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Introduction

Many variational problems arising in several branches of applied analysis (as image processing, fracture
mechanics, theory of nematic liquid crystals) lead to consider minimum problems for functionals which
couple a volume and a surface integral, depending on a closed set K and a function u smooth outside K .
Following a terminology by E. De Giorgi, variational problems of this kind are called free-discontinuity
problems, and, in the weak formulation proposed by E. De Giorgi and L. Ambrosio in [13], they appear
as minimum problems for functionals of the form

F (u) =
∫

Ω

f(x, u,∇u) dx+
∫
Su

ψ(x, u−, u+, νu) dHn−1, (1)

where Ω is a bounded open subset of Rn , and the unknown function u belongs to the space SBV (Ω; RN )
of special functions of bounded variation in Ω with values in RN . We recall that ∇u denotes the
approximate gradient of u , Su is the set of essential discontinuity points of u , νu is the approximate
unit normal vector to Su , and u−, u+ the approximate limits of u on the two sides of Su (for a precise
definition see Chapter 1); finally, Hn−1 denotes the (n− 1)-dimensional Hausdorff measure.

A typical example is provided by the so-called Mumford-Shah functional, introduced in [31] in the
context of image segmentation, which can be written as

MSα,β(u) :=
∫

Ω

|∇u|2dx+ αHn−1(Su) + β

∫
Ω

|u− g|2 dx, (2)

where g is a function in L∞(Ω; RN ), and α > 0 and β ≥ 0 are constants.
One of the main features of functionals of the form (1) is that they are in general not convex; there-

fore, all the equilibrium conditions which can be obtained by infinitesimal variations are necessary for
minimality, but in general not sufficient.

G. Alberti, G. Bouchitté, and G. Dal Maso have proposed in [2] a sufficient condition for minimality,
which is based on the calibration method and applies for functionals of the general form (1) defined on
scalar maps.

In this thesis we apply this minimality criterion to identify a wide class of nontrivial minimizers for
the homogeneous version of the Mumford-Shah functional (defined on scalar maps)

MS(u) :=
∫

Ω

|∇u|2dx+Hn−1(Su), (3)

which occurs in the theory of inner regularity for minimizers of MSα,β and is obtained by taking α = 1
and dropping the lower order term in (2). In the last part we develop the theory of calibrations for more
general functionals with free discontinuities on vector-valued maps and we describe several applications
of this result.

All the applications and the examples shown throughout the thesis share the same purpose: we
consider a candidate u satisfying the equilibrium conditions for a functional of the form (1) and we prove

1



2 Introduction

by calibration that u is a minimizer of F in a sufficiently small domain; in other words, we show that
the equilibrium conditions are also sufficient to guarantee the minimality on small domains, as in many
classical problems of the Calculus of Variations.

Before giving the details of the results, let us describe the basic idea behind the calibration method
focusing our attention on Dirichlet minimizers of (1), that is minimizers with prescribed boundary values.
Given a candidate u , if we are able to construct a functional G which is invariant on the class of functions
having the same boundary values as u , and satisfies

G(u) = F (u), and G(v) ≤ F (v) for every admissible v , (4)

then u is a Dirichlet minimizer of F . Indeed, if such a functional exists, for every v with the same
boundary values as u we have that

F (u) = G(u) = G(v) ≤ F (v).

In [2] the role of G is carried out by the flux of a suitable divergence-free vectorfield ϕ : Ω×R → Rn×R
through the complete graph Γv of v , which is defined as the boundary of the subgraph of v (the set of all
points (x, z) ∈ Ω×R such that z ≤ v(x)), oriented by the inner normal νΓv . Since ϕ is divergence-free,
from the divergence theorem the flux turns out to be invariant with respect to the boundary values,
while suitable further conditions on ϕ guarantee (4). Consider for instance the case of the homogeneous
Mumford-Shah functional, for simplicity in two dimensions, and denote the variables in Ω by (x, y) and
the “vertical” variable in R by z . Then it is enough to require that ϕ = (ϕxy, ϕz) is a bounded regular
vectorfield satisfying the following assumptions:

(a1) ϕz(x, y, z) ≥ 1
4 |ϕ

xy(x, y, z)|2 for L2 -a.e. (x, y) ∈ Ω and every z ∈ R ;

(a2) ϕxy(x, y, u(x, y)) = 2∇u(x, y) and ϕz(x, y, u(x, y)) = |∇u(x, y)|2 for L2 -a.e. (x, y) ∈ Ω;

(b1)
∣∣∣∣∫ t2

t1

ϕxy(x, y, z) dz
∣∣∣∣ ≤ 1 for H1 -a.e. (x, y) ∈ Ω and every t1 < t2 in R ;

(b2)
∫ u+(x,y)

u−(x,y)

ϕxy(x, y, z) dz = νu(x, y) for H1 -a.e. (x, y) ∈ Su .

Indeed, the flux of ϕ through Γv can be expressed as∫
Ω

[〈ϕxy(x, y, v),∇v〉 − ϕz(x, y, v)] dx dy +
∫
Sv

∫ v+

v−
〈ϕxy(x, y, z), νv〉 dz dH1, (5)

where v , ∇v , v± , and νv are computed at (x, y); since condition (a1) implies that

〈ϕxy(x, y, v),∇v〉 − ϕz(x, y, v) ≤ |∇v|2 for L2 -a.e. (x, y) ∈ Ω, (6)

while condition (b1) implies∫ v+

v−
〈ϕxy(x, y, z), νv〉 dz ≤ 1 for H1 -a.e. (x, y) ∈ Sv , (7)

by (5) we have that the inequality in (4) is satisfied for every admissible v . Moreover, conditions (a2)
and (b2) guarantee that the equality holds true in (6) and (7), respectively, so that the equality in (4) is
fulfilled for the candidate u . We will say that ϕ is a calibration for u with respect to the functional MS
if ϕ is a vectorfield satisfying conditions (a1), (a2), (b1), (b2), and
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(c1) ϕ is divergence-free on Ω×R .

Summarizing, if there exists a calibration ϕ for u with respect to MS , then u is a Dirichlet minimizer
of MS .

The first applications of this minimality criterion are contained in [2], where the authors provide
several examples of nontrivial minimizers for the Mumford-Shah functional with short and easy proofs.
The simple expression of the calibrations in all these examples is related to the fact that they concern only
minimizers having either a gradient vanishing almost everywhere or an empty discontinuity set. In the
first part of this thesis we deal with candidates having a more complicated structure, that is presenting
both a non vanishing gradient and a nonempty discontinuity set.

We recall from [6] and [31] that a Dirichlet minimizer u for MS in Ω ⊂ R2 must satisfy the following
equilibrium conditions (which can be globally called the Euler-Lagrange conditions for (3)):

(i) u is harmonic on Ω \ Su ;

(ii) the normal derivative of u vanishes on both sides of Su , where Su is a regular curve;

(iii) the curvature of Su (where defined) is equal to the difference of the squares of the tangential
derivatives of u on both sides of Su ;

(iv) if Su is locally the union of finitely many regular arcs, then Su can present only two kinds of
singularities: either a regular arc ending at some point, the so-called “crack-tip”, or three regular
arcs meeting with equal angles of 2π/3, the so-called “triple junction”.

In Chapters 2 and 3 we construct calibrations for solutions of the Euler equations with a regular
discontinuity set, while in Chapter 4 we consider the case of a triple junction. All our results are in two
dimensions. The minimality of the crack-tip has been recently proved by different methods in [7], while
the problem of finding a calibration for it is still open.

We point out that we do not know of any general method to find calibrations, but each time, according
to the geometry of the discontinuity set of the candidate, we have to perform a different construction. In
spite of the lack of a general formula, all our constructions present a rather similar structure.

First of all, in terms of calibrations the presence of both a non vanishing gradient and a nonempty
discontinuity set corresponds to a conflict between conditions (a2) and (b2), since (a2) and the Neumann
conditions (ii) imply that ϕxy is tangential to Su at the points (x, y, u±(x, y)) for (x, y) ∈ Su , while (b2)
requires that its average between u−(x, y) and u+(x, y) is normal to Su for (x, y) ∈ Su . It is therefore
convenient to construct the calibration ϕ by pieces in order to act differently on the regions around
the (usual) graph of u , where ϕ will be somehow determined by condition (a2), and an “intermediate”
region, which will give the main contribution to the integral in (b2). More precisely, we decompose the
cylinder Ω×R in a finite union of Lipschitz open sets Ai and define ϕ in such a way that it agrees on Ai
with a suitable divergence-free vectorfield ϕi ; in order to satisfy condition (c1) we have clearly to require
that the vectorfields ϕi satisfy a compatibility condition along the boundary of the sets Ai .

In a neighbourhood of the graph of u we have to construct a divergence-free vectorfield satisfying
(a2) and such that for every (x, y) ∈ Su there holds

〈ϕxy(x, y, z), νu(x, y)〉 > 0 for u− < z < u− + ε and for u+ − ε < z < u+,
〈ϕxy(x, y, z), νu(x, y)〉 < 0 for u+ < z < u+ + ε and for u− − ε < z < u−

(8)

for a suitable ε > 0. These properties are crucial in order to obtain (b1) and (b2) simultaneously.
The aim of the definition of ϕ in the remaining region is to make (b2) exactly satisfied, that is to

annihilate the tangential contribution and to correct the normal one due to the presence of the field
around the graph. Of course, ϕ has to be carefully chosen in order to preserve conditions (a1) and (b1).

The scheme of our proofs is the following: we define a vectorfield ϕ depending on some parameters
and satisfying conditions (a1), (a2), (b2), and (c1); then we choose the parameters in such a way to fulfil
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also condition (b1). The Euler conditions are involved in the proof in a rather technical way: in general
they concern the definition of ϕ around the graph, which can be therefore regarded as the crucial point
of the construction.

The first examples of calibrations for discontinuous functions which are not locally constant, are pre-
sented in Chapter 2. We prove that if u is a function satisfying all Euler conditions for the homogeneous
Mumford-Shah functional and whose discontinuity set is a straight line segment connecting two points of
∂Ω, then every point (x0, y0) in Su has an open neighbourhood U such that u is a Dirichlet minimizer
of (3) in U , provided the tangential derivatives ∂τu and ∂2

ττu do not vanish at (x0, y0).
In Theorem 2.1 we study the special case

u(x, y) :=

{
x if y > 0,

−x if y < 0,

which, even if very simple, involves most of the main difficulties. The main idea of the proof is in the
definition of ϕ near the graph of u : in order to verify (a2) and to introduce a normal component satisfying
(8) we take as ϕxy a suitable “rotation” of the vector 2∇u ; in other words, we apply to the vectors ±2e1
a suitable orthogonal matrix R depending on x, y, z and satisfying R(x, y,±x) = I , and we set

ϕ(x, y, z) = (±2R(x, y, z)e1, 1).

This construction is then adapted in Theorem 2.4 to the case of a general function u satisfying the Euler
conditions and having a rectilinear discontinuity set. Near the graph of u we simply take

ϕ(x, y, z) = (2R(u, v, z)∇u, |∇u|2),

where v is the harmonic conjugate of u , while outside a neighbourhood of the graph we are forced to
introduce some additional parameters. We will see that it is actually convenient to perform a change of
variables through the mapping (x, y) 7→ (u(x, y), v(x, y)), which is conformal near (x0, y0), since we are
assuming ∂τu(x0, y0) 6= 0. The additional assumption ∂2

ττu(x0, y0) 6= 0 is instead related to the choice
of the field in the region far from the graph and to the proof of (b1): indeed, it guarantees that the
parameters appearing in the definition of ϕ can be chosen in such a way that the function

I(x, y, t1, t2) :=
∣∣∣∣∫ t2

t1

ϕxy(x, y, z) dz
∣∣∣∣

has a strict maximum at the points (x, y, u−(x, y), u+(x, y)) with (x, y) ranging in Su .
These first examples are widely generalized in Chapter 3, where we consider candidates u whose

discontinuity set can be any analytic curve and we prove the Dirichlet minimality in a uniform neigh-
bourhood of Su , without additional technical assumptions. More precisely, in Theorem 3.2 we show that,
if u is a function satisfying all Euler conditions for the Mumford-Shah functional and Su is an analytic
curve connecting two points of ∂Ω, then there exists an open neighbourhood U of Su ∩ Ω such that u
is a Dirichlet minimizer in U of (3).

We note that the analyticity assumption for Su does not seem too restrictive, since it has been proved
that the regular part of the discontinuity set of a minimizer is at least of class C∞ and it is a conjecture
that it is in fact analytic (see Chapter 1).

The original idea of the new construction essentially relies on the following remark: we can define
divergence-free vectorfields on an open set A ⊂ Ω×R starting from a fibration of A by graphs of harmonic
functions. Indeed, if {ut}t∈R is a family of harmonic functions whose graphs are pairwise disjoint and
cover A , then the vectorfield

ϕ(x, y, z) = (2∇ut(x, y), |∇ut(x, y)|2) (9)



Introduction 5

with t = t(x, y, z) satisfying z = ut(x, y), turns out to be divergence-free on A ; moreover, it automatically
fulfils conditions (a1) and (a2).

We use this technique to construct the calibration around the graph of u : we take as {ut} the family
{u+ tv} , where v is a suitable harmonic function, and according to formula (9) we define

ϕ(x, y, z) = (2∇u+ 2 z−uv ∇v, |∇u+ z−u
v ∇v|2);

the function v is chosen in such a way that ∇v is normal to Su and (8) is verified.
This method of construction reminds of the classical method of Weierstrass fields, where the proof of

the minimality of a candidate u is obtained by the construction of a slope field starting from a family of
solutions of the Euler equation, whose graphs foliate a neighbourhood of the graph of u .

In Chapter 3 we deal also with a different notion of minimality: in Theorem 3.2 we compare u with
perturbations which can be very large, but concentrated in a fixed small domain; we wonder if a minimality
property is preserved also on a large domain, when we admit as competitors only perturbations of u with
L∞ -norm very small outside a small neighbourhood of Su .

According to this idea, we will say that a function u is a Dirichlet graph-minimizer of the Mumford-
Shah functional if there exists a neighbourhood A of the complete graph of u such that MS(u) ≤MS(v)
for all v ∈ SBV (Ω) having the same trace on ∂Ω as u and whose complete graph is contained in A .

As proved in [2, Example 4.10], any harmonic function u : Ω → R is a Dirichlet graph-minimizer
of MS , whatever Ω is. If we consider instead a solution u of the Euler equations presenting some
discontinuities, what we discover is that the Dirichlet graph-minimality of u may fail when Ω is too
large, even in the case of a rectilinear discontinuity set, as the counterexample at the beginning of
Section 3.2 shows. Therefore, to achieve this minimality property we have to add some restrictions on
the domain Ω. To this aim we introduce a suitable quantity which seems useful to describe the correct
interaction between Su and Ω. Given an open set U (with Lipschitz boundary) and a portion Γ of ∂U
(with nonempty relative interior in ∂U ), we define

K(Γ, U) := inf
{∫

U

|∇v(x, y)|2dx dy : v ∈ H1(U),
∫

Γ

v2dH1 = 1, and v = 0 on ∂U \ Γ
}
.

As shown by the notation, K(Γ, U) is a quantity depending only on Γ and U , which describes a kind
of “capacity” of the prescribed portion of the boundary with respect to the whole open set. Note that if
U1 ⊂ U2 , and Γ1 ⊂ Γ2 , then K(Γ1, U1) ≥ K(Γ2, U2), which suggests that if K(Γ, U) is very large, then
U is thin in some sense. The qualitative properties of K(Γ, U) are studied in the final part of Section 3.2.

Theorem 3.5, which is the main result of Section 3.2, gives a sufficient condition for the Dirichlet
graph-minimality in terms of K(Su,Ω) and of the geometrical properties of Su . More precisely, we
assume that Γ is a given analytic curve such that Γ ∩ Ω connects two points of ∂Ω, and Ω \ Γ has two
connected components Ω1 , Ω2 with Lipschitz boundary. We prove that there exists a positive constant
c(Γ) (depending only on the length and on the curvature of Γ) such that, if u is a function satisfying all
Euler conditions in Ω, whose discontinuity set coincides with Γ ∩ Ω and such that

min
i=1,2

K(Γ ∩ Ω,Ωi) > c(Γ)
(
‖∂τu−‖2

C1(Γ∩Ω) + ‖∂τu+‖2
C1(Γ∩Ω)

)
, (10)

then u is a Dirichlet graph-minimizer of MS .
We remark that condition (10) imposes a restriction on the size of Ω depending on the behaviour

of u along Su : if u has large or very oscillating tangential derivatives, we have to take Ω quite small
to guarantee that (10) is satisfied. In the special case of a locally constant function u , condition (10)
is always fulfilled whatever the domain is; so u is always a Dirichlet graph-minimizer whatever Ω is, in
agreement with a result proved in [2].

The proof of Theorem 3.5 is based again on the calibration method. Indeed, to prove the graph-
minimality of a candidate u it is enough to show that there exist a suitable neighbourhood A of the
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complete graph of u , and a bounded vectorfield ϕ on A satisfying conditions (a1), (a2), (b1), (b2), and
(c1) (where now (x, y, z), (x, y, ti) range in A). Condition (10) guarantees that we can extend to a
neighbourhood of Γu a slightly modified version of the calibration of Theorem 3.2.

In Chapter 4 we study the minimality of solutions u of the Euler equations whose discontinuity set is
given by three line segments meeting at the origin with equal angles; in other words, Su is a rectilinear
triple junction, generating a partition of Ω in three sectors of angle 2π/3, that we call A0, A1, A2 . In
Theorem 4.1 we prove by calibration that, setting ui := u|Ai and assuming ui ∈ C2(Ai), there exists a
neighbourhood U of the origin such that u is a Dirichlet minimizer of MS in U . This result generalizes
Example 4 in [1] where the function u was piecewise constant.

The proof is quite long and technical, and is split in several steps. The symmetry due to the presence
of 2π/3-angles is exploited in the whole construction of the calibration. First of all, since the function
ui has to be harmonic in Ai with null normal derivative at ∂Ai , applying Schwarz reflection principle
we obtain that ui can be harmonically extended to a neighbourhood of the origin, cut by a half-line;
moreover, from the Euler condition (iii) it follows that the extension of ui coincides, up to the sign and
to additive constants, with uj on Aj for every j 6= i . Using this remark it is easy to see that each ui
must be either symmetric or antisymmetric with respect to the bisecting line of Ai .

In Sections 4.1 – 4.4 we define ϕ in the symmetric case and we prove that it is a calibration; in
Section 4.5 we adapt the construction to the antisymmetric case.

The crucial point of both constructions is, as usual, the definition of the field near the graph of u ,
where we apply again the “fibration” technique. Indeed, we fibrate a neighbourhood of the graph of
each ui by a family of harmonic functions of the form ui + tvi . Unlike the construction of ϕ in the
proof of Theorem 3.2 where we choose ∇v orthogonal to Su , in this case it is convenient to take as vi a
linear function whose gradient is parallel to the bisecting line of Ai . Thanks to the symmetry, this choice
ensures that the tangential contributions to the integral in (b2), given by the regions near u− and u+ ,
are always of opposite signs and annihilate each other.

The assumption of C2 -regularity for ui does not seem too restrictive: indeed, by the regularity
results for elliptic problems in non-smooth domains (see [22]), it follows that ui belongs at least to
C1(Ai), since ui solves the Laplace equation with Neumann boundary conditions on a sector of angle
2π/3. Moreover, since ui is either symmetric or antisymmetric with respect to the bisecting line of Ai ,
one can see ui as a solution of the Laplace equation on a π/3-sector with Neumann boundary conditions
or respectively mixed boundary conditions. By the regularity results in [22], it turns out that in the first
case ui belongs to C2(Ai), while in the second one ui can be written (in polar coordinates centred at
0) as ui(r, θ) = ũi(r, θ) + cr3/2 cos 3

2θ , with ũi ∈ C2(Ai) and c ∈ R . So, only the function r3/2 cos 3
2θ is

not recovered by our theorem: if we were able to construct a calibration also for this function, then we
would recover all possible cases.

Finally we remark that the case where Su is given by three regular curves (not necessarily rectilinear)
meeting at a point with 2π/3-angles, is at the moment an open problem and it does not seem to be
achievable with a plain arrangement of the calibration used for the rectilinear case, essentially because
of the lack of symmetry.

The last part of the thesis corresponds to Chapter 5 where we generalize the calibration method
to functionals of the form (1) defined on vector-valued maps. The basic principle is the same we have
explained at the beginning: in order to prove the minimality of a function u , we want to construct a
functional G satisfying conditions (4) and invariant on the class of the admissible competitors for u .
When u is a vector-valued function, it is convenient to consider a different kind of invariant functional:
the calibration is no longer a vectorfield, but a pair of functions (S,S0), where S : Ω×RN → Rn is
suitably regular, while S0 belongs to L1(Ω); the comparison functional for F is given by

G(v) := −
∫
∂Ω

〈S(x, v), ν∂Ω〉 dHn−1 +
∫

Ω

S0(x) dx, (11)
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where ν∂Ω is the inner unit normal to ∂Ω. It is clear that the functional (11) is constant on the functions
having the same values at ∂Ω. Moreover, by the divergence theorem we can rewrite (11) as∫

Ω

dµv +
∫

Ω

S0(x) dx,

where µv is the divergence (in the sense of distributions) of the composite function S(·, v(·)). A gener-
alized version of the chain rule in BV (which is proved in Lemma 5.2) implies that

µv = ([divxS](x, v) + 〈(DzS(x, v))τ ,∇v〉)Ln + 〈S(x, v+)− S(x, v−), νv〉Hn−1bSv,

where [divxS] denotes the divergence of S with respect to the variable x ∈ Ω, and (DzS)τ the transpose
of the Jacobian matrix of S with respect to the variable z ∈ RN . Therefore the functional (11) turns
out to be equal to∫

Ω

([divxS](x, v) + 〈(DzS(x, v))τ ,∇v〉+ S0(x)) dx+
∫
Sv

〈S(x, v+)− S(x, v−), νv〉 dHn−1. (12)

By comparing this expression with the functional (1), we find pointwise conditions on S0 , S , and the
derivatives of S , which guarantee (4), and then the Dirichlet minimality of a given u . For instance, in
the case of the Mumford-Shah functional (3) defined on vector-valued maps, it is enough to require the
following conditions:

(a1) [divxS](x, z) + S0(x) ≤ −1
4 |DzS(x, z)|2 for Ln -a.e. x ∈ Ω, and for every z ∈ RN ;

(a2) [divxS](x, u) + S0(x) = −|∇u(x)|2 and (DzS(x, u))τ = 2∇u(x) for Ln -a.e. x ∈ Ω;

(b1) |S(x, z1)− S(x, z2)| ≤ 1 for Hn−1 -a.e. x ∈ Ω and for every z1, z2 ∈ RN ;

(b2) S(x, u+)− S(x, u−) = νu for Hn−1 -a.e. x ∈ Su .

For a precise statement in the case of a general functional of the form (1) we refer to Lemma 5.4 and
Lemma 5.5 in Section 5.1.

The connection between the conditions above in the case N = 1 and those ones of the scalar for-
mulation by Alberti, Bouchitté, Dal Maso, is studied in Remark 5.8. Here we only observe that, while
in the scalar formulation we need condition (c1) to ensure that the comparison functional is invariant
with respect to the boundary values, in this new framework this is guaranteed just by the expression of
the functional (11); so, there is no condition corresponding to (c1). In fact, in the case N = 1, given a
calibration (S,S0), the vectorfield ϕ = (ϕx, ϕz) : Ω×R → Rn×R defined as

ϕx(x, z) := ∂zS(x, z), ϕz(x, z) := −[divxS](x, z)− S0(x)

is a calibration in the sense of Alberti, Bouchitté, Dal Maso. Indeed, ϕ turns out to be divergence-free,
and the remaining conditions of the scalar formulation follow from conditions (a1), (a2), (b1), and (b2)
stated above. Conversely, given any divergence-free vectorfield ϕ = (ϕx, ϕz), we can always write ϕx

as the derivative with respect to z ∈ R of a suitable function S : Ω×R → Rn , and using the relation
∂zϕ

z = −divxϕx (which follows from (c1)), we can deduce that there exists a function S0 of the variable
x such that ϕz(x, z) = −[divxS](x, z) − S0(x). If we rewrite now conditions (a1), (a2), (b1), and (b2)
of the scalar formulation by using these expressions of ϕx and ϕz , we obtain that the pair (S,S0) is a
calibration.

The formulation in terms of (S,S0) is related to classical field theory for multiple integrals of the
form

F0(u) =
∫

Ω

f(x, u,∇u) dx.



8 Introduction

In this context a sufficient condition for the minimality of a candidate u ∈ C1(Ω; RN ) is obtained by
comparing F0 with the integral of a null-lagrangian of divergence type, which is constructed starting
from a suitably defined slope field P , called Weyl field , and a function S ∈ C2(Ω×RN ; Rn), the eikonal
map associated with P (cf., e.g., [18]). In Section 5.2 we prove that, under suitable assumptions on f
and ψ , whenever a Weyl field exists for a function u ∈ C1(Ω; RN ) (so that u is a Dirichlet minimizer for
F0 ), then there exists a calibration for u with respect to the functional F (which is given by the eikonal
map S and by S0 ≡ 0), so u is also a Dirichlet minimizer for F among SBV functions.

Some examples and applications are presented in Section 5.3. In Examples 5.14, 5.16, 5.17, and 5.18
we deal with minimizers of the Mumford-Shah functional, and we generalize some results proved in [2]
for the scalar case. A purely vectorial example is given by Example 5.15, where we study the minimality
of continuous solutions of the Euler equations for a functional arising in fracture mechanics, which can
be defined only on maps from Ω ⊂ Rn into Rn .

Finally, we point out that, as mentioned in [2], one could try to generalize the calibration theory from
the scalar case to the vectorial one by replacing divergence-free vectorfields by closed n -forms on Ω×RN ,
acting on the graphs of the functions v , viewed as suitably defined surfaces in Ω×RN . This could lead
to the idea that our choice of writing the calibration in terms of the pair (S,S0) is somehow restrictive
when N > 1. This is not the case at all, since the existence of a calibration expressed via differential
forms implies the existence of a calibration expressed in terms of a pair (S,S0), as shown in Section 5.4.

The results of Chapter 2 are obtained in collaboration with Gianni Dal Maso and Massimiliano Morini,
and are published in [11], while the results of Chapter 3 are achieved in collaboration with Massimiliano
Morini and published in [27]. The content of Chapter 4 will appear in [25], while the content of Chapter 5
corresponds to the paper [26].



Chapter 1

Preliminary results

In this chapter we collect some preliminary results which will be useful in the sequel. In Section 1.1 we
recall some basic results from the theory of functions with bounded variation. In Sections 1.2 and 1.3
we deal with necessary and sufficient conditions for the minimality of the homogeneous Mumford-Shah
functional on scalar maps: in Section 1.2 we write the Euler-Lagrange equations, while in Section 1.3 we
present the theory of calibrations.

Let us fix some notation. Given x, y ∈ Rn , we denote their scalar product by 〈x, y〉 , and the euclidean
norm of x by |x| . We set Sn−1 := {x ∈ Rn : |x| = 1} . Given a set B ⊂ Rn , we denote the Lebesgue
measure of B by Ln(B) and the (n− 1)-dimensional Hausdorff measure of B by Hn−1(B). If a, b ∈ R ,
the maximum and the minimum of {a, b} are denoted by a ∨ b and a ∧ b , respectively.

1.1 Functions of bounded variation

Let Ω be a bounded open subset of Rn , let u ∈ L1
loc(Ω; RN ), and let x0 ∈ Ω. We say that u has an

approximate limit at x0 ∈ Ω if there exists z ∈ RN such that

lim
r→0+

1
Ln(Br(x0))

∫
Br(x0)

|u(x)− z| dx = 0, (1.1)

where Br(x0) is the ball of radius r centred at x0 . The set Su of points where this property does not
hold is called the approximate discontinuity set of u . For any x0 ∈ Ω\Su the vector z (which is uniquely
determined by (1.1)) is called the approximate limit of u at x0 and denoted by ũ(x0).

We say that a function u : Ω → RN has bounded variation in Ω, and we write u ∈ BV (Ω; RN ), if u
belongs to L1(Ω; RN ) and its distributional derivative Du is a finite Radon RnN -valued measure in Ω.
If Ω has Lipschitz boundary, we can speak about the trace of u on ∂Ω, which belongs to L1(∂Ω,Hn−1)
and will be still denoted by u .

If u ∈ BV (Ω; RN ), then Su is countably (Hn−1, n − 1)-rectifiable, that is, it can be covered, up to
an Hn−1 -negligible set, by countably many C1 -hypersurfaces. Moreover, for Hn−1 -a.e. x0 ∈ Su there
exists a triplet (u+(x0), u−(x0), νu(x0)) ∈ RN×RN×Sn−1 such that u+(x0) 6= u−(x0), νu(x0) is normal
to Su in an approximate sense, and

lim
r→0+

1
Ln(B±r (x0))

∫
B±r (x0)

|u(x)− u±(x0)| dx = 0, (1.2)

where B±r (x0) is the intersection of Br(x0) with the half-plane {x ∈ Rn : ±〈x− x0, νu(x0)〉 ≥ 0} . The
triplet (u+(x0), u−(x0), νu(x0)) is uniquely determined up to a permutation of (u+(x0), u−(x0)) and a

9
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change of sign of νu(x0). Condition (1.2) says that νu(x0) points from the side of Su corresponding to
u−(x0) to the side corresponding to u+(x0).

For every u ∈ BV (Ω; RN ), by applying the Radon-Nicodým theorem we can decompose the measure
Du as Dau+Dsu , where Dau is the absolutely continuous part with respect to the Lebesgue measure
Ln and Dsu is the singular part. The density of Dau with respect to Ln is denoted by ∇u and agrees
with the approximate gradient of u . The measure Dsu can be in turn written as Dju + Dcu , where
Dju is the restriction of Dsu to Su and is called the jump part, while Dcu is the restriction to Ω \ Su
and is called the Cantor part. The density of Dju with respect to the measure Hn−1bSu is given by the
tensor product (u+ − u−)⊗ νu . We also call the sum Dau+Dcu the diffuse part of the derivative of u
and denote it by D̃u .

We say that a function u : Ω → RN is a special function of bounded variation, and we write u ∈
SBV (Ω; RN ), if u ∈ BV (Ω; RN ) and Dcu = 0.

Finally, for every u ∈ BV (Ω; RN ) we define as graph of u the set

graphu := {(x, ũ(x)) : x ∈ Ω \ Su}.

In the scalar case N = 1, for every u ∈ BV (Ω) we call 1u the characteristic function of the subgraph
of u in Ω×R , namely the function defined by 1u(x, z) := 1 for z ≤ u(x) and 1u(x, z) = 0 for z > u(x).
We define as complete graph of u (and we denote it by Γu ) the measure theoretic boundary of the
subgraph of u , that is the singular set of 1u . We note that, assuming u and Su sufficiently regular, the
complete graph Γu consists of the union of the graph of u and of all segments joining (x, u−(x)) and
(x, u+(x)) with x ranging in Su .

For more details we refer to the book [6] by L. Ambrosio, N. Fusco, and D. Pallara, where a self-con-
tained presentation of BV and SBV spaces can be found.

1.2 The Euler-Lagrange equations for the Mumford-Shah
functional

Let Ω denote a bounded open subset of R2 with Lipschitz boundary, and let us consider the homogeneous
Mumford-Shah functional

MS(u) =
∫

Ω

|∇u|2dx+H1(Su) (1.3)

for u ∈ SBV (Ω).
In the sequel we will refer to the following definition of minimizers.

Definition 1.1 An absolute minimizer of (1.3) in Ω is a function u ∈ SBV (Ω) such that∫
Ω

|∇u|2dx+H1(Su) ≤
∫

Ω

|∇v|2dx+H1(Sv) (1.4)

for every v ∈ SBV (Ω) , while a Dirichlet minimizer in Ω is a function u ∈ SBV (Ω) such that (1.4) is
satisfied for every v ∈ SBV (Ω) with the same trace on ∂Ω as u .

Let us focus our attention on necessary optimality conditions near a regular portion of Su . Let u be
a Dirichlet minimizer of MS and let U ⊂ Ω be an open set such that Su ∩ U is a graph, that is

Su ∩ U = {(t, ψ(t)) : t ∈ D}

for some open set D ⊂ R and ψ : D → R . Set U+ := {(t, s) ∈ U : s > ψ(t)} and U− := {(t, s) ∈ U :
s < ψ(t)} . Let ϕ ∈ C1(U) be a function vanishing in a neighbourhood of ∂U+ \ Su ; by comparing u
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with the function v := u+ εϕ , from the minimality of u we obtain that∫
U+
〈∇u,∇ϕ〉 dx = 0.

This means that u is a weak solution of the following problem:{
∆u = 0 in U+,
∂νu = 0 on ∂U+ ∩ Su.

(1.5)

A similar problem is solved by u in U− .
The Euler equation (1.5) has been obtained by considering only variations of u and keeping Su fixed.

By considering also variations of Su we expect to derive a transmission condition for u along Su , which
takes into account the interaction between the bulk and the surface part of the functional. Assume that
u belongs to W 2,2(U+ ∪ U−) and suppose that Su ∩ U is the graph of a C2 -function (that is, ψ is of
class C2 ). Then it can be proved that

−div

(
∇ψ√

1 + |∇ψ|2

)
= |(∇u)+|2 − |(∇u)−|2 on Su ∩ U , (1.6)

where the left-hand side is the curvature of Su , while at the right-hand side (∇u)± denote the traces of
∇u on Su ∩ U from U± , respectively.

We note that, if ψ is known to be only of class C1,γ , equation (1.6) actually still holds in a weak
sense. Then using (1.6) it is possible to prove that, as soon as we know that Su ∩ U is of class C1,γ ,
then Su ∩ U turns out to be in fact of class C∞ .

The following conjecture is still an open problem.

Conjecture (De Giorgi). If u is a Dirichlet minimizer of MS , then Su is analytic near its regular
points.

We conclude this section by some remarks on the regularity of the discontinuity set of a minimizer,
which represents a very challenging mathematical problem. In [31] D. Mumford and J. Shah conjectured
that, if u is a Dirichlet minimizer of MS , then Su is locally the union of finitely many C1,1 embedded
arcs; moreover, they showed that, if the conjecture is true, then only two kinds of singularity can occur
inside Ω: either a line terminates at some point, the so-called “crack-tip”, or three lines meet forming
equal angles of 2π/3, the so-called “triple junction”.

