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The abstract problem and framework

Given a Hilbert space V , with norm ‖ · ‖V and s.p. (·, ·)V , dual
space V ∗, and L : V → V ∗, we consider the problem:{

find u ∈ V :

Lu = f .

We split the space V , where the exact solution is, into:

V̄ = space of coarse scales,
V ′ = space of fine scales,

and then consider: {
find ū ∈ V̄ , u′ ∈ V ′ :

L(ū + u′) = f .
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Variational multiscale (VMS) formulation

The variational formulation of the problem is:

find ū + u′ ∈ V : V∗〈L(ū + u′), v〉V = V∗〈f , v〉V , ∀v ∈ V .

Then, we split the problem as:

V∗〈Lū, v̄〉V + V∗〈Lu′, v̄〉V = V∗〈f , v̄〉V , ∀v̄ ∈ V̄ ,

V∗〈Lū, v ′〉V + V∗〈Lu′, v ′〉V = V∗〈f , v ′〉V , ∀v ′ ∈ V ′.

 u′ = G′(f − Lū) 

VMS formulation (for ū)

Find ū ∈ V̄ such that:

V∗〈Lū, v̄〉V − V∗〈LG′Lū, v̄〉V
= V∗〈f , v̄〉V − V∗〈LG′f , v̄〉V , ∀v̄ ∈ V̄ .
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VMS formulation (for ū)
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V∗〈Lū, v̄〉V − V∗〈LG′Lū, v̄〉V
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find ū + u′ ∈ V : V∗〈L(ū + u′), v〉V = V∗〈f , v〉V , ∀v ∈ V .

Then, we split the problem as:
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VMS formulation
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V∗〈Lū, v̄〉V − V∗〈LG′Lū, v̄〉V
= V∗〈f , v̄〉V − V∗〈LG′f , v̄〉V , ∀v̄ ∈ V̄ .

the fine-scale effect is determined by the fine scale Green’s
operator G′ : V ∗ → V ′ which gives V ′ 3 u′ = G′r such that
V∗〈Lu′, v ′〉V = V∗〈r , v ′〉V , ∀v ′ ∈ V ′,
G′ is not the classical Green’s operator G ≡ L−1 : V ∗ → V ,
in order to derive a VMS formulation, we need
V̄ ∩ V ′ = {0}, that is we need a direct sum of V̄ ⊕ V ′.
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Example of typical VMS methods

For 2D advection-diffusion problems, various choices for
V̄ ⊕ V ′ have been proposed in literature:

P1⊕residual-free bubbles: [F. BREZZI AND A. RUSSO, ’94],
[T. J. R. HUGHES, ’95], [F. BREZZI, L. P. FRANCA, T. J. R.
HUGHES, AND A. RUSSO, ’97], . . .
P2⊕residual-free bubbles: [M. I. ASENSIO, A. RUSSO,
AND G. SANGALLI, ’04]
P1⊕

(
r.-f. bubbles+ . . .

)
: [F. BREZZI AND L.D. MARINI,

’02][A.CANGIANI AND E. SÜLI, 05], [L. P. FRANCA, A. L.
MADUREIRA AND F. VALENTIN, 05], . . .

In all cases,
V̄ ⊕ V ′ ⊂

6=
V ≡ all-scale space.
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New approach to VMS: error optimization

Minimize Φ(u′) subject to


ū ∈ V̄ ,

u′ ∈ V ,

L(ū + u′) = f

we do not assume a-priori constraints on the fine scales,
we minimize the fine scale u′ (i.e., the numerical error
u − ū ≡ u′) w.r.t. a functional Φ(·),
then ū and u′ are uniquely determined, and the numerical
solution ū is optimal (Φ(u − ū) is minimized) by design,
here, we consider Φ(·) = ‖ · ‖2 (for example, ‖ · ‖ = ‖ · ‖H1

0

or ‖ · ‖ = ‖ · ‖L2).
other possibilities: Φ(·) is not a quadratic form.
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ū ∈ V̄ ,

u′ ∈ V ,

L(ū + u′) = f
⇔ u′ ∈ u + V̄  δu′ ∈ V̄ .

