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Limitations of the standard theory

We will consider finite element approximations of a selfadjoint elliptic
problem on a region Ω (scalar elliptic or linear elasticity.) The domain Ω is
subdivided into nonoverlapping subdomains Ωi. In between the interface Γ.

We will consider tools for proofs of results on iterative substructuring

methods, such as FETI-DP and BDDC.

We will also consider two-level overlapping Schwarz methods with a
coarse space component borrowed from iterative substructuring methods,
in particular BDDC. In addition, these preconditioners also have local
components based on overlapping subregions. Related work in the past by
Dryja, Sarkis, and W. (on special multigrid methods); cf. Numer. Math.
1996. That paper introduced quasi-monotonicity. More recent work by
Sarkis et al. (These methods have some advantages.)
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Assumptions in previous work

In the standard theory for iterative substructuring methods, we typically
assume that:
The partition into subdomains Ωi is such that each subdomain is the

union of shape-regular coarse tetrahedral elements of a global conforming

mesh TH and the number of such tetrahedra forming an individual

subdomain is uniformly bounded.

(Also assume material properties constant in each subdomain.)

In the standard theory for two-level Schwarz methods, we often assume
that a conventional coarse space is used, defined on a coarse triangulation,
and that the coefficients do not vary a lot or that they are at least quasi-
monotone. A major weakness concerns the variation of the coefficients.

Why are these assumptions unsatisfactory? Why bother?
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Figure 1: Finite element meshing of a mechanical object. 3/35
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Figure 2: Partition into thirty subdomains. Courtesy Charbel Farhat.
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Block Cholesky Elimination and Iterative Substructuring

Consider a block matrix, assumed positive definite, symmetric.

[
A BT

B C

]
.

It can be factored by block Cholesky:

[
A BT

B C

]
=

[
IA

BA−1 IC

] [
A

C − BA−1BT

] [
IA A−1BT

IC

]
,

where IA and IC are appropriate identity matrices. S = C −BA−1BT is a
Schur complement. Inverting, we find that

[
A BT

B C

]−1

=

[
IA −A−1BT

IC

] [
A−1

S−1

] [
IA

−BA−1 IC

]
.
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By changing basis, we can reduce matrix to a block diagonal form.

Cholesky’s algorithm is used extensively in finite element practice. It is
often helpful to apply the block ideas recursively by, e.g., writing the matrix
A as a two-by-two block matrix; A is also often block diagonal and we can
then use recursion to deal with each block separately.

Generally, the computation of and factoring of S can be very expensive
and less amenable to parallelization than other parts. Explore the possibility
of decreasing the size of the Schur complement. Then the solver will only
provide an inexact inverse, a preconditioner. The preconditioner will be
applied in each step of an iterative process of conjugate gradient type and
it will be crucial that the preconditioned operator is well conditioned, which
will translate into rapid convergence. (Research on domain decomposition
theory is almost entirely focused on establishing bounds for the condition
numbers.) Very desirable to work exclusively with positive definite matrices.
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Two Subdomains

Consider a domain Ω subdivided into two nonoverlapping subdomains
Ω1 and Ω2. In between the interface Γ.

Consider a finite element approximation of a selfadjoint elliptic problem
on Ω (scalar elliptic, linear elasticity, or even an incompressible Stokes
problem.)

Set up a load vector and a stiffness matrix for each subdomain

f (i) =

(
f

(i)
I

f
(i)
Γ

)
, A(i) =

(
A

(i)
II A

(i)
IΓ

A
(i)
ΓI A

(i)
ΓΓ

)
, i = 1, 2.

Homogeneous Dirichlet condition on ∂Ωi \ Γ, Neumann on Γ.
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Subassemble:

A =




A
(1)
II 0 A

(1)
IΓ

0 A
(2)
II A

(2)
IΓ

A
(1)
ΓI A

(2)
ΓI AΓΓ


 , u =




u
(1)
I

u
(2)
I

uΓ


 , f =




f
(1)
I

f
(2)
I

fΓ


 .

AΓΓ = A
(1)
ΓΓ +A

(2)
ΓΓ. Degrees of freedom partioned into those internal to Ω1,

and Ω2, and those on Γ.

Eliminate the interior unknowns. Gives two Schur complements:

S(i) := A
(i)
ΓΓ − A

(i)
ΓIA

(i)
II

−1
A

(i)
IΓ, i = 1, 2.

The given system is reduced to

SuΓ = (S(1) + S(2))uΓ = gΓ.
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Working with One Constraint. Two Subdomains.