In [6, Theorem 8.1] the following regularity result is proved.

Theorem 1.2 If u ∈ SBV (Ω) is a minimizer of MS , there exists an H1 -negligible set Σ ⊂ Su ∩ Ω
relatively closed in Ω such that Ω ∩ Su \ Σ is a curve of class C1,1 .

This result is still far from Mumford-Shah conjecture, since we are only able to say that Σ is H1 -
negligible, and not that it has locally finite H0 measure.

1.3 The calibration method for the Mumford-Shah functional

In this section we present the calibration method for the homogeneous Mumford-Shah functional in two
dimensions and we briefly recall how this criterion can be adapted to a general functional with free
discontinuities defined on scalar maps.



12 Chapter 1

We first introduce a more general notion of minimality which will be useful in the sequel. Let Ω be a
fixed bounded open subset of R2 with Lipschitz boundary, and ν∂Ω its inner unit normal. Let A denote
an open subset of Ω×R with Lipschitz boundary, whose closure can be written as

A = {(x, y, z) ∈ Ω×R : τ1(x, y) ≤ z ≤ τ2(x, y)},

where the two functions τ1, τ2 : Ω → [−∞,+∞] satisfy τ1 < τ2 .

Definition 1.3 We say that a function u ∈ SBV (Ω) is an absolute A -minimizer of MS if the complete
graph of u is contained in A and MS(u) ≤ MS(v) for every v ∈ SBV (Ω) such that Γv ⊂ A , while u
is a Dirichlet A -minimizer if we add the requirement that the competing functions v have the same trace
on ∂Ω as u .

For every vectorfield ϕ : A→ R2×R we define the maps ϕxy : A→ R2 and ϕz : A→ R by

ϕ(x, y, z) = (ϕxy(x, y, z), ϕz(x, y, z)).

We shall consider the collection F of all piecewise C1 -vectorfields ϕ : A → R2×R with the following
property: there exist a finite family (Ai)i∈I of pairwise disjoint open subsets of A with Lipschitz boundary
whose closures cover A , and a family (ϕi)i∈I of vectorfields in C1(Ai; R2×R) such that ϕ agrees at any
point with one of the ϕi .

Let u ∈ SBV (Ω) be such that Γu ⊂ A . A calibration for u on A (with respect to the functional
MS ) is a bounded vectorfield ϕ ∈ F satisfying the following properties:

(a1) ϕz(x, y, z) ≥ 1
4 |ϕ

xy(x, y, z)|2 for L2 -a.e. x ∈ Ω and every z ∈ [τ1, τ2] ;

(a2) ϕxy(x, y, u(x, y)) = 2∇u(x, y) and ϕz(x, y, u(x, y)) = |∇u(x, y)|2 for L2 -a.e. x ∈ Ω;

(b1)
∣∣∣∣∫ t2

t1

ϕxy(x, y, z) dz
∣∣∣∣ ≤ 1 for H1 -a.e. (x, y) ∈ Ω, and every t1, t2 in [τ1, τ2] ;

(b2)
∫ u+(x,y)

u−(x,y)

ϕxy(x, y, z) dz = νu(x, y) for H1 -a.e. (x, y) ∈ Su ;

(c1) ϕ is divergence-free in the sense of distributions in A .

If also the following condition is satisfied:

(c2) 〈ϕxy, ν∂Ω〉 = 0 H2 -a.e. on ∂A ∩ (∂Ω×R),

then ϕ is called an absolute calibration for u on A .
We note that, in order to prove condition (c1), it is enough to show that divϕi = 0 in Ai for every

i ∈ I , and the following transmission condition is satisfied:

〈ϕi, ν∂Ai〉 = 〈ϕj , ν∂Aj 〉 H2 -a.e. on ∂Ai ∩ ∂Aj ,

where ν∂Ai and ν∂Aj denote the unit normal vector to ∂Ai and ∂Aj , respectively.
We can now state the fundamental theorem of the calibration method, which is proved in [1] and [2].

Theorem 1.4 Let u ∈ SBV (Ω) be such that Γu ⊂ A . If there exists a calibration for u on A (with
respect to MS ), then u is a Dirichlet A-minimizer of the homogeneous Mumford-Shah functional. If
there exists an absolute calibration for u on A , then u is an absolute A-minimizer.

The following lemma, which allows to construct divergence-free vectorfields starting from families of
harmonic functions, will be useful in the construction of the calibrations of Chapters 3 and 4.
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Lemma 1.5 Let U be an open subset of R2 and I , J be two real intervals. Let u : U×J → I be a
function of class C1 such that

• u(·, · ; s) is harmonic for every s ∈ J ;

• there exists a C1 -function t : U×I → J such that u(x, y; t(x, y; z)) = z .

Then, if we define in U×I the vectorfield

ϕ(x, y, z) := (2∇u(x, y; t(x, y; z)), |∇u(x, y; t(x, y; z))|2),

where ∇u(x, y; t(x, y; z)) denotes the gradient of u with respect to the variables (x, y) computed at the
point (x, y; t(x, y; z)) , ϕ is divergence-free in U×I .

Proof. – Let us compute the divergence of ϕ :

divϕ(x, y, z) = 2∆u(x, y; t(x, y; z)) + 2〈∂s∇u(x, y; t(x, y; z)),∇t(x, y; z)〉
+ 2∂zt(x, y; z) 〈∇u(x, y; t(x, y; z)), ∂s∇u(x, y; t(x, y; z))〉, (1.7)

where ∆u(x, y; t(x, y; z)) denotes the Laplacian of u with respect to (x, y) computed at (x, y; t(x, y; z)),
and ∇t(x, y; z) denotes the gradient of t with respect to (x, y). By differentiating the identity verified
by the function t first with respect to z and with respect to (x, y), we derive that

∂su(x, y; t(x, y; z)) ∂zt(x, y; z) = 1, ∇u(x, y; t(x, y; z)) + ∂su(x, y; t(x, y; z))∇t(x, y; z) = 0.

Using these identities and substituting in (1.7), we finally obtain

divϕ(x, y, z) = 2∆u(x, y; t(x, y; z)) = 0,

since by assumption u is harmonic with respect to (x, y). 2

Let us consider now a general functional of the form

F (u) :=
∫

Ω

f(x, u,∇u) dx+
∫
Su

ψ(x, u−, u+, νu)Hn−1,

where Ω is a bounded open subset of Rn with Lipschitz boundary, the unknown u belongs to SBV (Ω),
and f , ψ are Borel functions.

Let f∗ and ∂−ξ f denote the convex conjugate and the subdifferential of f with respect to the last
variable. We recall that the subdifferential of a function g : Rn → [0,+∞] at the point ξ ∈ Rn is defined
as the set of vectors η ∈ Rn such that g(ξ) + 〈η, ζ − ξ〉 ≤ g(ζ) for every ζ ∈ Rn .

As before, let A be an open subset of Ω×R with Lipschitz boundary whose closure can be written as

A = {(x, z) ∈ Ω×R : τ1(x) ≤ z ≤ τ2(x)},

where τ1, τ2 : Ω → [−∞,+∞] satisfy τ1 < τ2 .
The regularity assumptions on ϕ can be weakened by requiring that ϕ is approximately regular, i.e.

it is bounded and for every Lipschitz hypersurface M in Rn+1 there holds

ap lim
(x,z)→(x0,z0)

〈ϕ(x, z), νM (x0, z0)〉 = 〈ϕ(x0, z0), νM (x0, z0)〉 for Hn -a.e. (x, z) ∈M ∩A ,

where νM (x0, y0) is the unit normal to M at (x0, y0). It is easy to see that, if ϕ ∈ F , then ϕ is
approximately regular.

Let u ∈ SBV (Ω) be such that Γu ⊂ A . A calibration for u on A with respect to the functional F
is an approximately regular vectorfield ϕ = (ϕx, ϕz) : A→ Rn×R satisfying the following conditions:
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(a1) ϕz(x, z) ≥ f∗(x, z, ϕx(x, z)) for Ln -a.e. x ∈ Ω and every z ∈ [τ1, τ2] ;

(a2) ϕx(x, u(x)) ∈ ∂−ξ f(x, u(x),∇u(x)) and ϕz(x, u(x)) = f∗(x, u(x), ϕx(x, u(x))) for Ln -a.e. x ∈ Ω;

(b1)
∫ t2

t1

〈ϕx(x, z), ν〉 dz ≤ ψ(x, t1, t2, ν) for Hn−1 -a.e. x ∈ Ω, every ν ∈ Sn−1 , and every t1 < t2 in

[τ1, τ2] ;

(b2)
∫ u+(x)

u−(x)

〈ϕx(x, z), νu(x)〉 dz = ψ(x, u−(x), u+(x), νu(x)) for Hn−1 -a.e. x ∈ Su ;

(c1) ϕ is divergence-free in the sense of distributions in A .

If also the following condition is satisfied:

(c2) 〈ϕx, ν∂Ω〉 = 0 Hn -a.e. on ∂A ∩ (∂Ω×R),

then ϕ is called an absolute calibration.
The following theorem is proved in [2].

Theorem 1.6 Let u ∈ SBV (Ω) be such that Γu ⊂ A . If there exists a calibration for u on A with
respect to F , then u is a Dirichlet A-minimizer of F , that is F (u) ≤ F (v) for every v ∈ SBV (Ω) with
the same trace on ∂Ω as u and such that Γv ⊂ A . If there exists an absolute calibration for u on A
with respect to F , then u is an absolute A-minimizer of F , that is F (u) ≤ F (v) for every v ∈ SBV (Ω)
such that Γv ⊂ A .



Chapter 2

Calibrations for minimizers with a
rectilinear discontinuity set

In this chapter we show the first examples of calibrations for discontinuous functions, which are not locally
constant. In particular, we consider solutions w of the Euler-Lagrange equations for the homogeneous
Mumford-Shah functional

MS(w) =
∫

Ω

|∇w(x, y)|2dx dy +H1(Sw), (2.1)

and we assume that the discontinuity set Sw is a straight line segment connecting two boundary points
of the domain. We prove that, under the additional assumptions that the tangential derivatives ∂τw and
∂2
ττw of w do not vanish on both sides of Sw , the Euler conditions are also sufficient for the Dirichlet

minimality in small domains.
Let Ω be a circle in R2 with centre on the x-axis, and set

Ω0 := {(x, y) ∈ Ω : y 6= 0}, S := {(x, y) ∈ Ω : y = 0}.

If w ∈ C1(Ω0) with
∫
Ω0
|∇w|2dx dy < +∞ , then it is easy to see that w satisfies the Euler conditions

for the Mumford-Shah functional (see Section 1.2) if and only if w has one of the following forms:

w(x, y) =

{
u(x, y) if y > 0,

−u(x, y) + c1 if y < 0,
(2.2)

or

w(x, y) =

{
u(x, y) + c2 if y > 0,
u(x, y) if y < 0,

(2.3)

where u ∈ C1(Ω) is harmonic with normal derivative vanishing on S and c1 , c2 are real constants. For
our purposes, it is enough to consider the case c1 = 0 in (2.2) and c2 = 1 in (2.3).

In both cases we will construct an explicit calibration for w in the cylinder U×R , where U is a
suitable neighbourhood of (x0, y0). Since this construction is elementary when (x0, y0) /∈ Sw (see [2]),
we consider only the case (x0, y0) ∈ Sw .

In Section 2.1 we consider the special case of the function

w(x, y) :=

{
x if y > 0,

−x if y < 0,
(2.4)

15
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and give in full details the expression of the calibration for w (see Theorem 2.1); then in Theorem 2.3
we adapt the same construction to the function

w(x, y) :=

{
x+ 1 if y > 0,
x if y < 0.

(2.5)

In Section 2.2 we consider the general cases (2.2) and (2.3): the former case (2.2) is studied in Theorem
2.4 by a suitable change of variables and by adding two new parameters to the construction used in
Theorem 2.1; the minor changes for (2.2) are considered in Theorem 2.5.

2.1 A model case

In this section we deal with the minimality of the functions (2.4) and (2.5). The aim of the study of these
simpler cases (but we will see that they involve the main difficulties) is to clarify the ideas of the general
construction.

Theorem 2.1 Let w : R2 → R be the function defined by

w(x, y) :=

{
x if y > 0,

−x if y < 0.

Then every point (x0, y0) 6= (0, 0) has an open neighbourhood U such that w is a Dirichlet minimizer in
U of the Mumford-Shah functional (2.1).

Proof. – The result follows from Example 4.10 of [2] if y0 6= 0. We consider now the case y0 = 0,
assuming for simplicity that x0 > 0. We will construct a local calibration of w near (x0, 0). Let us fix
ε > 0 such that

0 < ε <
x0

10
, 0 < ε <

1
32
. (2.6)

For 0 < δ < ε we consider the open rectangle

U := {(x, y) ∈ R2 : |x− x0| < ε, |y| < δ}

and the following subsets of U×R (see Fig. 2.1):

A1 := {(x, y, z) ∈ U×R : x− α(y) < z < x+ α(y)},
A2 := {(x, y, z) ∈ U×R : b+ κ(λ) y < z < b+ κ(λ) y + h} ,
A3 := {(x, y, z) ∈ U×R : −h < z < h},
A4 := {(x, y, z) ∈ U×R : −b+ κ(λ) y − h < z < −b+ κ(λ) y} ,
A5 := {(x, y, z) ∈ U×R : −x− α(−y) < z < −x+ α(−y)},

where
α(y) :=

√
4ε2 − (ε− y)2,

h :=
x0 − 3ε

4
, κ(λ) :=

λ

4
− 1
λ
, b := 2h+ κ(λ) δ, λ :=

1− 4ε
2h

.

We will assume that
δ <

x0 − 3ε
8 |κ(λ)|

, (2.7)
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Figure 2.1: Section of the sets A1, . . . , A5 at x = constant.
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so that the sets A1, . . . , A5 are pairwise disjoint.
For every (x, y, z) ∈ U×R , let us define the vector ϕ(x, y, z) = (ϕx, ϕy, ϕz)(x, y, z) ∈ R3 as follows:

(
2(ε− y)√

(ε− y)2 + (z − x)2
,

−2(z − x)√
(ε− y)2 + (z − x)2

, 1

)
if (x, y, z) ∈ A1,

(
0, λ,

λ2

4

)
if (x, y, z) ∈ A2,

(f(y), 0, 1) if (x, y, z) ∈ A3,(
0, λ,

λ2

4

)
if (x, y, z) ∈ A4,

(
−2(ε+ y)√

(ε+ y)2 + (z + x)2
,

2(z + x)√
(ε+ y)2 + (z + x)2

, 1

)
if (x, y, z) ∈ A5,

(0, 0, 1) otherwise,

where

f(y) := − 1
h

(∫ α(y)

0

ε− y√
t2 + (ε− y)2

dt−
∫ α(−y)

0

ε+ y√
t2 + (ε+ y)2

dt

)
.

Note that A1 ∪ A5 is an open neighbourhood of graphw ∩ (U×R). The purpose of the definition
of ϕ in A1 and A5 (see Fig. 2.2) is to provide a divergence-free vectorfield satisfying condition (a2) of
Section 1.3 and such that

ϕy(x, 0, z) > 0 for |z| < x,

ϕy(x, 0, z) < 0 for |z| > x.

These properties are crucial in order to obtain (b1) and (b2) simultaneously.
The role of A2 and A4 is to give the main contribution to the integral in (b2). To explain this fact,

suppose, for a moment, that ε = 0; in this case we would have A1 = A5 = ∅ and∫ x

−x
ϕy(x, 0, z) dz = 1,

so that the y -component of equality (b2) would be satisfied.
The purpose of the definition of ϕ in A3 is to correct the x-component of ϕ , in order to obtain (b1).

We shall prove that, for a suitable choice of δ , the vectorfield ϕ is a calibration for w in the rectangle
U .

Inequality (a1) is clearly satisfied in all regions: the only nontrivial case is A3 , where using (2.6) we
have

|f(y)| ≤ 4 (α(y) + α(−y))
x0 − 3ε

≤ 8
√

3ε
x0 − 3ε

< 2.

On the graph of w we have

ϕ(x, y, w(x, y)) =

{
(2, 0, 1) if y > 0,

(−2, 0, 1) if y < 0,
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Figure 2.2: Section of the set A1 at z = constant.

so condition (a2) is satisfied.
Note that for a given z ∈ R we have

∂xϕ
x(x, y, z) + ∂yϕ

y(x, y, z) = 0 (2.8)

for every (x, y) such that (x, y, z) ∈ A1 ∪ A5 . This implies ϕ is divergence-free in A1 ∪ A5 . Moreover
divϕ = 0 in the other sets Ai , and the normal component of ϕ is continuous across ∂Ai : the choice of
κ(λ) ensures that this property holds for ∂A2 and ∂A4 (see Fig. 2.3). Therefore ϕ is divergence-free in
the sense of distributions in U×R .

We now compute ∫ x

−x
ϕy(x, y, z) dz.

Let us fix y with |y| < δ . Since ϕy(x, y, z) depends on z − x , we have∫ x

x−α(y)

ϕy(x, y, z) dz =
∫ x+α(y)

x

ϕy(ξ, y, x) dξ. (2.9)

Using (2.8) and applying the divergence theorem to the curvilinear triangle

T = {(ξ, η) ∈ R2 : ξ > x, η < y, (ε− η)2 + (x− ξ)2 < 4ε2}

(see Fig. 2.4), we obtain
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Figure 2.3: Section of the set A2 at x = constant.
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Figure 2.4: The curvilinear triangle T .

∫ x+α(y)

x

ϕy(ξ, y, x) dξ =
∫ y

−ε
ϕx(x, η, x) dη = 2(y + ε). (2.10)

From (2.9) and (2.10), we get ∫ x

x−α(y)

ϕy(x, y, z) dz = 2(y + ε). (2.11)

Similarly we can prove that ∫ −x+α(−y)

−x
ϕy(x, y, z) dz = 2(−y + ε). (2.12)

Using the definition of ϕ in A2 , A3 , A4 , we obtain∫ x

−x
ϕy(x, y, z) dz = 1. (2.13)

On the other hand, by the definition of f , we have immediately that∫ x

−x
ϕx(x, y, z) dz = 0. (2.14)

From these equalities it follows in particular that condition (b2) is satisfied on the jump set Sw ∩ U =
{(x, y) ∈ U : y = 0} .
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Let us begin now the proof of (b1). Let us fix (x, y) ∈ U . For every t1 < t2 we set

I(t1, t2) :=
∫ t2

t1

(ϕx, ϕy)(x, y, z) dz.

It is enough to consider the case −x− α(−y) ≤ t1 ≤ t2 ≤ x− α(y). We can write

I(t1, t2) = I(t1,−x) + I(−x, x) + I(x, t2),
I(t1,−x) = I(t1 ∧ (−x+ α(−y)),−x) + I(t1 ∨ (−x+ α(−y)),−x+ α(−y)),
I(x, t2) = I(x, t2 ∨ (x− α(y))) + I(x− α(y), t2 ∧ (x− α(y))).

Therefore

I(t1, t2) = I(−x, x) + I(t1 ∧ (−x+ α(−y)),−x) + I(x, t2 ∨ (x− α(y)))
+ I(t1 ∨ (−x+ α(−y)), t2 ∧ (x− α(y)))− I(−x+ α(−y), x− α(y)). (2.15)

Let B be the ball of radius 4ε centred at (0,−4ε). We want to prove that

I(x, t) ∈ B (2.16)

for every t with x − α(y) ≤ t ≤ x + α(y). Let us denote the components of I(x, t) by ax and ay .
Arguing as in the proof of (2.11), we get the identity

ay = 2(ε− y)− 2
√

(t− x)2 + (ε− y)2 ≤ 0.

As |ϕx| ≤ 2, we have also

(ax)2 ≤ 4(t− x)2 = (2(ε− y)− ay)2 − 4(ε− y)2.

From these estimates it follows that

(ax)2 + (ay + 4ε)2 ≤ 16ε2,

which proves (2.16). In the same way we can prove that

I(t,−x) ∈ B (2.17)

for every t with −x− α(−y) ≤ t ≤ −x+ α(−y).
If f(y) ≥ 0, we define

C := ([0, 2hf(y)]×[0, 1
2 − 2ε]) ∪ ({2hf(y)}×[0, 1− 4ε]);

if f(y) ≤ 0, we simply replace [0, 2hf(y)] by [2hf(y), 0]. ¿From the definition of ϕ in A2 , A3 , A4 , it
follows that

I(−x+ α(−y), x− α(y)) = (2hf(y), 1− 4ε) (2.18)

and
I(s1, s2) ∈ C (2.19)

for −x+ α(−y) ≤ s1 ≤ s2 ≤ x− α(y). Let D := C − (2hf(y), 1− 4ε), i.e.,

D = ([−2hf(y), 0]×[−1 + 4ε,− 1
2 + 2ε]) ∪ ({0}×[−1 + 4ε, 0]),
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for f(y) ≥ 0; the interval [−2hf(y), 0] is replaced by [0,−2hf(y)] when f(y) ≤ 0. ¿From (2.15), (2.13),
(2.14), (2.16), (2.17), (2.18) and (2.19) we obtain

I(t1, t2) ∈ (0, 1) + 2B +D. (2.20)

As f(0) = 0, we can choose δ so that (2.7) is satisfied and

|2hf(y)| = x0 − 3ε
2

|f(y)| ≤ ε (2.21)

for |y| < δ . It is then easy to see that, by (2.6), the set (0, 1) + 2B + D is contained in the unit ball
centred at (0, 0). So that (2.20) implies (b1). 2

Remark 2.2 The assumption (x0, y0) 6= (0, 0) in Theorem 2.1 cannot be dropped. Indeed, there is no
neighbourhood U of (0, 0) such that w is a Dirichlet minimizer of the Mumford-Shah functional in U .

To see this fact, let ψ be a function defined on the square Q = (−1, 1)×(−1, 1) satisfying the boundary
condition ψ = w on ∂Q and such that Sψ = ((−1,−1/2) ∪ (1/2, 1))×{0} . For every ε , let ψε be the
function defined on Qε := εQ by ψε(x, y) := εψ(x/ε, y/ε). Note that ψε satisfies the boundary condition
ψε = w on ∂Qε . Let us compute the Mumford-Shah functional for ψε on Qε :∫

Qε

|∇ψε|2dx dy +H1(Sψε) = ε2
∫
Q

|∇ψ|2dx dy + ε.

Since ∫
Qε

|∇w|2dx dy +H1(Sw) = 4ε2 + 2ε,

we have ∫
Qε

|∇ψε|2dx dy +H1(Sψε) <
∫
Qε

|∇w|2dx dy +H1(Sw)

for ε sufficiently small. 2

The construction shown in the proof of Theorem 2.1 can be easily adapted to define a calibration for
the function w in (2.5).

Theorem 2.3 Let w : R2 → R be the function defined by

w(x, y) :=

{
x+ 1 if y > 0,
x if y < 0.

Then every point (x0, y0) ∈ R2 has an open neighbourhood U such that w is a Dirichlet minimizer in U
of the Mumford-Shah functional (2.1).

Proof. – The result follows by Example 4.10 of [2] if y0 6= 0. We consider now the case y0 = 0; we will
construct a local calibration of w near (x0, 0), using the same technique as in Theorem 2.1. We give only
the new definitions of the sets A1, . . . , A5 and of the function ϕ , and leave to the reader the verification
of the fact that this function is a calibration for suitable values of the involved parameters.

Let us fix ε > 0 such that

0 < ε <
1
24
, 0 < ε <

1
32
. (2.22)
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For 0 < δ < ε we consider the open rectangle

U := {(x, y) ∈ R2 : |x− x0| < ε, |y| < δ}

and the following subsets of U×R

A1 := {(x, y, z) ∈ U×R : x+ 1− α(y) < z < x+ 1 + α(y)},
A2 := {(x, y, z) ∈ U×R : b+ κ(λ) y + 3h < z < b+ κ(λ) y + 4h},
A3 := {(x, y, z) ∈ U×R : x0 + 3ε+ 2h < z < x0 + 3ε+ 3h},
A4 := {(x, y, z) ∈ U×R : b+ κ(λ) y < z < b+ κ(λ) y + h},
A5 := {(x, y, z) ∈ U×R : x− α(−y) < z < x+ α(−y)},

where
α(y) :=

√
4ε2 − (ε− y)2,

h :=
1− 6ε

5
, κ(λ) :=

λ

4
− 1
λ
, b := x0 + 3ε+ κ(λ) δ, λ :=

1− 4ε
2h

.

We will assume that

δ <
1− 6ε

10|κ(λ)|
, (2.23)

so that the sets A1, . . . , A5 are pairwise disjoint.
For every (x, y, z) ∈ U×R , let us define the vector ϕ(x, y, z) ∈ R3 as follows:

(
2(ε− y)√

(ε− y)2 + (z − x− 1)2
,

−2(z − x− 1)√
(ε− y)2 + (z − x− 1)2

, 1

)
if (x, y, z) ∈ A1,

(
0, λ,

λ2

4

)
if (x, y, z) ∈ A2,

(f(y), 0, 1) if (x, y, z) ∈ A3,(
0, λ,

λ2

4

)
if (x, y, z) ∈ A4,

(
2(ε+ y)√

(ε+ y)2 + (z − x)2
,

2(z − x)√
(ε+ y)2 + (z − x)2

, 1

)
if (x, y, z) ∈ A5,

(0, 0, 1) otherwise,

where

f(y) := − 2
h

(∫ α(y)

0

ε− y√
t2 + (ε− y)2

dt+
∫ α(−y)

0

ε+ y√
t2 + (ε+ y)2

dt

)
for every |y| < δ . 2
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2.2 The general case

In this section we denote by Ω a ball in R2 centred at (0, 0) and we consider as u in (2.2) and in (2.3)
a generic harmonic function with normal derivative vanishing on S . We add the technical assumption
that the first and second order tangential derivatives of u are not zero on S .

Theorem 2.4 Let u : Ω → R be a harmonic function such that ∂yu(x, 0) = 0 for (x, 0) ∈ Ω , and let
w : Ω → R be the function defined by

w(x, y) :=

{
u(x, y) for y > 0,

−u(x, y) for y < 0.

Assume that u0 := u(0, 0) 6= 0 , ∂xu(0, 0) 6= 0 , and ∂2
xxu(0, 0) 6= 0 . Then there exists an open neighbour-

hood U of (0, 0) such that w is a Dirichlet minimizer in U of the Mumford-Shah functional (2.1).

Proof. – We may assume u(0, 0) > 0 and ∂xu(0, 0) > 0. We shall give the proof only for ∂2
xxu(0, 0) > 0,

and we shall explain at the end the modification needed for ∂2
xxu(0, 0) < 0. Let v : Ω → R be the

harmonic conjugate of u that vanishes on y = 0, i.e., the function satisfying ∂xv(x, y) = −∂yu(x, y),
∂yv(x, y) = ∂xu(x, y), and v(x, 0) = 0.

Consider a small neighbourhood U of (0, 0) such that the map Φ(x, y) := (u(x, y), v(x, y)) is invertible
on U and ∂xu > 0 on U . We call Ψ the inverse function (u, v) 7→ (ξ(u, v), η(u, v)), which is defined in
the neighbourhood V := Φ(U) of (u0, 0). Note that, if U is small enough, then η(u, v) = 0 if and only
if v = 0. Moreover,

DΨ =
(
∂uξ ∂vξ
∂uη ∂vη

)
=

1
|∇u|2

(
∂xu ∂xv
∂yu ∂yv

)
, (2.24)

where, in the last formula, all functions are computed at (x, y) = Ψ(u, v), and so ∂uξ = ∂vη , ∂vξ = −∂uη
and ∂uη(u, 0) = 0, ∂vη(u, 0) > 0. In particular, ξ and η are harmonic, and

∂2
uuη(u, 0) = 0, ∂2

vvη(u, 0) = 0. (2.25)

On U we will use the coordinate system (u, v) given by Φ. By (2.24) the canonical basis of the tangent
space to U at a point (x, y) is given by

τu =
∇u
|∇u|2

, τv =
∇v
|∇v|2

. (2.26)

For every (u, v) ∈ V , let G(u, v) be the matrix associated with the first fundamental form of U in the
coordinate system (u, v), and let g(u, v) be its determinant. By (2.24) and (2.26),

g = ((∂uη)2 + (∂vη)2)2 =
1

|∇u(Ψ)|4
. (2.27)

We set γ(u, v) := 4
√
g(u, v).

The calibration ϕ(x, y, z) on U×R will be written as

ϕ(x, y, z) =
1

γ2(u(x, y), v(x, y))
φ(u(x, y), v(x, y), z). (2.28)

We will adopt the following representation for φ : V×R → R3 :

φ(u, v, z) = φu(u, v, z)τu + φv(u, v, z)τv + φz(u, v, z)ez, (2.29)
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where ez is the third vector of the canonical basis of R3 , and τu , τv are computed at the point Ψ(u, v).
We now reformulate the conditions of Section 1.3 in this new coordinate system. It is known from
differential geometry (see, e.g., [9, Proposition 3.5]) that, if X = Xuτu + Xvτv is a vectorfield on U ,
then the divergence of X is given by

divX =
1
γ2

(∂u(γ2Xu) + ∂v(γ2Xv)). (2.30)

Using (2.26), (2.27), (2.28), (2.29), and (2.30) it turns out that ϕ is a calibration if the following conditions
are satisfied:

(a1) (φu(u, v, z))2 + (φv(u, v, z))2 ≤ 4φz(u, v, z) for every (u, v, z) ∈ V×R ;

(a2) φu(u, v,±u) = ±2, φv(u, v,±u) = 0, and φz(u, v,±u) = 1 for every (u, v) ∈ V ;

(b1)
(∫ t

s

φu(u, v, z) dz
)2

+
(∫ t

s

φv(u, v, z) dz
)2

≤ γ2(u, v) for every (u, v) ∈ V , s, t ∈ R ;

(b2)
∫ u

−u
φu(u, 0, z) dz = 0 and

∫ u

−u
φv(u, 0, z) dz = γ(u, 0) for every (u, 0) ∈ V ;

(c1) ∂uφ
u + ∂vφ

v + ∂zφ
z = 0 for every (u, v, z) ∈ V×R .

Given suitable parameters ε > 0, h > 0, λ > 0, that will be chosen later, and assuming

V = {(u, v) : |u− u0| < δ, |v| < δ}, (2.31)

with δ < ε , we consider the following subsets of V×R

A1 := {(u, v, z) ∈ V×R : u− α(v) < z < u+ α(v)},
A2 := {(u, v, z) ∈ V×R : 3h+ β(u, v) < z < 3h+ β(u, v) + 1/λ} ,
A3 := {(u, v, z) ∈ V×R : −h < z < h},
A4 := {(u, v, z) ∈ V×R : −3h+ β(u, v)− 1/λ < z < −3h+ β(u, v)} ,
A5 := {(u, v, z) ∈ V×R : −u− α(−v) < z < −u+ α(−v)},

where

α(v) :=
√

4ε2 − (ε− v)2,

and β is a suitable smooth function satisfying β(u, 0) = 0, which will be defined later. It is easy to see
that, if ε and h are sufficiently small, while λ is sufficiently large, then the sets A1, . . . , A5 are pairwise
disjoint, provided δ is small enough. Moreover, since γ(u, 0) = ∂vη(u, 0) > 0, by continuity we may
assume that

γ(u, v) > 128ε and ∂vη(u, v) > 8ε (2.32)

for every (u, v) ∈ V .
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For (u, v) ∈ V and z ∈ R the vector φ(u, v, z) introduced in (2.28) is defined as follows:

2(ε− v)√
(ε− v)2 + (z − u)2

τu −
2(z − u)√

(ε− v)2 + (z − u)2
τv + ez in A1,

−λσ(u, v)
v√

(u− a)2 + v2
τu + λσ(u, v)

u− a√
(u− a)2 + v2

τv + µez in A2,

f(v)τu + ez in A3,

−λσ(u, v)
v√

(u− a)2 + v2
τu + λσ(u, v)

u− a√
(u− a)2 + v2

τv + µez in A4,

− 2(ε+ v)√
(ε+ v)2 + (z + u)2

τu +
2(z + u)√

(ε+ v)2 + (z + u)2
τv + ez in A5,

ez otherwise,

where

a < u0 − 11δ, µ > 0 (2.33)

f(v) := − 1
h

(∫ α(v)

0

(ε− v)√
t2 + (ε− v)2

dt−
∫ α(−v)

0

(ε+ v)√
t2 + (ε+ v)2

dt

)
,

σ(u, v) :=
1
2
γ(a+

√
(u− a)2 + v2, 0)− 2ε. (2.34)

We choose β as the solution of the Cauchy problem
λσ(u, v)(−v ∂uβ + (u− a)∂vβ) = (µ− 1)

√
(u− a)2 + v2,

β(u, 0) = 0.
(2.35)

Since the line v = 0 is not characteristic for the equation near (u0, 0), there exists a unique solution
β ∈ C∞(V ), provided V is small enough.

In the coordinate system (u, v) the definition of the field φ in A1 , A3 , and A5 is the same as the
definition of ϕ in the proof of Theorem 2.1. The crucial difference is in the definition on the sets A2 and
A4 , where now we are forced to introduce two new parameters a and µ . Note that the definition given
in Theorem 2.1 can be regarded as the limiting case as a tends to +∞ .

In order to satisfy condition (a1), it is enough to take the parameter µ such that

λ2

4
σ2(u, v) ≤ µ

for every (u, v) ∈ V , and require that
|f(v)| ≤ 2. (2.36)

Since

|f(v)| ≤ α(v) + α(−v)
h

≤ 4 ε
h
, (2.37)
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inequality (2.36) is true if we impose
2 ε ≤ h.

Looking at the definition of φ on A1 and A5 , one can check that condition (a2) is satisfied.
By direct computations it is easy to see that φ satisfies condition (c1) on A1 and A5 . Similarly, the

vectorfield (
− v√

(u− a)2 + v2
,

u− a√
(u− a)2 + v2

)
is divergence-free; since (u− a)2 + v2 is constant along the integral curves of this field, by construction
the same property holds for σ , so that φ satisfies condition (c1) in A2 and A4 .

In A3 , condition (c1) is trivially satisfied.
Note that the normal component of φ is continuous across each ∂Ai : for the region A3 this continuity

is guaranteed by our choice of β . This implies that (c1) is satisfied in the sense of distributions on V×R .
Arguing as in the proof of (2.11), (2.12), (2.14) in Theorem 2.1, we find that for every (u, v) ∈ V∫ −u+α(−v)

−u
φu(u, v, z) dz +

∫ h

−h
φu(u, v, z) dz +

∫ u

u−α(v)

φu(u, v, z) dz = 0,

∫ −u+α(−v)

−u
φv(u, v, z) dz +

∫ h

−h
φv(u, v, z) dz +

∫ u

u−α(v)

φv(u, v, z) dz = 4ε.

