
Outline

Propagation, dispersion, control and numerical
approximation of waves

Enrique Zuazua

Departamento de Matemáticas
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Intro Toy Remedies 2-grids Multi-dimensions Related Issues Conclusion

Motivation

IS THE CONTROL OF WAVES AND, MORE PARTICULARLY,
OF THE WAVE EQUATION RELEVANT?

The answer is, definitely, YES.

Noise reduction in cavities and vehicles.

Laser control in Quantum mechanical and molecular systems.

Seismic waves, earthquakes.

Flexible structures.

Environment: the Thames barrier.

Optimal shape design in aeronautics.

Human cardiovascular system: the bypass

........

Similar problems arise in Control, Optimal Design and in Inverse
Problems Theory and common techniques need to be developed.
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Intro Toy Remedies 2-grids Multi-dimensions Related Issues Conclusion

THE GOAL

To develop efficient (consistent + stable) numerical algorithms
allowing to compute the controls.
One needs to make sure that:

The schemes are stable when solving the PDE’s involved;

The optimization procedures converge.

Putting together Control + Numerics does not generate
unexpected instabilities.

Warning!

From finite-dimensional dynamical systems to infinite-dimensional
ones in purely conservative dynamics.....
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THE 1-D CONTROL PROBLEM

The 1− d wave equation, with Dirichlet boundary conditions,
describing the vibrations of a flexible string, with control one one
end: 

ytt − yxx = 0, 0 < x < 1, 0 < t < T
y(0, t) = 0; y(1, t) =v(t), 0 < t < T
y(x , 0) = y0(x), yt(x , 0) = y1(x), 0 < x < 1

y = y(x , t) is the state and v = v(t) is the control. The goal is to
stop the vibrations, i.e. to drive the solution to equilibrium in a
given time T : Given initial data {y0(x), y1(x)} to find a control
v = v(t) such that

y(x ,T ) = yt(x ,T ) = 0, 0 < x < 1.

Enrique Zuazua Waves & Numerics
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THE 1− d OBSERVATION PROBLEM

The control problem above is equivalent to the observability
problem on the adjoint wave equation:

ϕtt − ϕxx = 0, 0 < x < 1, 0 < t < T
ϕ(0, t) = ϕ(1, t) = 0, 0 < t < T
ϕ(x , 0) = ϕ0(x), ϕt(x , 0) = ϕ1(x), 0 < x < 1.

Namely:

E (0) ≤ C (T )

∫ T

0
|ϕx(1, t)|2 dt.

The energy of solutions is conserved in time, i.e.

E (t) =
1

2

∫ 1

0

[
|ϕx(x , t)|2 + |ϕt(x , t)|2

]
dx = E (0), ∀0 ≤ t ≤ T .

The answer to this question is easy to gues: The observability
inequality holds if and only if T ≥ 2.

Enrique Zuazua Waves & Numerics
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Wave localized at t = 0 near the extreme x = 1 that propagates
with velocity one to the left, bounces on the boundary point x = 0
and reaches the point of observation x = 1 in a time of the order
of 2.
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CONSTRUCTION OF THE CONTROL

Once the observability inequality is known the control is easy to
characterize. Following J.L. Lions’ HUM (Hilbert Uniqueness
Method), the control is

v(t) = ϕ?
x(1, t),

where ϕ is the solution of the adjoint system corresponding to
initial data (ϕ0,?, ϕ1,?) ∈ H1

0 (0, 1)× L2(0, 1) minimizing the
functional

J(ϕ0, ϕ1) =
1

2

∫ T

0
|ϕx(1, t)|2dt+

∫ 1

0
y0ϕ1dx− < y1, ϕ0 >H−1×H1

0
,

in the space H1
0 (0, 1)× L2(0, 1).

Note that J is convex. The continuity of J in H1
0 (0, 1)× L2(0, 1) is

guaranteed by the fact that ϕx(1, t) ∈ L2(0,T ) (hidden regularity).

Enrique Zuazua Waves & Numerics



Intro Toy Remedies 2-grids Multi-dimensions Related Issues Conclusion

Thus:

Controllability holds for all T ≥ 2;

The control is characterized by a minimization problem
involving the adjoint system (duality).