In 2D FETI–DP algorithms, we maintain continuity at subdomain
vertices throughout the whole iteration. In 3D, we need to work with
common averages over interface edges or faces. Here we consider a
scalar elliptic problem, two subdomains and one average constraint. Same
constraint can be used for BDDC.

Ω1 Ω2

λ

∂Ω1
∂Ω2

Γ

l

m

1

Figure 3: Partition into two subdomains, with Ω2 floating, in the absence
of a constraint.
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Our lemon, which can be 2D or 3D, only has Dirichlet boundary
conditions on part of one subdomain boundary. In 3D, we could work with
a face average or an average over an edge of the face common to the two
subdomains. We make a change of variables separating the edge average,
the primal displacement variable, from the dual displacement variables.
Any dual displacement variable has a zero edge average. (We can also think
of each primal variable in terms of a constraint.) In the general case, the
primal variables will provide a coarse component for our preconditioners and
they live in the lower right corner of the block matrix.

In each BDDC iteration, solve local problems, then an equation with
one variable, average the result across the interface, and finally minimize
the energy in each subdomain by solving Dirichlet problems. The residual
is then split to create a right hand side of the correct dimension and a
symmetric preconditioner.
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Two dimensions: Farhat, Lesoinne, LeTallec, Pierson, Rixen (2001):
Keep continuity of primal variables at vertices (subassembly); other
continuity constraints by Lagrange multipliers (the flux).
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(1)
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. . . ...

A
(N)
II A

(N)
I∆ Ã

(N)T
ΠI

A
(N)
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(N)
∆∆ Ã

(N)T
Π∆
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Π∆ · · · Ã

(N)
ΠI Ã
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History of FETI and FETI-DP

FETI introduced by Farhat/Roux (1991). Further algorithmic and
theoretical work by Lesoinne, Pierson, Mandel, Tezaur, Rixen, Brenner,
Langer, Steinbach, Klawonn, Widlund, Dryja, Toselli, Vasseur, LeTallec,
Rheinbach, ... Earlier work on DDM with Lagrange multipliers by
Dihn/Glowinski/Periaux (1984), Glowinski/Wheeler (1987).

FETI-DP introduced by Farhat/Lesoinne/LeTallec/Pierson/Rixen
(2001). Further work by Farhat, Lesoinne, Pierson, Mandel, Tezaur,
Brenner, Li, Toselli, Widlund, Dryja, Klawonn. h- and hp, BEM, mixed
FEM, incompressible Stokes, mortar elements, Maxwell 3D, eigensolver ...

Structural mechanics 2nd and 4th order, acoustics, scalar diffusion
problems, contact, Stokes, ... Tested for at least 100 million dof on
thousands of processors (ASCI Option Red, Sandia National Laboratory,
USA). Work by Farhat’s group, also by Oliver Rheinbach, Essen in PETSC.
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History of Neumann-Neumann and BDDC

Early work by Bourgat, Glowinski, De Roeck, LeTallec, and Vidrascu.
Introduction of a second level by Mandel and Brezina and by Dryja and
Widlund. Used extensively in many large scale applications, in particular,
in France by LeTallec and Vidrascu et al. Extended, in various ways, to
convection-diffusion equations by Achdou, LeTallec, Nataf, and Vidrascu,
to incompressible Stokes by Pavarino and Widlund and in collaboration with
Goldfeld, to almost incompressible elasticity and models of elastic bodies
which in part are almost incompressible.

New coarse spaces by Dohrmann, Mandel, and Tezaur: BDDC. The
spectra of the FETI-DP and BDDC operators are almost the same. First
observed by Fragakis and Papadrakakis for older methods. Recent work on
Stokes, flow in porous media, use of inexact subdomain solvers, spectral
elements, and mortar finite elements.
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Dual-Primal FETI in 3D

Good numerical results in 2D; not always very good in 3D. Therefore,
in addition to (or instead of) continuity of primal variables at vertices,
constrain certain average values (and moments) of primal variables over
individual edges and faces to take common values across the interface; for
3D elasticity, minimally six constraints per subdomain. Change variables;
gives thesame matrix formulation and robust performance.

