Moreover: $\mathcal{G}^{\prime} \mathcal{P}^{\top}=0, \mathcal{P} \mathcal{G}^{\prime}=0$.

The fine-scale problem reads: find u^{\prime} such that $\mathcal{P} u^{\prime}=0$ and

$$
v^{*}\left\langle\mathcal{L} u^{\prime}, v^{\prime}\right\rangle_{V}=v^{*}\left\langle r, v^{\prime}\right\rangle_{V}, \quad \forall v^{\prime} \in V \text { with } \mathcal{P} v^{\prime}=0
$$

where $r:=f-\mathcal{L} \bar{u}$. It can be written in unconstrained form introducing a Lagrange multiplier: find $u^{\prime} \in V$, and $\bar{\lambda} \in \bar{V}^{*}$ s.t.

$$
\begin{aligned}
& \mathcal{L} u^{\prime}+\mathcal{P}^{T} \bar{\lambda}=r, \\
& \mathcal{P} u^{\prime}=0
\end{aligned}
$$

$$
\text { (in } \left.V^{*}\right)
$$

(in \bar{V}),
where $\mathcal{P}^{T}: \bar{V}^{*} \rightarrow V^{*}$.
We want \mathcal{G}^{\prime} such that $u^{\prime}=\mathcal{G}^{\prime} r$
Theorem
Let $\mathcal{G} \equiv \mathcal{L}^{-1}$ be the Green's operator. Then,

Moreover: $\mathcal{G}^{\prime} \mathcal{P}^{T}=0, \mathcal{P} \mathcal{G}^{\prime}=0$.

The fine-scale problem reads: find u^{\prime} such that $\mathcal{P} u^{\prime}=0$ and

$$
v^{*}\left\langle\mathcal{L} u^{\prime}, v^{\prime}\right\rangle_{V}=v^{*}\left\langle r, v^{\prime}\right\rangle_{V}, \quad \forall v^{\prime} \in V \text { with } \mathcal{P} v^{\prime}=0
$$

where $r:=f-\mathcal{L} \bar{u}$. It can be written in unconstrained form introducing a Lagrange multiplier: find $u^{\prime} \in V$, and $\bar{\lambda} \in \bar{V}^{*}$ s.t.

$$
\begin{aligned}
& \mathcal{L} u^{\prime}+\mathcal{P}^{T} \bar{\lambda}=r, \\
& \mathcal{P} u^{\prime}=0
\end{aligned}
$$

$$
\text { (in } \left.V^{*}\right)
$$

$$
\text { (in } \bar{V} \text {), }
$$

where $\mathcal{P}^{\top}: \bar{V}^{*} \rightarrow V^{*}$. We want \mathcal{G}^{\prime} such that $u^{\prime}=\mathcal{G}^{\prime} r$.
Theorem
Let $\mathcal{G} \equiv \mathcal{L}^{-1}$ be the Green's operator. Then,

Moreover: $\mathcal{G}^{\prime} \mathcal{P}^{\top}=0, \mathcal{P} \mathcal{G}^{\prime}=0$.

The fine-scale problem reads: find u^{\prime} such that $\mathcal{P} u^{\prime}=0$ and

$$
v^{*}\left\langle\mathcal{L} u^{\prime}, v^{\prime}\right\rangle_{V^{*}}=v^{*}\left\langle r, v^{\prime}\right\rangle_{V}, \quad \forall v^{\prime} \in V \text { with } \mathcal{P} v^{\prime}=0
$$

where $r:=f-\mathcal{L} \bar{u}$. It can be written in unconstrained form introducing a Lagrange multiplier: find $u^{\prime} \in V$, and $\bar{\lambda} \in \bar{V}^{*}$ s.t.

$$
\begin{aligned}
& \mathcal{L} u^{\prime}+\mathcal{P}^{T} \bar{\lambda}=r, \\
& \mathcal{P} u^{\prime}=0
\end{aligned}
$$

$$
\text { (in } V^{*} \text {) }
$$

$$
(\text { in } \bar{V})
$$

where $\mathcal{P}^{T}: \bar{V}^{*} \rightarrow V^{*}$. We want \mathcal{G}^{\prime} such that $u^{\prime}=\mathcal{G}^{\prime} r$.