Then, under suitable condition on Φ(·):

Φ(u′) = min
v ′∈u+V̄

Φ(v ′) ⇔ DΦ(u′; δu′) = 0, ∀δu′ ∈ V̄ .

In case of Φ(·) = ‖ · ‖2, then DΦ(u′; δu′) = (u′, δu′) = 0 , for all
δu′ ∈ V̄ , that is, u′ is orthogonal to V̄ , that is,

Pu′ = 0,

where P : V → V̄ is the orthogonal projector on V̄ .
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Scales splitting + optimization

Find ū and u′ such that:
ū ∈ V̄ ,

u′ ∈ V , with Pu′ = 0,

L(ū + u′) = f

the fine scale space is implicitly defined by the optimality
condition:

V ′ = {v ∈ V : Pv = 0};

we have V̄ ⊕ V ′;
when Φ(·) = ‖ · ‖2„ i.e., P is an orthogonal projector, V ′ is
the orthogonal complement of V̄ (in V ) and ū = Pu;
how do we eliminate u′?  
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when Φ(·) = ‖ · ‖2„ i.e., P is an orthogonal projector, V ′ is
the orthogonal complement of V̄ (in V ) and ū = Pu;
how do we eliminate u′?  
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Find ū and u′ such that:
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The fine-scale problem reads: find u′ such that Pu′ = 0 and

V∗〈Lu′, v ′〉V = V∗〈r , v ′〉V , ∀v ′ ∈ V with Pv ′ = 0,

where r := f − Lū. It can be written in unconstrained form
introducing a Lagrange multiplier: find u′ ∈ V , and λ̄ ∈ V̄ ∗ s.t.

Lu′ + PT λ̄ = r , (in V ∗)

Pu′ = 0, (in V̄ ),

where PT : V̄ ∗ → V ∗. We want G′ such that u′ = G′r .

Theorem

Let G ≡ L−1 be the Green’s operator. Then,

G′ = G − GPT (PGPT )−1PG.

Moreover: G′PT = 0, PG′ = 0.
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First part:

Lu′ + PT λ̄ = r (in V ∗), (1)

Pu′ = 0, (in V̄ ), (2)

where r := f − Lū. From (1) we get

u′ = G(r − PT λ̄); (3)

substituting in (2) gives PGr − PGPT λ̄ = 0, whence
λ̄ = (PGPT )−1PGr . Finally, using this in (3) yield

u′ = (G − GPT (PGPT )−1PG)︸ ︷︷ ︸
G′

r . (4)

Second part:

G′PT = GPT − GPT (PGPT )−1(PGPT ) = GPT − GPT = 0,

PG′ = PG − (PGPT )(PGPT )−1PG = PG − PG = 0.
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1D advection-diffusion problem and H1
0 -optimality

Lu := −κ
d2

dx2 u + β
d
dx

u = f in (0, L), u(0) = u(L) = 0.

The Green’s operator is represented by the Green’s function:

u(y) =

∫ L

0
g(x , y)f (x) dx ,

We set V = H1
0 ≡ H1

0 (0, L), V̄ =finite elements;

Φ(v) = ‖v‖2
H1

0
:=

∫ L

0

(
d
dx

v(x)

)2

dx ,∫ L

0

d
dx

(Pv − v)
d
dx

v̄ = 0, ∀v̄ ∈ V̄ .



Introduction The 1D advection-diffusion problem The 2D advection-diffusion problem Summary and References

∫ L

0
Lū(x)v̄(x) dx+

∫ L

0
Lu′(x)v̄(x) dx =

∫ L

0
f (x)v̄(x) dx , ∀v̄ ∈ V̄

∫ L

0
Lu′(x)v ′(x) dx =

∫ L

0
(f (x)− Lū(x))v̄(x) dx , ∀v ′ ∈ V ′.

u′(y) =

∫ L

0
g′(x , y)(f (x)− Lū(x)) dx =

∫ L

0
g′(x , y)r(x) dx ,

 VMS for 1D advection-diffusion equation:∫ L

0
Lū(x)v̄(x) dx +

∫ L

0

∫ L

0
L∗v̄(y)g′(x , y)r(x) dxdy

=

∫ L

0
f (x)v̄(x) dx , ∀v̄ ∈ V̄ .
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∫ L

0

∫ L

0
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∫ L

0
f (x)v̄(x) dx , ∀v̄ ∈ V̄ .
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P1 coarse scales

Consider a grid of nodes 0 = x0 < x1 < . . . < xnel−1 < xnel = L,
that subdivides (0, L) into nel elements (xi−1, xi) (i = 1, . . . , nel ),
and take piecewise affine V̄ ⊂ H1

0 , with N := dim(V̄ ) ≡ nel − 1.