Condition number estimate C(1 + log(H/h)2) for some algorithms.
Independent of jumps in coefficients, if scaling chosen carefully. Algorithms
can have a small coarse problem; Klawonn, W., Dryja (2002). Numerical
results for elasticity in 3D using vertex constraints and three face averages
on each face (Farhat, Lesoinne, Pierson (2000)). Works numerically; might
not be fully scalable. Scalability established for elasticity for somewhat
richer primal space; Klawonn and W. (CPAM 2006.) PETSc codes by
Rheinbach and several experimental papers.
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N-N Methods of Same Flavor: BDDC

We can introduce a coarse basis function for each primal constraint;
set one primal variable = 1 and all others = 0, one at a time. Extend
with minimum energy for individual subdomains. Results in basis functions
discontinuous across the interface Γ. Also one local subspace for each
subdomain for which all relevant primal degrees vanish. Makes subdomain
problems invertible.

Partially subassembled Schur complement of the system is block diagonal
after this change of variables. Apply an operator ET

D to residual. Solve
linear systems corresponding to blocks exactly, and compute a weighted
average, with operator ED, of results, across the interface. Only one block,
with a few variables for each subdomain assembled and factored. Compute
residual, remove the interior residuals, and repeat coarse and local solves.
Accelerate with conjugate gradient method. Theory focused on ED.
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Matrix Analysis of FETI-DP and BDDC

Consider three product spaces of finite element functions/vectors of
nodal values.

ŴΓ ⊂ W̃Γ ⊂ W.

W : no constraints; ŴΓ: continuity at every point on Γ; W̃Γ: common
values of primal variables and, effectively, a nonconforming approximation.

Change variables, explicitly introducing primal variables and
complementary sets of dual displacement variables. Write Schur
complements as

S(i) =

(
S

(i)
∆∆ S

(i)
∆Π

S
(i)
Π∆ S

(i)
ΠΠ

)
.

Let S̃Γ denote the partially assembled Schur complement. (In practice,
work with interior variables as well when solving linear systems.)
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BDDC matrices

For the BDDC method, we use the fully assembled Schur complement
Ŝ = R̃T

Γ S̃ΓR̃Γ; it is used to compute the residual. Using the preconditioner
involves solving a system with the matrix S̃Γ:

M−1
BDDC = R̃T

DΓS̃−1
Γ R̃DΓ,

where R̃DΓ is a scaled variant of R̃Γ with scale factors computed from the
PDE coefficients.

Scaling chosen so that ED := R̃ΓR̃T
DΓ is a projection.

The matrix S̃Γ equally important for FETI-DP.

17/35



Olof Widlund Cortona, September 2006

Condition number estimate

We wish to show for BDDC operator that

〈u, u〉bSΓ
≤
〈
u,M−1ŜΓu

〉
bSΓ

≤ ‖ED‖eSΓ
〈u, u〉bSΓ

.

Lower bound: Let
w = S̃−1

Γ R̃DΓŜΓu.

We have, since R̃T
Γ R̃DΓ = R̃T

DΓR̃Γ = I,

〈u, u〉bSΓ
= uT ŜΓR̃T

DΓR̃Γu = uT ŜΓR̃T
DΓS̃−1

Γ S̃ΓR̃Γu =
〈
w, R̃Γu

〉
eSΓ

.

Therefore,
〈u, u〉bSΓ

≤ 〈w, w〉eSΓ
.
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Since,

〈w, w〉eSΓ
= uT ŜΓR̃T

DΓS̃−1
Γ S̃ΓS̃−1

Γ R̃DΓŜΓu =
〈
u,M−1ŜΓu

〉
bSΓ

,

we obtain 〈u, u〉bSΓ
≤
〈
u,M−1ŜΓu

〉
bSΓ

. Smallest eigenvalue is in fact = 1.

Upper bound: Take w as before. We have, R̃T
DΓw = M−1ŜΓu. Since

ŜΓ = R̃T
Γ S̃ΓR̃Γ, we have

〈
M−1ŜΓu,M−1ŜΓu

〉
bSΓ

=
〈
R̃T

DΓw, R̃T
DΓw

〉
bSΓ

=
〈
R̃ΓR̃T

DΓw, R̃ΓR̃T
DΓw

〉
eSΓ

= 〈EDw,EDw〉
2
eSΓ

≤ ‖ED‖2
eSΓ

〈w,w〉
2
eSΓ

.

The upper bound follows easily by using Cauchy-Schwarz.
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Core estimate:

|EDw|2eSΓ
≤ C(1 + log(H/h))2 |w|2eSΓ

∀w ∈ W̃ .

Estimate a weighted norm of the discrete harmonic extension of half
the jump in w across the interface. The estimate is local and involves
individual subdomains, one at a time, and traces of the component of w
of the subdomain and its neighbors across the subdomain boundary. The
quality of bound depends crucially on choice of primal constraints. Work
begun by Mandel and Soused́ık to select primal constraints automatically.