Now, it is easy to see that ∫ u

−u
φu(u, v, z) dz = −2σ(u, v)

v√
(u− a)2 + v2

, (2.38)

∫ u

−u
φv(u, v, z) dz = 4ε+ 2σ(u, v)

u− a√
(u− a)2 + v2

; (2.39)

since for v = 0 we have
σ(u, 0) =

1
2
γ(u, 0)− 2ε,

condition (b2) is satisfied.
By continuity, if δ is small enough, we have∫ u

−u
φv(u, v, z) dz >

7
8
γ(u, v) (2.40)

for every (u, v) ∈ V .
From now on, we regard the pair (φu, φv) as a vector in R2 . To prove condition (b1) we set

Iε,a(u, v, s, t) :=
∫ t

s

(φu, φv)(u, v, z) dz

for every (u, v) ∈ V , and for every s, t ∈ R . We want to compare the behaviour of the functions |Iε,a|2
and γ2 ; to this aim, we define the function

dε,a(u, v, s, t) := |Iε,a(u, v, s, t)|2 − γ2(u, v).

We have already shown (condition (b2)) that

dε,a(u, 0,−u, u) = 0. (2.41)
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We start by proving that, if V is sufficiently small, condition (b1) holds for every (u, v) ∈ V , for s close
to −u and t close to u . Using the definition of φ(u, v, z) on A1 and A5 , one can compute explicitly
dε,a(u, v, s, t) for |s+ u| ≤ α(−v) and for |t− u| ≤ α(v). By direct computations one obtains

∇v,s,t dε,a(u, 0,−u, u) = 0 (2.42)

for (u, 0) ∈ V .
We now want to compute the Hessian matrix ∇2

v,s,t dε,a at the point (u0, 0,−u0, u0). By (2.34) and
(2.27), after some easy computations, we get

∂2
vvσ(u, 0) =

1
2(u− a)

∂uγ(u, 0) =
1

2(u− a)
∂2
uvη(u, 0).

Using this equality and the explicit expression of dε,a near (u0, 0,−u0, u0), we obtain

∂2
vvdε,a(u0, 0,−u0, u0) = − 8ε

(u0 − a)2
(∂vη(u0, 0)− 4ε) +

2
u0 − a

∂vη(u0, 0) ∂2
uvη(u0, 0)− ∂2

vv(γ
2)(u0, 0).

Since η and γ do not depend on a and ε , for every ε satisfying (2.32) we can find a so close to u0 that

∂2
vvdε,a(u0, 0,−u0, u0) < 0. (2.43)

Moreover, we easily obtain that

∂2
ttdε,a(u0, 0,−u0, u0) = ∂2

ssdε,a(u0, 0,−u0, u0) = 8− 4
ε
∂vη(u0, 0),

∂2
vtdε,a(u0, 0,−u0, u0) = ∂2

vsdε,a(u0, 0,−u0, u0) = − 4
u0 − a

(∂vη(u0, 0)− 4ε),

∂2
stdε,a(u0, 0,−u0, u0) = 8.

By the above expressions, it follows that

det

 ∂2
vvdε,a ∂2

vtdε,a

∂2
vtdε,a ∂2

ttdε,a

 (u0, 0,−u0, u0) =
16

(u0 − a)2
∂vη(u0, 0)(∂vη(u0, 0)− 4ε) +

c1(ε)
u0 − a

+ c2(ε),

where c1(ε), c2(ε) are two constants depending only on ε . Then, if ε satisfies (2.32), a can be chosen
so close to u0 that

det

 ∂2
vvdε,a ∂2

vtdε,a

∂2
vtdε,a ∂2

ttdε,a

 (u0, 0,−u0, u0) > 0. (2.44)

At last, the determinant of the Hessian matrix of dε,a at (u0, 0,−u0, u0) is given by

det∇2
v,s,t dε,a(u0, 0,−u0, u0) =

32
ε2(u0 − a)

(∂vη(u0, 0))2∂2
uvη(u0, 0)(∂vη(u0, 0)− 4ε) + c3(ε),

where c3(ε) is a constant depending only on ε . Since, by (2.24),

∂2
uvη(u0, 0) = − ∂2

xxu(0, 0)
(∂xu(0, 0))3

,

given ε satisfying (2.32), we can choose a so close to u0 that

det∇2
v,s,t dε,a(u0, 0,−u0, u0) < 0. (2.45)
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By (2.43), (2.44), and (2.45), we can conclude that, by a suitable choice of the parameters, the Hessian
matrix of dε,a (with respect to v, s, t) at (u0, 0,−u0, u0) is negative definite. This fact, with (2.41) and
(2.42), allows us to state the existence of a constant τ > 0 such that

dε,a(u, v, s, t) < 0 (2.46)

for |s+ u0| < τ , |t− u0| < τ , (u, v) ∈ V , v 6= 0, provided V is sufficiently small. So, condition (b1) is
satisfied for |s+ u0| < τ and |t− u0| < τ . We can assume δ < τ < α(v) for every (u, v) ∈ V .

From now on, since at this point the parameters ε , a have been fixed, we simply write I instead of
Iε,a . We now study the more general case |s+ u| < α(−v) and |t− u| < α(v).

Let us set

m1(u, v) := max {|I(u, v, s, t)| : |s+ u| ≤ α(−v), |t− u| ≤ α(v), |t− u0| ≥ τ} .

By the definition of A1, . . . , A5 , for ρ = α(δ) + δ we have (φu, φv) = 0 on (V×[u0 − ρ, u0 + ρ]) \A1 and
(V×[−u0 − ρ,−u0 + ρ]) \A5 . This implies that

m1(u, v) = max {|I(u, v, s, t)| : |s+ u0| ≤ ρ, τ ≤ |t− u0| ≤ ρ}

for (u, v) ∈ V . The function m1 , as supremum of a family of continuous functions, is lower semicon-
tinuous. Moreover, m1 is also upper semicontinuous; indeed, suppose, by contradiction, that there exist
two sequences (un), (vn) converging respectively to u , v , such that (m1(un, vn)) converges to a limit
l > m1(u, v); then, there exist (sn), (tn) such that

|sn + un| ≤ α(−vn), |tn − un| ≤ α(vn), |tn − u0| ≥ τ, (2.47)

and m1(un, vn) = |I(un, vn, sn, tn)| . Up to subsequences, we can assume that (sn), (tn) converge
respectively to s , t such that, by (2.47),

|s+ u| ≤ α(−v), |t− u| ≤ α(v), |t− u0| ≥ τ ;

hence, we have that
m1(u, v) ≥ |I(u, v, s, t)| = lim

n→∞
|I(un, vn, sn, tn)| = l,

which is impossible since l > m1(u, v). Therefore, m1 is continuous.
Let B be the open ball of radius 4ε centred at (0,−4ε). Arguing as in (2.16), we can prove that

I(u, v, u, t) ∈ B (2.48)

whenever 0 < |t− u| ≤ α(v). In the same way we can prove that

I(u, v, s,−u) ∈ B (2.49)

for 0 < |s+ u| ≤ α(−v). We can write

I(u, v, s, t) = I(u, v, s,−u) + I(u, v,−u, u) + I(u, v, u, t). (2.50)

So, for |s+ u| ≤ α(−v), |t− u| ≤ α(v), and |t− u0| ≥ τ , by (2.49), (2.38), (2.39), and (2.48), we obtain
that

I(u, 0, s, t) ∈ (0, γ(u, 0)) +B +B,

hence, by (2.32), I(u, 0, s, t) belongs to the open ball of radius γ(u, 0) centred at (0, 0), and so, m1(u, 0) <
γ(u, 0). By continuity, if V is small enough,

m1(u, v) < γ(u, v) (2.51)
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for every (u, v) ∈ V .
Analogously, we define

m2(u, v) := max {|I(u, v, s, t)| : |s+ u| ≤ α(−v), |s+ u0| ≥ τ, |t− u| ≤ α(v), } .

Arguing as in the case of m1 , we can prove that, if V is small enough,

m2(u, v) < γ(u, v) (2.52)

for every (u, v) ∈ V .
By (2.51), (2.52), and (2.46), we can conclude that I(u, v, s, t) belongs to the ball centred at (0, 0)

with radius γ(u, v), for |s+u| ≤ α(−v) and |t−u| ≤ α(v). More precisely, let E(u, v) be the intersection
of this ball with the upper half plane bounded by the horizontal straight line passing through the point
(0, 3

4γ(u, v)): by (2.50), (2.40), (2.48), (2.49), and (2.32), we deduce that

I(u, v, s, t) ∈ E(u, v) (2.53)

for |s+ u| ≤ α(−v) and |t− u| ≤ α(v).
We can now conclude the proof of (b1). It is enough to consider the case −u − α(−v) ≤ s ≤ t ≤

u+ α(v). We can write

I(u, v, s, t) = I(u, v, s ∧ (−u+ α(−v)), t ∨ (u− α(v)))
+ I(u, v, s ∨ (−u+ α(−v)), t ∧ (u− α(v)))− I(u, v,−u+ α(−v), u− α(v)). (2.54)

By (2.53), it follows that

I(u, v, s ∧ (−u+ α(−v)), t ∨ (u− α(v))) ∈ E(u, v). (2.55)

Let C1(u, v) be the parallelogram having three consecutive vertices at the points

(2hf(v), 0), (0, 0), σ(u, v)
(−v, u− a)√
(u− a)2 + v2

,

let C2(u, v) be the segment with endpoints

(2hf(v), 0), (2hf(v), 0) + 2σ(u, v)
(−v, u− a)√
(u− a)2 + v2

,

and let C(u, v) := C1(u, v) ∪ C2(u, v).
From the definition of ϕ in A2 , A3 , A4 , it follows that

I(u, v,−u+ α(−v), u− α(v)) = (2hf(v), 0) + 2σ(u, v)
(−v, u− a)√
(u− a)2 + v2

(2.56)

and
I(u, v, s1, s2) ∈ C(u, v) (2.57)

for −u+ α(−v) ≤ s1 ≤ s2 ≤ u− α(v). Let

D(u, v) := C(u, v)− (2hf(v), 0)− 2σ(u, v)
(−v, u− a)√
(u− a)2 + v2

.

From (2.54), (2.55), (2.56), and (2.57) we obtain

I(u, v, s, t) ∈ E(u, v) +D(u, v). (2.58)
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As |v| < δ < 10δ < u − a by (2.33), the angle that the segment C2(u, v) forms with the vertical is less
than arctan(1/10). Moreover, we may assume that the lenght 2σ(u, v) of the segment C2(u, v) is less
than γ(u, v); indeed, this is true for v = 0 and, by continuity, it remains true if δ is small enough. By
(2.32) and (2.37), we have also that |2hf(v)| ≤ γ(u, v)/16. Using these properties and simple geometric
considerations, it is possible to prove that E(u, v) + D(u, v) is contained in the ball with centre (0, 0)
and radius γ(u, v). This concludes the proof of (b1).

If ∂2
xxu(0, 0) < 0, it is enough to change the definition of φ in the sets A2 and A4 , as follows:

λσ(u, v)
v√

(a− u)2 + v2
τu + λσ(u, v)

a− u√
(a− u)2 + v2

τv + µez,

where a > u0 + 11δ and

σ(u, v) :=
1
2
γ(a−

√
(a− u)2 + v2, 0)− 2ε.

2

Theorem 2.5 Let u : Ω → R be a harmonic function such that ∂yu(x, 0) = 0 for (x, 0) ∈ Ω , and let
w : Ω → R be the function defined by

w(x, y) :=

{
u(x, y) + 1 for y > 0,
u(x, y) for y < 0.

Assume that ∂xu(0, 0) 6= 0 and ∂2
xxu(0, 0) 6= 0 . Then there exists an open neighbourhood U of (0, 0)

such that w is a Dirichlet minimizer in U of the Mumford-Shah functional (2.1).

Proof. – We will write the calibration ϕ as in (2.28) and we will adopt the representation (2.29) for
φ . We will use the same technique as in Theorem 2.4. We give only the new definitions of the sets
A1, . . . , A5 and of the function φ when ∂xu(0, 0) > 0 and ∂2

xxu(0, 0) > 0, and leave to the reader the
verification of the fact that this function is a calibration for suitable values of the involved parameters.
The case ∂2

xxu(0, 0) < 0 can be treated by the changes introduced at the end of Theorem 2.4.
Let u0 := u(0, 0). Given ε > 0, h > 0, λ > 0, and assuming

V := {(u, v) : |u− u0| < δ, |v| < δ},

we consider the following subsets of V×R

A1 := {(u, v, z) ∈ V×R : u+ 1− α(v) < z < u+ 1 + α(v)},
A2 := {(u, v, z) ∈ V×R : 5h+ β(u, v) < z < 5h+ β(u, v) + 1/λ},
A3 := {(u, v, z) ∈ V×R : 2h < z < 4h},
A4 := {(u, v, z) ∈ V×R : h+ β(u, v) < z < h+ β(u, v) + 1/λ},
A5 := {(u, v, z) ∈ V×R : u− α(−v) < z < u+ α(−v)},

where

α(v) :=
√

4ε2 − (ε− v)2,
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and β is a suitable smooth function satisfying β(u, 0) = 0, which will be defined later. For (u, v) ∈ V
and z ∈ R the vector φ(u, v, z) is defined as follows:

2(ε− v)√
(ε− v)2 + (z − u− 1)2

τu −
2(z − u− 1)√

(ε− v)2 + (z − u− 1)2
τv + ez in A1,

−λσ(u, v)
v√

(u− a)2 + v2
τu + λσ(u, v)

u− a√
(u− a)2 + v2

τv + µez in A2,

f(v)τu + ez in A3,

−λσ(u, v)
v√

(u− a)2 + v2
τu + λσ(u, v)

u− a√
(u− a)2 + v2

τv + µez in A4,

2(ε+ v)√
(ε+ v)2 + (z − u)2

τu +
2(z − u)√

(ε+ v)2 + (z − u)2
τv + ez in A5,

ez otherwise,

where a < u0 − 11δ , µ > 0,

f(v) := − 1
h

(∫ α(v)

0

(ε− v)√
t2 + (ε− v)2

dt+
∫ α(−v)

0

(ε+ v)√
t2 + (ε+ v)2

dt

)
,

σ(u, v) :=
1
2
γ(a+

√
(u− a)2 + v2, 0)− 2ε,

and β is the solution of the Cauchy problem (2.35). 2





Chapter 3

Calibrations for minimizers with a
regular discontinuity set

In this chapter we consider solutions u of the Euler-Lagrange equations for the homogeneous Mumford-
Shah functional (2.1) whose discontinuity set is an analytic curve connecting two boundary points.

Section 3.1 is devoted to the proof of the Dirichlet minimality of u in a uniform small neighbourhood
of Su . In Section 3.2 we deal with a different notion of minimality: instead of comparing u with
perturbations which can be very large, but concentrated in a fixed small domain, as in Section 3.1, we
consider as competitors perturbations of u with L∞ -norm very small outside a small neighbourhood of
Su , but support possibly coinciding with Ω. According to this idea we give the following definition.

Definition 3.1 We say that u is a Dirichlet graph-minimizer of the Mumford-Shah functional (2.1) in
Ω if there exists an open neighbourhood A of the complete graph Γu of u such that u is a Dirichlet
A-minimizer of (2.1).

In Theorem 3.5 we give a sufficient condition for the graph-minimality in terms of the geometrical prop-
erties of Su (namely, the length and the curvature) and of a sort of capacity of Su with respect to the
domain Ω, which is defined in (3.58) and whose qualitative properties are studied in Subsection 3.2.1.
We present also a counterexample when the condition of Theorem 3.5 is violated.

In the sequel the following notation and remarks will be useful. Given any subset U of R2 and δ > 0,
we denote by Uδ the δ -neighbourhood of U , defined by

Uδ := {(x, y) ∈ R2 : ∃(x0, y0) ∈ U such that |(x− x0, y − y0)| < δ}.

Let Γ be a smooth curve in Ω. Fix an orientation of Γ and call ν the corresponding normal vectorfield
to Γ. If ξ 7→ (x(ξ), y(ξ)) is a parameterization of Γ by the arc-length, then the (signed) curvature is
given by

curv Γ(ξ) = −〈(ẍ(ξ), ÿ(ξ)), ν(ξ)〉; (3.1)

since the two vectors in (3.1) are parallel, it follows that

[curv Γ(ξ)]2 = (ẍ(ξ))2 + (ÿ(ξ))2. (3.2)

We will denote the length of Γ by l(Γ), and the L∞ -norm of the function (curv Γ) by k(Γ).

35



36 Chapter 3

3.1 The Dirichlet minimality

In this section we prove that, if we assume that Su is an analytic curve, then the Euler-Lagrange equations
guarantee the Dirichlet minimality of u in small domains. This result generalizes Theorems 2.4 and 2.5
of the previous chapter in several directions: the discontinuity set Su does not need any more to be
rectilinear, there are no additional assumptions on the tangential derivatives of u along Su , and the
Dirichlet minimality of u is proved in a uniform neighbourhood of Su ∩ Ω.

Let us give and prove the precise statement of the result.

Theorem 3.2 Let Ω0 be a connected open subset of R2 and Γ be a simple analytic curve in Ω0 con-
necting two points of the boundary. Let u be a function in H1(Ω0 \Γ) with Su = Γ , with different traces
at every point of Γ , and satisfying the Euler conditions in Ω0 , that is,

i) u is harmonic in Ω0 \ Γ ;

ii) ∂νu = 0 on Γ ;

iii) |∇u+|2 − |∇u−|2 = curv Γ at every point of Γ ,

where ∇u± denote the traces of ∇u on Γ . Finally, let Ω be an open set with Lipschitz boundary,
compactly contained in Ω0 , such that Ω ∩ Γ 6= ∅ . Then there exists an open neighbourhood U of Γ ∩ Ω
contained in Ω0 such that u is a Dirichlet minimizer in U of the Mumford-Shah functional (2.1).

Proof. – In the sequel, the intersection Γ ∩ Ω will be still denoted by Γ. Let

Γ :

{
x = x(s)
y = y(s)

be a parameterization by the arc-length, where s varies in [0, l(Γ)] ; we choose as orientation the normal
vectorfield ν(s) = (−ẏ(s), ẋ(s)).

By Cauchy-Kowalevski theorem (see [24]) there exist an open neighbourhood U of Γ contained in
Ω0 and a harmonic function ξ defined on U such that

ξ(Γ(s)) = s and ∂νξ(Γ(s)) = 0.

We can suppose U simply connected. Let η : U → R2 be the harmonic conjugate of ξ that vanishes on
Γ, i.e., the function satisfying ∂xη(x, y) = −∂yξ(x, y), ∂yη(x, y) = ∂xξ(x, y), and η(Γ(s)) = 0.

Taking U smaller if needed, we can suppose that the map Φ(x, y) := (ξ(x, y), η(x, y)) is invertible on
U . We call Ψ the inverse function (ξ, η) 7→ (x̃(ξ, η), ỹ(ξ, η)), which is defined in the open set V := Φ(U).
Note that, if U is small enough, then (x̃(ξ, η), ỹ(ξ, η)) belongs to Γ if and only if η = 0. Moreover,

DΨ =
(
∂ξx̃ ∂ηx̃
∂ξ ỹ ∂η ỹ

)
=

1
|∇ξ|2

(
∂xξ ∂xη
∂yξ ∂yη

)
, (3.3)

where, in the last formula, all functions are computed at (x, y) = Ψ(ξ, η), and so

∂ξx̃ = ∂η ỹ and ∂ηx̃ = −∂ξ ỹ. (3.4)

In particular, x̃ and ỹ are harmonic.
On U we will use the coordinate system (ξ, η) given by Φ. By (3.3) the canonical basis of the tangent

space to U at a point (x, y) is given by

τξ =
∇ξ
|∇ξ|2

, τη =
∇η
|∇η|2

. (3.5)
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For every (ξ, η) ∈ V , let G(ξ, η) be the matrix associated with the first fundamental form of U in the
coordinate system (ξ, η), and let g(ξ, η) be its determinant. By (3.3) and (3.5),

g = ((∂ξx̃)2 + (∂ξ ỹ)2)2 =
1

|∇ξ(Ψ)|4
. (3.6)

We set γ(ξ, η) = 4
√
g(ξ, η).

From now on we will assume that V is symmetric with respect to {(ξ, η) ∈ Φ(U) : η = 0} .
Note that we can write the function u in this new coordinate system as

u(ξ, η) =

{
u1(ξ, η) if (ξ, η) ∈ V , η < 0,
u2(ξ, η) if (ξ, η) ∈ V , η > 0,

where we can suppose that u1 and u2 are defined in V (indeed, u1 is a priori defined only on the set
{(ξ, η) ∈ V : η < 0} , but it can be extended to V by reflection; an analogous argument applies to u2 ),
0 < u1(ξ, 0) < u2(ξ, 0) for every (ξ, 0) ∈ V , and

i) ∂2
ξξui(ξ, η) + ∂2

ηηui(ξ, η) = 0 for i = 1, 2;

ii) ∂ηu1(ξ, 0) = ∂ηu2(ξ, 0) = 0;

iii) (∂ξu2(ξ, 0))2 − (∂ξu1(ξ, 0))2 = curv Γ(ξ).

The calibration ϕ(x, y, z) on U×R will be written as

ϕ(x, y, z) =
1

γ2(ξ(x, y), η(x, y))
φ(ξ(x, y), η(x, y), z), (3.7)

where φ : V×R → R3 can be represented by

φ(ξ, η, z) = φξ(ξ, η, z)τξ + φη(ξ, η, z)τη + φz(ξ, η, z)ez, (3.8)

where ez is the third vector of the canonical basis of R3 , and τξ , τη are computed at the point Ψ(ξ, η).
We now reformulate the conditions of Section 1.3 in this new coordinate system. It is known from
differential geometry (see, e.g., [9, Proposition 3.5]) that, if X = Xξτξ+Xητη is a vectorfield on U , then
the divergence of X is given by

divX =
1
γ2

(∂ξ(γ2Xξ) + ∂η(γ2Xη)). (3.9)

Using (3.5), (3.6), (3.7), (3.8), and (3.9) it turns out that ϕ is a calibration if the following conditions
are satisfied:

(a1) (φξ(ξ, η, z))2 + (φη(ξ, η, z))2 ≤ 4φz(ξ, η, z) for every (ξ, η, z) ∈ V×R ;

(a2) φξ(ξ, η, u(ξ, η)) = 2∂ξu(ξ, η), φη(ξ, η, u(ξ, η)) = 2∂ηu(ξ, η), and φz(ξ, η, u(ξ, η)) = (∂ξu(ξ, η))2 +
(∂ηu(ξ, η))2 for every (ξ, η) ∈ V ;

(b1)
(∫ t

s

φξ(ξ, η, z) dz
)2

+
(∫ t

s

φη(ξ, η, z) dz
)2

≤ γ2(ξ, η) for every (ξ, η) ∈ V , s, t ∈ R ;

(b2)
∫ u2

u1

φξ(ξ, 0, z) dz = 0 and
∫ u2

u1

φη(ξ, 0, z) dz = γ(ξ, 0) = 1 for every (ξ, 0) ∈ V ;

(c1) ∂ξφ
ξ + ∂ηφ

η + ∂zφ
z = 0 for every (ξ, η, z) ∈ V×R .
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Given suitable parameters ε > 0 and λ > 0, that will be chosen later, we consider the following
subsets of V×R :

A1 := {(ξ, η, z) ∈ V×R : z < u1(ξ, η)− ε},
A2 := {(ξ, η, z) ∈ V×R : u1(ξ, η)− ε < z < u1(ξ, η) + ε},
A3 := {(ξ, η, z) ∈ V×R : u1(ξ, η) + ε < z < β1(ξ, η)},
A4 := {(ξ, η, z) ∈ V×R : β1(ξ, η) < z < β2(ξ, η) + 1/λ},
A5 := {(ξ, η, z) ∈ V×R : β2(ξ, η) + 1/λ < z < u2(ξ, η)− ε},
A6 := {(ξ, η, z) ∈ V×R : u2(ξ, η)− ε < z < u2(ξ, η) + ε},
A7 := {(ξ, η, z) ∈ V×R : z > u2(ξ, η) + ε},

where β1 and β2 are suitable smooth function such that u1(ξ, 0) < β1(ξ, 0) = β2(ξ, 0) < u2(ξ, 0), which
will be defined later. Since we suppose u2 > 0 on V , if ε is small enough, while λ is sufficiently large,
then the sets A1, . . . , A7 are nonempty and disjoint, provided V is sufficiently small.

The vector φ(ξ, η, z) introduced in (3.7) will be written as

φ(ξ, η, z) = (φξη(ξ, η, z), φz(ξ, η, z)),

where φξη is the two-dimensional vector given by the pair (φξ, φη). For (ξ, η) ∈ V and z ∈ R we define
φ(ξ, η, z) as follows: 

(0, ω1(ξ, η)) in A1 ∪A3,(
2∇u1 + 2 z−u1

v1
∇v1,

∣∣∣∇u1 + z−u1
v1

∇v1
∣∣∣2) in A2,

(λσ(ξ, η)∇w, µ) in A4,

(0, ω2(ξ, η)) in A5 ∪A7,(
2∇u2 + 2 z−u2

v2
∇v2,

∣∣∣∇u2 + z−u2
v2

∇v2
∣∣∣2) in A6,

where ∇ denotes the gradient with respect to the variables (ξ, η), the functions vi are defined by

v1(ξ, η) := ε+Mη, v2(ξ, η) := ε−Mη,

and M and µ are positive parameters which will be fixed later, while

ωi(ξ, η) :=
ε2M2

v2
i (ξ, η)

− (∂ξui(ξ, η))2 − (∂ηui(ξ, η))2 (3.10)

for i = 1, 2, and for every (ξ, η) ∈ V . We choose w as the solution of the Cauchy problem
∆w = 0,

w(ξ, 0) = − 2ε
1− 2εM

∫ ξ

0

n(s)(∂ξu1(s, 0) + ∂ξu2(s, 0)) ds,

∂ηw(ξ, 0) = n(ξ),

(3.11)
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where n is a positive analytic function that will be chosen later in a suitable way (if V is sufficiently
small, w is defined in V ). To define σ , we need some further explanations: we call p(ξ, η) the solution
of the problem ∂ηp(ξ, η) =

∂ξw

∂ηw
(p(ξ, η), η),

p(ξ, 0) = ξ,
(3.12)

which is defined in V , provided V is small enough. By applying the Implicit Function theorem, it is
easy to see that there exists a function q defined in V (take V smaller, if needed) such that

p(q(ξ, η), η) = ξ. (3.13)

At last, we define

σ(ξ, η) :=
1

n(q(ξ, η))
(1− 2εM).

We choose βi , for i = 1, 2, as the solution of the Cauchy problem{
λσ(ξ, η)∂ξw(ξ, η)∂ξβi(ξ, η) + λσ(ξ, η)∂ηw(ξ, η)∂ηβi(ξ, η)− µ = −ωi(ξ, η),
βi(ξ, 0) = 1

2 (u1(ξ, 0) + u2(ξ, 0)).
(3.14)

Since the line η = 0 is not characteristic, there exists a unique solution βi ∈ C∞(V ), provided V is
small enough.

The purpose of the definition of φ in A2 and A6 is to provide a divergence-free vectorfield satisfying
condition (a2) and such that

φη(ξ, 0, z) ≥ 0 for u1 < z < u2,

φη(ξ, 0, z) ≤ 0 for z < u1 and z > u2.

These properties are crucial in order to obtain (b1) and (b2) simultaneously.
The role of A4 is to give the main contribution to the integral in (b2). The idea of the construction is

to start from the gradient field of a harmonic function w whose normal derivative is positive on the line
η = 0, while the tangential derivative is chosen in order to annihilate the ξ -component of φ , as required
in (b2). Then, we multiply the field by a function σ which is defined first on η = 0 in order to make
(b2) true, and then in a neighbourhood of η = 0 by assuming σ constant along the integral curves of
the gradient field, so that σ∇w remains divergence-free.

The other sets Ai are simply regions of transition, where the field is taken purely vertical.
Since

ωi(ξ, 0) = M2 − (∂ξui(ξ, 0))2,

condition (a1) is satisfied in A1 ∪A3 and in A5 ∪A7 if we require that

M > sup{|∂ξui(ξ, 0)| : (ξ, 0) ∈ V, i = 1, 2},

provided V is small enough.
Arguing in a similar way, if we impose that

µ > sup
{
λ2

4
(1− 2εM)2

(
1 +

4ε2

(1− 2εM)2
(∂ξu1(ξ, 0) + ∂ξu2(ξ, 0))2

)
: (ξ, 0) ∈ V

}
,

condition (a1) holds in A4 , provided V is sufficiently small.
In the other cases (a1) is trivial.
Looking at the definition of φ on A2 and A6 , one can check that condition (a2) is satisfied.
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Let us prove condition (c1). By Lemma 1.5 it follows that φ is divergence-free in A2 ∪ A6 , noting
that it is constructed starting from the family of harmonic functions ui(ξ, η) + tvi(ξ, η).

In A4 condition (c1) is true since, as remarked above, φ is the product of ∇w with the function σ
which is constant along the integral curves of ∇w by construction.

In the other sets condition (c1) is trivially satisfied.
Note that the normal component of φ is continuous across each ∂Ai : for the regions A2 , A6 , and

for A4 , this continuity is guaranteed by our choice of ωi and βi , respectively. This implies that (c1) is
satisfied in the sense of distributions on V×R .

By direct computations we find that∫ u2

u1

φξ dz = 2ε∂ξu1 + 2ε∂ξu2 + λ

(
β2 − β1 +

1
λ

)
σ∂ξw, (3.15)∫ u2

u1

φη dz = 2ε∂ηu1 + 2ε∂ηu2 +
Mε2

ε+Mη
+

Mε2

ε−Mη
+ λ

(
β2 − β1 +

1
λ

)
σ∂ηw, (3.16)

for every (ξ, η) ∈ V .
By using (3.11) and the definition of σ , we obtain∫ u2(ξ,0)

u1(ξ,0)

φξ(ξ, 0, z) dz = 0 (3.17)

and ∫ u2(ξ,0)

u1(ξ,0)

φη(ξ, 0, z) dz = 1, (3.18)

so condition (b2) is satisfied.
The proof of condition (b1) will be split in two steps: we first prove that condition (b1) holds if s

and t respectively belong to a suitable neighbourhood of u1(ξ, η) and u2(ξ, η), whose width is uniform
with respect to (ξ, η) in V ; then, by a quite simple continuity argument we show that condition (b1) is
true if s or t is not too close to u1(ξ, η) or u2(ξ, η) respectively.

For (ξ, η) ∈ V and s, t ∈ R , we set

I(ξ, η, s, t) :=
∫ t

s

φξη(ξ, η, z) dz

and we denote its components by Iξ and Iη .

Step 1.– For a suitable choice of ε and of the function n (see (3.11)) there exists δ > 0 such that
condition (b1) holds for |s−u1(ξ, η)| < δ , |t−u2(ξ, η)| < δ , and (ξ, η) ∈ V , provided V is small enough.

To estimate the vector whose components are given by (3.15) and (3.16), we use suitable polar coordinates.
If V is small enough, for every (ξ, η) ∈ V there exist ρε,n(ξ, η) > 0 and −π/2 < θε,n(ξ, η) < π/2 such
that

Iξ(ξ, η, u1(ξ, η), u2(ξ, η)) = ρε,n(ξ, η) sin θε,n(ξ, η), (3.19)
Iη(ξ, η, u1(ξ, η), u2(ξ, η)) = ρε,n(ξ, η) cos θε,n(ξ, η). (3.20)

In the notation above we have made explicit the dependence on the parameter ε and on the function n
which appears in the definition of w (see (3.11)).

In order to prove condition (b1), we want to compare the behaviour of the functions ρε,n and γ for
|η| small. We have already proved that ρε,n(ξ, 0) = γ(ξ, 0) = 1; we start computing the first derivative
of γ and of ρε,n with respect to the variable η .
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Claim 1.– There holds that ∂η(|∇x,yξ(Ψ)|2)(ξ, 0) = −2 curv Γ(ξ).

Proof of the claim. By (3.6) we obtain

|∇x,yξ(Ψ)|2 =
1

(∂ξx̃)2 + (∂ξ ỹ)2
,

hence
∂η(|∇x,yξ(Ψ)|2) = −[(∂ξx̃)2 + (∂ξ ỹ)2]−2(2∂ξx̃ ∂2

ξηx̃+ 2∂ξ ỹ ∂2
ξη ỹ). (3.21)

Using the fact that (∂ξx̃)2 + (∂ξ ỹ)2 is equal to 1 at (ξ, 0), and the equalities in (3.4), we finally get

∂η(|∇x,yξ(Ψ)|2)(ξ, 0) = −2(−∂ξx̃ ∂2
ξξ ỹ + ∂ξ ỹ ∂

2
ξξx̃) = −2 curv Γ(ξ),

where the last equality follows from (3.1): therefore the claim is proved.

Since γ = (|∇x,yξ(Ψ)|2)− 1
2 , one has that ∂ηγ = − 1

2 (|∇x,yξ(Ψ)|2)− 3
2 ∂η(|∇x,yξ(Ψ)|2); using the previous

claim we can conclude that

∂ηγ(ξ, 0) = −1
2
∂η(|∇x,yξ(Ψ)|2)(ξ, 0) = curv Γ(ξ).

Using the equality

ρ2
ε,n(ξ, η) =

[
Iξ(ξ, η, u1(ξ, η), u2(ξ, η))

]2
+ [Iη(ξ, η, u1(ξ, η), u2(ξ, η))]

2
,

we obtain

∂ηρε,n =
1
ρε,n

∂η
(
Iξ(ξ, η, u1, u2)

)
Iξ(ξ, η, u1, u2) +

1
ρε,n

∂η (Iη(ξ, η, u1, u2)) Iη(ξ, η, u1, u2).