Theorem

Let $\mathcal{G} \equiv \mathcal{L}^{-1}$ be the Green's operator. Then,

$$
\mathcal{G}^{\prime}=\mathcal{G}-\mathcal{G} \mathcal{P}^{T}\left(\mathcal{P G} \mathcal{P}^{T}\right)^{-1} \mathcal{P} \mathcal{G} .
$$

Moreover: $\mathcal{G}^{\prime} \mathcal{P}^{T}=0, \mathcal{P} \mathcal{G}^{\prime}=0$.

First part:

$$
\begin{aligned}
\mathcal{L} u^{\prime}+\mathcal{P}^{\top} \bar{\lambda} & =r & \left(\text { in } V^{*}\right), \\
\mathcal{P} u^{\prime} & =0, & \text { (in } \bar{V}),
\end{aligned}
$$

where $r:=f-\mathcal{L} \bar{u}$. From (1) we get

$$
u^{\prime}=\mathcal{G}\left(r-\mathcal{P}^{\top} \bar{\lambda}\right)
$$

substituting in (2) gives $\mathcal{P G r}-\mathcal{P G} \mathcal{P}^{\top} \bar{\lambda}=0$, whence $\bar{\lambda}=\left(\mathcal{P G} \mathcal{P}^{T}\right)^{-1} \mathcal{P G} r$. Finally, using this in (3) yield

Second part:

$$
\mathcal{P G} \mathcal{G}^{\prime}=\mathcal{P G}-\left(\mathcal{P G} \mathcal{P}^{T}\right)\left(\mathcal{P G} \mathcal{P}^{T}\right)^{-1} \mathcal{P G}=\mathcal{P G}-\mathcal{P G}=0
$$

First part:

$$
\begin{aligned}
\mathcal{L} u^{\prime}+\mathcal{P}^{\top} \bar{\lambda} & =r & \left(\text { in } V^{*}\right), \\
\mathcal{P} u^{\prime} & =0, & \text { (in } \bar{V}),
\end{aligned}
$$

where $r:=f-\mathcal{L} \bar{u}$. From (1) we get

$$
\begin{equation*}
u^{\prime}=\mathcal{G}\left(r-\mathcal{P}^{T} \bar{\lambda}\right) \tag{3}
\end{equation*}
$$

substituting in (2) gives $\mathcal{P G r}-\mathcal{P G} \mathcal{P}^{\top} \bar{\lambda}=0$, whence $\bar{\lambda}=\left(\mathcal{P G} \mathcal{P}^{T}\right)^{-1} \mathcal{P G} r$. Finally, using this in (3) yield

Second part:

First part:

$$
\begin{array}{rrr}
\mathcal{L} u^{\prime}+\mathcal{P}^{T} \bar{\lambda}=r & \left(\text { in } V^{*}\right), \\
\mathcal{P} u^{\prime}=0, & (\text { in } \bar{V}),
\end{array}
$$

where $r:=f-\mathcal{L} \bar{u}$. From (1) we get

$$
\begin{equation*}
u^{\prime}=\mathcal{G}\left(r-\mathcal{P}^{T} \bar{\lambda}\right) \tag{3}
\end{equation*}
$$

substituting in (2) gives $\mathcal{P G r}-\mathcal{P G} \mathcal{P}^{\top} \bar{\lambda}=0$, whence $\bar{\lambda}=\left(\mathcal{P G} \mathcal{P}^{T}\right)^{-1} \mathcal{P G} r$.

Second part:

First part:

$$
\begin{aligned}
\mathcal{L} u^{\prime}+\mathcal{P}^{T} \bar{\lambda} & =r & \left(\text { in } V^{*}\right), \\
\mathcal{P} u^{\prime} & =0, & (\text { in } \bar{V}),
\end{aligned}
$$

where $r:=f-\mathcal{L} \bar{u}$. From (1) we get

$$
\begin{equation*}
u^{\prime}=\mathcal{G}\left(r-\mathcal{P}^{T} \bar{\lambda}\right) \tag{3}
\end{equation*}
$$

substituting in (2) gives $\mathcal{P G r}-\mathcal{P G} \mathcal{P}^{\top} \bar{\lambda}=0$, whence $\bar{\lambda}=\left(\mathcal{P G} \mathcal{P}^{T}\right)^{-1} \mathcal{P G} r$. Finally, using this in (3) yield

$$
\begin{equation*}
u^{\prime}=\underbrace{\left(\mathcal{G}-\mathcal{G} \mathcal{P}^{T}\left(\mathcal{P G} \mathcal{P}^{T}\right)^{-1} \mathcal{P} \mathcal{G}\right)}_{\mathcal{G}^{\prime}} r . \tag{4}
\end{equation*}
$$