Then the abstract formula gives:

g′(x , y) = g(x , y)−[g(x1, y) . . . g(xN , y)]

g(x1, x1) . . . g(xN , x1)
...

. . .
...

g(x1, xN) . . . g(xN , xN)

−1 g(x , x1)
...

g(x , xN)

 .
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Structure of g′(·, ·) for 1D, linear element, H1
0 -optimality

g′(x , y) 6= 0 only if x and y belong to the same element
g′ is the element Green’s function gel on each
(xi−1, xi)× (xi−1, xi)

The structure of g′ for this case is known (RFB-FEM), indeed

V ′ =
⊕

i=1,...,nel

H1
0 (xi−1, xi),

(u′ is a bubble, ū is nodally exact), whence

Lu′ = f − Lū, on (xi−1, xi), u′(xi−1) = u′(xi) = 0.
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Comparison between the Green’s function g (left) and the fine
scale Green’s function g′ (right) for linear elements, κ = 10−1,
β = 1, L = 4 and a grid of nel = 4 uniform elements.
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Effect of the fine scale on the coarse scale equation:∫ L

0

∫ L

0
L∗v̄(y)g′(x , y)r(x) dxdy

=

nel∑
i=1

∫ xi

xi−1

∫ xi

xi−1

L∗v̄(y)g′(x , y)r(x) dxdy

=

nel∑
i=1

∫ xi
xi−1

∫ xi
xi−1

g′(x , y) dxdy

|xi − xi−1|

∫ xi

xi−1

r(x)L∗v̄(x) dx

=

nel∑
i=1

τ1

∫ xi

xi−1

r(x)L∗v̄(x) dx

=

nel∑
i=1

τ1

∫ xi

xi−1

(
β

d
dx

ū(x)− f (x)

) (
β

d
dx

v̄(x)

)
dx
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Fine scale Green’s functions g′ for linears in the diffusive
(α = 10−2, left) and in the advective (α = 102, right) regime;
α := βh

2κ is the mesh Peclét number.
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Higher-order coarse scales

V̄ =
{

v̄ ∈ H1
0 (0, L) such that v̄|(xi−1,xi ) ∈ Pk , 0 ≤ i ≤ nel

}
;

unlike the linear case, V̄ now contains bubbles, and then:

V ′ ⊂
6=

⊕
i=1,...,nel

H1
0 (xi−1, xi).

Then∫ xi

xi−1

Lu′(x)v ′(x) dx =

∫ xi

xi−1

(f (x)− Lū(x))v ′(x) dx , ∀v ′ ∈ V ′

6⇓
Lu′ = f − Lū, on (xi−1, xi), u′(xi−1) = u′(xi) = 0.
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If k = 2 then we obtain for 0 ≤ x , y ≤ h

g′(x , y) = gel(x , y)−
∫ h

0 gel(s, y)ds
∫ h

0 gel(x , t)dt∫ h
0

∫ h
0 gel(s, t)dsdt

= I + II.

Term I is the element Green’s function, and term II is:

II =
2

(
ye

βh
κ − he

βy
κ + h − y

) (
−x − he

βh
κ + e−β(−h+x)

κ h + e
βh
κ x

)
h

(
e

βh
κ − 1

) (
he

βh
κ β − 2 e

βh
κ κ + βh + 2 κ

) .
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Fine scale Green’s functions g′ for quadratics in the diffusive
(α = 10−2, left) and in the advective (α = 102, right) regime;
α := βh

2κ is the mesh Peclét number.
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For k = 3, for 0 ≤ x ≤ h and 0 ≤ y ≤ h we have

g′(x , y) = gel(x , y)−
[∫ h

0 gel(s, y)ds
∫ h

0 sgel(s, y)ds
]