By (3.17) it follows that the first addend in the expression above is equal to zero at (ξ, 0), while by (3.18)
it turns out that Iη(ξ, 0, u1, u2) = ρε,n(ξ, 0) = 1; therefore,

∂ηρε,n(ξ, 0) = ∂η (Iη(ξ, 0, u1, u2)) . (3.22)

By (3.16) it follows that

∂η (Iη(ξ, η, u1, u2)) = 2ε∂2
ηηu1 + 2ε∂2

ηηu2 −
ε2

(ε+Mη)2
M2 +

ε2

(ε−Mη)2
M2

+ λ(∂ηβ2 − ∂ηβ1)σ∂ηw + λ(β2 − β1 + 1/λ)∂η(σ∂ηw). (3.23)

From (3.14) and the Euler condition iii), we have that

λ(∂ηβ2(ξ, 0)− ∂ηβ1(ξ, 0))σ(ξ, 0)∂ηw(ξ, 0) = −ω2(ξ, 0) + ω1(ξ, 0)
= (∂ξu2(ξ, 0))2 − (∂ξu1(ξ, 0))2 = curv Γ(ξ), (3.24)

while
∂η(σ∂ηw)(ξ, 0) = −∂ξ(σ∂ξw)(ξ, 0) = ∂ξ(2ε∂ξu1(ξ, 0) + 2ε∂ξu2)(ξ, 0),

where we have used the fact that σ∇w is divergence-free and the definition of σ and w . Putting this
last fact together with (3.23), (3.24), and the harmonicity of ui , we finally get

∂ηρε,n(ξ, 0) = curv Γ(ξ) = ∂ηγ(ξ, 0). (3.25)
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Claim 2.– There holds that ∂2
ηη(|∇x,yξ(Ψ)|2)(ξ, 0) = 4 [curv Γ(ξ)]2.

Proof of the claim. By differentiating with respect to η the expression in (3.21) and by (3.4), we
obtain

∂2
ηη(|∇x,yξ(Ψ)|2) = −2[(∂ξx̃)2 + (∂ξ ỹ)2]−2[(∂2

ξηx̃)
2 + ∂ξx̃ ∂

3
ξηηx̃+ (∂2

ξη ỹ)
2 + ∂ξ ỹ ∂

3
ξηη ỹ]

+8[(∂ξx̃)2 + (∂ξ ỹ)2]−3(∂ξx̃ ∂2
ξηx̃+ ∂ξ ỹ ∂

2
ξη ỹ)

2

= −2[(∂ξx̃)2 + (∂ξ ỹ)2]−2[(∂2
ξξ ỹ)

2 + (∂2
ξξx̃)

2 − ∂ξx̃ ∂
3
ξξξx̃− ∂ξ ỹ ∂

3
ξξξ ỹ]

+8[(∂ξx̃)2 + (∂ξ ỹ)2]−3(−∂ξx̃ ∂2
ξξ ỹ + ∂ξ ỹ ∂

2
ξξx̃)

2.

Note that
−∂ξx̃ ∂3

ξξξx̃− ∂ξ ỹ ∂
3
ξξξ ỹ = (∂2

ξξ ỹ)
2 + (∂2

ξξx̃)
2 − 1

2
∂2
ξξ((∂ξx̃)

2 + (∂ξ ỹ)2).

Using (3.1), (3.2), and the fact that (∂ξx̃)2 + (∂ξ ỹ)2 is equal to 1 at (ξ, 0), we obtain the claim.

By using Claims 1 and 2, we can conclude that

∂2
ηηγ(ξ, 0) =

[
3
4
(|∇x,yξ(Ψ)|2)− 5

2 [∂η(|∇x,yξ(Ψ)|2)]2 − 1
2
(|∇x,yξ(Ψ)|2)− 3

2 ∂2
ηη(|∇x,yξ(Ψ)|2)

]∣∣∣∣
(ξ,0)

= [curv Γ(ξ)]2. (3.26)

The second derivative of ρε,n with respect to η is given by

∂2
ηη ρε,n =

1
ρε,n

{[
∂η
(
Iξ(ξ, η, u1, u2)

)]2
+ ∂2

ηη

(
Iξ(ξ, η, u1, u2)

)
Iξ(ξ, η, u1, u2)

+ [∂η (Iη(ξ, η, u1, u2))]
2 + ∂2

ηη (Iη(ξ, η, u1, u2)) Iη(ξ, η, u1, u2)
}
− 1
ρε,n

[∂η(ρε,n)]2.

By the equalities (3.17), (3.18), and (3.22), the expression above computed at (ξ, 0) reduces to

∂2
ηη ρε,n(ξ, 0) =

[
∂η
(
Iξ(ξ, η, u1, u2)

)∣∣
(ξ,0)

]2
+ ∂2

ηη (Iη(ξ, η, u1, u2))|(ξ,0) . (3.27)

By differentiating (3.15) and (3.23) with respect to η , we obtain that

∂η
(
Iξ(ξ, η, u1, u2)

)
(ξ, 0) = [λ(∂ηβ2 − ∂ηβ1)σ∂ξw + ∂ησ ∂ξw + σ∂2

ξηw]|(ξ,0), (3.28)

and

∂2
ηη (Iη(ξ, η, u1, u2)) (ξ, 0) =

4
ε
M3 + λ[∂2

ηηβ2(ξ, 0)− ∂2
ηηβ1(ξ, 0)]σ(ξ, 0)∂ηw(ξ, 0)

+ 2λ[∂ηβ2(ξ, 0)− ∂ηβ1(ξ, 0)]∂η(σ∂ηw)(ξ, 0) + ∂2
ηησ(ξ, 0)∂ηw(ξ, 0)

+ 2∂ησ(ξ, 0)∂2
ηηw(ξ, 0) + σ(ξ, 0)∂3

ηηηw(ξ, 0), (3.29)

while, by using the equation (3.14),

[λ(∂2
ηηβ2 − ∂2

ηηβ1)σ∂ηw]|(ξ,0) = [∂ηω1 − ∂ηω2 − λ∂η(∂ξβ2 − ∂ξβ1)σ∂ξw − λ∂η(σ∂ηw)(∂ηβ2 − ∂ηβ1)]|(ξ,0)

= [−4
ε
M3 − λ∂ξ(∂ηβ2 − ∂ηβ1)σ∂ξw + λ∂ξ(σ∂ξw)(∂ηβ2 − ∂ηβ1)]|(ξ,0).

Since by (3.24) and by the definition of σ we have that

λ[∂ηβ2(ξ, 0)− ∂ηβ1(ξ, 0)] =
curv Γ(ξ)
1− 2εM

,
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and moreover,
σ(ξ, 0)∂ξw(ξ, 0) = −2ε(∂ξu1(ξ, 0) + ∂ξu2(ξ, 0)),

we obtain that

[λ(∂2
ηηβ2 − ∂2

ηηβ1)σ∂ηw + 2λ(∂ηβ2 − ∂ηβ1)∂η(σ∂ηw)]|(ξ,0) =

= −4
ε
M3 +

2ε
1− 2εM

∂ξ((∂ξu1 − ∂ξu2) curv Γ)(ξ, 0).

By using the definition of σ , we can write

∂ησ = −(1− 2εM)
n′(ξ)
n2(ξ)

∂ηq,

∂2
ηησ = −(1− 2εM)

[
−2

(n′(ξ))2

n3(ξ)
(∂ηq)2 +

n′′(ξ)
n2(ξ)

(∂ηq)2 +
n′(ξ)
n2(ξ)

∂2
ηηq

]
.

In order to compute the derivatives of q , we differentiate the equality (3.13) with respect to η :

∂ηq(ξ, 0) = −∂ηp(ξ, 0) =
2ε

1− 2εM
(∂ξu1(ξ, 0) + ∂ξu2(ξ, 0)),

∂2
ηηq(ξ, 0) = −2∂2

ξηp(ξ, 0)∂ηq(ξ, 0)− ∂2
ηηp(ξ, 0) =

[
− (∂ξw)2

(∂ηw)3
∂2
ξηw −

1
∂ηw

∂2
ξηw

]
(ξ, 0).

By the definition of w , we obtain

∂2
ηηq(ξ, 0) = −n

′(ξ)
n(ξ)

− n′(ξ)
n(ξ)

4ε2

(1− 2εM)2
(∂ξu1(ξ, 0) + ∂ξu2(ξ, 0))2.

Finally, we have

∂2
ηηw(ξ, 0) = −∂2

ξξw(ξ, 0) =
2ε

1− 2εM
[n′(∂ξu1 + ∂ξu2) + n(∂2

ξξu1 + ∂2
ξξu2)]|(ξ,0),

∂3
ηηηw(ξ, 0) = −∂2

ξξ∂ηw(ξ, 0) = −n′′(ξ).

By substituting all information above in (3.28) and in (3.29), and by using (3.27), we finally obtain that

∂2
ηη ρε,n(ξ, 0) = −aε(ξ)

n′′(ξ)
n(ξ)

+ hε

(
ξ,
n′(ξ)
n(ξ)

)
= −aε(ξ)

(
n′(ξ)
n(ξ)

)′
+ hε

(
ξ,
n′(ξ)
n(ξ)

)
− aε(ξ)

(
n′(ξ)
n(ξ)

)2

, (3.30)

where
aε(ξ) → 1 uniformly in [0, l(Γ)],

hε(ξ, τ) → 2τ2 uniformly on the compact sets of [0, l(Γ)]×R,
(3.31)

as ε→ 0.

Claim 3.– There exists ε > 0 such that for every ε ∈ (0, ε), we can find an analytic function n :
[0, l(Γ)] → (0,+∞) satisfying

∂2
ηη(ρε,n − γ)(ξ, 0) = − π2

16 l2(Γ)
and

∣∣∣∣n′(ξ)n(ξ)

∣∣∣∣ ≤ N ∀ξ ∈ [0, l(Γ)], (3.32)
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where N := 1 + max
{

π

4 l(Γ)
, k(Γ)

}
and k(Γ) = ‖curv Γ‖∞ .

Proof of the claim. Set τ := n′/n ; in order to prove the claim, by (3.30) and (3.26) we study the
Cauchy problem −aε(ξ)τ ′ + hε(ξ, τ)− τ2 − [curv Γ(ξ)]2 = − π2

16 l2(Γ)
,

τ(0) = 0,
(3.33)

and we investigate for which values of ε it admits a solution defined in the whole interval [0, l(Γ)] , with
L∞ -norm less than N . As ε→ 0, by (3.31) we obtain the limit problem−τ ′ + τ2 − (curv Γ)2 = − π2

16 l2(Γ)
,

τ(0) = 0.
(3.34)

By comparing with the solutions τ1 and τ2 of the Cauchy problems−τ ′1 + τ2
1 = − π2

16 l2(Γ)
,

τ1(0) = 0,

−τ ′2 + τ2
2 − k2(Γ) = − π2

16 l2(Γ)
,

τ2(0) = 0,
(3.35)

one easily sees that the solution of (3.34) is defined in [0, l(Γ)] , with L∞ -norm less than the maximum
between ‖τ1‖∞ and ‖τ2‖∞ , which is, by explicit computation, less than max{π/(4l(Γ)), k(Γ)} . By
the theorem of continuous dependence on the coefficients (see [23]), we can find ε such that, for every
ε ∈ (0, ε), the solution of (3.33) is defined in [0, l(Γ)] with L∞ -norm less than N .

For every ε ∈ (0, ε), we set
nε(ξ) := e

R ξ
0 τε(s) ds, (3.36)

where τε is the solution of (3.33).
From now on we will simply write ρε and θε instead of ρε,nε

and θε,nε
.

We now want to estimate the angle θε(ξ, η) by a quantity which is independent of ε . Since by (3.15)
and (3.16)

tan θε =
2ε∂ξu1 + 2ε∂ξu2 + λ

(
β2 − β1 + 1

λ

)
σ∂ξw

2ε∂ηu1 + 2ε∂ηu2 +Mε2(ε+Mη)−1 +Mε2(ε−Mη)−1 + λ
(
β2 − β1 + 2

λ

)
σ∂ηw

,

we have

∂ηθε(ξ, 0) = − 2ε
1− 2εM

(∂ξu1 + ∂ξu2)
(

curv Γ− 2ε(∂ξu1 + ∂ξu2)
n′ε(ξ)
nε(ξ)

)
+ (1− 2εM)

n′ε(ξ)
nε(ξ)

,

and so, by Claim 3, if ε is sufficiently small,

|∂ηθε(ξ, 0)| < N ∀ξ ∈ [0, l(Γ)]. (3.37)

Let θ̃(η) be an arbitrary continuous function with

θ̃(0) = 0 and θ̃′(0) = N ; (3.38)

by (3.37), it follows that
|θε(ξ, η)| < θ̃(η) sign η (3.39)
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for every (ξ, η) ∈ V , provided V is sufficiently small.
Given h > 0, we consider the vectors

bh1 (ξ, η, s) :=
(
0,−2(s− u1(ξ, η))∂ηu1(ξ, η)− h(s− u1(ξ, η))2

)
,

bh2 (ξ, η, t) :=
(
0, 2(t− u2(ξ, η))∂ηu2(ξ, η)− h(t− u2(ξ, η))2

)
for (ξ, η) ∈ V and s, t ∈ R . We denote by B(r) the open ball centred at (0,−r) with radius r .

Let us define rhε (ξ, η, s, t) as the maximum radius r such that the set

(ρε(ξ, η) sin θ̃(η), ρε(ξ, η) cos θ̃(η)) + bh1 (ξ, η, s) + bh2 (ξ, η, t) +B(r)

is contained in the ball centred at (0, 0) with radius γ(ξ, η).

Claim 4.– If we define
d :=

1
1 + 16 l2(Γ)N2/π2

, (3.40)

where N is the constant introduced in the previous claim, then there exists h > 0 such that for every
ε ∈ (0, ε) (see Claim 3), there exists δ ∈ (0, ε) so that, if V is small enough,

inf
{
2 rhε (ξ, η, s, t) : (ξ, η) ∈ V, |s− u1(ξ, η)| ≤ δ, |t− u2(ξ, η)| ≤ δ

}
>
d

2
. (3.41)

Proof of the claim. Let ρhε (ξ, η, s, t) > 0 and −π/2 < θ
h

ε (ξ, η, s, t) < π/2 be such that(
ρε(ξ, η) sin θ̃(η), ρε(ξ, η) cos θ̃(η)

)
+ bh1 (ξ, η, s) + bh2 (ξ, η, t) =

=
(
ρhε (ξ, η, s, t) sin θ

h

ε (ξ, η, s, t), ρ
h
ε (ξ, η, s, t) cos θ

h

ε (ξ, η, s, t)
)
. (3.42)

To prove Claim 4, it is enough to show that, for every ε ∈ (0, ε), there exists δ ∈ (0, ε) with the property
that (

1− d

2
cos θ

h

ε (ξ, η, s, t)
)
ρhε (ξ, η, s, t) <

(
1− d

2

)
γ(ξ, η) (3.43)

for |s − u1(ξ, η)| ≤ δ , |t − u2(ξ, η)| ≤ δ , and (ξ, η) ∈ V with η 6= 0, provided V is sufficiently small.
Indeed, if (3.43) holds, it follows in particular that ρhε (ξ, η, s, t) < γ(ξ, η), and this inequality with some
easy geometric computations implies that

2 rhε (ξ, η, s, t) =
γ2(ξ, η)− (ρhε (ξ, η, s, t))

2

γ − ρhε (ξ, η, s, t) cos θ
h

ε (ξ, η, s, t)
;

at this point, it is easy to see that, if V is small enough, inequality (3.43) implies that 2 rhε (ξ, η, s, t) > d/2,
that is Claim 4. So let us prove (3.43).

We set

fd,h(ξ, η, s, t) :=
(

1− d

2
cos θ

h

ε (ξ, η, s, t)
)
ρhε (ξ, η, s, t)−

(
1− d

2

)
γ(ξ, η)

and we note that fd,h(ξ, 0, u1(ξ, 0), u2(ξ, 0)) = 0. We will show that

1. ∇η,s,t fd,h(ξ, 0, u1(ξ, 0), u2(ξ, 0)) = 0 if (ξ, 0) ∈ V ,

2. ∇2
η,s,t f

d,h(ξ, 0, u1(ξ, 0), u2(ξ, 0)) is negative definite if (ξ, 0) ∈ V ,
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where ∇η,s,t fd,h and ∇2
η,s,t f

d,h denote respectively the gradient and the Hessian matrix of fd,h with
respect to the variables (η, s, t). Equality 1 follows by direct computations and by (3.25). Using (3.42),
the equality in (3.32), and (3.38), we obtain

∂2
ηηf

d,h(ξ, 0, u1(ξ, 0), u2(ξ, 0)) = − π2

16 l2(Γ)

(
1− d

2

)
+
d

2
N2;

then by the definition of d ,

∂2
ηηf

d,h(ξ, 0, u1(ξ, 0), u2(ξ, 0)) = − π2

32 l2(Γ)
< 0. (3.44)

Moreover we easily obtain that

∂2
ttf

d,h(ξ, 0, u1(ξ, 0), u2(ξ, 0)) = ∂2
ssf

d,h(ξ, 0, u1(ξ, 0), u2(ξ, 0)) = −2h
(

1− d

2

)
,

∂2
sηf

d,h(ξ, 0, u1(ξ, 0), u2(ξ, 0)) = −2
(

1− d

2

)
∂2
ηηu1(ξ, 0),

∂2
tηf

d,h(ξ, 0, u1(ξ, 0), u2(ξ, 0)) = 2
(

1− d

2

)
∂2
ηηu2(ξ, 0),

∂2
tsf

d,h(ξ, 0, u1(ξ, 0), u2(ξ, 0)) = 0.

From the expressions it follows that

det

(
∂2
ηηf

d,h ∂2
sηf

d,h

∂2
sηf

d,h ∂2
ssf

d,h

)
(ξ, 0, u1(ξ, 0), u2(ξ, 0)) = h(2− d)

π2

32 l2(Γ)
− (2− d)2[∂2

ηηu1(ξ, 0)]2,

and that the determinant of the Hessian matrix of fd,h at (ξ, 0, u1(ξ, 0), u2(ξ, 0)) is given by

det∇2
η,s,t f

d,h(ξ, 0, u1(ξ, 0), u2(ξ, 0)) = −h2(2− d)2
π2

32 l2(Γ)
+ h(2− d)3[(∂2

ηηu1(ξ, 0))2 + (∂2
ηηu2(ξ, 0))2].

By the definition of d , if h satisfies

h >
32
π2

(2− d)l2(Γ)
2∑
i=1

‖∂2
ηηui‖2

L∞(Γ), (3.45)

then for every (ξ, 0) ∈ V we have

det

(
∂2
ηηf

d,h ∂2
sηf

d,h

∂2
sηf

d,h ∂2
ssf

d,h

)
(ξ, 0, u1(ξ, 0), u2(ξ, 0)) > 0, (3.46)

and
det∇2

η,s,t f
d,h(ξ, 0, u1(ξ, 0), u2(ξ, 0)) < 0. (3.47)

By (3.44), (3.46), and (3.47), we can conclude that the Hessian matrix of fd,h at (ξ, 0, u1(ξ, 0), u2(ξ, 0))
is negative definite: both (3.43) and Claim 4 are proved.

Claim 5.– For every r > 0 and h > 0, there exists ε̃ > 0 with the property that, if ε ∈ (0, ε̃), one can
find δ ∈ (0, ε) so that
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I(ξ, η, u2(ξ, η), t) ∈ B(r) + bh2 (ξ, η, t),
I(ξ, η, s, u1(ξ, η)) ∈ B(r) + bh1 (ξ, η, s),

provided V is small enough, for every |t− u2(ξ, η)| ≤ δ , |s− u1(ξ, η)| ≤ δ .

Proof of the claim. By the definition of φ in A6 , we obtain that

Iξ(ξ, η, u2(ξ, η), t) = 2(t− u2(ξ, η))∂ξu2(ξ, η),

Iη(ξ, η, u2(ξ, η), t) = 2(t− u2(ξ, η))∂ηu2(ξ, η)−M(ε−Mη)−1(t− u2(ξ, η))2.

To get the claim, we need to prove that

(2(t− u2)∂ξu2)2 +
(
−M(ε−Mη)−1(t− u2)2 + h(t− u2)2 + r

)2
< r2,

which is equivalent to

(2(t− u2)∂ξu2)2 +
(
−M(ε−Mη)−1 + h

)2
(t− u2)4 + 2r

(
−M(ε−Mη)−1 + h

)
(t− u2)2 < 0.

The conclusion follows by remarking that, if V is small enough, the left-handside is less than(
4(∂ξu2)2 + 2hr − 2Mr

3ε

)
δ2 + o(δ2),

which is negative if ε is sufficiently small. The proof for u1 is completely analogous.

Let us conclude the proof of the step. By Claim 4, we can find h > 0 such that (3.41) is satisfied for
ε ∈ (0, ε). If we choose r such that 2r < d/4, by Claim 5 there exists ε̃ > 0 such that for every ε ∈ (0, ε̃)
there is δ ∈ (0, ε) so that

I(ξ, η, s, u1(ξ, η)) + I(ξ, η, u2(ξ, η), t) ∈ B(2r) + bh1 (ξ, η, s) + bh2 (ξ, η, t) (3.48)

for every |s− u1(ξ, η)| < δ , |t− u2(ξ, η)| < δ , and (ξ, η) ∈ V . If we take ε ≤ min{ε̃, ε} , then by Claim 4
we have that the set

B(2r) + (ρε(ξ, η) sin θ̃(η), ρε(ξ, η) cos θ̃(η)) + bh1 (ξ, η, s) + bh2 (ξ, η, t)

is contained in the ball centred at (0, 0) with radius γ(ξ, η). Some easy geometric considerations show
that the relation between θε and θ̃ (see (3.39)) implies that also the set

B(2r) + (ρε(ξ, η) sin θε(η), ρε(ξ, η) cos θε(η)) + bh1 (ξ, η, s) + bh2 (ξ, η, t) (3.49)

is contained in the ball centred at (0, 0) with radius γ(ξ, η), if the condition

|bh1 (ξ, η, s) + bh2 (ξ, η, t)| < 2r

holds (to make this true, take δ and V smaller if needed). Since

I(ξ, η, s, t) = I(ξ, η, s, u1(ξ, η)) + I(ξ, η, u1(ξ, η), u2(ξ, η)) + I(ξ, η, u2(ξ, η), t),

by (3.48), (3.19), and (3.20), it follows that I(ξ, η, s, t) belongs to the set (3.49), and then to the ball
centred at (0, 0) with radius γ(ξ, η) for every |s− u1(ξ, η)| < δ , |t− u2(ξ, η)| < δ , and (ξ, η) ∈ V . This
concludes the proof of Step 1.
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Step 2.– If ε is sufficiently small and δ ∈ (0, ε), condition (b1) holds for |s − u1(ξ, η)| ≥ δ or
|t− u2(ξ, η)| ≥ δ , and (ξ, η) ∈ V , provided V is small enough.

Let us fix δ ∈ (0, ε) and set

m1(ξ, η) := max{|I(ξ, η, s, t)| : u1(ξ, η)− ε ≤ s ≤ t ≤ u2(ξ, η) + ε, |t− u2(ξ, η)| ≥ δ}.

It is easy to see that the function m1 is continuous. Let us prove that m1(ξ, 0) < γ(ξ, 0) = 1.
Fixed (ξ, 0) ∈ V , u1(ξ, 0)− ε ≤ s ≤ t ≤ u2(ξ, 0) + ε , with |t− u2(ξ, 0)| ≥ δ , we can write

I(ξ, 0, s, t) = I(ξ, 0, s, u1(ξ, 0)) + I(ξ, 0, u1(ξ, 0), u2(ξ, 0)) + I(ξ, 0, u2(ξ, 0), t). (3.50)

Claim 6.– For every r > 0 there exists ε > 0 such that

I(ξ, 0, u2(ξ, 0), t) ∈ B(r), I(ξ, 0, s, u1(ξ, 0)) ∈ B(r)

for 0 < |s− u1(ξ, 0)| ≤ ε , 0 < |t− u2(ξ, 0)| ≤ ε , and (ξ, 0) ∈ V .

Proof of the claim. See the similar proof of Claim 5 above.

By (3.50), (3.17), (3.18), and Claim 6, it follows that

I(ξ, 0, s, t) ∈ (0, 1) +B(r) +B(r) = (0, 1) +B(2r) (3.51)

for 0 < |s − u1(ξ, 0)| ≤ ε , δ ≤ |t − u2(ξ, 0)| ≤ ε . If r < 1/4, the set (0, 1) + B(2r) is contained in the
open ball centred at (0, 0) with radius 1.

It remains to study the case |s − u1| ≥ ε and the case |t − u2| ≥ ε . Let us consider the latter; the
former would be completely analogous. We can write

I(ξ, 0, s, u1(ξ, 0)) = I(ξ, 0, s ∧ (u1(ξ, 0) + ε), u1(ξ, 0)) + I(ξ, 0, s ∨ (u1(ξ, 0) + ε), u1(ξ, 0) + ε),
I(ξ, 0, u2(ξ, 0), t) = I(ξ, 0, u2(ξ, 0), u2(ξ, 0)− ε) + I(ξ, 0, u2(ξ, 0)− ε, t).

Therefore, by (3.50)

I(ξ, 0, s, t) = I(ξ, 0, u1(ξ, 0), u2(ξ, 0)) + I(ξ, 0, s ∧ (u1(ξ, 0) + ε), u1(ξ, 0))
+ I(ξ, 0, u2(ξ, 0), u2(ξ, 0)− ε) + I(ξ, 0, s ∨ (u1(ξ, 0) + ε), t)

− I(ξ, 0, u1(ξ, 0) + ε, u2(ξ, 0)− ε). (3.52)

If −2ε(∂ξu1(ξ, 0) + ∂ξu2(ξ, 0)) ≥ 0, we define

C := [0,−2ε(∂ξu1(ξ, 0) + ∂ξu2(ξ, 0))]×[0, 1− 2εM ];

if −2ε(∂ξu1(ξ, 0)+∂ξu2(ξ, 0)) < 0, we simply replace [0,−2ε(∂ξu1(ξ, 0)+∂ξu2(ξ, 0))] by [−2ε(∂ξu1(ξ, 0)+
∂ξu2(ξ, 0)), 0]. From the definition of φ in A3 ∪A4 ∪A5 , it follows that

I(ξ, 0, u1(ξ, 0) + ε, u2(ξ, 0)− ε) = (−2ε(∂ξu1(ξ, 0) + ∂ξu2(ξ, 0)), 1− 2εM) (3.53)

and
I(ξ, 0, s, t) ∈ C (3.54)

for u1(ξ, 0) + ε ≤ s ≤ t ≤ u2(ξ, 0) − ε . Let D := C − (−2ε(∂ξu1(ξ, 0) + ∂ξu2(ξ, 0)), 1 − 2εM). Since
Iη(ξ, 0, u2(ξ, 0), u2(ξ, 0)− ε) = −Mε , from (3.52), (3.17), (3.18), Claim 6, (3.53), and (3.54), we obtain

I(ξ, 0, s, t) ∈ [(0, 1) +B(r) +B(r)] ∩ {(x, y) ∈ R2 : y < 1− εM} +D

= [(0, 1) +B(2r)] ∩ {(x, y) ∈ R2 : y < 1− εM} +D.
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If r < 1/4 and if ε is sufficiently small, the set [(0, 1) + B(2r)] ∩ {(x, y) ∈ R2 : y < 1 − εM} + D is
contained in the open ball centred at (0, 0) with radius 1 and this means that m1(ξ, 0) < γ(ξ, 0).

Analogously we define

m2(ξ, η) := max{|I(ξ, η, s, t)| : u1(ξ, η)− ε ≤ s ≤ t ≤ u2(ξ, η) + ε, |s− u1(ξ, η)| ≥ δ}.

Arguing as in the case of m1 , we can prove that m2 is continuous and m2(ξ, 0) < γ(ξ, 0). By continuity,
if V is small enough, m1(ξ, η) < γ(ξ, η) and m2(ξ, η) < γ(ξ, η), for every (ξ, η) ∈ V . This concludes the
proof of Step 2.

By Step 1 and Step 2 we deduce that, choosing ε sufficiently small and n = nε (see (3.36)), condition
(b1) is true for u1(ξ, η) − ε ≤ s, t ≤ u2(ξ, η) + ε and in fact for every s, t ∈ R , from the definition of φ
in A1 and A7 . 2

3.2 The graph-minimality

We start this section with a negative result: if the domain Ω is too large, the Euler conditions do not
guarantee the graph-minimality introduced in Definition 3.1, as the following counterexample (proposed
by Gianni Dal Maso) shows.

Proposition 3.3 Let R be the rectangle (1, 1 + 4l)×(−l, l) and let

u(x, y) :=

{
x if y ≥ 0,

−x if y < 0.

Then u satisfies the Euler conditions for the Mumford-Shah functional in R , but it is not a Dirichlet
graph-minimizer in R for l large enough.

Proof. – The Euler conditions are obviously satisfied by u in R .
Let R0 be the rectangle (0, 4)×(−1, 0) and let w be any function in H1(R0) such that w(x, 0) = x

for x ∈ (0, 2), and w(x, y) = 0 for (x, y) ∈ ∂R0 \ ((0, 4)×{0}).
The idea is to perturb u by the rescaled function v(x, y) := lw(x−1

l , yl ). We define the perturbed
function

ũ(x, y) :=


x on R1 \ Tε,

−x+ η (x− 1) on Tε,
−x+ η v(x, y) on R2,

where η is a positive parameter and the rectangles R1 , R2 , and the triangle Tε are indicated in Fig. 3.1.
We want to show that, if we set c :=

∫
R0
|∇w(x, y)|2dx dy , for every l > c and for every ε0 , η0 > 0 there

exist ε < ε0 and η < η0 such that∫
R

|∇u(x, y)|2dx dy +H1(Su) >
∫
R

|∇ũ(x, y)|2dx dy +H1(Sũ).

By definition, ũ satisfies the boundary conditions. Since by the construction of v the function ũ is
continuous on the interface between Tε and R2 , then

H1(Su)−H1(Sũ) = 2l − 2
√
l2 + ε2 = −ε

2

l
+ o(ε2). (3.55)
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Figure 3.1: the regions R1 , R2 and Tε .

On the triangle Tε , we obtain∫
Tε

|∇u(x, y)|2dx dy −
∫
Tε

|∇ũ(x, y)|2dx dy = 2lεη − lεη2. (3.56)

Finally, since we have that |∇ũ|2 = 1 + η2|∇v|2 − 2η ∂xv in R2 , taking into account the boundary
conditions of v , we get∫

R2

|∇u(x, y)|2dx dy −
∫
R2

|∇ũ(x, y)|2dx dy = −η2

∫
R2

|∇v(x, y)|2dx dy

= −l2η2

∫
R0

|∇w(x, y)|2dx dy. (3.57)

In order to conclude, by (3.55), (3.56), and (3.57), we have to show that for l large we can choose ε and
η arbitrarily close to 0 such that

−ε
2

l
− cl2η2 + 2lεη − lεη2 + o(ε2) > 0.

If we choose η = ε/(cl), then the equality above reduces to

−ε
2

l
+
ε2

c
+ o(ε2) > 0,

which is true if l > c . 2

As suggested by Proposition 3.3, to get the graph-minimality we have to add some restrictions on the
domain Ω. To this aim we introduce a suitable notion of capacity: given an open set U (with Lipschitz
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boundary) and a portion Γ of ∂U (with nonempty relative interior in ∂U ), we define K(Γ, U) by the
variational problem

K(Γ, U) := inf
{∫

U

|∇v(x, y)|2dx dy : v ∈ H1(U),
∫

Γ

v2dH1 = 1, and v = 0 on ∂U \ Γ
}
. (3.58)

First of all, it is easy to see that in the problem above the infimum is attained. Moreover, if U1 ⊂ U2 ,
and Γ1 ⊂ Γ2 , then K(Γ1, U1) ≥ K(Γ2, U2); this suggests that, when K(Γ, U) is very large, U has to be
thin in some sense. It is convenient to give the following definition.

Definition 3.4 Given a simple analytic curve Γ , we say that an open set Ω is Γ-admissible if it is
bounded, Γ ∩ Ω connects two points of ∂Ω , and Ω \ Γ has two connected components having a Lipschitz
boundary.

The following theorem gives a sufficient condition for the graph-minimality in terms of K(Γ,Ω) and of
the geometrical properties of the curve. We recall that l(Γ) denotes the length of Γ, curv Γ its curvature,
and k(Γ) the L∞ -norm of curv Γ.

Theorem 3.5 Let Ω0 , Ω , u , and Γ = Su satisfy the same assumptions as in Theorem 3.2; suppose
that Ω is Γ-admissible and denote by Ω1 and Ω2 the two connected components of Ω \ Γ , by ui the
restriction of u to Ωi , and by ∂τui its tangential derivative on Γ . There exists an absolute constant
c > 0 (independent of Ω0 , Ω , Γ , and u) such that if

mini=1,2K(Γ ∩ Ω,Ωi)
1 + l2(Γ ∩ Ω) + l2(Γ ∩ Ω)k2(Γ ∩ Ω)

> c

2∑
i=1

‖∂τui‖2
C1(Γ∩Ω), (3.59)

then u is a Dirichlet graph-minimizer on Ω .

Remark that condition (3.59) imposes a restriction on the size of Ω depending on the behaviour of u
along Su : if u has large or very oscillating tangential derivatives, we have to take Ω quite small to
guarantee that (3.59) is satisfied. In the special case of a locally constant function u , condition (3.59) is
always fulfilled; so u is a Dirichlet graph-minimizer whatever Ω is, in agreement with a result of [2].

Proof. – From the definition of d and N (see (3.40) and Claim 3 in the proof of Theorem 3.2) it follows
that there is an absolute constant c̃ > 0 (independent of Ω0 , Ω, Γ, and u) such that

c̃ (1 + l2(Γ)k2(Γ)) >
16
d
. (3.60)

The absolute constant c , which appears in (3.59), is defined by

c := max
{
c̃,

64
π2

}
. (3.61)

Actually, to avoid problems of boundary regularity, we shall work not exactly in Ω, but in a little bit
larger set. Let Ω′ be a Γ-admissible set such that Ω ⊂⊂ Ω′ ⊂⊂ Ω0 , and

mini=1,2K(Γ ∩ Ω′,Ω′i)
1 + l2(Γ ∩ Ω′) + l2(Γ ∩ Ω′)k2(Γ ∩ Ω′)

> c

2∑
i=1

‖∂τui‖2
C1(Γ∩Ω′),

where Ω′i denote the connected components of Ω′ \ Γ. This is possible by (3.59) and by the continuity
properties of K .
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The idea of the proof is to construct first a calibration ϕ in a cylinder with base an open neighbourhood
of Γ ∩ Ω′ , and then to extend ϕ in a tubular neighbourhood of graphu .

