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Background:

Special research program SFB570 “Distortion Engineering”

(engineering project, joint with applied math)

Study (both experimentally and numerically) mechanisms which lead to 
distortions (= unwanted deformations) during production of steel 
workpieces

Various steps of production: forming, cutting, …, heat treatment

Here: 
Solid-solid phase transitions during heat treatment ,
cooling of a hot steel workpiece
Phase transitions  austenite -> pearlite - bainite - (martensite)



Phase transitions in steel and related effects

Macroscopic model wanted for simulation of complete workpiece
(like a gear, e.g.) in order to study/optimize distortions



Phase transitions in steel and related effects

Macroscopic variables:
• temperature,
• phase fractions,
• elastic and plastic deformations, 
• (concentrations of carbon and other ingredients)

Variables interact !
• phase transformations depend on temperature, stress
• density/deformations depend on phase fraction, temperature
• …

Multi-scale phenomenon: various time/space scales
• temperature diffusion: fast, long-range
• chemical diffusion in solids: slow, short-range
• phase transformations: several (many) seconds –

meanwhile, temperature may change substantially
Phenomena on small scale give effects on large scale !



Phase transitions in steel and related effects

Selection of scale – selection of model:

• Macro: work piece (1 - 100 cm)
continuum mechanics, no grain structure, 
phase fraction

• Meso 1: multiple grains (10 – 100 µm)
continuum mechanics, grain structure, 
resolve austenite-pearlite transition, nearly no diffusion of C

• Meso 2: one or few grains (0.1 – 10 µm)
continuum mechanics, grain structure,
resolve structure of pearlite (lamella of ferrite and carbide),
diffusion of C in transition layer, Fe and C conserved

• Micro: scale of atoms / clusters
plastic deformation by relocation of atoms, 
needs MD/MC simulations



Phase transitions in steel and related effects

Look here at two special situations:

Anisotropic (macroscopic) dilatation behavior of banded material

Phase field models for mesoscopic phase transitions



Adaptive FEM

Adaptive Finite Element Methods

Automatic local refinement or coarsening of meshes,
based on numerically computed solution

Generate quasi-optimal meshes for a given error tolerance

Meshes 
for different
tolerances:

Local error indicators are computed from numerical solution 
and given data of the problem,   give error estimate and are 
used to select mesh elements for refinement/coarsening

Equivalency of the estimate to the error can be 
mathematically proven (for model problems)

ALBERTA: academic toolbox 1D/2D/3D, open for extensions



Adaptive FEM

Adaptive Finite Element Methods

Especially well suited for time dependent situations with 
time-varying (boundary or interior) layers

Quenching of a hot steel workpiece (2D): Graphs of temperature 
and corresponding adaptive meshes at two different times



Adaptive FEM

Adaptive Finite Element Methods

Similar situations occur locally in more complicated geometries

Heat treatment of a (simple) cogwheel in 2D and 3D, with stronger cooling 
of the cog tips: Adaptive meshes with emphasized deformations.



Anisotropic dilatation of banded material

Anisotropic dilatation behavior of banded material

Experimental observation: [Hunkel, Frerichs, Prinz, Surm, Hoffmann, Zoch, 2005]
Samples taken in different direction relative to rolling direction



Anisotropic dilatation of banded material

20MnCr5 with banded chemical inhomogeneities (from segregation and rolling)

Anisotropic length change 
during each cooling cycle:

Open question: why?
Is this an effect of TRIP ???
(TRIP = transformation induced plasticity)



Anisotropic dilatation of banded material

Model problem inspired by banded structure:

Don´t look at grain structures, but small sample of layered material: 
(planar or checkerboard layer structure)

Different phase change laws in differently colored sub-regions!
(phase change at lower temperatures (later) in blue sub-regions)

Model for thermo-elasticity with phase changes including TRIP

High local stresses near sub-region-boundaries!
Adaptive finite element calculation with (automatic!) fine resolution 
near well suited



Model for thermo-elasticity with phase changes including TRIP

Adaptive finite element calculation: ALBERTA
Not all correct material parameters are used (known) in the moment.
Natural boundary conditions (arguable…)

Anisotropic dilatation of banded material
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Anisotropic dilatation of banded material

Adaptive finite element calculation:   planar layers

Meshes (3D) and 
emphasized 
deformations at 
different times 
during the 
simulation

Final 
geometry



Anisotropic dilatation of banded material

Adaptive finite element calculation:   planar layers

Relative length changes in longitudinal and transversal directions
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Anisotropic dilatation of banded material

Adaptive finite element calculation:   checkerboard layers

Final 
geometry

Meshes (3D) and emphasized deformations at different times during the simulation



Recall experimental results:

Anisotropic dilatation of banded material

Relative length changes in 
longitudinal and transversal 

directions

Adaptive finite element calculation:   checkerboard layers

Results are (at least qualitatively) very similar to the experiments

So, TRIP effect might be the reason for these distortio ns!



Phase field models for mesoscopic phase transitions

Mesoscopic view on phase transitions: 

Sharp interface between 
regions of pure phase/constituent
(austenite/pearlite, e.g.)

Motion of interfaces: moving boundary problem
Pure phases described by corresponding characteristic functions

Phase Field Approach:
Introduce a smooth phase variable with a narrow transition region
(width    ) and a corresponding evolution law

Phase field models

δ



Phase field models

Phase field model for stress-dependent mesoscopic phase transitions

Phase Field Model can model geometric effects 
(speed of the phase boundary depending on curvature…)

Introduce a (smooth) phase variable 
and a corresponding evolution law

instead of the simple ODE law 
Underlying principle: double well potential 
with local minima at the values for pure phases.

Stress effects modeled via rhs function, e.g.:

Inspired by [Parét 2001, Steinbach et al 2006]
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Phase field models

Phase field model for stress-dependent mesoscopic phase transitions

Very simple geometry: one single 2D 6-sided grain

Narrow transition region of width      needs high resolution!
Use adaptive finite element method!

δ

Graphs of phase variable and corresponding meshes at different times



Phase field models

Phase field model for stress-dependent mesoscopic phase transitions

Phase variable, temperature, and modulus of stress tensor

Finite element discretization and adaptive method 
based on error indicators presented in joint papers 
[Chen, Nochetto, Schmidt 2000], [Kessler, Nochetto, Schmidt 2004]



Phase field model for stress-dependent mesoscopic phase transitions

Comparison of volume fractions over time for varying influence of stress (various c )

c
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Phase field models



Phase field models

Phase field model for stress-dependent mesoscopic phase transitions

Work in progress … as shown, just one single grain
Future investigations:

• Multiple, connected grains:
continuous fields for temperature and deformations,
separate phase variables on different grains 
with Neumann boundary conditions on grain boundaries

• Apply external stresses:
Nucleation in various corners ?

• 3D



Nacre

Nacre
(mother of pearl, material of seashell)

Nacre is a very robust material, built from small aragonite plates
(hard and brittle) and biopolymers (softer)
Much higher resistance to fractures than pure aragonite.



Nacre

Material properties of biopolymer layer are not well known 
(and very hard to determine experimentally)

Parameter identification problem !
Numerical simulations for a small subset (2D)
Here, resolution of thin layers (~mortar) is important !

Sample macro triangulation



Nacre

Some preliminary results:

Dependence of composite E modulus 
on Poisson number of biopolymers

Simulation of shear deformation



Thank you for your attention !
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