Second part:

First part:

$$
\begin{aligned}
\mathcal{L} u^{\prime}+\mathcal{P}^{\top} \bar{\lambda} & =r & \left(\text { in } V^{*}\right), \\
\mathcal{P} u^{\prime} & =0, & (\text { in } \bar{V}),
\end{aligned}
$$

where $r:=f-\mathcal{L} \bar{u}$. From (1) we get

$$
\begin{equation*}
u^{\prime}=\mathcal{G}\left(r-\mathcal{P}^{T} \bar{\lambda}\right) \tag{3}
\end{equation*}
$$

substituting in (2) gives $\mathcal{P G} r-\mathcal{P G} \mathcal{P}^{\top} \bar{\lambda}=0$, whence $\bar{\lambda}=\left(\mathcal{P G} \mathcal{P}^{T}\right)^{-1} \mathcal{P G} r$. Finally, using this in (3) yield

$$
\begin{equation*}
u^{\prime}=\underbrace{\left(\mathcal{G}-\mathcal{G} \mathcal{P}^{\top}\left(\mathcal{P G} \mathcal{P}^{\top}\right)^{-1} \mathcal{P G}\right)}_{\mathcal{G}^{\prime}} r . \tag{4}
\end{equation*}
$$

Second part:

$$
\begin{gathered}
\mathcal{G}^{\prime} \mathcal{P}^{T}=\mathcal{G} \mathcal{P}^{T}-\mathcal{G} \mathcal{P}^{T}\left(\mathcal{P G} \mathcal{P}^{T}\right)^{-1}\left(\mathcal{P G} \mathcal{P}^{T}\right)=\mathcal{G} \mathcal{P}^{T}-\mathcal{G} \mathcal{P}^{T}=0 \\
\mathcal{P G}=\mathcal{P G}-\left(\mathcal{P G} \mathcal{P}^{T}\right)\left(\mathcal{P G} \mathcal{P}^{T}\right)^{-1} \mathcal{P G}=\mathcal{P G}-\mathcal{P G}=0
\end{gathered}
$$

1D advection-diffusion problem and H_{0}^{1}-optimality

$$
\mathcal{L} u:=-\kappa \frac{d^{2}}{d x^{2}} u+\beta \frac{d}{d x} u=f \quad \text { in }(0, L), \quad u(0)=u(L)=0 .
$$

The Green's operator is represented by the Green's function:

$$
u(y)=\int_{0}^{L} g(x, y) f(x) d x
$$

We set $V=H_{0}^{1} \equiv H_{0}^{1}(0, L), \bar{V}=$ finite elements;

$$
\begin{array}{r}
\Phi(v)=\|v\|_{H_{0}^{\prime}}^{2}:=\int_{0}^{L}\left(\frac{d}{d x} v(x)\right)^{2} d x, \\
\int_{0}^{L} \frac{d}{d x}(\mathcal{P} v-v) \frac{d}{d x} \bar{v}=0, \quad \forall \bar{v} \in \bar{V} .
\end{array}
$$

$$
\begin{gathered}
\int_{0}^{L} \mathcal{L} \bar{u}(x) \bar{v}(x) d x+\int_{0}^{L} \mathcal{L} u^{\prime}(x) \bar{v}(x) d x=\int_{0}^{L} f(x) \bar{v}(x) d x, \quad \forall \bar{v} \in \bar{V} \\
\int_{0}^{L} \mathcal{L} u^{\prime}(x) v^{\prime}(x) d x=\int_{0}^{L}(f(x)-\mathcal{L} \bar{u}(x)) \bar{v}(x) d x, \quad \forall v^{\prime} \in V^{\prime} \\
u^{\prime}(y)=\int_{0}^{L} g^{\prime}(x, y)(f(x)-\mathcal{L} \bar{u}(x)) d x=\int_{0}^{L} g^{\prime}(x, y) r(x) d x
\end{gathered}
$$