Construction of the calibration around Γ

We essentially recycle the construction of Theorem 3.2, but we need to slightly modify the definition
around the graph of u , in order to exploit condition (3.59) and get the extendibility.

To define the calibration ϕ(x, y, z) we use the same notation and the coordinate system (ξ, η) on U
(which is supposed to be an open neighbourhood of Γ∩Ω′ ) introduced in the proof of Theorem 3.2. The
vectorfield will be written as

ϕ(x, y, z) =
1

γ2(ξ(x, y), η(x, y))
φ(ξ(x, y), η(x, y), z), (3.62)

where φ can be represented by

φ(ξ, η, z) = φξ(ξ, η, z)τξ + φη(ξ, η, z)τη + φz(ξ, η, z)ez.

Given suitable parameters ε > 0 and λ > 0, we consider the following subsets of V×R :

A1 := {(ξ, η, z) ∈ V×R : u1(ξ, η)− ε v1(ξ, η) < z < u1(ξ, η) + ε v1(ξ, η)},
A2 := {(ξ, η, z) ∈ V×R : u1(ξ, η) + ε v1(ξ, η) < z < u1(ξ, η) + 2ε},
A3 := {(ξ, η, z) ∈ V×R : u1(ξ, η) + 2ε < z < β1(ξ, η)},
A4 := {(ξ, η, z) ∈ V×R : β1(ξ, η) < z < β2(ξ, η) + 1/λ},
A5 := {(ξ, η, z) ∈ V×R : β2(ξ, η) + 1/λ < z < u2(ξ, η)− 2ε},
A6 := {(ξ, η, z) ∈ V×R : u2(ξ, η)− 2ε < z < u2(ξ, η)− ε v2(ξ, η)},
A7 := {(ξ, η, z) ∈ V×R : u2(ξ, η)− ε v2(ξ, η) < z < u2(ξ, η) + ε v2(ξ, η)},

where the functions vi are defined as

v1(ξ, η) := 1 +Mη, v2(ξ, η) := 1−Mη

with M positive parameter such that

c (1 + l2(Γ ∩ Ω′) + l2(Γ ∩ Ω′)k2(Γ ∩ Ω′))
2∑
j=1

‖∂τuj‖2
C1(Γ∩Ω′) < M < min

j=1,2
K(Γ ∩ Ω′,Ω′i), (3.63)

while β1 and β2 are the solutions of the Cauchy problems (3.14). Since we suppose u2 > 0 on V , if ε is
small enough, while λ is sufficiently large, then the sets A1, . . . , A7 are nonempty and disjoint, provided
V is sufficiently small.

The vector φ(ξ, η, z) introduced in (3.62) will be written as

φ(ξ, η, z) = (φξη(ξ, η, z), φz(ξ, η, z)),
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where φξη is the two-dimensional vector given by the pair (φξ, φη). We define φ(ξ, η, z) as follows:

(
2∇u1 + 2 z−u1

v1
∇v1,

∣∣∣∇u1 + z−u1
v1

∇v1
∣∣∣2) in A1,

(
2∇(u1 + εv1) + 2 z−u1−εv1

ṽ1
∇ṽ1,

∣∣∣∇(u1 + εv1) + z−u1−εv1
ṽ1

∇ṽ1
∣∣∣2) in A2,

(0, ω1(ξ, η)) in A3,

(λσ(ξ, η)∇w, µ) in A4,

(0, ω2(ξ, η)) in A5,(
2∇(u2 − εv2) + 2 z−u2+εv2

ṽ2
∇ṽ2,

∣∣∣∇(u2 − εv2) + z−u2+εv2
ṽ2

∇ṽ2
∣∣∣2) in A6,

(
2∇u2 + 2 z−u2

v2
∇v2,

∣∣∣∇u2 + z−u2
v2

∇v2
∣∣∣2) in A7,

where ∇ denotes the gradient with respect to the variables (ξ, η), the functions ṽi are defined by

ṽ1(ξ, η) := 2ε+M ′η, ṽ2(ξ, η) := 2ε−M ′η

while

ωi(ξ, η) := ε2
(
M +M ′ vi(ξ, η)

ṽi(ξ, η)

)2

− (∂ξui(ξ, η))2 − (∂ηui(ξ, η))2

for i = 1, 2, and for every (ξ, η) ∈ V ; we take the constant µ sufficiently large in order to get the
required inequality between the horizontal and the vertical components of the field (see condition (a1) of
Section 1.3), and M ′ so large that ωi is positive in V , provided V is small enough. We define w as the
solution of the Cauchy problem

∆w = 0,

w(ξ, 0) = − 4ε
1− εM ′ − 6ε2M

∫ ξ

0

n(s)(∂ξu1(s, 0) + ∂ξu2(s, 0)) ds,

∂ηw(ξ, 0) = n(ξ),

(3.64)

where n is a positive analytic function that must be chosen in a suitable way. We define

σ(ξ, η) :=
1

n(q(ξ, η))
(1− εM ′ − 6ε2M),

where the function q is constructed in the same way as in (3.13).
Let us prove that for a suitable choice of the involved parameters the vectorfield is a calibration in a

suitable neighbourhood U of Γ ∩ Ω′ , which is equivalent to prove that φ satisfies (a1), (a2), (b1), (b2),
and (c1) of page 37. The proof of conditions (a1), (a2), (b2), and (c1) is the same as in Theorem 3.2.
The proof of (b1) is split again in two steps.

Step 1.– For a suitable choice of ε and of the function n (see (3.64)) there exists δ > 0 such that
condition (b1) holds for |s−u1(ξ, η)| < δ , |t−u2(ξ, η)| < δ , and (ξ, η) ∈ V , provided V is small enough.



54 Chapter 3

We essentially repeat the proof given in Theorem 3.2: Claims 1, 2, 3, and 4 are still valid with the same
proof (up to the obvious changes due to the different definition of φ). Claim 5 must be modified as
follows.

Claim 5.– For h = 64
π2 l

2(Γ)
∑2
i=1 ‖∂ξui‖2

C1(Γ∩Ω′) , there exist r ∈ (0, d/8) and δ̃ > 0 such that for every

δ ∈ (0, δ̃)

I(ξ, η, u2(ξ, η), t) ∈ B(r) + bh2 (ξ, η, t),
I(ξ, η, s, u1(ξ, η)) ∈ B(r) + bh1 (ξ, η, s),

provided V is small enough, for every |t− u2(ξ, η)| ≤ δ , |s− u1(ξ, η)| ≤ δ .

Proof of the claim. Using the definition of φ in A7 , the claim is equivalent to prove

(2(t− u2)∂ξu2)2 +
(
−M(1−Mη)−1 + h

)2
(t− u2)4 + 2r

(
−M(1−Mη)−1 + h

)
(t− u2)2 < 0;

note that for a1 ∈ (0, 1) the left-handside is less than(
4

2∑
i=1

‖∂ξui‖2
C1(Γ∩Ω′) + 2hr − 2r

1 + a1
M

)
δ2 + o(δ2),

provided V is small enough. To obtain the claim, it is sufficient to prove that

2
r

2∑
i=1

‖∂ξui‖2
C1(Γ∩Ω′) <

1
1 + a1

M − h. (3.65)

Since by (3.63), (3.60), and (3.61) we can write

M =
(

16 + a2

d
+

64
π2
l2(Γ ∩ Ω′)

) 2∑
i=1

‖∂ξui‖2
C1(Γ∩Ω′),

with a2 > 0, the inequality (3.65) is equivalent to

2
r
<

(
1

1 + a1
− 1
)

64
π2
l2(Γ ∩ Ω′) +

16 + a2

d

1
1 + a1

,

which is true if a1 is sufficiently small and r is sufficiently close to d/8. The proof for u1 is completely
analogous.

To conclude the proof of the step, let r and h be as in Claim 5. If we choose ε < ε and δ ≤ min{δ̃, ε} ,
by Claim 5 we have that

I(ξ, η, s, u1(ξ, η)) + I(ξ, η, u2(ξ, η), t) ∈ B(2r) + bh1 (ξ, η, s) + bh2 (ξ, η, t) (3.66)

for every |s− u1(ξ, η)| < δ , |t− u2(ξ, η)| < δ , and (ξ, η) ∈ V ; since h satisfies (3.45) and 2r < d/4, we
can apply Claim 4 to deduce that the set

B(2r) + (ρε(ξ, η) sin θ̃(η), ρε(ξ, η) cos θ̃(η)) + bh1 (ξ, η, s) + bh2 (ξ, η, t)

is contained in the ball centred at (0, 0) with radius γ(ξ, η). Some easy geometric considerations show
that the relation between θε and θ̃ (see (3.39)) implies that also the set

B(2r) + (ρε(ξ, η) sin θε(η), ρε(ξ, η) cos θε(η)) + bh1 (ξ, η, s) + bh2 (ξ, η, t) (3.67)
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is contained in the ball centred at (0, 0) with radius γ(ξ, η), if the condition

|bh1 (ξ, η, s) + bh2 (ξ, η, t)| < 2r

holds (to make this true, take δ and V smaller if needed). Since

I(ξ, η, s, t) = I(ξ, η, s, u1(ξ, η)) + I(ξ, η, u1(ξ, η), u2(ξ, η)) + I(ξ, η, u2(ξ, η), t),

by (3.48), it follows that I(ξ, η, s, t) belongs to the set (3.67), and then to the ball centred at (0, 0) with
radius γ(ξ, η) for every |s− u1(ξ, η)| < δ , |t− u2(ξ, η)| < δ , and (ξ, η) ∈ V . This concludes the proof of
Step 1.

Step 2.– If ε is sufficiently small and δ ∈ (0, ε), condition (b1) holds for |s − u1(ξ, η)| ≥ δ or
|t− u2(ξ, η)| ≥ δ , and (ξ, η) ∈ V , provided V is small enough.

By using condition (3.63), arguing as in the proof of Claim 5, we can prove the following claim.

Claim 6.– There exist r < 1/4 and ε > 0 such that

I(ξ, 0, u2(ξ, 0), t) ∈ B(r), I(ξ, 0, s, u1(ξ, 0)) ∈ B(r)

for 0 < |s− u1(ξ, 0)| ≤ ε , 0 < |t− u2(ξ, 0)| ≤ ε , and (ξ, 0) ∈ V .
We can conclude the proof of Step 2 in the same way as in Theorem 3.2, with the minor changes due

to the different definition of the field.

By Step 1 and Step 2, we conclude that, choosing ε sufficiently small and n in a suitable way,
condition (b1) is true for u1(ξ, η)− ε ≤ s, t ≤ u2(ξ, η) + ε . So, ϕ is a calibration.

Construction of the calibration around the graph of u

Now the matter is to extend the field in a tubular neighbourhood of the graph of u . From now on, we
reintroduce the Cartesian coordinates.

Let Γi be the curve η = (−1)ik , where k > 0. If k is sufficiently small, for i = 1, 2 the curve Γi
connects two points of ∂Ω′i , divides Ω′i (and then Ω) in two connected components, and the normal
vector νi to Γi which points towards Γ coincides with (−1)i+1∇η/|∇η| . Set U ′ := U ∩ {(x, y) ∈ Ω′ :
|η(x, y)| < k} and U ′′ := U ′ ∩ Ω. Since ‖∇η‖ = 1 on Γ, by (3.63) we can suppose that

M

1−Mk
max
i=1,2

‖∇η‖L∞(Γi) < min
i=1,2

K(Γi,Ω′i \ U ′). (3.68)

Chosen δ so small that (graphu)δ ∩ ((U ′′ ∩ Ω1)× R) ⊂ A1 and (graphu)δ ∩ ((U ′′ ∩ Ω2)× R) ⊂ A7 , we
define the vectorfield

ϕ̂(x, y, z) = (ϕ̂xy(x, y, z), ϕ̂z(x, y, z)) ∈ R2×R,

as follows:

ϕ(x, y, z) in {(x, y, z) ∈ U ′′×R : u1(x, y)− δ < z < u2(x, y) + δ},

(
2∇u+ 2 z−uv̂1 ∇v̂1,

∣∣∣∇u+ z−u
v̂1
∇v̂1

∣∣∣2) in (graphu)δ ∩ (Ω1 \ U ′′)×R,

(
2∇u+ 2 z−uv̂2 ∇v̂2,

∣∣∣∇u+ z−u
v̂2
∇v̂2

∣∣∣2) in (graphu)δ ∩ (Ω2 \ U ′′)×R.
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The function v̂i is the solution of the problem

min

{∫
Ω′i\U ′

|∇v|2dx dy − M

1−Mk

∫
Γi

|∇η| v2dH1 : v ∈ H1(Ω′i \ U ′), v|∂(Ω′i\U ′)\Γi
= 1

}
. (3.69)

Let us show that the problem (3.69) admits a solution. If {vn} is a minimizing sequence, then

sup
n

{∫
Ω′i\U

′
|∇vn|2dx dy −

M

1−Mk

∫
Γi

|∇η| v2
n dH1

}
< +∞. (3.70)

We have only to show that {vn} is bounded in H1(Ω′i \ U ′). If we put vn := vn − 1, by (3.58) for every
τ ∈ (0, 1) we have

∫
Ω′i\U ′

|∇vn|2dx dy =
∫

Ω′i\U ′
|∇vn|2dx dy =

(∫
Γi

v2
ndH1

)∫
Ω′i\U ′

∣∣∣∣∣∇
(

vn

(
∫
Γi
v2
ndH1)

1
2

)∣∣∣∣∣
2

dx dy

≥
(∫

Γi

(vn − 1)2dH1

)
K(Γi,Ω′i \ U ′)

≥ (1− τ)K(Γi,Ω′i \ U ′)
∫

Γi

v2
ndH1 +K(Γi,Ω′i \ U ′)

(
1− 1

τ

)
H1(Γi), (3.71)

where we used Cauchy inequality. By (3.68), we can choose τ so small that

(1− τ)K(Γi,Ω′i \ U ′) >
M

1−Mk
‖∇η‖L∞(Γi),

and substituting (3.71) in (3.70), we obtain

sup
n

∫
Γi

v2
n dH1 < +∞.

Using again (3.70) and Poincaré inequality, we conclude that {vn} is actually bounded in H1(Ω′i \ U ′).
The solution of (3.69) satisfies

∆v̂i = 0 in Ω′i \ U ′,

∂ν v̂i =
M

1−Mk
|∇η|v̂i on Γi,

v̂i = 1 on ∂(Ω′i \ U ′) \ Γi,

(3.72)

and so, in particular, belongs to C∞(Ωi \ U ′′). By a truncation argument, it is easy to see that v̂i ≥ 1,
so ϕ̂ is well defined.

Since ϕ̂ is a calibration in the set {(x, y, z) ∈ U ′′×R : u1(x, y)− δ < z < u2(x, y) + δ} , it remains to
prove only that the field is globally divergence-free in the sense of distributions and that conditions (a1),
(a2), (b1) are verified in the regions (graphu)δ ∩ (Ωi \ U ′′)×R . First of all, note that by Lemma 1.5 the
field ϕ̂ is divergence-free in the regions (graphu)δ ∩ (Ωi \ U ′′)×R , since it is constructed starting from
the family of harmonic functions u(x, y) + tv̂i(x, y). To complete the proof, we need to check that the
normal components of the traces of ϕ and of the extension field are equal on the surface of separation,
i.e.,

〈ϕxy, νi〉 =
〈

2∇u+ 2
z − u

v̂i
∇v̂i, νi

〉
on Γi, (3.73)
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where νi = (−1)i+1∇η/|∇η| . Using the definition of ϕ , we obtain that

〈ϕxy, νi〉 =
(

(−1)i+1∂ηu+
z − u

1−Mk
M

)
|∇η|;

since 〈∇u, νi〉 = (−1)i+1∂ηu|∇η| , the equality (3.73) is equivalent to

M

1−Mk
|∇η| = 1

v̂i
〈∇v̂i, νi〉,

which is true by (3.72).
Conditions (a1) and (a2) are obviously satisfied, while condition (b1) is true if we take δ satisfying

δ ≤ sup

{(
4|∇u|+ 2

|∇v̂i|
v̂i

)−1

: (x, y) ∈ Ωi \ U ′′, i = 1, 2

}
.

Therefore, with this choice of δ , the vectorfield ϕ̂ is a calibration. 2

3.2.1 Some properties of K(Γ, U)

In this subsection we investigate some qualitative properties of the quantity K(Γ, U) and we shall compute
it explicitly in a very particular case. Let us start by a very simple result.

Proposition 3.6 Let Γ be a simple analytic curve and Γ̃ be an extension of Γ , whose endpoints do not
coincide with the endpoints of Γ . If Γ±δ are the two connected components of Γδ \ Γ̃ (which are well
defined if δ is sufficiently small), then

lim
δ→0+

K(Γ,Γ±δ ) = +∞.

Proof. – For convenience we set

W±(δ) :=
{
v ∈ H1(Γ±δ ) :

∫
Γ

v2dH1 = 1, v = 0 on ∂(Γ±δ ) \ Γ
}
.

Suppose by contradiction that there exists a sequence {δn} decreasing to 0 such that supnK(Γ,Γ+
δn

) =
c < +∞ ; this implies the existence of a sequence {vn} such that

vn ∈W+(δn) and
∫

Γ+
δn

|∇vn(x, y)|2dx dy ≤ c

for every integer n . From now on, we regard vn as a function belonging to H1(Γ+
δ1

) which vanishes on
Γ+
δ1
\ Γ+

δn
. By Poincaré inequality it follows immediately that {vn} is bounded in H1(Γ+

δ1
), and so it

admits a weakly convergent subsequence {vnk
} . Let us call v the limit of the subsequence; since vnk

vanishes on Γ+
δ1
\ Γ+

δnk
for every k , then v must vanish a.e.; on the other hand, since

∫
Γ
v2
nk
dH1 = 1, by

the compactness of the trace operator, we have that
∫
Γ
v2dH1 = 1, and this is clearly impossible. 2

We remark that by Theorem 3.5 and Proposition 3.6, if U0 is a neighbourhood of Γ and u ∈ SBV (U0)
satisfies the Euler conditions in U0 with Su = Γ, then there exists a neighbourhood U of Γ contained in
U0 such that u is a Dirichlet graph-minimizer in U . Actually, taking U smaller if needed, by Theorem
3.2 we get also the Dirichlet minimality.
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Proposition 3.7 (Characterization of K(Γ, U)) Let U be an open set with Lipschitz boundary and
Γ be a subset of ∂U with nonempty relative interior in ∂U . The constant K(Γ, U) is the first eigenvalue
of the problem 

∆u = 0 on U ,
∂νu = λu on Γ,
u = 0 on ∂U \ Γ.

(3.74)

Moreover, it is the unique eigenvalue with a positive eigenfunction.

Proof. – If u is a solution of (3.58), then it is harmonic and there exists a Lagrange multiplier λ such
that ∫

U

〈∇u,∇ϕ〉 dx dy = λ

∫
Γ

uϕdH1 ∀ϕ ∈ C∞(U) : ϕ = 0 on ∂U \ Γ, (3.75)

which means, by Green formula, that ∂νu = λu on Γ. Using (3.75), one can easily see that K(Γ, U) is
in fact the minimal eigenvalue of (3.74) and that it has a positive eigenfunction (indeed, if u is a solution
also |u| is). Let u be a positive function belonging to the eigenspace of K(Γ, U) and v another positive
eigenfunction associated with the eigenvalue µ ; by Green formula we have∫

Γ

v ∂νu dH1 −
∫

Γ

u ∂νv dH1 = 0,

therefore

(K(Γ, U)− µ)
∫

Γ

uv dH1 = 0.

Since both u and v are positive, from the last equality it follows that µ = K(Γ, U). 2

Proposition 3.8 If U = (0, a)×(0, b) and Γ = (0, a)×{0} , then

K(Γ, U) =
π

a tanh
(
πb
a

) . (3.76)

Proof. – The function
v(x, y) = sin

(π
a
x
)

sinh
(π
a

(b− y)
)

is positive and satisfies (3.74) with λ =
π

a tanh
(
πb
a

) . Then, by Proposition 3.7, this quantity coincides

with K(Γ, U). 2

Proposition 3.9 Let g : [0, a0] → [0,+∞) be a Lipschitz function and denote the graph of g by Γ .
Given 0 ≤ a1 < a2 ≤ a0 and b > 0 , if we set Γ(a1, a2) := graph g|(a1,a2) and

R(a1, a2, b) := {(x, y) : x ∈ (a1, a2), y ∈ (g(x), g(x) + b)},

then
lim

|a2−a1|→0
K (Γ(a1, a2), R(a1, a2, b)) = +∞ uniformly with respect to b.
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Proof. – The idea is to transform the region R(a1, a2, b) into the rectangle (0, a2 − a1)×(0, b) by a
suitable diffeomorphism in order to use (3.76).

Let ψ : (0, a2− a1)×(0, b) → R(a1, a2, b) be the map defined by ψ(x, y) = (x+ a1, y+ g(x+ a1)). Let
v ∈ H1(R(a1, a2, b)) be such that v = 0 on ∂R(a1, a2, b) \ Γ(a1, a2) and∫

Γ(a1,a2)

v2dH1 =
∫ a2−a1

0

v2(ψ(x, 0))
√

1 + (g′(x))2 dx = 1. (3.77)

If we call ṽ(x, y) := v(ψ(x, y)), then ṽ ∈ H1((0, a2− a1)×(0, b)), ṽ = 0 on the boundary of the rectangle
except (0, a2 − a1)×{0} , and by (3.77) there exists λ > 0 such that λ2 ≤

√
1 + ‖g′‖2

∞ and

λ2

∫ a2−a1

0

ṽ2(x, 0) dx = 1.

Therefore, since Jψ ≡ 1,∫
R(a1,a2,b)

|∇v(x, y)|2dx dy =
∫

(0,a2−a1)×(0,b)

|∇v(ψ(x, y))|2dx dy

≥ (1 + ‖g′‖∞ + ‖g′‖2
∞)−1

∫
(0,a2−a1)×(0,b)

|∇ṽ(x, y)|2dx dy

≥ λ−2(1 + ‖g′‖∞ + ‖g′‖2
∞)−1K

(
(0, a2 − a1)×{0}, (0, a2 − a1)×(0, b)

)
≥ (1 + ‖g′‖2

∞)−3/2 π

2(a2 − a1) tanh
(

πb
a2−a1

) ,
where the last inequality follows by the estimate on λ and by (3.76). Since v is arbitrary, using the fact
that 0 < tanh t ≤ 1 for every t > 0, we obtain that

K (Γ(a1, a2), R(a1, a2, b)) ≥ (1 + ‖g′‖∞)−3/2 π

2(a2 − a1)
;

so, the conclusion is clear. 2

We have already remarked (see Proposition 3.6) that the graph-minimality is guaranteed in small
neighbourhoods of the discontinuity set Γ. As a consequence of Proposition 3.9, we obtain that the
graph-minimality holds also in the open sets, which are narrow along the direction parallel to Γ and may
be very large along the normal direction. This is made precise by the following corollary.

Corollary 3.10 Let g be a positive function, analytic on [0, a0] , that is g admits an analytic extension,
and denote the graph of g by Γ . For every M > 0 there exists h = h(M,Γ) such that, if Ω is Γ-
admissible (see Definition 3.4) and Ω ⊂ (a1, a1 + h)×R with a1 ∈ [0, a0 − h] , and if u is a function in
SBV (Ω) with Su = Γ∩Ω , with different traces at every point of Γ∩Ω , satisfying the Euler conditions in
Ω , and

∑2
i=1 ‖∂τui‖C1(Γ∩Ω) ≤M (where ui is as above the restriction of u to the connected component

Ωi of Ω \ Γ), then u is a Dirichlet graph-minimizer in Ω (see Fig. 3.2).

Proof. – By Proposition 3.9 there exists h > 0 such that for every a1, a2 ∈ [0, a0] with 0 < a2−a1 ≤ h
and for every b > 0,

K(Γ(a1, a2), R(a1, a2, b))
1 + l2(Γ) + l2(Γ)k2(Γ)

> cM2.
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Figure 3.2: if the thickness of Ω is less than h , then u is a Dirichlet graph-minimizer in Ω.

If Ω ⊂ (a1, a1+h)×R , then we can choose b > 0 so large that, assuming that Ω1 is the upper component,
Ω1 ⊂ R(a1, a1 + h, b). Then by the monotonicity properties of K(Γ, A), it follows that

K(Γ ∩ Ω,Ω1)
1 + l2(Γ) + l2(Γ)k2(Γ)

> cM2 ≥ c

2∑
i=1

‖∂τui‖2
C1(Γ∩Ω).

Applying the same argument to Ω2 , the conclusion follows from Theorem 3.5. 2



Chapter 4

Calibrations for minimizers with a
triple junction

In this chapter we study the Dirichlet minimality of solutions of the Euler-Lagrange equations for the
Mumford-Shah functional (2.1) whose discontinuity set presents a triple junction.

The precise statement of the result is the following.

Theorem 4.1 Let Ω := B(0, 1) be the open disc in R2 with radius 1 centred at the origin, and let
(A0, A1, A2) be the partition of Ω defined as follows:

Ai :=
{

(r cos θ, r sin θ) ∈ Ω : 0 ≤ r < 1,
2
3
π(2− i) < θ ≤ 2

3
π(3− i)

}
∀ i = 0, 1, 2.

Let Si,j := Ai ∩ Aj for every i < j . Let ui ∈ C2(Ai) be a harmonic function in Ai , satisfying the
Neumann conditions on ∂Ai ∩ Ω and such that |∇ui| = |∇uj | on Si,j for every i < j . If u is the
function in SBV (Ω) defined by u := ui a.e. in each Ai and u0(0, 0) < u1(0, 0) < u2(0, 0) , then there
exists a neighbourhood U of the origin such that u is a Dirichlet minimizer in U of the Mumford-Shah
functional.

The proof is very long and technical and is split in several steps. First of all, the symmetry due to the
2π/3-angles allows to deduce from the other Euler conditions that each ui must be either symmetric or
antisymmetric with respect to the bisecting line of Ai . In Section 4.1 we construct an explicit calibration
ϕ in the case ui symmetric and we prove that ϕ satisfies conditions (a1), (a2), (b2), and (c1) (see
Section 1.3); in Sections 4.2 and 4.3 we show some estimates, which will be useful in Section 4.4 to prove
condition (b1); finally, in Section 4.5 we adapt the calibration to the antisymmetric case.

4.1 Construction of the calibration

Let {ex, ey} be the canonical basis in R2 and for i = 1, 2 consider the vectors τi = (−1/2, (−1)i
√

3/2),
νi = ((−1)i

√
3/2, 1/2), which are tangent and normal to the set Si−1,i (see Fig. 4.1). As u0(0, 0) <

u1(0, 0) < u2(0, 0), there exists an open neighbourhood U of (0, 0) such that the function u belongs to
SBV (U), the discontinuity set Su of u on U coincides with

⋃
i<j(Si,j ∩ U), and the oriented normal

vector νu to Su is given by

νu(x, y) =


ν1 for (x, y) ∈ S0,1,
ν2 for (x, y) ∈ S1,2,
ey for (x, y) ∈ S0,2;
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by the assumptions on ui , the function u satisfies the Euler conditions for (2.1) in U . We will construct
a local calibration ϕ = (ϕxy, ϕz) : U×R → R2×R for u .

Figure 4.1: the triple junction.

Applying Schwarz reflection principle with respect to S0,1 and S0,2 , the function u0 can be har-
monically extended to U \ S1,2 , and analogously u1 and u2 can be extended to U \ S0,2 and U \ S0,1 ,
respectively. By the hypothesis on ui and by Cauchy-Kowalevski theorem (see [24]) the extension of u0

coincides, up to the sign and to additive constants, with u1 on A1 and with u2 on A2 ; analogously,
the extension of u1 coincides, up to the sign and to an additive constant, with u2 on A2 . Since the
composition of the three reflections with respect to S0,1 , S1,2 , and S0,2 coincides with the reflection with
respect to the bisecting line of the sector A0 , by the previous remarks we can deduce that u0 is either
symmetric or antisymmetric with respect to the bisecting line of A0 .

We consider first the case u0 symmetric (the antisymmetric case will be studied in Section 4.5). Then
also u1, u2 are symmetric with respect to the bisecting line of A1, A2 , respectively, and the extensions of
u0, u1, u2 by reflection are well defined and harmonic in the whole set U .

In order to define the calibration for u , let ε > 0, li ∈ (ui−1(0, 0), ui(0, 0)) for i = 1, 2, and λ > 0
be suitable parameters that will be chosen later, and consider the following subsets of U×R :

Gi := {(x, y, z) ∈ U×R : ui(x, y)− ε < z < ui(x, y) + ε} for i = 0, 1, 2,
Ki := {(x, y, z) ∈ U×R : li + αi(x, y) < z < li + 2λ+ βi(x, y)} for i = 1, 2,
Hi := {(x, y, z) ∈ U×R : li + λ/2 < z < li + 3λ/2} for i = 1, 2,

where αi and βi are suitable Lipschitz functions such that αi(0, 0) = βi(0, 0) = 0, which will be defined
later. If ε and λ are sufficiently small, then for every i, j the sets Gi , Kj are nonempty and disjoint,
while for every i the set Hi is compactly contained in Ki , provided U is small enough (see Fig. 4.2).

The aim of the definition of the calibration ϕ in Gi is to provide a divergence-free vectorfield satisfying
condition (a2) and such that

〈ϕxy(sτi, z), νi〉 > 0 for ui−1 < z < ui−1 + ε and for ui − ε < z < ui,
〈ϕxy(sτi, z), νi〉 < 0 for ui−1 − ε < z < ui−1 and for ui < z < ui + ε,
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Figure 4.2: section of the sets Gi,Ki,Hi at x = constant.

for i = 1, 2 and s ≥ 0, and analogously

〈ϕxy(s, 0, z), ey〉 > 0 for u0 < z < u0 + ε and for u2 − ε < z < u2,
〈ϕxy(s, 0, z), ey〉 < 0 for u0 − ε < z < u0 and for u2 < z < u2 + ε;

these properties are crucial in order to obtain (b1) and (b2) simultaneously. Such a field can be obtained
by applying the technique shown in Lemma 1.5, starting from the family of harmonic functions ui + tvi ,
where we choose as vi the linear functions defined by

v0(x, y) := 〈τ2, (x, y)〉+ ε, v1(x, y) := 〈ex, (x, y)〉+ ε, v2(x, y) := 〈τ1, (x, y)〉+ ε.
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So for every (x, y, z) ∈ Gi , i = 0, 1, 2, we define the vector ϕ(x, y, z) as(
2∇ui + 2

z − ui(x, y)
vi(x, y)

∇vi,
∣∣∣∣∇ui +

z − ui(x, y)
vi(x, y)

∇vi
∣∣∣∣2
)
.

The role of Ki is to give the exact contribution to the integral in (b2). In order to annihilate the
tangential contribution on Su given by the field in Gi , we insert in Ki the region Hi and for every
(x, y, z) ∈ Hi , i = 1, 2, we define ϕ(x, y, z) as(

−2ε
λ

(∇ui−1 +∇ui) , µ
)

where µ is a positive constant which will be suitably chosen later. By the harmonicity of ui this field is
divergence-free and, as ∂νui = 0 on Su for every i , its horizontal component is purely tangential on Su .
So, it remains to correct only the normal contribution to the integral in (b2) due to the field in Gi . To
realize this purpose on the two segments Si−1,i , i = 1, 2, we could require that αi(sτi) = βi(sτi) = 0 for
every s ≥ 0 (see the definition of Ki ) and define ϕ(x, y, z) for (x, y, z) ∈ Ki \Hi as(

1
λ
g
(
〈τi, (x, y)〉

)
νi, µ

)
, (4.1)

where g is a function of real variable chosen in such a way that (b2) is satisfied for (x, y) ∈ Si−1,i , i.e.,

g(t) := 1−
√

3
ε2

v0(t, 0)
∀t ∈ R,

as we will see later in (4.19). Note that the two-dimensional field g (〈τi, (x, y)〉) νi is divergence-free, since
it is with respect to the orthonormal basis {τi, νi} , hence ϕ is divergence-free in Ki \Hi ; moreover, since
ϕz ≡ µ on Ki , the normal component of ϕ is continuous across the boundary of Hi , so that ϕ turns
out to be divergence-free in the sense of distributions in the whole set Ki . Actually it is crucial to add a
component along the direction τi to the field in (4.1) in order to make (b1) true, as it will be clear in the
proof of Step 2 (see Section 4.3); this component has to be chosen in such a way that it is zero on Si−1,i

(so that (b2) remains valid on these segments) and that it depends only on 〈νi, (x, y)〉 (so that the field
remains divergence-free). Therefore we replace in (4.1) the vector g (〈τi, (x, y)〉) νi by

φi(x, y) := (−1)i+1f
(
〈νi, (x, y)〉

)
τi + g

(
〈τi, (x, y)〉

)
νi, (4.2)

where f is an even smooth function of real variable such that f(0) = 0 and which will be chosen later
in a suitable way (see (4.74)). From this definition it follows that

φx2(x, y) = −φx1(x,−y), φy2(x, y) = φy1(x,−y), (4.3)

so that
φ1(x, 0) + φ2(x, 0) = 2φy1(x, 0)ey,

i.e., if we assume that αi(x, 0) = βi(x, 0) for every x ≥ 0, the contribution given by the fields (4.2) to
the integral in (b2) computed at a point of S0,2 is purely normal, as required in (b2), but its modulus
is in general different from what we need to obtain exactly the normal vector ey . In order to correct it,
we multiply φi by a function σi which is first defined on Si−1,i ∪ S0,2 (more precisely, σi is taken equal
to 1 on Si−1,i and to the correcting factor on S0,2 ); then, we extend it to a neighbourhood of (0, 0) by
assuming σi constant along the integral curves of φi , so that σiφi remains divergence-free.
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The integral curves of φi can be represented as the curves {(x, y) ∈ U : y = ψi(x, s)} , where ψi(x, s)
is the solution of the problem{

∂xψi(x, s)φxi (x, ψi(x, s))− φyi (x, ψi(x, s)) = 0,
ψi(s, s) = 0,

(4.4)

which is defined in a sufficiently small neighbourhood of (0, 0). By applying the Implicit Function
theorem, it is easy to see that if U is small enough, then there exists a unique smooth function hi
defined in U such that

hi(0, 0) = 0, ψi(x, hi(x, y)) = y. (4.5)

Note that the curve {(x, y) ∈ U : hi(x, y) = s} coincides with the integral curve {(x, y) ∈ U : y = ψi(x, s)}
and that (hi(x, y), 0) gives the intersection point of the integral curve passing through (x, y) with the
x-axis; in other words, the level lines of hi provide a different representation of the integral curves of φi
in terms of their intersection point with the x-axis.