×

[∫ h
0

∫ h
0 gel(s, t)dsdt

∫ h
0

∫ h
0 sgel(s, t)dsdt∫ h

0

∫ h
0 tgel(s, t)dsdt

∫ h
0

∫ h
0 stgel(s, t)dsdt

]−1

×

[∫ h
0 gel(x , t)dt∫ h
0 tgel(x , t)dt

]
.
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Fine scale Green’s functions g′ for cubics in the diffusive
(α = 10−2, left) and in the advective (α = 102, right) regime;
α := βh

2κ is the mesh Peclét number.
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The fine-scale effect on the coarse-scale equation is now:∫ L

0

∫ L

0
L∗v̄(y)g′(x , y)r(x) dxdy

=

nel∑
i=1

∫ xi

xi−1

∫ xi

xi−1

L∗v̄(y)g′(x , y)r(x) dxdy

=

nel∑
i=1

τk

∫ xi

xi−1

(
dk−1

dxk−1 r(x)

) (
dk−1

dxk−1L
∗v̄(x)

)
dx .

still local (at the element level)
since G′PT = 0 and PG′ = 0, then g′ is L2-orthogonal to
Pk−2 in both x and y , on each (xi−1, xi)× (xi−1, xi).
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The τk are positive and of order h2k−1/β and αh2k−1/β = h2k/κ
in the advective and in the diffusive regimes, respectively.
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H1
0 vs. L2-optimality in 1D: localization of g′

g′ for the 1D problem and P1 coarse scales, κ = 10−3, β = 1,
L = 1, 16 elem.; P = H1

0−proj. (left) and P = L2−proj. (right):
in the latter case, g′ is global and unattenuated.
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2D advection-diffusion model problem

Consider:

{
−κ∆u + β · ∇u = f in Ω

u = 0 on ∂Ω

κ = 2 · 10−3, ‖β‖ = 1/
√

2.
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domain for plotting x 7→ g′(x , y), with y = 1/8 · [4.5 5.75]:

g and g′ are computed numerically.
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g and g′ are computed numerically.
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Plot of: x 7→ g(x , y)
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plot of x 7→ g′(x , y), with P ≡ H1
0 -proj.
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plot of x 7→ g′(x , y), with P ≡ L2-proj.
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Coarse-scale component ū for the model problem.
P = H1

0 -proj. (left) and P = L2-proj. (right).
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Coarse-scale component ū for the model problem (different
mesh). P = H1

0 -proj. (left) and P = L2-proj. (right).
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P = H1
0 -proj. (left) and P =“nodal”-proj. (right).
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g g′, H1
0 -proj. g′,“nodal”-proj.

Comparison of x 7→ g(x , y) (left), x 7→ g′(x , y) for P = H1
0 -proj.

(middle) and P =“nodal”-proj. (right).
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H1
0 -optimal method and SUPG.

In the case P = H1
0 -proj., because of PG′ = 0, we have:∫

Ω
g′(x , y)∆v̄(y) dy = 0, ∀v̄ ∈ V̄ .

Therefore, the fine-scale effect on the coarse-scale eq. is:∫
Ω

∫
Ω

(f (x)− Lū(x)) g′(x , y)L∗v̄(y) dxdy

= −
∫

Ω

∫
Ω

(f (x)− Lū(x)) g′(x , y)β · ∇v̄(y) dxdy .

In 1D, where g′ is fully localized, this is the classical SUPG
stabilization [A. N. BROOKS AND T. J. R. HUGHES, ’82]
In 2D, g′ is not fully localized, and SUPG is obtained
replacing g′ by the element-wise constant τ .
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Summary

We have derived an expression for the fine-scale Green’s
function g′ arising in VMS: the specification of a functional
Φ(·), and then of a projector P defining the decomposition
into coarse and fine-scales, renders the problem
well-posed.
For the adv.-diff. 1D problem, we have explicitly calculated
g′: for higher order-elements, we have obtained a new
higher-order residual-based stabilization.
For the 2D problem, we have numerically computed g′: it is
found that the projector induced by the H1

0 -seminorm is
associated to a g′ with dominantly local support, whereas
the projector induced by the L2-norm is not; g′ is only
attenuated for the “nodal” interpolation.
Further extension: non-linear fine-scale optimization.
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