Note that the fact that controllability holds only for T ≥ 2 is
typically a phenomenon related to the infinite-dimensional
character of the model under consideration.

Enrique Zuazua Waves & Numerics
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THE MOST NATURAL NUMERICAL APPROXIMATION
SCHEME

Set h = 1/(N + 1) > 0 and consider the mesh

x0 = 0 < x1 < ... < xj = jh < xN = 1− h < xN+1 = 1,

which divides [0, 1] into N + 1 subintervals

Ij = [xj , xj+1], j = 0, ...,N.

Finite difference semi-discrete approximation of the wave equation:
ϕ′′j −

1
h2 [ϕj+1 + ϕj−1 − 2ϕj ] = 0, 0 < t < T , j = 1, . . . ,N

ϕj(t) = 0, j = 0, N + 1, 0 < t < T
ϕj(0) = ϕ0

j , ϕ′j(0) = ϕ1
j , j = 1, . . . ,N.

Enrique Zuazua Waves & Numerics
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Then it should be sufficient to minimize the discrete functional

Jh(ϕ
0, ϕ1) =

1

2

∫ T

0

|ϕN(1, t)|2

h2
dt+h

N∑
j=1

ϕ1
j y

0
j − h

N∑
j=1

ϕ0
j y

1
j ,

which is a discrete version of the functional J of the continuous
wave equation since

−ϕN(t)

h
=

ϕN+1 − ϕN(t)

h
∼ ϕx(1, t).

Then

vh(t) = −
ϕ?

N(t)

h
.

Enrique Zuazua Waves & Numerics
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A NUMERICAL EXPERIMENT

Plot of the initial datum to be controlled for the string occupying
the space interval 0 < x < 1.
Plot of the time evolution of the exact control for the wave
equation in time T = 4.

Enrique Zuazua Waves & Numerics
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The control diverges as h → 0.
Enrique Zuazua Waves & Numerics
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WHY?

The Fourier series expansion shows the analogy between
continuous and discrete dynamics. Discrete solution:

~ϕ =
N∑

k=1

ak cos

(√
λh

kt

)
+

bk√
λh

k

sin

(√
λh

kt

) ~wh
k .

Continuous solution:

ϕ =
∞∑

k=1

(
ak cos(kπt) +

bk

kπ
sin(kπt)

)
sin(kπx)

Enrique Zuazua Waves & Numerics
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Recall that the discrete spectrum is as follows and converges to the
continuous one:

λh
k =

4

h2
sin2

(
kπh

2

)
λh

k → λk = k2π2, as h → 0

wh
k = (wk,1, . . . ,wk,N)T : wk,j = sin(kπjh), k, j = 1, . . . ,N.

The only relevant differences arise at the level of the dispersion
properties and the group velocity. High frequency waves do not
propagate, remain captured within the grid, without never reaching
the boundary. This makes it impossible the uniform boundary
control and observation of the discrete schemes as h → 0.

Enrique Zuazua Waves & Numerics
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Graph of the square roots of the eigenvalues both in the
continuous and in the discrete case. The gap is clearly independent
of k in the continuous case while it is of the order of h for large k
in the discrete one.

Enrique Zuazua Waves & Numerics
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A NUMERICAL PHAMTOM

~ϕ = exp
(
i
√

λN(h) t
)

~wN − exp
(
i
√

λN−1(h) t
)

~wN−1.

Spurious semi-discrete wave combining the last two
eigenfrequencies with very little gap:

√
λN(h)−

√
λN−1(h) ∼ h.

h = 1/61, (N = 60), 0 ≤ t ≤ 120.
Enrique Zuazua Waves & Numerics
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THE FIRST REMEDY: FOURIER FILTERING

To filter the high frequencies, i.e. keep only the components of the
solution corresponding to indexes: k ≤ δ/h with 0 < δ < 1. This
guarantees that the group velocity remains uniformly bounded
below and allows observing uniformly filtered solutions in time
T (δ) > 2 such that T (δ) → 2 as δ → 0.