Figure 4.3: integral curves of the field φ1 .

We state here some properties of hi and ψi for further references. Since ψi(s, s) = 0, we have that

hi(s, 0) = s (4.6)

for every s such that (s, 0) ∈ U . By (4.4) and by differentiating the initial condition in (4.4) with respect
to s , we obtain

∂xψi(0, 0) =
φyi (0, 0)
φxi (0, 0)

=
νyi
νxi

=
(−1)i√

3
, ∂sψi(0, 0) = −∂xψi(0, 0) =

(−1)i+1

√
3

. (4.7)

By differentiating the equation in (4.4) with respect to x and to s , and by using (4.2), it is easy to see
that

∂2
xxψi(0, 0) = ∂2

xsψi(0, 0) = 0, (4.8)

while by differentiating twice with respect to s the initial condition ψi(s, s) = 0, we obtain that

∂2
ssψi(0, 0) = −2∂2

xsψi(0, 0) = 0. (4.9)
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By (4.7) and (4.8), the curve {hi = 0} (which coincides with {y = ψi(x, 0)}) is tangent to νi at 0,
which may be an inflection point. Moreover, since ∂xψi(0, 0) 6= 0, by continuity the function ψi(·, s) is
strictly monotone in a small neighbourhood of 0 for s sufficiently small; by this fact and by comparing
the values of the function ψi(·, hi(sτi)) at the points hi(sτi) and sτxi , it is easy to see that

hi(sτi) ≤ 0 (4.10)

for every s ≥ 0 such that sτi ∈ U , provided U is small enough. Remark that by (4.6) and (4.10) it
follows that the segment S0,2 is all contained in the region {hi ≥ 0} , while Si−1,i in the region {hi ≤ 0} .

At last, we set

σi(x, y) :=

1 if hi(x, y) ≤ 0,
g(hi(x, y))

2φyi (hi(x, y), 0)
if hi(x, y) > 0;

since by definition φyi (0, 0) = g(0)νyi = g(0)/2, the function σi is continuous across the curve {hi = 0} .
Moreover, remark that from (4.3) it follows that ψ2(x, s) = −ψ1(x, s), h2(x, y) = h1(x,−y), and then

σ2(x, y) = σ1(x,−y). (4.11)

For every (x, y, z) ∈ Ki \Hi , i = 1, 2, we define ϕ(x, y, z) as(
1
λ
σi(x, y)φi(x, y), µ

)
.

In the remaining regions of transition it is convenient to take ϕ purely vertical. In order to make
ϕ divergence-free in the whole set U×R , we need the normal component of ϕ to be continuous across
the boundary of Gi and Hi . To guarantee this continuity across ∂Gi , we are forced to take as third
component of ϕ the function

ω(x, y, z) :=



ε2

v2
0(x, y)

− |∇u0|2 for z < l1 + λ,

ε2

v2
1(x, y)

− |∇u1|2 for l1 + λ ≤ z < l2 + λ,

ε2

v2
2(x, y)

− |∇u2|2 for z ≥ l2 + λ.

(4.12)

Finally, we define the functions αi, βi in such a way that the normal component of ϕ turns out to be
continuous also across the boundary of Ki ; more precisely, for i = 1, 2 we choose αi as the solution of
the Cauchy problem

1
λ
σi(x, y)〈φi(x, y),∇αi(x, y)〉 − µ = − ε2

v2
i−1(x, y)

+ |∇ui−1(x, y)|2,

αi(sτi) = 0, αi(s, 0) = 0 for s ≥ 0,

while βi as the solution of
1
λ
σi(x, y)〈φi(x, y),∇βi(x, y)〉 − µ = − ε2

v2
i (x, y)

+ |∇ui(x, y)|2,

βi(sτi) = 0, βi(s, 0) = 0 for s ≥ 0.
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Since σi is not C1 near the curve {hi = 0} , we cannot expect a C1 -solution. Nevertheless, if U is
small enough, then αi, βi are Lipschitz functions defined in U , and the possible discontinuity points of
∇αi,∇βi concentrate only on the curve {hi = 0} ; indeed, if U is sufficiently small, the Cauchy problems

1
λ
〈φi(x, y),∇α̃i(x, y)〉 − µ = − ε2

v2
i−1(x, y)

+ |∇ui−1(x, y)|2,

α̃i(sτi) = 0 (s ∈ R),
(4.13)

and 
g(hi(x, y))

2λφyi (hi(x, y), 0)
〈φi(x, y),∇α̂i(x, y)〉 − µ = − ε2

v2
i−1(x, y)

+ |∇ui−1(x, y)|2,

α̂i(s, 0) = 0 (s ∈ R),
(4.14)

admit a unique solution α̃i, α̂i ∈ C∞(U), since the lines {sτi : s ∈ R} and {(s, 0) : s ∈ R} are
not characteristic for these equations. Since the curve {hi = 0} , which coincides with the curve {y =
ψi(x, 0)} , is a characteristic line of both equations (4.13) and (4.14) (use (4.4) and g(0)/(2λφyi (0, 0)) = 1),
the functions α̃i, α̂i assume the same value on the curve {hi = 0} . So, αi can be regarded as the function
defined by

αi(x, y) :=

{
α̃i(x, y) if hi(x, y) ≤ 0,
α̂i(x, y) if hi(x, y) > 0,

and therefore αi is C∞ in U \ {hi = 0} , and all derivatives of αi have finite limits on both sides of
{hi = 0} . The same argument works for βi .

The complete definition of the field is therefore the following: for every (x, y, z) ∈ U×R , the vector
ϕ(x, y, z) = (ϕxy, ϕz)(x, y, z) ∈ R2×R is given by

(
2∇ui + 2 z−ui(x,y)

vi(x,y)
∇vi,

∣∣∣∇ui + z−ui(x,y)
vi(x,y)

∇vi
∣∣∣2) in Gi (i = 0, 1, 2),

(
1
λσi(x, y)φi(x, y), µ

)
in Ki \Hi (i = 1, 2),

(
− 2ε
λ (∇ui−1 +∇ui) , µ

)
in Hi (i = 1, 2),

(0, ω(x, y, z)) otherwise.

Condition (a1) is trivial in Gi for all i .
Since ∇ui(0, 0) = 0 for all i (this fact easily follows by the assumptions on the regularity of ui and

by the Euler conditions), we have that

ε2

v2
i (0, 0)

− |∇ui(0, 0)|2 = 1 > 0;

then, if U is small enough,
ε2

v2
i (x, y)

− |∇ui(x, y)|2 > 0

for every (x, y) ∈ U and for every i = 0, 1, 2, and so ω is always positive.
Arguing in a similar way, if we impose that µ > 1/(4λ2), condition (a1) holds in Ki , provided U is

sufficiently small.
By construction conditions (a2) and (c1) are satisfied.
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By direct computations we find that for every (x, y) ∈ U∫ ui

ui−1

ϕxy dz =
ε2

vi−1
∇vi−1 −

ε2

vi
∇vi +

1
λ

(βi − αi + λ)σiφi, (4.15)

for i = 1, 2, while

∫ u2

u0

ϕxy dz =
ε2

v0
∇v0 −

ε2

v2
∇v2 +

1
λ

2∑
i=1

(βi − αi + λ)σiφi. (4.16)

Note that for i = 1, 2

vi−1(sτi) = vi(sτi) = v0(s, 0) = −s
2

+ ε ∀s ∈ R, (4.17)

∇vi−1(x, y)−∇vi(x, y) =
√

3νi ∀(x, y) ∈ U. (4.18)

As hi(sτi) ≤ 0 for every s ≥ 0 by (4.10), we have that σi(sτi) = 1 for every s ≥ 0, while by definition
αi(sτi) = βi(sτi) = 0. From these facts, (4.15), (4.17), (4.18), and the definition of φi , we obtain∫ ui(sτi)

ui−1(sτi)

ϕxy(sτi, z) dz =
√

3
ε2

v0(s, 0)
νi + (−1)i+1f(0)τi + g(s)νi = νi, (4.19)

where the last equality follows from the definition of g and the fact that f(0) = 0. Analogously, by the
equalities

v0(s, 0) = v2(s, 0) ∀s ∈ R, (4.20)
∇v0(x, y)−∇v2(x, y) =

√
3ey ∀(x, y) ∈ U, (4.21)

by the definition of αi and βi , and by (4.3), (4.11), (4.16), we have∫ u2(s,0)

u0(s,0)

ϕxy(s, 0, z) dz =
√

3
ε2

v0(s, 0)
ey + 2σ1(s, 0)φy1(s, 0)ey

=
√

3
ε2

v0(s, 0)
ey + g(s)ey = ey, (4.22)

where the two last equalities follow from (4.6) and from the definition of σ1 and g . So condition (b2) is
satisfied.

The proof of condition (b1) will be split in the next three sections: in Section 4.2 we prove that con-
dition (b1) holds if t1 and t2 belong to suitable neighbourhoods of ui−1(0, 0) and ui(0, 0), respectively;
then, in Section 4.3 we prove condition (b1) for t1 and t2 belonging to suitable neighbourhoods of u0(0, 0)
and u2(0, 0), respectively; finally, in Section 4.4, by a continuity argument we show that condition (b1)
is true in all other cases.

4.2 Estimates for t1 and t2 near ui−1 and ui

For (x, y) ∈ U and t1, t2 ∈ R , we set

I(x, y, t1, t2) :=
∫ t2

t1

ϕxy(x, y, z) dz (4.23)
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and we denote its absolute value by ρ . In this section, we will show that ρ(x, y, t1, t2) ≤ 1 in a neigh-
bourhood of the point (0, 0, ui−1(0, 0), ui(0, 0)) for i = 1, 2, so that the following step will be proved.

Step 1.– For a suitable choice of the parameter ε , there exists δ > 0 such that condition (b1) holds
for |t1 − ui−1(0, 0)| < δ , |t2 − ui(0, 0)| < δ with i = 1, 2, provided U is small enough.

Note that ρ is a continuous function, but its derivatives with respect to x, y may be discontinuous
at the points (x, y, t1, t2) such that h1(x, y) = 0 or h2(x, y) = 0; indeed, the curve {hi = 0} is the
boundary of the different regions of definition of the functions σi , αi , and βi , whose derivatives may
present therefore some discontinuities. Nevertheless, if we set Ni := {(x, y) ∈ U : hi(x, y) < 0} and
Pi := {(x, y) ∈ U : hi(x, y) > 0} , the restrictions of σi , αi , and βi to the sets Ni and Pi can be
extended up to the boundary {hi = 0} as C∞ -functions; so, along the curve {hi = 0} the traces of the
derivatives of σi , αi , and βi are defined. Then, also the traces of the derivatives of ρ with respect to
x, y are defined at the points (x, y, t1, t2) with h1(x, y) = 0 or h2(x, y) = 0.

Figure 4.4: the regions P1 and N1 .

Since we want to study the behaviour of ρ in a neighbourhood of (0, 0, ui−1(0, 0), ui(0, 0)), we can
suppose |t1−ui−1(0, 0)| ≤ ε and |t2−ui(0, 0)| ≤ ε , so that the possible discontinuities of the derivatives
of ρ concentrate only on the curve {hi = 0} . We study separately the two regions Ni and Pi .

Consider first the case (x, y) ∈ Ni , which is the region containing Si−1,i . We will study the derivatives
of ρ at the points of the form

qi(s) := (sτi, ui−1(sτi), ui(sτi)), s ≥ 0.

We have already shown (condition (b2)) that ρ(qi(s)) = 1 for every s ≥ 0; we want to prove that

∇ρ(qi(s)) = 0 ∀s ≥ 0 (4.24)

(where now ∇ denotes the gradient with respect to x, y, t1, t2 ) and that the Hessian matrix of ρ with
respect to νi, t1, t2 is negative definite at qi(0).

Let Iτi and Iνi be the components of the integral in (4.23) along the directions τi and νi , respectively.
Since by definition

ρ(x, y, t1, t2) = [(Iτi(x, y, t1, t2))2 + (Iνi(x, y, t1, t2))2]1/2,
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the gradient of ρ is given by

∇ρ =
1
ρ
(Iτi∇Iτi + Iνi∇Iνi). (4.25)

Note that (4.19) implies that

Iτi(qi(s)) = 0 and Iνi(qi(s)) = 1 ∀s ≥ 0, (4.26)

hence
∇ρ(qi(s)) = ∇Iνi(qi(s)). (4.27)

By the definition of ϕ in Gi and by (4.15) we can compute explicitly the expression of Iνi at (x, y, t1, t2):

Iνi = −2(t1 − ui−1)∂νiui−1 + 2(t2 − ui)∂νiui +
1
λ

(βi − αi + λ)σiφνi
i

+
√

3
2vi−1

(ε2 − (t1 − ui−1)2) +
√

3
2vi

(ε2 − (t2 − ui)2), (4.28)

where
φτi
i (x, y) = (−1)i+1f(〈νi, (x, y)〉) and φνi

i (x, y) = g(〈τi, (x, y)〉). (4.29)

By differentiating (4.28) with respect to the direction νi we obtain

∂νiI
νi = 2(∂νiui−1)2 − 2(∂νiui)

2 − 2(t1 − ui−1)∂2
νiνi

ui−1 + 2(t2 − ui)∂2
νiνi

ui

+
1
λ
∂νi(βi − αi)σiφνi

i +
1
λ

(βi − αi + λ)(∂νiσiφ
νi
i + σi∂νiφ

νi
i )

− 3
4v2
i−1

(ε2 − (t1 − ui−1)2) +
3

4v2
i

(ε2 − (t2 − ui)2)

+
√

3
vi−1

(t1 − ui−1)∂νi
ui−1 +

√
3
vi

(t2 − ui)∂νi
ui. (4.30)

By the Euler conditions, ∂νiui−1(sτi) = ∂νiui(sτi) = 0 for every s ≥ 0. Moreover, since |∇ui−1| = |∇ui|
on U (see the remark at the beginning of the proof), in the region Ni the function βi − αi coincides
with the solution ξi of the problem

1
λ
φτi
i ∂τiξi +

1
λ
φνi
i ∂νiξi =

ε2

v2
i−1

− ε2

v2
i

,

ξi(sτi) = 0 (s ≥ 0).
(4.31)

As ∂τiξi(sτi) = 0 and vi−1(sτi) = vi(sτi) for every s ≥ 0 (see (4.17)), we have that

∂νi(βi − αi)(sτi) = ∂νiξi(sτi) = 0. (4.32)

By definition ∂νiφ
νi
i ≡ 0 and σi(x, y) = 1 for every (x, y) ∈ Ni ; using these remarks and the first equality

in (4.17), we can deduce that
∂νi
Iνi(qi(s)) = 0 (4.33)

for every s > 0, and the equality holds also for the trace of ∂νi
Iνi at qi(0). Since the derivatives of Iνi

with respect to t1 and t2 are given by

∂t1I
νi = −2∂νiui−1 −

√
3

vi−1
(t1 − ui−1), ∂t2I

νi = 2∂νiui −
√

3
vi

(t2 − u1), (4.34)
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by the Euler conditions it follows that

∂t1I
νi(qi(s)) = ∂t2I

νi(qi(s)) = 0. (4.35)

As Iνi(qi(s)) = 1 for every s ≥ 0, equalities (4.35) imply that ∂τiI
νi(qi(s)) = 0. By this fact, (4.27),

(4.33), and (4.35), equality (4.24) is proved.
Now we need to compute the trace of the Hessian matrix of ρ with respect to νi, t1, t2 at the point

qi(0); using (4.26), (4.33), (4.35), and (4.24), the Hessian matrix at qi(0) reduces to

∇2
νi,t1,t2ρ(qi(0)) = [∇νi,t1,t2I

τi ⊗∇νi,t1,t2I
τi +∇2

νi,t1,t2I
νi ](qi(0)), (4.36)

where ∇νi,t1,t2 denotes the gradient with respect to νi, t1, t2 and ⊗ the tensor product. As before, we
know the explicit expression of Iτi :

Iτi = −2(t1 − ui−1)∂τiui−1 + 2(t2 − ui)∂τiui +
1
λ

(βi − αi + λ)σiφτi
i

− 1
2vi−1

(ε2 − (t1 − ui−1)2) +
1

2vi
(ε2 − (t2 − ui)2), (4.37)

hence, using the Euler conditions, (4.32), and the fact that σi ≡ 1 in Ni , it results that

∂νi
Iτi(qi(0)) =

1
2
∂νivi−1(0, 0)− 1

2
∂νivi(0, 0) + ∂νiφ

τi
i (0, 0) =

√
3

2
, (4.38)

where the last equality follows by (4.18) and by the equality

∂νi
φτi
i (0, 0) = (−1)i+1f ′(0) = 0. (4.39)

By differentiating (4.30) and by using the Euler conditions, (4.32), the constancy of σi in Ni , and the
fact that ∂2

νiνi
φνi
i ≡ 0, we have

∂2
νiνi

Iνi(qi(0)) =
1
λ
φνi
i (0, 0)∂2

νiνi
(βi − αi)(0, 0) +

3
2ε
∂νivi−1(0, 0)− 3

2ε
∂νivi(0, 0) = −

√
3

2ε
, (4.40)

where the last equality follows from

1
λ
φνi
i (0, 0)∂2

νiνi
(βi − αi)(0, 0) = −2

√
3
ε
, (4.41)

which can be obtained by differentiating (4.31). Using (4.36), (4.38), and (4.40), we obtain that

∂2
νiνi

ρ(qi(0)) = [∂νiI
τi(qi(0))]2 + ∂2

νiνi
Iνi(qi(0)) =

3
4
−
√

3
2ε

< 0, (4.42)

provided ε is sufficiently small. Since ∂t1I
τi(qi(0)) = 0 (this can be easily proved using the fact that

∇ui−1(0, 0) = ∇ui(0, 0) = 0), by (4.36) we have that

∂2
νit1ρ(qi(0)) = ∂2

νit1I
νi(qi(0)), ∂2

t1t1ρ(qi(0)) = ∂2
t1t1I

νi(qi(0)).

By differentiating (4.34) and by using the Euler conditions, it turns out that

∂2
νit1I

νi(qi(0)) = −2∂2
νiνi

ui−1(0, 0), ∂2
t1t1I

νi(qi(0)) = −
√

3
ε
,
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so that

det

(
∂2
νiνi

ρ ∂2
νit1ρ

∂2
νit1ρ ∂2

t1t1ρ

)
(qi(0)) =

3
2ε2

(
1−

√
3

2
ε

)
− 4(∂2

νiνi
ui−1(0, 0))2.

Arguing in a similar way, one can find that

∂2
νit2ρ(qi(0)) = 2∂2

νiνi
ui(0, 0), ∂2

t2t2ρ(qi(0)) = −
√

3
ε
, ∂2

t1t2ρ(qi(0)) = 0,

so that

det∇2
νi,t1,t2ρ(qi(0)) = −3

√
3

2ε3

(
1−

√
3

2
ε

)
+

4
√

3
ε

[(∂2
νiνi

ui−1(0, 0))2 + (∂2
νiνi

ui(0, 0))2].

Since for ε sufficiently small it results that

det

(
∂2
νiνi

ρ ∂2
νit1ρ

∂2
νit1ρ ∂2

t1t1ρ

)
(qi(0)) > 0, det∇2

νi,t1,t2ρ(qi(0)) < 0, (4.43)

then, by (4.42) and (4.43) the Hessian matrix of ρ at qi(0) is negative definite.
At this point we have all the ingredients we need in order to compare the value of ρ on Si−1,i with

its value at a point (x, y, t1, t2) for (x, y) ∈ Ni and |t1 − ui−1(0, 0)| ≤ ε , |t2 − ui(0, 0)| ≤ ε .
Remark that since the curve {hi = 0} may have an inflection point at the origin, the set Ni might

be not convex. If the segment joining (x, y) with its orthogonal projection on Si−1,i (which is a point
of the form sτi with s ≥ 0) is all contained in Ni , then we can consider the restriction of ρ to the
segment joining (x, y, t1, t2) with qi(s) and write its Taylor expansion of second order centred at qi(s).
By (4.24) and the fact that the Hessian matrix of ρ is negative definite at qi(0) (and then, by continuity,
in a small neighbourhood), we have that there exist δ, C > 0 such that, if U is small enough and
|t1 − ui−1(0, 0)| < δ , |t2 − ui(0, 0)| < δ , then

ρ(x, y, t1, t2) ≤ 1− C|〈νi, (x, y)〉|2 − C(t1 − ui−1(sτi))2 − C(t2 − ui(sτi))2 ≤ 1.

In the general case, since the curve {y = ψi(x, 0)} is C2 with null second derivative at 0, one can find
s > 0, a ∈ R such that the segment joining (x, y) with sτi + aνi is all contained in Ni and the ratio
|(x, y) − sτi − aνi|/a2 is infinitesimal as a → 0. Since s > 0, the segment joining sτi + aνi with its
projection sτi on Si−1,i is all contained in Ni , so that we can apply to this point the estimate above; if
we call L the L∞ -norm of the gradient of ρ , we obtain that

ρ(x, y, t1, t2) ≤ ρ(sτi + aνi, t1, t2) + L|(x, y)− sτi − aνi|

≤ 1− a2

(
C − L

|(x, y)− sτi − aνi|
a2

)
− C(t1 − ui−1(sτi))2 − C(t2 − ui(sτi))2,

which is less than 1, provided U is small enough. So we have proved that, if ε is sufficiently small, then
there exists δ > 0 such that

ρ(x, y, t1, t2) ≤ 1 for (x, y) ∈ Ni, |t1 − ui−1(0, 0)| < δ, |t2 − ui(0, 0)| < δ, (4.44)

provided U is sufficiently small.

Suppose now (x, y) ∈ Pi , |t1 − ui−1(0, 0)| ≤ ε , |t2 − ui(0, 0)| ≤ ε . In order to show that ρ ≤ 1
also in this case, we will compute the traces of the gradient and of the Hessian matrix of ρ at the point
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qi(0). The main difference with respect to the previous case is that in the region Pi the function βi−αi
coincides with the solution ηi of the problem

1
λ
σi(x, y)〈φi(x, y),∇ηi(x, y)〉 =

ε2

v2
i−1(x, y)

− ε2

v2
i (x, y)

,

ηi(s, 0) = 0 (s ≥ 0),
(4.45)

while the function σi is defined as

σi(x, y) =
g(hi(x, y))

2φyi (hi(x, y), 0)
∀(x, y) ∈ Pi. (4.46)

By (4.26) and (4.25) it follows that

∇ρ(qi(0)) = ∇Iνi(qi(0)). (4.47)

By (4.28) we obtain the following expression for the gradient of Iνi with respect to τi, νi computed at
the point qi(0):

∇τi,νiI
νi(qi(0)) = g(0)∇σi(0, 0) +∇φνi

i (0, 0) +
√

3
2
τi, (4.48)

where we have used the Euler conditions, the fact that ∇(βi − αi)(0, 0) = 0 by (4.45), and that

∇vi−1(x, y) +∇vi(x, y) = −τi ∀(x, y) ∈ U.

It follows immediately by (4.29) that

∇φνi
i (x, y) = g′(〈τi, (x, y)〉)τi (4.49)

and by the definition of g that

g′(t) =
√

3ε2
∂xv0(t, 0)
v2
0(t, 0)

= −
√

3
2
ε2

1
v2
0(t, 0)

(4.50)

for all t ∈ R . By differentiating (4.46), we obtain that

∇σi(x, y) =
1
2
p(hi(x, y))∇hi(x, y), (4.51)

where we have set

p(t) :=
g′(t)
φyi (t, 0)

− g(t)
[φyi (t, 0)]2

∂xφ
y
i (t, 0).

To compute the gradient of hi it is enough to differentiate the second equality in (4.5): this provides

∂xψi(x, hi) + ∂sψi(x, hi)∂xhi = 0, ∂sψi(x, hi)∂yhi = 1; (4.52)

by (4.7) we have that
∇hi(0, 0) = −2τi. (4.53)

Since
∂xφ

y
i (x, y) = (−1)i+1 3

4
f ′(〈νi, (x, y)〉)−

1
4
g′(〈τi, (x, y)〉),

we find that p(0) = 3g′(0)/g(0), and substituting in (4.51), we have that

∇σi(0, 0) = −3
g′(0)
g(0)

τi. (4.54)
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Since the partial derivatives of Iνi with respect to t1 and t2 are still given by (4.34), they are equal to 0
at the point qi(0), as in the previous case. Then, by (4.47), (4.48), (4.49), (4.54), and (4.50), we deduce
that

∇ρ(qi(0)) =

(
3
√

3
2
τi, 0, 0

)
. (4.55)

To conclude the study of ρ in this region, we write the Hessian matrix of ρ with respect to νi, t1, t2 , which
still satisfies (4.36). Differentiating (4.37) and using the Euler conditions, the fact that ∇(βi−αi)(0, 0) =
0, φτi

i (0, 0) = 0 and (4.39), we obtain that (4.38) still holds. Differentiating (4.30) and computing the
result at qi(0), we have that

∂2
νiνi

Iνi(qi(0)) =
1
λ
g(0)∂2

νiνi
(βi − αi)(0, 0) + g(0)∂2

νiνi
σi(0, 0) +

3
2ε

(∂νivi−1(0, 0)− ∂νivi(0, 0)), (4.56)

where we have used in particular that ∂νiσi(0, 0) = 0 by (4.54) and that ∂2
νiνi

φνi
i ≡ 0. In order to

compute the second derivative of βi − αi with respect to the direction νi , we differentiate (4.45) with
respect to x and with respect to y ; using the fact that ∂x(βi − αi)(s, 0) = 0 for every s ≥ 0, we obtain

∂2
xx(βi − αi)(0, 0) = 0, ∂2

xy(βi − αi)(0, 0) =
6
ε
(−1)i+1 λ

g(0)
, (4.57)

∂2
yy(βi − αi)(0, 0) = −2

√
3
ε

λ

g(0)
+
√

3(−1)i+1∂2
xy(βi − αi)(0, 0) =

4
√

3
ε

λ

g(0)
. (4.58)

By the relation ∂2
νiνi

= 3
4∂

2
xx +

√
3

2 (−1)i∂2
xy + 1

4∂
2
yy , it follows that

∂2
νiνi

(βi − αi)(0, 0) = −2
√

3
ε

λ

g(0)
.

Since ∂νihi(0, 0) = 0 by (4.53), from (4.51) we obtain that

∂2
νiνi

σi(0, 0) =
1
2

(
g′(0)
φyi (0, 0)

− g(0)
[φyi (0, 0)]2

∂xφ
y
i (0, 0)

)
∂2
νiνi

hi(0, 0) =
3
2
g′(0)
g(0)

∂2
νiνi

hi(0). (4.59)

By differentiating twice with respect to the direction νi the second equality in (4.5), we obtain that

(νxi )2∂2
xxψi(x, hi) + 2νxi ∂

2
xsψi(x, hi)∂νihi + ∂2

ssψi(x, hi)(∂νihi)
2 + ∂sψi(x, hi)∂2

νiνi
hi = 0;

since ∂νihi(0, 0) = 0 by (4.53) and ∂2
xxψi(0, 0) = 0 by (4.8), we can conclude that ∂2

νiνi
hi(0, 0) = 0 and

then, by (4.59) also the limit of ∂2
νiνi

σi at (0, 0) is equal to 0. Taking (4.17) and (4.56) into account, we
can conclude that

∂2
νiνi

Iνi(qi(0)) = −
√

3
2ε
,

i.e., (4.40) is still satisfied. Since it is easy to see that also the other second derivatives of ρ remain
unchanged, we can conclude that the Hessian matrix of ρ with respect to νi, t1, t2 is negative definite at
qi(0).

If the segment joining (x, y, t1, t2) with qi(0) is all contained in Pi , then we consider the Taylor ex-
pansion of second order centred at qi(0) of the function ρ restricted to this segment; since the component
of (x, y) along τi is less or equal than 0, by (4.55) and by the fact that the Hessian matrix of ρ with
respect to νi, t1, t2 is negative definite, we have that there exists δ > 0 such that ρ(x, y, t1, t2) ≤ 1 for
|t1 − ui−1(0, 0)| < δ , |t2 − ui(0, 0)| < δ , provided U is small enough. In the general case, we can find
s ≤ 0, a ∈ R such that the segments joining (x, y) with sτi + aνi , and sτi + aνi with (0, 0) are all
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contained in Pi , and |(x, y)− sτi − aνi|/a2 is infinitesimal as a→ 0. Arguing as for the region Ni , this
is enough to obtain the same conclusion. So we have proved that, if ε is small enough, there exists δ > 0
such that

ρ(x, y, t1, t2) ≤ 1 for (x, y) ∈ Pi, |t1 − ui−1(0, 0)| < δ, |t2 − ui(0, 0)| < δ, (4.60)

provided U is sufficiently small.
By (4.44) and (4.60) Step 1 is proved.

4.3 Estimates for t1 and t2 near u0 and u2

This section is devoted to the proof of the following step.

Step 2.– For a suitable choice of the function f (see (4.2)), there exists δ > 0 such that condition (b1)
holds for |t1 − u0(0, 0)| < δ , |t2 − u2(0, 0)| < δ , provided U is small enough.

In order to prove the step, we want to show that the function ρ , introduced at the beginning of Section 4.2,
is less or equal than 1 in a neighbourhood of the point (0, 0, u0(0, 0), u2(0, 0)). We can assume that
|t1−u0(0, 0)| ≤ ε , |t2−u2(0, 0)| ≤ ε . Since now the derivatives of ρ may be discontinuous on the curves
{h1 = 0} and {h2 = 0} , we have to consider separately four different cases, one for (x, y) belonging to
each one of the regions N1 ∩N2 , N1 ∩ P2 , N2 ∩ P1 , and P1 ∩ P2 .

Let Ix and Iy be the components of the integral in (4.23) with respect to ex and ey , that are the
tangent and the normal direction, respectively, to the third part of the discontinuity set S0,2 .

Consider first the case (x, y) ∈ P1 ∩ P2 , which is the region containing S0,2 ; as before, we will study
the derivatives of ρ at the points of the form

q0(x) := (x, 0, u0(x, 0), u2(x, 0)), x ≥ 0.

Condition (4.22) implies that ρ(q0(x)) = 1 for every x ≥ 0; we want to prove that

∇ρ(q0(x)) = 0 ∀x ≥ 0 (4.61)

and that the Hessian matrix of ρ with respect to y, t1, t2 is negative definite at qi(0). By the definition
of ρ , it follows that

∇ρ =
1
ρ
(Ix∇Ix + Iy∇Iy).

Since Ix(q0(x)) = 0 and Iy(q0(x)) = 1 for every x ≥ 0, we have that

∇ρ(q0(x)) = ∇Iy(q0(x)).

By (4.16) and by the definition of ϕ in Gi we can write the explicit expression of Iy at (x, y, t1, t2):

Iy = −2(t1 − u0)∂yu0 + 2(t2 − u2)∂yu2 +
1
λ

2∑
i=1

(βi − αi + λ)σiφ
y
i

+
√

3
2v0

(ε2 − (t1 − u0)2) +
√

3
2v2

(ε2 − (t2 − u2)2), (4.62)
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and by differentiating with respect to y , we obtain

∂yI
y = 2(∂yu0)2 − 2(∂yu2)2 − 2(t1 − u0)∂2

yyu0 + 2(t2 − u2)∂2
yyu2

+
1
λ

2∑
i=1

[∂y(βi − αi)σiφ
y
i + (βi − αi + λ)∂y(σiφ

y
i )]−

3
4v2

0

(ε2 − (t1 − u0)2)

+
3

4v2
2

(ε2 − (t2 − u2)2) +
√

3
v0

(t1 − u0)∂yu0 +
√

3
v2

(t2 − u2)∂yu2. (4.63)

Since in the region P1 ∩ P2 the functions βi − αi coincide with the solutions of the problems (4.45), it
results that ∂y(βi − αi)(x, 0) = 0 for i = 1, 2. Moreover, differentiating (4.11) and the second equality
in (4.3) with respect to y , we have that

∂yσ2(x, y) = −∂yσ1(x,−y), ∂yφ
y
2(x, y) = −∂yφy1(x,−y), (4.64)

and then, using again (4.3) and (4.11),

φy1(x, 0)∂yσ1(x, 0) = −φy2(x, 0)∂yσ2(x, 0), σ1(x, 0)∂yφ
y
1(x, 0) = −σ2(x, 0)∂yφ

y
2(x, 0).

By the Euler conditions, ∂yu0(x, 0) = ∂yu2(x, 0) = 0 for every x ≥ 0; using all these remarks and (4.20),
we deduce that ∂yIy(q0(x)) = 0 for every x > 0 and the equality holds also for the trace of ∂yIy at
q0(0). Since we have that

∂t1I
y = −2∂yu0 −

√
3
v0

(t1 − u0), ∂t2I
y = 2∂yu2 −

√
3
v2

(t2 − u2), (4.65)

by the Euler conditions it follows that ∂t1I
y(q0(x)) = ∂t2I

y(q0(x)) = 0. As Iy(q0(x)) = 1 for every
x ≥ 0, this implies that ∂xIy(q0(x)) = 0. Thus we have obtained equality (4.61).

By (4.61) and (4.22) the Hessian matrix of ρ computed at q0(0) reduces to

∇2
y,t1,t2ρ(q0(0)) = [∇y,t1,t2Ix ⊗∇y,t1,t2Ix +∇2

y,t1,t2I
y](q0(0)). (4.66)

As before, we know that

Ix = −2(t1 − u0)∂xu0 + 2(t2 − u2)∂xu2 +
1
λ

2∑
i=1

(βi − αi + λ)σiφxi

− 1
2v0

(ε2 − (t1 − u0)2) +
1

2v2
(ε2 − (t2 − u2)2),

hence, by the Euler condition, the fact that ∂y(βi − αi)(0, 0) = 0 for i = 1, 2, and (4.21), it results that

∂yI
x(q0(0)) =

√
3

2
+

2∑
i=1

∂y(σiφxi )(0, 0) =
√

3
2

+ 2∂yφx1(0, 0) + 2φx1(0, 0)∂yσ1(0, 0),

where we have also used the first equalities in (4.3) and in (4.64), and the relation ∂yφ
x
2(x, y) =

∂yφ
x
1(x,−y). From (4.54) we obtain that

∂yσ1(0, 0) =
3
√

3
2

g′(0)
g(0)

.