\rightsquigarrow VMS for 1D advection-diffusion equation:

$$
\begin{gathered}
\int_{0}^{L} \mathcal{L}(x) \bar{v}(x) d x+\int_{0}^{L} \mathcal{L} u^{\prime}(x) \bar{v}(x) d x=\int_{0}^{L} f(x) \bar{v}(x) d x, \quad \forall \bar{v} \in \bar{v} \\
\int_{0}^{L} \mathcal{L} u^{\prime}(x) v^{\prime}(x) d x=\int_{0}^{L}(f(x)-\mathcal{L} \bar{u}(x)) \bar{v}(x) d x, \quad \forall v^{\prime} \in V^{\prime} . \\
u^{\prime}(y)=\int_{0}^{L} g^{\prime}(x, y)(f(x)-\mathcal{L} \bar{u}(x)) d x=\int_{0}^{L} g^{\prime}(x, y) r(x) d x,
\end{gathered}
$$

\rightsquigarrow VMS for 1D advection-diffusion equation:

$$
\begin{gathered}
\int_{0}^{L} \mathcal{L} \bar{u}(x) \bar{v}(x) d x+\int_{0}^{L} \int_{0}^{L} \mathcal{L}^{*} \bar{v}(y) g^{\prime}(x, y) r(x) d x d y \\
=\int_{0}^{L} f(x) \bar{v}(x) d x, \quad \forall \bar{v} \in \bar{V} .
\end{gathered}
$$

P1 coarse scales

Consider a grid of nodes $0=x_{0}<x_{1}<\ldots<x_{n_{e l}-1}<x_{n_{e l}}=L$, that subdivides $(0, L)$ into $n_{e l}$ elements $\left(x_{i-1}, x_{i}\right)\left(i=1, \ldots, n_{e l}\right)$, and take piecewise affine $\bar{V} \subset H_{0}^{1}$, with $N:=\operatorname{dim}(\bar{V}) \equiv n_{e l}-1$.
Then the abstract formula gives:
$g^{\prime}(x, y)=g(x, y)-\left[g\left(x_{1}, y\right) \ldots g\left(x_{N}, y\right)\right]\left[\begin{array}{ccc}g\left(x_{1}, x_{1}\right) & \ldots & g\left(x_{N}, x_{1}\right) \\ \vdots & \ddots & \vdots \\ g\left(x_{1}, x_{N}\right) & \ldots & g\left(x_{N}, x_{N}\right)\end{array}\right]^{-1}\left[\begin{array}{c}g\left(x_{,}, x_{1}\right) \\ \vdots \\ g\left(x, x_{N}\right)\end{array}\right]$

Structure of $g^{\prime}(\cdot, \cdot)$ for 1D, linear element, H_{0}^{1}-optimality

- $g^{\prime}(x, y) \neq 0$ only if x and y belong to the same element
- g^{\prime} is the element Green's function $g^{e l}$ on each $\left(x_{i-1}, x_{i}\right) \times\left(x_{i-1}, x_{i}\right)$

The structure of g^{\prime} for this case is known (RFB-FEM), indeed

(u^{\prime} is a bubble, \bar{u} is nodally exact), whence

Structure of $g^{\prime}(\cdot, \cdot)$ for 1D, linear element, H_{0}^{1}-optimality

- $g^{\prime}(x, y) \neq 0$ only if x and y belong to the same element
- g^{\prime} is the element Green's function $g^{e l}$ on each $\left(x_{i-1}, x_{i}\right) \times\left(x_{i-1}, x_{i}\right)$

The structure of g^{\prime} for this case is known (RFB-FEM), indeed

$$
V^{\prime}=\bigoplus_{i=1, \ldots,, n_{e l}} H_{0}^{1}\left(x_{i-1}, x_{i}\right),
$$

(u^{\prime} is a bubble, \bar{u} is nodally exact), whence

$$
\mathcal{L} u^{\prime}=f-\mathcal{L} \bar{u}, \text { on }\left(x_{i-1}, x_{i}\right), \quad u^{\prime}\left(x_{i-1}\right)=u^{\prime}\left(x_{i}\right)=0 .
$$

Comparison between the Green's function g (left) and the fine scale Green's function g^{\prime} (right) for linear elements, $\kappa=10^{-1}$, $\beta=1, L=4$ and a grid of $n_{e l}=4$ uniform elements.