Enrique Zuazua Waves & Numerics
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RELAXED CONTROLS:

Then, the filtering algorithm can be implemented as follows:

Minimize Jh over the class of filtered solutions with filtering
parameter 0 < δ < 1 and T > T (δ);

This yields controls v δ
h such that

vδ
h → v as h → 0;

The corresponding states ~yh satisfiy:

πδ(~yh) ≡ πδ(~yh
′) ≡ 0.

This is a relaxed version of the controllability condition.

Enrique Zuazua Waves & Numerics
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NUMERICAL EXPERIMENT WITH RELAXED
CONTROLS:

With appropriate filtering the control converges as h → 0.
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CONCLUSION

The minima of Jh diverge because its coercivity is vanishing as
h → 0;

This is intimately related to the blow-up of the discrete
observability constant Ch(T ) →∞, for all T > 0 as h → 0:

Eh(0) ≤ Ch(T )

∫ T

0

∣∣∣∣ϕN(t)

h

∣∣∣∣2 dt

This is due to the lack of propagation of high frequency
numerical waves due to the dispersion that the numerical grid
produces.

Actually it is known that Ch(T ) diverges exponentially: S.
Micu, Numerische Math., 2002.
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WELL KNOWN PHENOMENA FOR WAVES IN HIGHLY
OSCILLATORY MEDIA

ϕtt − (α(x)ϕx)x = 0.
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M. Avellaneda, C. Bardos & J. Rauch, Asymptotic Analysis,
1992.
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2002.

Enrique Zuazua Waves & Numerics



Intro Toy Remedies 2-grids Multi-dimensions Related Issues Conclusion

DISCRETE MULTIPLIERS

The proof of uniform observability of discrete filtered solutions can
developed in various ways:

Using Ingham inequality in their Fourier series representation
since filtering guarantess an uniform gap condition;

Discrete multipliers:

The multiplier xϕx for the wave equation yields:

TE (0) +

∫ 1

0
xϕxϕt dx

∣∣T
0

=
1

2

∫ T

0
|ϕx(1, t)|2 dt.

and this implies, as needed,

(T − 2)E (0) ≤ 1

2

∫ T

0
|ϕx(1, t)|2 dt.
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The multiplier j(ϕj+1 − ϕj−1) for the discrete wave equation gives:

TEh(0)+Xh(t)
∣∣T
0

=
1

2

∫ T

0

∣∣∣∣ϕN(t)

h

∣∣∣∣2 dt+
h

2

N∑
j=0

∫ T

0
| ϕ′j − ϕ′j+1 |2 dt,

Note that

h

2

N∑
j=0

∫ T

0
| ϕ′j − ϕ′j+1 |2 dt ∼ h2

2

∫ T

0

∫ 1

0
|ϕxt |2dxdt.

Filtering is needed to absorb this higher order term: For
1 ≤ j ≤ δN ∣∣∣∣∣h2

N∑
j=0

∫ T

0
| ϕ′j − ϕ′j+1 |2 dt

∣∣∣∣∣ ≤ γ(δ)TE (0),

with 0 < γ(δ) < 1.
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Several remedies have been investigated. For instance, Mixed
Finite Elements provide a satisfactory answer in 1− d . But the
underlying theory is still to be developed:

Pieciewise linear approximation for u and piecewise constant for ut .
The system becomes M~u′′ + R~u = 0 with singular
M = (...14

1
2

1
4 .......).
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Compare with the dispersion scheme for the classical P1 finite
element scheme:
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TWO-GRID ALGORITHM (R. Glowinski, M. Asch-G.
Lebeau, M. Negreanu, L. Ignat, E. Z.)

To develop on the physical space a different remedy to Fourier
filtering.
High frequencies producing lack of gap and spurious numerical
solutions correspond to large eigenvalues√

λh
N ∼ 2/h.

When refining the mesh

h → h/2,

√
λ

h/2
2N ∼ 4/h.