This frame work has been ideal for developing inexact solvers and BDDC
methods with three levels. Work by Jing Li and thesis by Xuemin Tu. All
this theory assumes polyhedral subdomains.
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Saddle Point Problems

Three studies have now been completed on saddle point problems. Two
are by Xuemin Tu and concern flow in porous media solved as a saddle
point problem and as a nonconforming, hybrid finite element problem,
respectively. Work by Dohrmann as well.

Joint work with Jing Li has identified two core requirement for
incompressible Stokes problems discretized by inf-sup stable pairs of finite
element spaces with discontinuous pressure spaces.

1) The constraints should be chosen so that we have a strong bound on
the norm of ED; borrowed from recent joint work with Klawonn on linear
elasticity.

2) All elements of the dual space, which is determined by the primal
constraints, should have zero average normal velocities on each subdomain.
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What is needed for more general subdomains?

In all theory for multi-level domain decomposition methods, we need a
Poincaré inequality. Here is an interesting variant:

Theorem [Poincaré’s Inequality and a Related Isoperimetric Inequality]
Let Ω ⊂ Rn be open, bounded and connected. Then,

inf
c∈R

(∫

Ω

|f − c|n/(n−1) dx

)(n−1)/n

≤ γ(Ω, n)

∫

Ω

|∇f | dx,

if and only if,

[min(|A|, |B|)]1−1/n ≤ γ(Ω, n)|∂A ∩ ∂B|. (1)

Here A ⊂ Ω, and arbitrary, and B = Ω \ A.
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This result can be found in a book by Lin and Yang,
“Geometric Measure Theory – An Introduction”.

Using Hölder’s inequality several times, we find, for n = 3, that

inf
c∈R

‖u − c‖L2(Ω) ≤ γ(Ω, n)Vol(Ω)1/3‖∇u‖L2(Ω).

This is the conventional form of Poincaré’s inequality. (Thanks to Fanghua
Lin and Hyea Hyun Kim.)

The parameter in this inequality enters into all bounds of our result and
it is closely related to the second eigenvalue of the Laplacian with Neumann
boundary conditions.

We (re)learn from this result that we have to expect slow convergence if
the subdomains are not shape regular. (Consider a slim bar.) We can also
have problems if elements at the boundary are not shape regular.
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But we also see that under reasonable assumptions on our subregions,
we can expect a satisfactory parameter in the Poincaré inequality.

Another important tool is a simple trace theorem:

β‖u‖2
L2(∂Ω) ≤ C(β2|u|2H1(Ω) + ‖u‖2

L2(Ω)).

The parameter β measures the thickness of Ω. This result is borrowed from
Nečas’ 1967 book and it is proven under the assumption that the region is
Lipschitz; C is proportional to the Lipschitz constant.

One can easily construct subdomains which are not Lipschitz. What
might be the right, more general family of domains?

In the literature, we find (Fritz) John domains, carrots, cigars, etc.
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John Domains

Ω is a John domain if there exists a constant CJ ≥ 1 and a

distinguished central point x0 such that each x ∈ Ω can be joined by a

curve γ : [0, 1] → Ω such that γ(0) = x, γ(1) = x0 and dist(γ(t), ∂Ω) ≥
C−1

J |x − γ(t)| for all t ∈ [0, 1].

It is a twisted cone condition. Note that certain snow flake curves are
John domains, i.e., the length of the boundary can be arbitrarily much
larger than the diameter of Ω.
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Extension of Tools for DD Theory

The technical tools necessary for the traditional analysis of the rate of
convergence of iterative substructuring methods are collected in Section 4.6
of the T. & W. book. Among the tools necessary for the analysis of BDDC
and FETI-DP in three dimensions is a bound on the energy of

Ih(ϑF ku)

and bounds on the corresponding edge functions. These bounds feature a
second logarithmic factor. The old results on special subdomains can be
extended to much more general subdomains; no new ideas are required.
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v

v

v

v

Figure 4: Construction of ϑE in 2D.
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We know that the estimate of the condition numbers of BDDC (and
FETI–DP) can be reduced to bound of an averaging operator ED across the
interface. On each subdomain face, e.g., we have a weighted average of the
traces of functions defined in the relevant subset of subdomains. The weights
depend on the coefficients of the elliptic problem. We have to cut the traces
using ϑF k, etc. We then estimate the energy of resulting components in
terms of the energy of the functions, given on those set of the subdomains,
from which the averages are computed. Two logarithmic factors result.
These bounds have previously been developed, fully rigorously, for the case
of simple polyhedral subdomains, for scalar elliptic problems, compressible
elasticity, flow in porous media, Stokes and almost incompressible elasticity.
For each of these cases, we have to select the coarse component and certain
scale factors of the preconditioner quite carefully; that is not today’s story.
What is new is that we can obtain bounds, in many cases, which are of good
quality for more general subdomains. Theory complete for two dimensions.
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Overlapping Schwarz methods

Consider Poisson’s equation on a bounded Lipschitz region Ω in two or
three dimensions.