Effect of the fine scale on the coarse scale equation:

$$
\begin{aligned}
\int_{0}^{L} \int_{0}^{L} & \mathcal{L}^{*} \bar{v}(y) g^{\prime}(x, y) r(x) d x d y \\
& =\sum_{i=1}^{n_{e l}} \int_{x_{i-1}}^{x_{i}} \int_{x_{i-1}}^{x_{i}} \mathcal{L}^{*} \bar{v}(y) g^{\prime}(x, y) r(x) d x d y \\
& =\sum_{i=1}^{n_{e l}} \frac{\int_{x_{i-1}}^{x_{i}} \int_{x_{i-1}}^{x_{i}} g^{\prime}(x, y) d x d y}{\left|x_{i}-x_{i-1}\right|} \int_{x_{i-1}}^{x_{i}} r(x) \mathcal{L}^{*} \bar{v}(x) d x \\
& =\sum_{i=1}^{n_{e l}} \tau_{1} \int_{x_{i-1}}^{x_{i}} r(x) \mathcal{L}^{*} \bar{v}(x) d x \\
& =\sum_{i=1}^{n_{e l}} \tau_{1} \int_{x_{i-1}}^{x_{i}}\left(\beta \frac{d}{d x} \bar{u}(x)-f(x)\right)\left(\beta \frac{d}{d x} \bar{v}(x)\right) d x
\end{aligned}
$$

Fine scale Green's functions g^{\prime} for linears in the diffusive ($\alpha=10^{-2}$, left) and in the advective ($\alpha=10^{2}$, right) regime; $\alpha:=\frac{\beta h}{2 \kappa}$ is the mesh Peclét number.

Higher-order coarse scales

$$
\bar{v}=\left\{\bar{v} \in H_{0}^{1}(0, L) \text { such that } \bar{v}_{\left(x_{i-1}, x_{i}\right)} \in \mathbb{P}_{k}, 0 \leq i \leq n_{e l}\right\} ;
$$

unlike the linear case, \bar{V} now contains bubbles, and then:

$$
V^{\prime} \subsetneq \bigoplus_{i=1, \ldots, n_{e l}} H_{0}^{1}\left(x_{i-1}, x_{i}\right) .
$$

Then

Higher-order coarse scales

$$
\bar{v}=\left\{\bar{v} \in H_{0}^{1}(0, L) \text { such that } \bar{v}_{\mid\left(x_{i-1}, x_{i}\right)} \in \mathbb{P}_{k}, 0 \leq i \leq n_{e l}\right\} ;
$$

unlike the linear case, \bar{V} now contains bubbles, and then:

$$
V^{\prime} \underset{\neq}{\subsetneq} \bigoplus_{i=1, \ldots, n_{e l}} H_{0}^{1}\left(x_{i-1}, x_{i}\right) .
$$

Then

$$
\begin{gathered}
\int_{x_{i-1}}^{x_{i}} \mathcal{L} u^{\prime}(x) v^{\prime}(x) d x=\int_{x_{i-1}}^{x_{i}}(f(x)-\mathcal{L} \bar{u}(x)) v^{\prime}(x) d x, \quad \forall v^{\prime} \in V^{\prime} \\
\psi \\
\mathcal{L} u^{\prime}=f-\mathcal{L} \bar{u}, \text { on }\left(x_{i-1}, x_{i}\right), \quad u^{\prime}\left(x_{i-1}\right)=u^{\prime}\left(x_{i}\right)=0 .
\end{gathered}
$$

If $k=2$ then we obtain for $0 \leq x, y \leq h$

$$
g^{\prime}(x, y)=g^{e l}(x, y)-\frac{\int_{0}^{h} g^{e l}(s, y) d s \int_{0}^{h} g^{e l}(x, t) d t}{\int_{0}^{h} \int_{0}^{h} g^{e l}(s, t) d s d t}=I+I I
$$