Refining the mesh h → h/2 produces the same effect as filtering
with parameter 1/2.
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Solutions on the fine grid of size h corresponding to slowly
oscillating data given in the coarse mesh (2h) are no longer
pathological:

ϕ = ϕl + ϕh, ϕl =

(N−1)/2∑
k=1

ck ~wk , ϕh =

(N−1)/2∑
k=1

ck
λk

λN+1−k
~wN+1−k ,

||ϕh|| ≤ ||ϕl ||.

1− d

• M. Negreanu & E. Z., 2004. The two-grid algorithm
converges for control times T > 4. Multipliers techniques.

• M. Mehrenberger & P. Loreti, 2005. Same result for
T > 2

√
2 using Ingham inequalities.
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SUMMARY:

The most natural numerical methods for computing the
controls diverge.
Filtering of the high frequencies is needed. This may be done
on the Fourier series expansion or on the physical space by a
two-grid algorithm.
Convergence of the controls is guaranteed by minimizing the
discrete functional Jh over the class of slowly oscillating data.
This produces a relaxation of the control requirement: only
the projection of the discrete state over the coarse mesh
vanishes.
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THE MULTI-DIMENSIONAL CASE

Similar results are true in several space dimensions. The region in
which the observation/control applies needs to be large enough to
capture all rays of Geometric Optics. This is the so-called
Geometric Control Condition introduced by Ralston (1982) and
Bardos-Lebeau-Rauch (1992).

Let Ω be a bounded domain of Rn, n ≥ 1, with boundary Γ of class
C 2. Let Γ0 be an open and non-empty subset of Γ and T > 0.

ytt −∆y = 0 in Q = Ω× (0,T )
y =v(x , t)1Γ0 on Σ = Γ× (0,T )
(x , 0) = y0(x), yt(x , 0) = y1(x) in Ω.
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Rays propagating inside the domain Ω following straight lines that
are reflected on the boundary according to the laws of Geometric
Optics. The control region is the red subset of the boundary. The
GCC is satisfied in this case. The proof requires tools form
Microlocal Analysis.
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In all cases the control is equivalent to an observation problem for
the adjoint wave equation:

ϕtt −∆ϕ = 0 in Q = Ω× (0,T )
ϕ = 0 on Σ = Γ××(0,T )
ϕ(x , 0) = ϕ0(x), ϕt(x , 0) = ϕ1(x) in Ω.

Is it true that:

E0 ≤ C (Γ0,T )

∫
Γ0

∫ T

0

∣∣∣∂ϕ

∂n

∣∣∣2dσdt ?

And a sharp discussion of this inequality requires of Microlocal
analysis. Partial results may be obtained by means of multipliers:
x · ∇ϕ, ϕt , ϕ,...
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THE 5-POINT FINITE-DIFFERENCE SCHEME

ϕ′′j ,k −
1

h2
[ϕj+1,k + ϕj−1,k − 4ϕj ,k + ϕj ,k+1 + ϕj ,k−1] = 0.

The energy of solutions is constant in time:

Eh(t) =
h2

2

N∑
j=0

N∑
k=0

[
| ϕ′jk(t) |2

+

∣∣∣∣ϕj+1,k(t)− ϕj ,k(t)

h

∣∣∣∣2 +

∣∣∣∣ϕj ,k+1(t)− ϕj ,k(t)

h

∣∣∣∣2
]

.

Without filtering observability inequalities fail in this case too.
Understanding how filtering should be used requires of a microlocal
analysis of the propagation of numerical waves combining von
Neumann analysis and Wigner measures developments (N.
Trefethen, P. Gérard, P. L. Lions & Th. Paul, G. Lebeau, F.
Macià, ...).
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The von Neumann analysis.

Symbol of the semi-discrete system for solutions of wavelength h

ph(ξ, τ) = τ2 − 4
(
sin2(ξ1/2) + sin2(ξ2/2)

)
,

versus p(ξ, τ) = τ2 − [|ξ1|2 + |ξ2|2].
Both symbols coincide for (ξ1, ξ2) ∼ (0, 0).
Solving the bicharacteristic flow we get the discrete rays:

xj(t) = −
sin(ξj)

τ
t + xj ,0, (versus xj(t) = −

ξj

τ
t + xj ,0.)