Two triangulations, a coarse and a fine, (which might be a refinement
of the coarse.) The overall space is V h, the space of continuous, piecewise
linear finite element functions on the fine triangulation. There is also a
covering of the region by overlapping subregions Ω′

i. Let δ/H measure the
relative overlap between adjacent subregions, each of which is a union of
elements. Assume shape regularity, but not necessarily quasi-uniformity of
the elements. Spaces chosen for the Schwarz methods:

V0 = V H based on coarse triangulation,

Vi = V h ∩ H1
0(Ω′

i), i > 0.
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Theorem. The condition number of the additive Schwarz method satisfies

κ(Tas) ≤ C(1 + H/δ).

The constant C is independent of the parameters H, h, and δ.

Result cannot be improved: Sue Brenner.

There are quite similar results for multiplicative algorithms as well.

Without a coarse space component, H/δ must be replaced by 1/(Hδ).

Several alternative coarse spaces have been considered; cf. Toselli and
W. , Chapter 3.
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To prove this bound, we must come up with a recipe of how to
decompose any function in V.

We choose
u0 = ĨHu ∈ V0, (2)

where we use averages over neighborhoods of the nodes of coarse triangles
and interpolation into the coarse space. Let

w = u − RT
0 u0 = u − Ihu0. (3)

The local components are defined by

ui = Ri(I
h(θiw)) ∈ Vi, 1 ≤ i ≤ N. (4)

Here {θi} is a piecewise linear partition of unity associated with the
overlapping partition.
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The Case of Bad Coefficients

Now consider a scalar elliptic equation defined by a bilinear form

∑∫

Ωj

ρj ∇u · ∇v dx.

The coefficients ρj are arbitrary positive constants and the Ωj are quite
general subdomains.

A natural coarse space is the range of the following interpolation operator

Ih
Bu(x) =

∑

V k∈Γ

u(V k)θVk
(x) +

∑

Ei⊂W

ūEiθEi(x) +
∑

F k⊂Γ

ūF kθF k(x).

Here ūEi and ūF k are averages over edges and faces of the subdomains.
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θVk
(x) the standard nodal basis functions of the vertices of the

subdomains, θEi(x) = 1 at the nodes of the edge Ei and vanishes at
all other interface nodes, and θF k(x) is a similar function defined for the
face F k. These functions are extended as discrete harmonic functions into
the interior of the subdomains. Note that this interpolation operator, IB,
preserves constants. A slightly richer coarse space will preserve all linear
functions; useful for elasticity.

Faces, edges, and vertices of quite general subdomains can be defined in
terms of certain equivalence classes. We will now consider the energy of the
face terms and estimate their energy in terms of the energy of the function
interpolated. Can we estimate the averages ūF k by Cauchy-Schwarz and
the trace theorem?
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Estimates of the energy of θF k(x) well known for special regions, e.g.,
tetrahedra; bounds are C(1 + log(H/h)H. We have learned, in detail so far
only for two dimensions, how to construct functions ϑE forming a partition
of unity with the same quality bound.

The bounds for the local components are done using a partition of unity
related to the overlapping subregions and a Friedrichs inequality on patches
of diameter δ. The patches are chosen so that the coefficient of the elliptic
problem is constant in each of them; see also Chap. 3 of the T. & W. book.
A second factor (1 + H/δ) comes from estimates of the local components;
Brenner has shown that this factor cannot be improved.
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Result on the two-level overlapping Schwarz method

Theorem. The condition number κ of the preconditioned operator

satisfies

κ ≤ C(1 + H/δ)(1 + log(H/h))q.

Here C is independent of the mesh size, the number of subdomains,

the coefficients ρi, etc. H/δ measures the relative overlap between

neighboring overlapping subregions, but it depends on the Poincaré and

John parameters. H/h measures the maximum number of elements

across any subregion. If the coefficients are nice and the coarse space

contains the linear functions, then q = 1. In two dimensions we, so far,

have a result for any John domain with q = 2.
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