Term / is the element Green's function, and term // is:

$$
I=\frac{2\left(y e^{\frac{\beta h}{\kappa}}-h e^{\frac{\beta y}{\kappa}}+h-y\right)\left(-x-h e^{\frac{\beta h}{\kappa}}+e^{-\frac{\beta(-h+x)}{\kappa}} h+e^{\frac{\beta h}{\kappa} x}\right)}{h\left(e^{\frac{\beta h}{\kappa}}-1\right)\left(h e^{\frac{\beta h}{\kappa}} \beta-2 e^{\frac{\beta h}{\kappa}} \kappa+\beta h+2 \kappa\right)} .
$$

Fine scale Green's functions g^{\prime} for quadratics in the diffusive ($\alpha=10^{-2}$, left) and in the advective ($\alpha=10^{2}$, right) regime; $\alpha:=\frac{\beta h}{2 \kappa}$ is the mesh Peclét number.

For $k=3$, for $0 \leq x \leq h$ and $0 \leq y \leq h$ we have

$$
\left.\begin{array}{rl}
g^{\prime}(x, y)=g^{e l}(x, y)-\left[\int_{0}^{h} g^{e l}(s, y) d s\right. & \int_{0}^{h} s g^{e l}(s, y) d s
\end{array}\right] .
$$

Fine scale Green's functions g^{\prime} for cubics in the diffusive ($\alpha=10^{-2}$, left) and in the advective ($\alpha=10^{2}$, right) regime; $\alpha:=\frac{\beta h}{2 \kappa}$ is the mesh Peclét number.

The fine-scale effect on the coarse-scale equation is now:

$$
\begin{aligned}
& \int_{0}^{L} \int_{0}^{L} \mathcal{L}^{*} \bar{v}(y) g^{\prime}(x, y) r(x) d x d y \\
&=\sum_{i=1}^{n_{e l}} \int_{x_{i-1}}^{x_{i}} \int_{x_{i-1}}^{x_{i}} \mathcal{L}^{*} \bar{v}(y) g^{\prime}(x, y) r(x) d x d y \\
&=\sum_{i=1}^{n_{e l}} \tau_{k} \int_{x_{i-1}}^{x_{i}}\left(\frac{d^{k-1}}{d x^{k-1}} r(x)\right)\left(\frac{d^{k-1}}{d x^{k-1}} \mathcal{L}^{*} \bar{v}(x)\right)
\end{aligned}
$$

- still local (at the element level)

The fine-scale effect on the coarse-scale equation is now:

$$
\begin{aligned}
& \int_{0}^{L} \int_{0}^{L} \mathcal{L}^{*} \bar{v}(y) g^{\prime}(x, y) r(x) d x d y \\
&=\sum_{i=1}^{n_{e l}} \int_{x_{i-1}}^{x_{i}} \int_{x_{i-1}}^{x_{i}} \mathcal{L}^{*} \bar{v}(y) g^{\prime}(x, y) r(x) d x d y \\
& \quad= \sum_{i=1}^{n_{e l}} \tau_{k} \int_{x_{i-1}}^{x_{i}}\left(\frac{d^{k-1}}{d x^{k-1}} r(x)\right)\left(\frac{d^{k-1}}{d x^{k-1}} \mathcal{L}^{*} \bar{v}(x)\right) d x
\end{aligned}
$$

- still local (at the element level)
- since $\mathcal{G}^{\prime} \mathcal{P}^{T}=0$ and $\mathcal{P} \mathcal{G}^{\prime}=0$, then g^{\prime} is L^{2}-orthogonal to \mathbb{P}_{k-2} in both x and y, on each $\left(x_{i-1}, x_{i}\right) \times\left(x_{i-1}, x_{i}\right)$.

The τ_{k} are positive and of order $h^{2 k-1} / \beta$ and $\alpha h^{2 k-1} / \beta=h^{2 k} / \kappa$ in the advective and in the diffusive regimes, respectively.