RAYS ARE STILL STRAIGHT LINES. BUT! The velocity is

|x ′(t)| ≡

[∣∣∣∣sin(ξ1)

τ

∣∣∣∣2 +

∣∣∣∣sin(ξ2)

τ

∣∣∣∣2
]1/2

THE VELOCITY OF PROPAGATION VANISHES !!!!!!! in the
following eight points

ξ1 = 0,±π, ξ2 = 0,±π, (ξ1, ξ2) 6= (0, 0).
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The red areas stand for those that need to be filtered out in order
to guarantee a uniform velocity of propagation in the semi-discrete
models.
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THE TWO-GRID ALGORITHM L. Ignat & E. Z., 2006

Theorem

Let Ω be the square and consider controls on all its boundary or on
two consecutive sides. Then, the two-grid algorithm with
mesh-ratio 1/4 converges for T sufficiently large.

The proof uses:

Previous results on the control of the solutions under Fourier
filtering (E. Z. JMPA, 99’)

Fourier analysis showing that the total energy of the slowly
oscillating discrete functions can be bounded above in terms
of the low frequency components.

A diadic decomposition argument following the level sets of
the discrete symbol.
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Grids: h & 4h
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Grids: h & 4h

Low frequency subset concentrating the energy of solutions:
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Why not using ratio 1/2 for the two-grids?
The relevant zone of frequencies intersects a level set of the phase
velocity for which the group velocity vanishes at some critical
points.
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OTHER RELATED ISSUES:

Dispersive numerical schemes for nonlinear Schrödinger equations:

L. IGNAT & E. Z., Dispersive Properties of Numerical Schemes for
Nonlinear Schrödinger Equations, Proceedings of FoCM’2005,
Santander, June-July 2005.
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Finite-difference approximation of elliptic homogenization problems
by Bloch wave expansions:

R. ORIVE & E. ZUAZUA. Finite difference approximations of
homogenization problems for elliptic equations. Multiscale
Modeling and Simulation: A SIAM Interdisciplinary Journal
Volume 4, Number 1 pp. 36-87, 2005.
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Waves on networks:

R. DAGER & E. ZUAZUA. Wave propagation and control in 1− d
vibrating multi-structures. “Mathématiques et Applications”, vol.
50, Springer Verlag, 2006.
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Transparent boundary conditions and PML...

Inverse problems...
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CONCLUSIONS:

• CONTROL (and many other qualitative properties...) AND
NUMERICS DO NOT COMMUTE

• FOURIER FILTERING, MULTI-GRID METHODS ARE
GOOD REMEDIES IN SIMPLE SITUATIONS: CONSTANT
COEFFICIENTS, REGULAR MESHES.

• MUCH REMAINS TO BE DONE TO HAVE A COMPLETE
THEORY AND TO HANDLE MORE COMPLEX SYSTEMS.
BUT ALL THE PATHOLOGIES WE HAVE DESCRIBED
WILL NECESSARILY ARISE IN THOSE SITUATIONS TOO.

• THE MATHEMATICAL THEORY NEEDS TO COMBINE
TOOLS FROM PARTIAL DIFFERENTIAL EQUATIONS,
CONTROL THEORY, CLASSICAL NUMERICAL ANALYSIS
AND MICROLOCAL ANALYSIS.
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BUT ALL THE PATHOLOGIES WE HAVE DESCRIBED
WILL NECESSARILY ARISE IN THOSE SITUATIONS TOO.

• THE MATHEMATICAL THEORY NEEDS TO COMBINE
TOOLS FROM PARTIAL DIFFERENTIAL EQUATIONS,
CONTROL THEORY, CLASSICAL NUMERICAL ANALYSIS
AND MICROLOCAL ANALYSIS.
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OPEN PROBLEMS

Complex geometries, variable and irregular coefficients, irregular
meshes, the system of elasticity, nonlinear state equations, ...
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To learn more on this topic:
E. Z. Propagation, observation, and control of waves
approximated by finite difference methods. SIAM Review, 47
(2) (2005), 197-243.
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