Then, using the definition of φx1 and (4.50), we can conclude that

∂yI
x(0, 0) =

√
3

2
− 3g′(0) = 2

√
3. (4.67)



Calibrations for minimizers with a triple junction 77

By differentiating (4.63) with respect to y and by using the Euler condition and the fact that ∂y(βi −
αi)(0, 0) = 0 for i = 1, 2, we obtain

∂2
yyI

y(q0(0)) =
1
λ

2∑
i=1

[∂2
yy(βi − αi)φ

y
i + ∂2

yy(σiφ
y
i )](0, 0) +

3
√

3
2ε

.

Equality (4.58) implies that
1
λ

2∑
i=1

[∂2
yy(βi − αi)σiφ

y
i ](0, 0) =

4
√

3
ε
. (4.68)

In order to write explicitly ∂2
yyσi at (0, 0), we differentiate the y -component in (4.51) with respect to y

and we pass to the limit, taking into account that ∂yhi(0) = (−1)i+1
√

3 by (4.53):

∂2
yyσ1(0, 0) =

3
2
p′(0) +

1
2
p(0)∂2

yyhi(0).

By differentiating with respect to y the second equality in (4.52), we obtain that

∂2
yyh1(0, 0) = −(∂yh1(0, 0))2

∂2
ssψ1(0, 0)
∂sψ1(0, 0)

= 0,

where the last equality follows by (4.9). Since

p′(0) = 2
g′′(0)
g(0)

+ 3
[g′(0)]2

g2(0)
− 4

∂2
xxφ

y
1(0, 0)
g(0)

, (4.69)

while

∂2
xxφ

y
1(0, 0) = −3

√
3

8
f ′′(0) +

1
8
g′′(0), ∂2

yyφ
y
1(0, 0) = −

√
3

8
f ′′(0) +

3
8
g′′(0), (4.70)

and g′′(0) = −
√

3/(2ε), we can write that

1
λ

2∑
i=1

(βi − αi + λ)∂2
yy(σiφ

y
i )(0, 0) = (2φy1∂

2
yyσ1 + 4∂yσ1∂yφ

y
1 + 2∂2

yyφ
y
1)(0, 0)

= 2
√

3f ′′(0) + 3g′′(0)

= 2
√

3f ′′(0)− 3
√

3
2ε

. (4.71)

Substituting (4.68) and (4.71) in the expression of ∂2
yyI

y , we find that

∂2
yyI

y(q0(0)) = 2
√

3f ′′(0) +
4
√

3
ε
. (4.72)

From (4.66), (4.67), and (4.72), we finally obtain that

∂2
yyρ(q0(0)) = [∂yIx(q0(0))]2 + ∂2

yyI
y(q0(0)) = 12 +

4
√

3
ε

+ 2
√

3f ′′(0). (4.73)

As in the previous step, we can compute explicitly the other elements of the Hessian matrix of ρ and we
find that

det

(
∂2
yyρ ∂2

yt1ρ

∂2
yt1ρ ∂2

t1t1ρ

)
(q0(0)) = −6

ε
f ′′(0)− 12

√
3

ε
− 12
ε2

− 4(∂2
yyu0(0, 0))2,
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det∇2
y,t1,t2ρ(q0(0)) =

6
√

3
ε2

f ′′(0) +
36
ε2

+
12
√

3
ε3

+
4
√

3
ε

[(∂2
yyu0(0, 0))2 + (∂2

yyu2(0, 0))2].

If we impose the following condition on the second derivative of f at 0:

f ′′(0) < −2
√

3− 2
ε
− 2ε

3
[(∂2

yyu0(0, 0))2 + (∂2
yyu2(0, 0))2], (4.74)

then the Hessian matrix of ρ is negative definite at q0(0).
To conclude, we restrict ρ to the segment joining (x, y, t1, t2) with q0(x) and we write its Taylor

expansion of second order centred at q0(x); using (4.61) and choosing f satisfying (4.74) (so that the
Hessian matrix of ρ is negative definite at q0(0), and then by continuity in a small neighbourhood), we
obtain that there exists δ > 0 such that

ρ(x, y, t1, t2) ≤ 1 for (x, y) ∈ P1 ∩ P2, |t1 − u0(0, 0)| < δ, |t2 − u2(0, 0)| < δ, (4.75)

provided U is sufficiently small.

Let us consider the set N1 ∩ N2 : in this region σ1 = σ2 = 1, while the functions βi − αi coincide
with the solutions of the problems (4.31). By (4.22) the gradient of ρ at the point q0(0) is given by

∇ρ(q0(0)) = ∇Iy(q0(0)). (4.76)

By (4.62) we derive the explicit expression for the gradient of Iy with respect to x, y ; using the Euler
condition, the fact that ∇(βi − αi)(0, 0) = 0, the constancy of σi and the equality

∇v0(x, y) +∇v2(x, y) = −ex ∀(x, y) ∈ U, (4.77)

we obtain that

∇x,yIy(q0(0)) =
2∑
i=1

∇φyi (0, 0) +
√

3
2
ex = −1

2
g′(0)ex +

√
3

2
ex =

3
√

3
4
ex.

Since the partial derivatives of Iy with respect to t1 and t2 are still given by (4.65), they are equal to
0 at q0(0), as in the previous case. Therefore, we have that

∇ρ(q0(0)) =

(
3
√

3
4
ex, 0, 0

)
. (4.78)

If (x, y) 6= (0, 0) belongs to N1 ∩ N2 and the segment joining (x, y) with (0, 0) is all contained in
N1∩N2 , then by the Mean Value theorem, (4.78) and the fact that x is strictly negative, we can conclude
that there exists δ > 0 such that

ρ(x, y, t1, t2) ≤ 1 for |t1 − u0(0, 0)| < δ, |t2 − u2(0, 0)| < δ, (4.79)

provided U is sufficiently small. If the segment joining (x, y) with (0, 0) is not contained in N1∩N2 , then
we can find a regular curve connecting (x, y) and (0, 0), along which we can repeat the same estimate
as above.

At last consider the set N2 ∩P1 , since the case N1 ∩P2 is completely analogous. In this region, σ1 is
defined by (4.46), while σ2 is identically equal to 1; the function β1 − α1 coincides with the solution of
the problem (4.45) for i = 1, while β2 − α2 with the one of (4.31) for i = 2. Equality (4.76) still holds,
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as well as the fact that ∇(βi − αi)(0, 0) = (0, 0) for all i ; since ∇σ1 is given by the formula (4.54) and
∇σ2 ≡ 0, by (4.2), (4.50), (4.62), and (4.77) we have that

∇x,yIy(q0(0)) =
2∑
i=1

∇φyi (0, 0) + φy1(0, 0)∇σ1(0, 0) +
√

3
2
ex

=
3
√

3
4

(ex + τ1) = −3
√

3
4
τ2,

hence

∇ρ(q0(0)) =

(
−3

√
3

4
τ2, 0, 0

)
.

Since the gradient of ρ vanishes along the direction (ν2, 0, 0), we need to compute the Hessian matrix of
ρ with respect to ν2, t1, t2 at the point q0(0); from the equality ∇ν2,t1,t2Iy(q0(0)) = 0, we have that

∇2
ν2,t1,t2ρ(q0(0)) = [∇ν2,t1,t2Ix ⊗∇ν2,t1,t2Ix +∇2

ν2,t1,t2I
y](q0(0)). (4.80)

Using the fact that ∇u0(0, 0) = ∇u2(0, 0) = 0 and ∇(βi − αi)(0, 0) = 0, we obtain

∂ν2I
x(q0(0)) =

2∑
i=1

∂ν2φ
x
i (0, 0) + ∂ν2σ1(0, 0)φx1(0, 0) +

1
2
∂ν2(v0 − v2)

= ∂yφ
x
1(0, 0)− 9

4
g′(0) +

√
3

4
=
√

3,

where the second equality follows from (4.54) and from the fact that ∂ν2φ
x
1 + ∂ν2φ

x
2 = ∂yφ

x
1 at (0, 0).

If we differentiate (4.62) twice with respect to the direction ν2 and we compute the result at the point
q0(0), we obtain

∂2
ν2ν2I

y(0, 0) =

(
1
λ

2∑
i=1

∂2
ν2ν2(βi − αi)σiφ

y
i +

2∑
i=1

∂2
ν2ν2φ

y
i + ∂2

ν2ν2σ1φ
y
1 + 2∂ν2σ1∂ν2φ

y
1

)
(0, 0) +

3
√

3
4ε

.

(4.81)
From (4.57) and (4.58), and from (4.41) it follows respectively that

∂2
ν2ν2(β1 − α1)(0, 0) =

4
√

3
ε3

λ

g(0)
, ∂2

ν2ν2(β2 − α2)(0, 0) = −2
√

3
ε

λ

g(0)
. (4.82)

Since by (4.51) we have that ∂ν2σ1(x, y) = 1
2p(h1(x, y))∂ν2h1(x, y), then

∂2
ν2ν2σ1(0, 0) =

1
2
p′(0)(∂ν2h1(0, 0))2 +

1
2
p(0)∂2

ν2ν2h1(0, 0).

Some easy computations show that ∂2
ν2ν2h1(0, 0) = 0; using (4.53) it results that

∂2
ν2ν2σ1(0, 0) =

3
2
p′(0) =

9
2

[g′(0)]2

g2(0)
+

9
4

√
3
f ′′(0)
g(0)

, (4.83)

where the last equality follows by (4.69) and by the first equality in (4.70). At last, by using (4.3) and
(4.70), we obtain that

2∑
i=1

∂2
ν2ν2φ

y
i (0, 0) =

3
4
∂2
xxφ

y
1(0, 0) +

1
4
∂2
yyφ

y
1(0, 0) = −5

8

√
3f ′′(0) +

3
8
g′′(0), (4.84)
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and by substituting (4.82), (4.83), and (4.84) in (4.81), we deduce that

∂2
ν2ν2I

y(q0(0)) =
√

3
2
f ′′(0) +

√
3
ε
,

hence

∂2
ν2ν2ρ(q0(0)) = 3 +

√
3
ε

+
√

3
2
f ′′(0).

By differentiating (4.65) with respect to ν2 and by (4.80), we obtain

∂2
ν2t1ρ(q0(0)) = −2∂ν2∂yu0(0, 0) = −∂2

yyu0(0, 0), ∂2
ν2t2ρ(q0(0)) = 2∂ν2∂yu2(0, 0) = ∂2

yyu2(0, 0).

At this point, it is easy to see that, if f satisfies the condition

f ′′(0) < −2
√

3− 2
ε
− ε

6
[(∂2

yyu0(0, 0))2 + (∂2
yyu2(0, 0))2] (4.85)

then the Hessian matrix of ρ with respect to ν2, t1, t2 is negative definite at the point q0(0). Arguing
as for the region Pi in the previous section, it can be proved that, if f satisfies (4.85), then there exists
δ > 0 such that

ρ(x, y, t1, t2) ≤ 1 for (x, y) ∈ N2 ∩ P1, |t1 − u0(0, 0)| < δ, |t2 − u2(0, 0)| < δ, (4.86)

provided U is sufficiently small.
Since condition (4.74) implies (4.85), if we require that (4.74) holds, then by (4.75), (4.79), and (4.86),

we can conclude that Step 2 is true.

4.4 Proof of condition (b1)

In this section we complete the proof of condition (b1). To this aim it is enough to check condition (b1)
in the three cases studied in the following step, as it will be clear at the end of the section.

Step 3.– If ε is sufficiently small, δ ∈ (0, ε), and U is sufficiently small, condition (b1) is true for
t1 ≤ t2 whenever one of the following three conditions is satisfied:

1) |t1 − u0(0, 0)| ≥ δ and |t1 − u1(0, 0)| ≥ δ ;

2) |t2 − u1(0, 0)| ≥ δ and |t2 − u2(0, 0)| ≥ δ ;

3) |t1 − u0(0, 0)| ≥ δ and |t2 − u2(0, 0)| ≥ δ .

Let us fix δ ∈ (0, ε) and set

M1(x, y) := max{|I(x, y, t1, t2)| : u0(x, y)− ε ≤ t1 ≤ t2 ≤ u2(x, y) + ε,

|t1 − u0(0, 0)| ≥ δ, |t1 − u1(0, 0)| ≥ δ}.

It is easy to see that the function M1 is continuous. Let us prove that M1(0, 0) < 1. For simplicity of
notation, from now on we will denote I(0, 0, t1, t2) simply by I(t1, t2) and ui(0, 0) by ui .

Let t1, t2 be such that u0 − ε ≤ t1 ≤ t2 ≤ u2 + ε with |t1 − u0| ≥ δ and |t1 − u1| ≥ δ . Suppose
furthermore that |t1 − u1| ≤ ε ; then, we can write

I(t1, t2) = I(t1, u1) + I(u1, u2) + I(u2, t2),
I(u2, t2) = I(u2, t2 ∨ (u2 − ε)) + I(u2 − ε, t2 ∧ (u2 − ε)).



Calibrations for minimizers with a triple junction 81

Therefore, we have

I(t1, t2) = I(t1, u1) + I(u1, u2) + I(u2, t2 ∨ (u2 − ε))− I(t2 ∧ (u2 − ε), u2 − ε). (4.87)

From the definition of ϕ in G1, G2 it follows that

I(s1, u1) = −1
ε
(s1 − u1)2ex for |s1 − u1| ≤ ε,

I(u2, s2) =
1
ε
(s2 − u2)2τ1 for |s2 − u2| ≤ ε; (4.88)

using condition (b2), we have that

I(t1, u1) + I(u1, u2) + I(u2, t2 ∨ (u2 − ε)) ∈ ν2 −
δ2

ε
ex +R1, (4.89)

where R1 is the parallelogram spanned by the vectors ετ1 and −
(
ε− δ2

ε

)
ex . Let C be the intersection

of the half-plane {(x, y) ∈ R2 : 〈ν2, (x, y)〉 ≥ 1 −
√

3ε} with the open ball centred at 0 with radius 1;
some elementary geometric considerations show that

ν2 −
δ2

ε
ex +R1 ⊂ C. (4.90)

If Ti is the segment joining 0 with g(0)νi , then from the definition of ϕ in Ki , it follows that

I(ui−1 + ε, ui − ε) = g(0)νi, (4.91)

and
I(s1, s2) ∈ Ti (4.92)

for ui−1 + ε ≤ s1 ≤ s2 ≤ ui − ε , i = 1, 2. Let D := −T2 ; from (4.87), (4.89), (4.90), and (4.92), we
deduce that

I(t1, t2) ∈ C +D;

since g(0) = 1 −
√

3ε , the set C + D is contained in the open ball centred at 0 with radius 1. This
concludes the proof when |t1 − u1| ≤ ε .

If |t2 − u1| ≤ ε , we consider the decomposition

I(t1, t2) = I(t1, u0) + I(u0, u1) + I(u1, t2),
I(t1, u0) = I(t1 ∧ (u0 + ε), u0) + I(t1 ∨ (u0 + ε), u0 + ε),

and the proof is completely analogous.
When |t1 − u1| > ε and |t2 − u1| > ε , we can write

I(t1, t2) = I(t1, u0) + I(u0, u2) + I(u2, t2),
I(t1, u0) = I(t1 ∧ (u0 + ε), u0) + I(t1 ∨ (u0 + ε), u0 + ε),
I(u2, t2) = I(u2, t2 ∨ (u2 − ε)) + I(u2 − ε, t2 ∧ (u2 − ε));

therefore, we have

I(t1, t2) = I(t1 ∧ (u0 + ε), u0) + I(u0, u2) + I(u2, t2 ∨ (u2 − ε))
+ I(t1 ∨ (u0 + ε), t2 ∧ (u2 − ε))− I(u0 + ε, u2 − ε). (4.93)
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Since from the definition of ϕ in G0 it follows that

I(s0, u0) = −1
ε
(s0 − u0)2τ2 for |s0 − u0| ≤ ε, (4.94)

using condition (b2) and (4.88), we have that

I(t1 ∧ (u0 + ε), u0) + I(u0, u2) + I(u2, t2 ∨ (u2 − ε)) ∈ ey − δ2

ε
τ2 +R2, (4.95)

where R2 is the parallelogram spanned by the vectors ετ1 and −
(
ε− δ2

ε

)
τ2 . Let E be the parallelogram

having as consecutive sides T1 and T2 , and let F be the set E − g(0)ey ; as I(u1 − ε, u1 + ε) = 0, from
(4.91) it follows that

I(u0 + ε, u2 − ε) = g(0)ey = (1−
√

3ε)ey, (4.96)

and from (4.92),
I(s1, s2) ∈ E (4.97)

for every u0 + ε ≤ s1 ≤ s2 ≤ u2 − ε , with |s1 − u1| > ε and |s2 − u1| > ε . From (4.93), (4.95), (4.96),
(4.97), we obtain that

I(t1, t2) ∈ ey −
δ2

ε
τ2 +R2 + F.

The set ey − δ2

ε τ2 +R2 + F is a polygon, since it is the sum of two polygons, and it is possible to prove
that, if ε <

√
3, its vertices are all contained in the open ball with centre 0 and radius 1. Then, under

this condition, the whole set ey − δ2

ε τ2 +R2 +F is contained in this ball; this concludes the proof of the
inequality M1(0, 0) < 1.

By continuity, choosing U small enough, we obtain that M1(x, y) < 1 for every (x, y) ∈ U , which
proves 1).

To prove 2) and 3), we define analogously

M2(x, y) := max{|I(x, y, t1, t2)| : u0(x, y)− ε ≤ t1 ≤ t2 ≤ u2(x, y) + ε,

|t2 − u1(0, 0)| ≥ δ, |t2 − u2(0, 0)| ≥ δ},

M3(x, y) := max{|I(x, y, t1, t2)| : u0(x, y)− ε ≤ t1 ≤ t2 ≤ u2(x, y) + ε,

|t1 − u0(0, 0)| ≥ δ, |t2 − u2(0, 0)| ≥ δ}.

It is easy to see that the functions M2 and M3 are continuous and, arguing as in the case of M1 , we can
prove that M2(0, 0) < 1 and M3(0, 0) < 1, which yield 2) and 3) by continuity. Step 3 is proved.

Conclusion.– As in Step 3, we simply write ui instead of ui(0, 0). Let us show that, if f satisfies
(4.74), and ε and U are sufficiently small, then condition (b1) is true for u0(x, y)−ε ≤ t1 < t2 ≤ u2(x, y)+
ε and in fact for every t1, t2 ∈ R , since ϕxy(x, y, z) = 0 for z ≤ u0(x, y)− ε and for z ≥ u2(x, y) + ε .

We start by considering the case |t1− u0| < δ . If |t2− u1| < δ , the conclusion follows from Step 1. If
|t2− u1| ≥ δ , the result is a consequence of Step 2 when |t2− u2| < δ , and of Step 3.2) in the other case.

We consider now the case |t1 − u0| ≥ δ . If |t1 − u1| ≥ δ , the conclusion follows from Step 3.1). If
|t1− u1| < δ , the result is a consequence of Step 1 when |t2− u2| < δ , and of Step 3.3) in the other case.

This concludes the proof of condition (b1) and then, of Theorem 4.1 in the case u0 symmetric. 2



Calibrations for minimizers with a triple junction 83

4.5 The antisymmetric case

In this section we show how the construction of the calibration for ui symmetric can be adapted to the
antisymmetric case.

If the function u0 is antisymmetric with respect to the bisecting line of A0 , then the reflection of u0

with respect to S0,1 and to S0,2 provides an extension of u0 , which is harmonic only on Ω \ S1,2 and
which is multi-valued on S1,2 , since the traces of the tangential derivatives of u0 on S1,2 have different
signs. Since u1, u2 coincide, up to the sign and to additive constants, with the reflections of u0 with
respect to S0,1 and S0,2 , respectively, they are antisymmetric with respect to the bisecting line of A1

and A2 , respectively, and then, their extensions by reflection are harmonic only on Ω\S0,2 and Ω\S0,1 ,
respectively.

The calibration ϕ can be defined as before, just replacing the sets G0, G1, G2 with

G̃0 = {(x, y, z) ∈ (U \ S1,2)×R : u0(x, y)− ε < z < u0(x, y) + ε},
G̃1 = {(x, y, z) ∈ (U \ S0,2)×R : u1(x, y)− ε < z < u1(x, y) + ε},
G̃2 = {(x, y, z) ∈ (U \ S0,1)×R : u2(x, y)− ε < z < u2(x, y) + ε},

and the sets H1,H2 with

H̃1 = {(x, y, z) ∈ (U \ (S1,2 ∪ S0,2))×R : l1 + λ/2 < z < l1 + 3λ/2},
H̃2 = {(x, y, z) ∈ (U \ (S0,1 ∪ S0,2))×R : l2 + λ/2 < z < l2 + 3λ/2}.

Since u0 is harmonic in Ω \ S1,2 , the field ϕ is divergence-free in G̃0 by Lemma 1.5. Moreover, the
normal component of ϕ is continuous across the boundary of G̃0 since ∂ν2u0 = ∂ν2v0 = 0 on S1,2 . The
same argument works for the sets G̃1, G̃2 . By the harmonicity of u0 and u1 , the field is divergence-free
in H̃1 and the normal component of ϕ is continuous across the boundary of H̃1 since ∂ν2u0 = 0 on S1,2

and ∂yu1 = 0 on S0,2 . Therefore, condition (c1) is still satisfied in the sense of distributions on U×R .
It is easy to see that conditions (a1), (a2), and (b2) are satisfied.
The proof of Step 1, Step 2, and Step 3 can be easily adapted; indeed, even if now the function

|I(x, y, t1, t2)| may present some discontinuities when (x, y) ∈ Si,j , we can write U as the union of
finitely many Lipschitz open subsets Ui such that |I| is C2(Ui×R2) and study the behaviour of |I|
separately in each Ui . So, it results that also condition (b1) is true. 2





Chapter 5

The calibration method for
functionals on vector-valued maps

The purpose of this chapter is to present and develop a generalization of the calibration method to
functionals with free discontinuities defined on vector-valued maps.

In the sequel Ω is a fixed bounded open subset of Rn with Lipschitz boundary, ν∂Ω is its inner unit
normal, while U is a closed subset of Ω×RN . The letter x usually denotes the variable in Ω (or Rn ),
while y or z is the variable in RN . We will consider functionals of the form

F (u) =
∫

Ω

f(x, u,∇u) dx+
∫
Su

ψ(x, u−, u+, νu) dHn−1, (5.1)

where f : Ω×RN×RnN → [0,+∞] , and ψ : Ω×RN×RN×Sn−1 → [0,+∞] are Borel functions, Sn−1 :=
{v ∈ Rn : |v| = 1} , and the unknown function u belongs to the space SBV (Ω; RN ) of special functions
of bounded variation in Ω. Since the triplet (u+, u−, νu) is uniquely determined up to a permutation
of (u+, u−) and a change of sign of νu (see Section 1.1), we will assume that ψ satisfies the condition
ψ(x, y, z, ν) = ψ(x, z, y,−ν).

We start this chapter with the proof of a generalized chain rule in BV , which will be useful in the
following. If u ∈ BV (Ω; RN ) and S is a Lipschitz continuous function from RN into RM , it is known
that S ◦u belongs to BV (Ω; RM ). When in addition S ∈ C1(RN ; RM ), the following chain rule formula
can be written:

D̃(S ◦ u) = DS(ũ(x))D̃u(x) on Ω \ Su,

Dj(S ◦ u) = [S(u+)− S(u−)]⊗ νuHn−1bSu,
(5.2)

(see Theorem 3.96 in [6]). Following an idea by [32], we generalize formula (5.2) to the case of a function
S , which may depend also on the variable x and is only piecewise C1 in the sense of the following
definition.

Definition 5.1 We say that a Lipschitz continuous function S : U → RM is piecewise C1 if S can be
written as

S(x, y) =
∑
α∈A

Sα(x, y)1Uα(x, y), (5.3)

where (Uα)α∈A is a finite family of pairwise disjoint Borel sets such that ∪α∈AUα = U , and (Sα)α∈A
is a family of Lipschitz continuous functions belonging to C1(Ω×RN ; RM ) .

85
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Lemma 5.2 Let S : U → RM be a Lipschitz continuous function, piecewise C1 in the sense of Defini-
tion 5.1, and satisfying (5.3), and let u ∈ BV (Ω; RN ) be such that graphu ⊂ U . Then, v := S(·, u(·))
belongs to BV (Ω; RM ) and

D̃v =
∑
α∈A

1Uα(x, ũ)(DxSα(x, ũ)Ln +DySα(x, ũ)D̃u) on Ω \ Su, (5.4)

Djv = [S(x, u+)− S(x, u−)]⊗ νuHn−1bSu. (5.5)

Proof. – Since the function S can be extended to a Lipschitz function on the whole Ω×RN , by
Theorem 3.101 in [6] we have that the function v = S(·, u(·)) belongs to BV (Ω; RM ) and formula (5.5)
holds true.

Since Sα is globally Lipschitz and of class C1 on Ω×RN , by Theorem 3.96 in [6] the function
vα := Sα(·, u(·)) belongs to BV (Ω; RM ) and the diffuse part of its derivative satisfies the following
equality:

D̃vα = DxSα(x, ũ)Ln +DySα(x, ũ)D̃u. (5.6)

Consider now the set
Eα := {x ∈ Ω \ Su : ṽ(x) = ṽα(x)}.

Since v and vα are both BV functions and their jump sets are both contained in Su , by the locality
property of the derivative of a BV function (see Remark 3.93 in [6]) it follows that DvbEα = DvαbEα .
Since Eα ⊂ Ω \ Su , the previous equality can be rewritten as

D̃vbEα = D̃vαbEα. (5.7)

If we define
Pα := {x ∈ Ω \ Su : (x, ũ(x)) ∈ Uα},

since Pα ⊂ Eα , by (5.7) and (5.6) we can conclude that

D̃vbPα = D̃vαbPα = DxSα(x, ũ)LnbPα +DySα(x, ũ)D̃ubPα,

which immediately gives formula (5.4). 2

The plan of the chapter is the following: in Section 5.1 we present the calibration method for func-
tionals of the form (5.1) on vector-valued maps; Section 5.2 is devoted to the link between calibration
theory and classical field theory; Section 5.3 contains some applications to the Mumford-Shah functional
(for vector-valued functions) and to functionals arising in fracture mechanics; finally, in Section 5.4 we
reformulate the theory of calibrations in terms of differential forms and show that this formulation does
not lead to new results.

5.1 Calibrations for functionals on vector-valued maps

According to Definitions 1.1 and 1.3, we consider the following definition of minimizers of F .

Definition 5.3 An absolute minimizer of (5.1) in Ω is a function u ∈ SBV (Ω; RN ) such that F (u) ≤
F (v) for all v ∈ SBV (Ω; RN ) , while a Dirichlet minimizer in Ω is a function u ∈ SBV (Ω; RN ) such that
F (u) ≤ F (v) for all v ∈ SBV (Ω; RN ) with the same trace on ∂Ω as u . A function u is a U -minimizer
if the graph of u is contained in U and F (u) ≤ F (v) for all v ∈ SBV (Ω; RN ) whose graph is contained
in U , while u is a Dirichlet U -minimizer if we add the requirement that the competing functions v have
the same trace on ∂Ω as u .
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Before proving the key lemma about calibrations, we fix some further notation.
Given two functions S : U → Rn , and u : Ω → RN , we will denote the divergence of the composite

function S(·, u(·)) by divx[S(x, u(x))] , while the divergence of S with respect to the variable x computed
at the point (x, u(x)) by [divxS](x, u(x)). The Jacobian matrix of S with respect to y will be denoted
by DyS and its transpose by (DyS)τ . Note that if S and u are sufficiently regular,

divx[S(x, u(x))] = [divxS](x, u) + 〈(DyS(x, u))τ ,∇u〉.

As in Section 1.3, we call f∗ and ∂−ξ f the convex conjugate and the subdifferential of f with respect
to the last variable. It is well known that, if g is any function from RnN into [0,+∞] , 〈ξ, η〉−g∗(η) ≤ g(ξ)
for every ξ, η ∈ RnN , and the equality holds if and only if η ∈ ∂−ξ g(ξ). Moreover, if g is convex and
differentiable, then ∂−ξ g(ξ) = {∂ξg(ξ)} . Using these properties, we can prove the following lemma.

Lemma 5.4 Let F be the functional defined in (5.1). Let S ∈ C1(Ω×RN ; Rn) be Lipschitz continuous
and let S0 ∈ L1(Ω) . Assume that the following conditions are satisfied:

(a1) [divxS](x, y)+S0(x) ≤ −f∗(x, y, (DyS(x, y))τ ) for Ln -a.e. x ∈ Ω and for every y with (x, y) ∈ U ;

(b1) 〈S(x, z)− S(x, y), ν〉 ≤ ψ(x, y, z, ν) for Hn−1 -a.e. x ∈ Ω , for every ν ∈ Sn−1 , and for every y, z
with (x, y) ∈ U, (x, z) ∈ U.

Then for every u ∈ SBV (Ω; RN ) such that graphu ⊂ U we have that divx[S(·, u(·))] is a Radon measure
on Ω , which will be denoted as µu , and

F (u) ≥
∫

Ω

dµu +
∫

Ω

S0(x) dx. (5.8)

Moreover, equality holds in (5.8) for a given u if and only if

(a2) [divxS](x, u) + S0(x) = −f∗(x, u, (DyS(x, u))τ ) and (DyS(x, u))τ ∈ ∂−ξ f(x, u,∇u) for Ln -a.e.
x ∈ Ω;

(b2) 〈S(x, u+)− S(x, u−), νu〉 = ψ(x, u−, u+, νu) for Hn−1 -a.e. x ∈ Su,

where u , u± , ∇u , and νu are always computed at x .

Proof. – Let u ∈ SBV (Ω; RN ) be such that graphu ⊂ U . By Theorem 3.96 in [6] the function
S(·, u(·)) belongs to SBV (Ω; Rn), and therefore, its divergence is a Radon measure on Ω. Moreover, we
have that

Dxi
[Si(x, u)] = ∂xi

Si(x, u)Ln +DySi(x, u)∂xiuLn + [Si(x, u+)− Si(x, u−)](νu)iHn−1bSu,

so that the measure µu can be written as

µu(x) =
n∑
i=1

Dxi
[Si(x, u(x))]

= [divxS](x, u)Ln +
∑
i

DySi(x, u)∂xiuLn +
∑
i

[Si(x, u+)− Si(x, u−)](νu)iHn−1bSu

= [divxS](x, u)Ln + 〈(DyS(x, u))τ ,∇u〉 Ln + 〈S(x, u+)− S(x, u−), νu〉Hn−1bSu,
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and the functional at the right-hand side of (5.8) has the following expression∫
Ω

dµu +
∫

Ω

S0(x) dx =
∫

Ω

([divxS](x, u) + 〈(DyS(x, u))τ ,∇u〉+ S0(x)) dx

+
∫
Su

〈S(x, u+)− S(x, u−), νu〉 dHn−1. (5.9)

Using assumption (a1) we obtain that for Ln -a.e. x ∈ Ω

[divxS](x, u) + 〈(DyS(x, u))τ ,∇u〉+ S0(x) ≤ −f∗(x, u, (DyS(x, u))τ ) + 〈(DyS(x, u))τ ,∇u〉
≤ f(x, u,∇u),

and consequently∫
Ω

([divxS](x, u) + 〈(DyS(x, u))τ ,∇u〉+ S0(x)) dx ≤
∫

Ω

f(x, u,∇u) dx. (5.10)

Moreover, equality holds in (5.10) if and only if (DyS(x, u))τ ∈ ∂−ξ f(x, u,∇u) and [divxS](x, u)+S0(x) =
−f∗(x, u, (DyS(x, u))τ ), which is condition (a2).

As for the second integral in (5.9), condition (b1) implies that∫
Su

〈S(x, u+)− S(x, u−), νu〉 dHn−1 ≤
∫
Su

ψ(x, u−, u+, νu) dHn−1. (5.11)

Moreover, equality holds in (5.11) if and only if (b2) is satisfied.
The statement follows now from (5.9), (5.10), and (5.11). 2

The assumption of C1 -regularity for S is often too strong for many applications. We prove now a
new version of Lemma 5.4 under weaker regularity assumptions for S .

Lemma 5.5 Let F be the functional defined in (5.1). Let S : U → Rn be a Lipschitz continuous
function, piecewise C1 in the sense of Definition 5.1, and satisfying (5.3). Let S0 ∈ L1(Ω) . Assume that
the following conditions are satisfied:

(a1) [divxSα](x, y) + S0(x) ≤ −f∗(x, y, (DySα(x, y))τ ) for every α ∈ A , for Ln -a.e. x ∈ Ω , and for
every y ∈ RN with (x, y) ∈ Uα;

(b1) 〈S(x, z)− S(x, y), ν〉 ≤ ψ(x, y, z, ν) for Hn−1 -a.e. x ∈ Ω , for every ν ∈ Sn−1 , and for every y, z
with (x, y) ∈ U, (x, z) ∈ U.

Then for every u ∈ SBV (Ω; RN ) such that graphu ⊂ U we have that divx[S(·, u(·))] is a Radon measure
on Ω , which will be denoted as µu , and

F (u) ≥
∫

Ω

dµu +
∫

Ω

S0(x) dx. (5.12)

Moreover, equality holds in (5.8) for a given u if and only if

(a2) [divxSα](x, u) + S0(x) = −f∗(x, u, (DySα(x, u))τ ) and (DySα(x, u))τ ∈ ∂−ξ f(x, u,∇u) for every
α ∈ A , for Ln -a.e. x ∈ Ω such that (x, u(x)) ∈ Uα :

(b2) 〈S(x, u+)− S(x, u−), νu〉 = ψ(x, u−, u+, νu) for Hn−1 -a.e. x ∈ Su,

where u , u± , ∇u , and νu are always computed at x .
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Proof. – Let u ∈ SBV (Ω; RN ) be such that graphu ⊂ U . By Lemma 5.2 the function S(·, u(·))
belongs to SBV (Ω; Rn), and therefore, its divergence is a Radon measure on Ω. By (5.4) and (5.5) we
have that the measure µu can be written as

µu(x) =
∑
α∈A

1Uα(x, u)[divxSα](x, u)Ln +
∑
α∈A

1Uα(x, u)〈(DySα(x, u))τ ,∇u〉 Ln

+ 〈S(x, u+)− S(x, u−), νu〉Hn−1bSu.