H_{0}^{1} vs. L^{2}-optimality in 1D: localization of g^{\prime}

g^{\prime} for the 1D problem and P1 coarse scales, $\kappa=10^{-3}, \beta=1$, $L=1,16$ elem.; $\mathcal{P}=H_{0}^{1}-$ proj. (left) and $\mathcal{P}=L^{2}$-proj. (right): in the latter case, g^{\prime} is global and unattenuated.

2D advection-diffusion model problem

Consider:

$$
\left.\begin{array}{l}
\left\{\begin{aligned}
&-\kappa \Delta u+\beta \cdot \nabla u=f \\
& \text { in } \Omega \\
& u=0
\end{aligned} \quad \text { on } \partial \Omega\right.
\end{array}\right\}
$$

- domain for plotting $x \mapsto g^{\prime}(x, y)$, with $y=1 / 8 \cdot[4.5$ 5.75]:

- domain for plotting $x \mapsto g^{\prime}(x, y)$, with $y=1 / 8 \cdot[4.5$ 5.75]:

- g and g^{\prime} are computed numerically.

Plot of: $x \mapsto g(x, y)$

plot of $x \mapsto g^{\prime}(x, y)$, with $\mathcal{P} \equiv H_{0}^{1}$-proj.

plot of $x \mapsto g^{\prime}(x, y)$, with $\mathcal{P} \equiv L^{2}$-proj.

Coarse-scale component \bar{u} for the model problem. $\mathcal{P}=H_{0}^{1}$-proj. (left) and $\mathcal{P}=L^{2}$-proj. (right).

Coarse-scale component \bar{u} for the model problem (different mesh). $\mathcal{P}=H_{0}^{1}$-proj. (left) and $\mathcal{P}=L^{2}$-proj. (right).

Comparison of $x \mapsto g(x, y)$ (left), $x \mapsto g^{\prime}(x, y)$ for $\mathcal{P}=H_{0}^{1}$-proj. (middle) and $\mathcal{P}=$ "nodal"-proj. (right).

H_{0}^{1}-optimal method and SUPG.

In the case $\mathcal{P}=H_{0}^{1}$-proj., because of $P \mathcal{G}^{\prime}=0$, we have:

$$
\int_{\Omega} g^{\prime}(x, y) \Delta \bar{v}(y) d y=0, \quad \forall \bar{v} \in \bar{V}
$$

Therefore, the fine-scale effect on the coarse-scale eq. is:

$$
\begin{aligned}
\int_{\Omega} \int_{\Omega}(f(x) & -\mathcal{L} \bar{u}(x)) g^{\prime}(x, y) \mathcal{L}^{*} \bar{v}(y) d x d y \\
& =-\int_{\Omega} \int_{\Omega}(f(x)-\mathcal{L} \bar{u}(x)) g^{\prime}(x, y) \beta \cdot \nabla \bar{v}(y) d x d y .
\end{aligned}
$$

- In 1D, where g^{\prime} is fully localized, this is the classical SUPG stabilization [A. N. Brooks and T. J. R. Hughes, '82]
- In 2D, g^{\prime} is not fully localized, and SUPG is obtained replacing g^{\prime} by the element-wise constant τ.

Summary

- We have derived an expression for the fine-scale Green's function g^{\prime} arising in VMS: the specification of a functional $\Phi(\cdot)$, and then of a projector \mathcal{P} defining the decomposition into coarse and fine-scales, renders the problem well-posed.
- For the adv.-diff. 1D problem, we have explicitly calculated g^{\prime} : for higher order-elements, we have obtained a new higher-order residual-based stabilization.
- For the 2D problem, we have numerically computed g^{\prime} : it is found that the projector induced by the H_{0}^{1}-seminorm is associated to a g^{\prime} with dominantly local support, whereas the projector induced by the L^{2}-norm is not; g^{\prime} is only attenuated for the "nodal" interpolation.
- Further extension: non-linear fine-scale optimization.

References

F. Brezzi and A. Russo, Choosing bubbles for advection-diffusion problems, M^{3} AS, 4 (1994), pp. 571-587.
T. J. R. Hughes, Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, CMAME, 127 (1995), pp. 387-401.
T. J. R. Hughes and G. Sangalli, Variational multiscale analysis: the fine-scale Green's function, projection, optimization, localization, and stabilized methods, Tech. Report 05-46, ICES, November 2005.