The proof of Lemma 5.4 can be now repeated simply replacing [divxS] with
∑
α∈A 1Uα [divxSα] , and

DyS with
∑
α∈A 1UαDySα . 2

Definition 5.6 We say that a pair of functions (S,S0) is a calibration for u ∈ SBV (Ω; RN ) on U
with respect to the functional (5.1) if S : U → Rn is a Lipschitz continuous function, piecewise C1

in the sense of Definition 5.1, S0 ∈ L1(Ω) , and they satisfy assumptions (a1), (b1), (a2), and (b2) in
Lemma 5.5.

We can now prove the main result of this section.

Theorem 5.7 Let u be a function in SBV (Ω; RN ) whose graph is contained in U . Assume that there
exists a calibration (S,S0) for u on U with respect to the functional (5.1). Then u is a Dirichlet U -
minimizer of F . If, in addition, the normal component of S at ∂U ∩ (∂Ω×RN ) does not depend on y ,
namely for Hn−1 -a.e. x ∈ ∂Ω there exists a constant a(x) ∈ R such that

〈S(x, y), ν∂Ω(x)〉 = a(x) for every y such that (x, y) ∈ U , (5.13)

then u is also an absolute U -minimizer of F .

Proof. – Let v be a function in SBV (Ω; RN ) such that v = u on ∂Ω and graph v ⊂ U . Then the
definition of the measure µv and the divergence theorem imply that∫

Ω

dµv = −
∫
∂Ω

〈S(x, v), ν∂Ω〉 dHn−1.

If v has the same trace on ∂Ω as u , from this identity it follows that∫
Ω

dµv =
∫

Ω

dµu, (5.14)

and by applying Lemma 5.5 we obtain

F (v) ≥
∫

Ω

dµv +
∫

Ω

S0(x) dx =
∫

Ω

dµu +
∫

Ω

S0(x) dx = F (u).

We have thus proved that u is a Dirichlet U -minimizer of F .
If we assume, in addition, that (5.13) holds true, then

∫
Ω
dµv = −

∫
Ω
a dHn−1 for every v ∈

SBV (Ω; RN ) whose graph is contained in U ; so, the equality (5.14) is fulfilled even if the traces of
u and v on ∂Ω differ. This proves that u is an absolute U -minimizer of F . 2

Remark 5.8 It is natural to wonder what is the link in the case N = 1 between our vectorial theory
and the calibration method for the scalar case, recalled in Section 1.3, which involves a divergence-free
vectorfield ϕ .
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Let N = 1. Let us suppose that (S,S0) is a calibration for u and assume furthermore that S is
globally C1 . Take the vectorfield ϕ = (ϕx, ϕz) : U → Rn×R defined by ϕx(x, z) := ∂zS(x, z) and
ϕz(x, z) := −[divxS](x, z) − S0(x). Then ϕ satisfies all the assumptions of Section 1.3. Indeed, by
Remark 2.3 in [2] ϕ is approximately regular on U . Moreover, conditions (a1) and (a2) on (S,S0)
clearly imply that ϕ satifies (a1) and (a2) of Section 1.3, respectively. By definition of ϕ we have that∫ t2

t1

ϕx(x, z) dz = S(x, t2)− S(x, t1),

so that conditions (b1) and (b2) on (S,S0) imply conditions (b1) and (b2) of Section 1.3, respectively.
If S is C2 and S0 is C1 , then it is trivial that ϕ is C1 and divϕ = 0; in the general case, one can prove
that ϕ is divergence-free by an approximation argument.

Analogously it is easy to see that, if ϕ is a bounded Lipschitz C1 -vectorfield satisfying the calibration
conditions of Section 1.3, then we can construct a calibration (S,S0). Take indeed

S(x, z) :=
∫ z

τ(x)

ϕx(x, t) dt and S0(x) := 〈ϕx(x, τ(x)),∇τ(x)〉 − ϕz(x, τ(x)),

where τ is any smooth function satisfying (x, τ(x)) ∈ U for every x ∈ Ω.

5.2 An application related to classical field theory

We recall now some classical results from field theory for multiple integrals of the form

F0(u) =
∫

Ω

f(x, u,∇u) dx, (5.15)

where u ∈ C1(Ω; RN ) and f ∈ C2(Ω×RN×RnN ).
We will call extremals of F0 or f -extremal the solutions u of class C2 of the Euler equations for the

integral F0 , i.e.
n∑
i=1

Dxi [∂ξijf(x, u(x),∇u(x))]− ∂ujf(x, u(x),∇u(x)) = 0, 1 ≤ j ≤ N. (5.16)

In the classical field theory for multiple integrals several sufficient conditions for the minimality of an
f -extremal have been proposed. Among the others, we recall Weyl field theory, which is strictly related
to the calibration theory for vector-valued functionals and ensures that a given f -extremal u is in fact a
minimizer of F0 among all functions of class C1 , with the same boundary values as u and whose graph
is contained in a suitable neighbourhood of the graph of u . It consists in the construction of a suitable
slope field P , called Weyl field, and of a smooth function S , called the eikonal map associated with the
field, satisfying the system of equations (5.17) – (5.18). This set of conditions arises from the comparison
of F0 with an invariant functional of divergence type, which is nothing but the functional∫

Ω

divx[S(x, v)] dx,

where S is the eikonal map (see, e.g. [18, Chapter 7, Section 4]).
We will show via calibrations that, if a Weyl field exists for an f -extremal u (and then there exists

a neighbourhood U of the graph of u such that u minimizes F0 among C1 -functions with the same
boundary values as u and with graph contained in U ), then u is also a Dirichlet U -minimizer of the
functional (5.1) in the sense of Definition 5.3, provided U is a sufficiently small neighbourhood of the
graph of u and the function ψ satisfies the estimate (5.20); moreover, if S is the eikonal map associated
with the Weyl field, then the pair (S,S0) with S0 ≡ 0 is a calibration for u on U .



The calibration method for functionals on vector-valued maps 91

Definition 5.9 Let U be a closed domain in Ω×RN . A mapping p : U → U×RnN is called a slope field
on U if it is of class C1 and of the form

p(x, y) = (x, y,P(x, y)) for every (x, y) ∈ U ;

we denote P(x, y) = (Pij(x, y)) as the slope function of the field p . We say that a map u ∈ C1(Ω; RN )
fits the slope field p if graphu ⊂ U and

∂xiuj(x) = Pij(x, u(x)) for every x ∈ Ω .

Finally, a slope field p is said to be a Weyl field if there is a map S ∈ C2(U ; Rn) such that {S,P} solves
the Weyl equations:

[divxS](x, y) = f(x, y,P(x, y))− 〈P(x, y), ∂ξf(x, y,P(x, y))〉, (5.17)
∂yjSi(x, y) = ∂ξijf(x, y,P(x, y)). (5.18)

The function S is called the eikonal map associated with p .

The main results in Weyl field theory can be stated as follows. For a proof we refer to [18].

Theorem 5.10 (1) Assume that the function f satisfies

f(x, y, ξ)− f(x, y, η)− 〈ξ − η, ∂ξf(x, y, η)〉 ≥ 0

for every (x, y) ∈ U and ξ, η ∈ RnN , and let u ∈ C2(Ω; RN ) fit a Weyl field p : U → U×RnN with
the eikonal map S : U → Rn . Then u is a minimizer of F0 among all v ∈ C1(Ω; RN ) such that
v|∂Ω = u|∂Ω and graph v ⊂ U ; in particular, u is an f -extremal. Moreover, if there is a constant
µ > 0 such that∑

i,j,h,k

∂2
ξijξhk

f(x, y, ξ)ζijζhk ≥ µ|ζ|2 ∀(x, y) ∈ Ω×RN , ξ, ζ ∈ RnN , (5.19)

then u is a strict minimizer of F0 in the same class.

(2) Vice-versa, if f satisfies the strict convexity condition (5.19), then every f -extremal fits at least
locally a Weyl field and is therefore locally minimizing F0 . In other words, for every x0 ∈ Ω there
exist ε > 0 and an open neighbourhood A of x0 such that u minimizes F0 among all v ∈ C1(A; RN )
such that v|∂A = u|∂A and graph v ⊂ {(x, y) ∈ A×RN : |y − u(x0)| ≤ ε} .

Let us now state and prove a similar result for free-discontinuity problems.

Theorem 5.11 Let f : Ω×RN×RnN → [0,+∞] be a function of class C2 satisfying (5.19) and let
ψ : Ω×RN×RN×Sn−1 → [0,+∞] be a Borel function satisfying

ψ(x, y, z, ν) ≥ c θ(|y − z|), (5.20)

where c is a positive constant, while θ is such that limt→0+
θ(t)
t = +∞ . Let u be an f -extremal. Then

for every x0 ∈ Ω there exist ε > 0 , an open neighbourhood A (with Lipschitz boundary) of x0 , and a
pair (S,S0) such that (S,S0) is a calibration for u with respect to the functional (5.1) on the set

U := {(x, y) ∈ A×RN : |y − u(x0)| ≤ ε}; (5.21)

therefore u is a Dirichlet U -minimizer of the functional (5.1).
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Proof. – Let u be an f -extremal. By the second part of Theorem 5.10 for every x0 ∈ Ω there exist
ε > 0 and an open neighbourhood A (with Lipschitz boundary) of x0 such that u fits a Weyl fiel in the
set (5.21). Denote the Weyl field by p(x, y) = (x, y,P(x, y)) and the eikonal map associated with p by
S .

We claim that, if we take S0(x) := 0 for every x ∈ Ω, then the pair (S,S0) is a calibration for u
on U with respect to the functional F defined in (5.1), provided ε is sufficiently small. Let us prove it.
Since f is convex, for every η ∈ RnN we have that

f(x, y, η)− 〈η, ∂ξf(x, y, η)〉 = −f∗(x, y, ∂ξf(x, y, η));

this fact, jointly with (5.17), implies that

[divxS](x, y) = −f∗(x, y, ∂ξf(x, y,P(x, y)))
= −f∗(x, y, (DyS(x, y))τ ), (5.22)

where the second equality follows from (5.18). Therefore, condition (a1) is satisfied.
Condition (a2) follows from (5.22) and (5.18), using the fact that u fits the field P , hence P(x, u(x)) =

∇u(x) for every x ∈ Ω.
If we call L the L∞ -norm of the Jacobian matrix of S on U , then we have that

〈S(x, z)− S(x, y), ν〉 ≤ L |z − y| (5.23)

for every x ∈ Ω, y, z ∈ RN such that (x, y) ∈ U , (x, z) ∈ U , and ν ∈ Sn−1 . By the assumption on the
function θ there exists δ > 0 such that θ(t) ≥ Lt/c for every t ∈ (0, δ); then from (5.20) it follows that

ψ(x, y, z, ν) ≥ L|y − z| for |y − z| < δ . (5.24)

Taking ε < δ/2, from (5.23) and (5.24) we have that condition (b1) is satisfied.
Since Su = ∅ , condition (b2) is trivial.
The conclusion follows now from Theorem 5.7. 2

As made precise in the next proposition, when the function f depends only on the variables x, ξ , we
are able to prove the minimality of an f -extremal u on the whole domain Ω and to give an estimate of
the width ε of the neighbourhood of the graph of u where the minimality holds.

Proposition 5.12 In addition to the assumptions of Theorem 5.11, suppose that f = f(x, ξ) . Let u be
an f -extremal. For every (x, y) ∈ Ω×RN define

S(x, y) := [∂ξf(x,∇u(x))]τ (y − u(x)) + σ(x), (5.25)

where σ : Ω → Rn is a solution of the equation divσ = f(x,∇u) . Then the pair (S,S0) with S0 ≡ 0 is
a calibration for u with respect to the functional (5.1) on the set

U := {(x, y) ∈ Ω×RN : |y − u(x)| ≤ ε(x)}, (5.26)

where

ε(x) <
1
2

inf
{
t > 0 : c

θ(t)
t

< |∂ξf(x,∇u(x))|
}
, (5.27)

and c, θ are the quantities appearing in (5.20). Therefore u is a Dirichlet U -minimizer of the functional
(5.1).
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Proof. – Note that by the assumption on θ , the infimum in (5.27) is strictly positive for every x ∈ Ω.
Let us prove that (S,S0) satisfies all the conditions in Lemma 5.4.
By direct computations we have that DyS(x, y) = [∂ξf(x,∇u)]τ ; using the Euler equations (5.16),

the definition of σ , and the convexity of f , we find out that

[divxS](x, y) =
∑
ij

Dxi
(∂ξji

f(x,∇u))(yj − uj)− 〈[∂ξf(x,∇u)]τ ,∇u〉+ divσ

= −〈[∂ξf(x,∇u)]τ ,∇u〉+ f(x,∇u)
= −f∗(x, [∂ξf(x,∇u)]τ ).

Conditions (a1) and (a2) are therefore satisfied.
By the definition of S we obtain

|S(x, z)− S(x, y)| ≤ |∂ξf(x,∇u(x))| · |z − y|;

since |z − y| ≤ 2ε(x), (5.27) implies that

|∂ξf(x,∇u(x))| · |z − y| ≤ c θ(|z − y|);

so condition (b1) follows now from (5.20).
Condition (b2) is trivial since Su is empty. This concludes the proof.
We notice that the thesis can be proved also in the following way: if we define P(x, y) := ∇u(x) for

every (x, y) ∈ Ω×RN , it is easy to see that the field p(x, y) := (x, y,P(x, y)) is a Weyl field, S is the
eikonal map associated with p , and u fits p . Then we can follow the proof of Theorem 5.11: the check
of condition (a1), (a2), (b2) remains the same, while the estimate on the size of ε(x) is given by a more
careful proof of condition (b1). 2

Remark 5.13 When the functional (5.1) satisfies some special further conditions, it is enough to prove
the Dirichlet minimality of a given u on a neighbourhood of its graph to conclude that u is in fact
a Dirichlet minimizer on the whole cylinder Ω×R , reducing the domain Ω if needed. For istance, in
addition to the assumptions of Proposition 5.12, suppose that the two following conditions are satisfied:

(1) f(x, ξ) ≥ f(x, (I − ej⊗ej) ξ) for every x ∈ Ω, ξ ∈ RnN , j = 1, . . . , N , where {e1, . . . , eN} is the
canonical basis of RN ;

(2) ψ(x, y, z, ν) ≥ ψ(x, T ba(y), T
b
a(z), ν) for every (x, y) ∈ Ω×RN , ξ ∈ RnN , ν ∈ Sn−1 , a, b ∈ RN ,

where we have set
T ba : RN → RN , (T ba)j(y) := (yj ∧ aj) ∨ bj .

If u is an f -extremal, then by Proposition 5.12 we know that u is a Dirichlet U -minimizer of F , where
U is the set (5.26). We want to show that for every x0 ∈ Ω there exists an open neighbourhood A (with
Lipschitz boundary) of x0 such that u is a Dirichlet minimizer of F in A .

First of all, we can find an open neighbourhood A (with Lipschitz boundary) of x0 and two vectors
m,M ∈ RN such that |M −m| < ε(x) for every x ∈ A and

mj ≤ uj(x) ≤Mj ∀x ∈ A, 1 ≤ j ≤ N. (5.28)

Let v be a function in SBV (A; RN ) with the same trace on ∂A as u and define v̂ := TMm (v), which still
belongs to SBV (A; RN ). Note that ∇v̂j = 1{mj<vj<Mj}∇vj for every j , so that, if we call J0(x) the
set of all indexes j such that vj(x) 6∈ (mj ,Mj), the matrix ∇v̂(x) can be written as

∇v̂(x) = ∇v(x)−
∑
j∈J0

(ej⊗ej)∇v(x).
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By using iteratively condition (1), we obtain that f(x,∇v̂) ≤ f(x,∇v), which implies∫
A

f(x,∇v̂) dx ≤
∫
A

f(x,∇v) dx. (5.29)

Since Sv̂ ⊂ Sv , and v̂− = TMm (v−), v̂+ = TMm (v+) on Sv̂ , by condition (2) we obtain∫
Sv̂∩A

ψ(x, v̂−, v̂+, νv̂) dHn−1 ≤
∫
Sv∩A

ψ(x, v−, v+, νv) dHn−1. (5.30)

On the other hand, by (5.28) the function v̂ has the same trace on ∂A as u , and its graph is contained
in the set

{(x, y) ∈ A×RN : |y − u(x)| ≤ ε(x)}.

Since u is a Dirichlet minimizer on this set, we have that∫
A

f(x,∇u) dx ≤
∫
A

f(x,∇v̂) dx+
∫
Sv̂

ψ(x, v̂−, v̂+, νv̂) dHn−1. (5.31)

Therefore by (5.29), by (5.30), and (5.31), u is a Dirichlet minimizer of F in A .
The same result can be achieved by calibration: indeed, we can extend the function S in (5.25) to

the whole Ω×RN simply by taking Ŝ(x, y) := S(x, TMm (y)); it is easy to see that assumptions (1) – (2)
guarantee that the pair (Ŝ,S0) provides a calibration for u on A×RN .

We conclude the remark with some comments on conditions (1) – (2). Condition (1) ensures that
the functional decreases when any row of the matrix ∇u is annihilated, which is what occurs when a
component of u is truncated. For istance, (1) is fulfilled for f(ξ) =

∑
ij ϕij(ξij) where ϕij are convex

and positive, and ϕij(0) = 0. As for condition (2), note that it is satisfied whenever ψ depends on y, z
only through the distance |z − y| .

5.3 Some further applications

In this section we present some examples and applications. In Examples 5.14, 5.16, 5.17, and 5.18 we deal
with minimizers of the Mumford-Shah functional, and we generalize some results proved in [2] for the
scalar case. Example 5.15 is a purely vectorial example, since it involves a functional arising in fracture
mechanics which can be defined only on maps from Ω ⊂ Rn into Rn .

Example 5.14 Let u : Ω → RN be a harmonic function. It is well known that u is an extremal of the
functional

∫
Ω
|∇u|2 , and a Dirichlet minimizer of it. We can prove via calibrations that u is a Dirichlet

minimizer also of the homogeneous Mumford-Shah functional

MS(u) =
∫

Ω

|∇u|2dx+Hn−1(Su), (5.32)

if the following condition is satisfied:
osc
Ω
u · sup

Ω
|∇u| ≤ 1, (5.33)

where osc u denotes the modulus of the vector in RN whose components are the oscillations of the
components of u . When (5.33) is not fulfilled, u is still a Dirichlet U -minimizer of the functional MS ,
where

U :=
{

(x, y) ∈ Ω×RN : |y − u(x)| ≤ 1
4|∇u(x)|

}
. (5.34)
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This second result directly follows from Proposition 5.12, where f(ξ) = |ξ|2 and ψ ≡ 1. Moreover, a
calibration is given by (S,S0) with S0 ≡ 0 and

S(x, y) = 2[∇u(x)]τ (y − u(x)) + σ(x),

where σ : Ω → Rn is a solution of the equation divσ = |∇u|2 . Since u is harmonic in Ω, it is easy to
see that we can take σ(x) := [∇u(x)]τu(x), so that

S(x, y) = 2[∇u(x)]τ
(
y − u(x)

2

)
. (5.35)

As for the Dirichlet minimality of u , we can show that, under the assumption (5.33), the calibration
(S,S0) can be extended to the whole Ω×RN , applying a similar argument to the one used in Remark 5.13.

We recall that, in the case of the functional (5.32), conditions (a1), (a2), (b1), and (b2) in Lemma 5.5
become

(a1) [divxSα](x, y) + S0(x) ≤ − 1
4 |DySα(x, y)|2 for every α ∈ A , for Ln -a.e. x ∈ Ω, and for every

y ∈ RN with (x, y) ∈ Uα ;

(a2) [divxSα](x, u)+S0(x) = −|∇u(x)|2 and (DySα(x, u))τ = 2∇u(x) for every α ∈ A , and for Ln -a.e.
x ∈ Ω such that (x, u(x)) ∈ Uα ;

(b1) |S(x, z) − S(x, y)| ≤ 1 for Hn−1 -a.e. x ∈ Ω and for every y, z ∈ RN such that (x, y) ∈ U ,
(x, z) ∈ U ;

(b2) S(x, u+)− S(x, u−) = νu for Hn−1 -a.e. x ∈ Su ,

where S(x, y) =
∑
α∈A Sα(x, y)1Uα(x, y).

Let mj and Mj be the infimum and the supremum of uj in Ω, respectively (then osc uj = Mj−mj ).
Let T be the function from RN into RN defined as Tj(y) = (yj ∨mj/2) ∧Mj/2. Define

Ŝ(x, y) := 2[∇u(x)]τ T
(
y − u(x)

2

)
.

It is easy to see that (Ŝ,S0) satisfies conditions (a1) and (a2). Condition (b2) is trivial. Finally, for
every y, z ∈ RN we have

|Ŝ(x, z)− Ŝ(x, y)| ≤ 2|∇u(x)| · |T (z − u/2)− T (y − u/2)|. (5.36)

Since Tj(z − u/2) and Tj(y− u/2) belong to the interval [mj/2,Mj/2] for every 1 ≤ j ≤ N , we deduce
that |T (z − u/2)− T (y − u/2)| ≤ |M −m|/2; so, condition (b1) follows from (5.36) and (5.33).

These two minimality results generalize those obtained in [1] for scalar harmonic functions. Note that
the minimality of u can be proved by applying the scalar argument to each component uj , but this
provides a more restrictive condition on the size of the domains where the minimality holds. Indeed, by
the scalar result in [1], since uj is harmonic for every j , if

osc
Ω
uj · sup

Ω
|∇uj | ≤

1
N

1 ≤ j ≤ N, (5.37)

then ∫
Ω

|∇uj |2dx ≤
∫

Ω

|∇vj |2dx+
1
N
Hn−1(Svj )

for every vj ∈ SBV (Ω) with the same boundary values as uj ; summing over j , we obtain the Dirichlet
minimality of u in Ω. On the other hand, it is easy to see that condition (5.37) is stronger than (5.33).
Analogous remarks hold for the Dirichlet minimality of u in a neighbourhood of its graph.
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Example 5.15 In this example we consider a functional related to Griffith and Barenblatt theories of
fracture mechanics of the form

H(u) := µ

∫
Ω

|e(u)|2dx+
λ

2

∫
Ω

(divu)2 dx+
∫
Su

θ(|u+ − u−|) dHn−1

where u is a function from Ω ⊂ Rn into Rn , e(u) denotes the symmetrized gradient of u , θ is a
positive function satisfying limt→0+ θ(t)/t = +∞ , and µ, λ are real parameters. In the context of
fracture mechanics, Ω is a reference configuration of an elastic body, possibly subject to fracture, and u
parameterizes its displacement; the bulk term represents the energy relative to the elastic deformation
outside the fracture, while the surface integral is the energy needed to produce the crack.

The functional H is clearly of the form (5.1) with f(ξ) = µ |(ξτ + ξ)/2|2 + λ
2 (tr ξ)2 and ψ(y, z) =

θ(|z − y|). However, since the bulk term in H involves only the symmetric part of the matrix ∇u , the
appropriate setting for the minimum problem for H is not exactly the space SBV (Ω; Rn), but the space
SBD(Ω) of special functions with bounded deformation (for a complete overview on the properties of
this space see [5]). Even if the calibration method has been developed only for SBV functions, we can
actually prove by calibration that, if u is an f-extremal, i.e. u ∈ C1(Ω; Rn) ∩ C2(Ω; Rn) and u solves
the equation

µ∆u+ (µ+ λ)∇(divu) = 0 on Ω, (5.38)

then u minimizes H among all functions v ∈ SBD(Ω) with the same trace on ∂Ω as u , and whose
graph is contained in the set

U := {(x, y) ∈ Ω×Rn : |y − u(x)| ≤ ε(x)},

where

ε(x) <
1
2

inf
{
t > 0 :

θ(t)
t

< |2µe(u)(x) + λdivu(x)I|
}
.

Indeed, since ∂ξijf(ξ) = µ(ξji+ξij)+λ(tr ξ)δij , Proposition 5.12 implies that u is a Dirichlet U -minimizer
of H in the class SBV (Ω; Rn) and a calibration is given by (S,S0) with S0 ≡ 0 and

S(x, y) = [2µe(u)(x) + λdivu(x)I]
(
y − u(x)

2

)
; (5.39)

this last fact follows from formula (5.25) where we have taken σ(x) := [µe(u)(x)+ λ
2 divu(x)I]u(x), which

is a solution of divσ = f(∇u) thanks to (5.38).
On the other hand, we can show that the pair (S,S0) provides a calibration also in the space SBD(Ω)

in the following sense: consider the functional

H1(v) := −
∫
∂Ω

〈S(x, v), ν∂Ω〉 dHn−1,

which is the same used as comparison functional in the proof of Theorem 5.7; then, H1 is well defined
on SBD(Ω), is invariant on SBD functions having the same trace on ∂Ω, and satisfies the equality
H1(u) = H(u) and the inequality H1(v) ≤ H(v) for every v ∈ SBD(Ω). This implies that u is a
Dirichlet minimizer of the functional H in the class of SBD functions.

Let us prove the properties of H1 stated above. If we set for simplicity of notation A(x) := 2µe(u)(x)+
λdivu(x)I , by (5.39) the functional H1 can be rewritten as

H1(v) = −1
2

∫
∂Ω

〈A(2v − u), ν∂Ω〉 dHn−1,
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whence it is clear that it is well defined on SBD(Ω) and invariant on the class of functions in SBD(Ω)
having the same trace on ∂Ω. By the generalized Green’s formula in SBD(Ω) we have that

−1
2

∫
∂Ω

〈A(2v − u), ν∂Ω〉 dHn−1 =
1
2

∫
Ω

〈2v − u, divA〉 dx+
1
2

∫
Ω

Ad(2Ev − Eu)

=
1
2

∫
Ω

〈A, 2e(v)− e(u)〉 dx+
∫
Sv

〈A(v+ − v−), νv〉 dHn−1,(5.40)

where the last equality follows by the fact that divA = 0, by the decomposition theorem for the measures
Ev,Eu and by the remark that Su = ∅ . Using the definition of the matrix A and (5.40) it is easy to see
that

H1(u) =
1
2

∫
Ω

〈A, e(u)〉 dx = H(u), (5.41)

while, using also the elementary inequality 2〈ξ, η〉 ≤ |ξ|2 + |η|2 for every ξ, η ∈ Rn2
, we obtain∫

Ω

〈A, e(v)〉 dx = 2µ
∫

Ω

〈e(u), e(v)〉 dx+ λ

∫
Ω

divu divv dx

≤ µ

∫
Ω

|e(v)|2dx+
λ

2

∫
Ω

(divv)2dx+H(u). (5.42)

Since the graph of v is contained in U , we have that 〈A(v+− v−), νv〉 ≤ θ(|v+− v−|) Hn−1 -a.e. on Sv ,
so that ∫

Sv

〈A(v+ − v−), νv〉 dHn−1 ≤
∫
Sv

θ(|v+ − v−|) dHn−1. (5.43)

By (5.40), (5.41), (5.42), and (5.43), we deduce that H1(v) ≤ H(v) for every v ∈ SBD(Ω) whose graph
is contained in U .

We conclude this example by noticing that the existence of a weak solution in W 1,2(Ω; Rn) for
the Dirichlet boundary value problem associated with the equation (5.38) is guaranteed if µ > 0 and
2µ + 3λ > 0; moreover, the additional requirements of regularity for u are always satisfied in any open
subset Ω′ ⊂⊂ Ω (see [10]).

Example 5.16 Let Ω be a product of the form (0, a)×V , where V is a regular domain in Rn−1 , and
let u be the step function defined as u(x) := 0 for 0 < x1 < c , and u(x) = h for c < x1 < a , where
c ∈ (0, a) and h ∈ RN , h 6= 0. Then, u is a Dirichlet minimizer of the Mumford-Shah functional (5.32)
in Ω if |h|2 ≥ a .

This result generalizes Example 4.12 in [1], where u is a scalar step function.
We prove the statement by calibration. Let {e1, . . . , en} be the canonical basis of Rn . A calibration

for u is given by the pair (S,S0) with S0 ≡ 0 and

S(x, y) :=


0 if 〈y, h|h| 〉 ≤

λ
2 〈x, e1〉,

2λ
(
〈y, h|h| 〉 −

λ
2 〈x, e1〉

)
e1 if λ

2 〈x, e1〉 ≤ 〈y, h|h| 〉 ≤
λ
2 〈x, e1〉+ λ

2a,

aλ2e1 if 〈y, h|h| 〉 ≥
λ
2 〈x, e1〉+ λ

2a,

(5.44)

where λ := 1/
√
a . Some direct computations show that

|DyS(x, y)|2 =

{
4λ2 if λ

2 〈x, e1〉 ≤ 〈y, h|h| 〉 ≤
λ
2 〈x, e1〉+ λ

2a,

0 otherwise,

divS(x, y) =

{
−λ2 if λ

2 〈x, e1〉 ≤ 〈y, h|h| 〉 ≤
λ
2 〈x, e1〉+ λ

2a,

0 otherwise,
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so that condition (a1) is trivially satisfied, while condition (a2) is true if |h| ≥ λ
2x1 + λ

2a for every
x1 ∈ [c, a), which is guaranteed by the assumption |h|2 ≥ a .

One easily checks that the vector S(x, z) − S(x, y) can always be written as µe1 with |µ| ≤ 1 (µ
depending on x, y, z ), so that condition (b1) is fulfilled. As for condition (b2), since |h| ≥ λ

2 (c + a) by
the assumption |h|2 ≥ a , we have that S(x, h)− S(x, 0) = aλ2e1 − 0 = e1 for every x ∈ Su .

We note that the minimality of u can be proved by applying the scalar result to one component of
u . Take, indeed, j ∈ {1, . . . , N} such that hj 6= 0; we know that if h2

j ≥ a , then

Hn−1(Suj
) ≤

∫
Ω

|∇vj |2dx+Hn−1(Svj )

for every v ∈ SBV (Ω) with the same boundary values as u . Now, the left-hand side coincides with
MS(u), while the right-hand side is less than or equal to MS(v), since Svj ⊂ Sv . So, the Dirichlet
minimality of u is shown, but under the stronger condition h2

j ≥ a .
Actually, since the Mumford-Shah functional is invariant by rotation (and then u is a Dirichlet

minimizer if and only if R ◦ u is a Dirichlet minimizer, where R is any rotation in RN ), the scalar
result can be exploited in a more efficient way. Let R be a rotation in RN transforming the vector h/|h|
in e1 and let û := R ◦ u . Applying the argument above to the first component of û , we have that û
is a Dirichlet minimizer of MS if |h|2 ≥ a , which is the same condition we have found via vectorial
calibration theory. We also note that the calibration (5.44) can be obtained starting from the vectorfield
which calibrates û1 simply replacing the one-dimensional vertical variable by the component of the vector
y along h/|h| and following the instructions of Remark 5.8.

Example 5.17 Let Ω := B(0, r) be the open ball in R2 centred at the origin with radius r , and let
(A1, A2, A3) be the partition of Ω defined as follows:

Ai :=
{
x = (ρ cos θ, ρ sin θ) : 0 ≤ ρ < r,

2
3
π(i− 1) ≤ θ <

2
3
πi

}
.

Let u ∈ SBV (Ω; RN ) be the function defined as u := ai in each Ai , where a1, a2, a3 are three distinct
vectors in RN . In [2, Example 4.14] it is proved that, when N = 1, u is a Dirichlet minimizer of the
Mumford-Shah functional (5.32) if the values ai are sufficiently far apart, more precisely if

min{|a1 − a2|, |a2 − a3|, |a3 − a1|} ≥
√

2r. (5.45)

This result can be generalized to the vectorial case N > 1, where beside condition (5.45) we require that

max{|a1 − a2|, |a2 − a3|, |a3 − a1|} ≥
√

(2 +
√

3)r. (5.46)

Note that when N = 1 condition (5.46) is implied by (5.45): indeed, without loss of generality we can
assume that a1 ≤ a2 ≤ a3 , so that the maximum in (5.46) is a3 − a1 ; then by (5.45) we obtain

a3 − a1 = (a3 − a2) + (a2 − a1) ≥ 2
√

2r >
√

(2 +
√

3)r.

We prove the statement by calibration. For every i, j we call Sij the interface between Ai and Aj ,
which is oriented by the normal νij pointing from Ai to Aj and we suppose that the maximum in (5.46)
is given by |a1 − a2| . Let S0 ≡ 0 and

S(x, y) := [σ1(x, y) ∨ 0] ν31 + [σ2(x, y) ∨ 0] ν32,

where

σ1(x, y) := 1− |y − a1|2

r − 〈ν31, x〉
, σ2(x, y) := 1− |y − a2|2

r − 〈ν32, x〉
.
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For any r′ < r the function S is Lipschitz in B(0, r′)×RN . By direct computations we have that

|DyS(x, y)|2 = 4
|y − a1|2

(r − 〈ν31, x〉)2
1{σ1>0} + 4

|y − a2|2

(r − 〈ν32, x〉)2
1{σ2>0}

+ 4
〈y − a1, y − a2〉

(r − 〈ν31, x〉)(r − 〈ν32, x〉)
1{σ1>0, σ2>0}, (5.47)

while

[divxS](x, y) = − |y − a1|2

(r − 〈ν31, x〉)2
1{σ1>0} −

|y − a2|2

(r − 〈ν32, x〉)2
1{σ2>0}. (5.48)

Condition (a1) is therefore fulfilled if and only if 〈y − a1, y − a2〉 ≤ 0 for every y such that there exists
x ∈ B(0, r′) so that σ1(x, y) > 0 and σ2(x, y) > 0. Taking into account the definition of σ1, σ2 , this is
equivalent to require the following: if y belongs to the intersection of the ball centred at a1 with radius
(r − 〈ν31, x〉) and the ball centred at a2 with radius (r − 〈ν32, x〉), then the angle spanned by the two
vectors y − a1 and y − a2 is greater or equal to π/2. Some elementary geometric considerations show
that this is guaranteed if

|a1 − a2|2 ≥ (2r − 〈ν31, x〉 − 〈ν32, x〉) ∀x ∈ B(0, r′),

which is implied by condition (5.46).
From (5.45) it follows that σ2(x, a1) ≤ 0, so that by (5.47) and (5.48) we have |DyS(x, a1)|2 = 0 and

[divxS](x, a1) = 0. Since (5.45) implies analogously that σ1(x, a2) ≤ 0, and σ1(x, a3) ≤ 0, σ2(x, a3) ≤ 0,
we deduce that condition (a2) is satisfied.

Let (x, y), (x, z) ∈ B(0, r′)×RN . If neither (x, y) nor (x, z) belongs to {σ1 > 0, σ2 > 0} , then it is
easy to check that the vector S(x, z)−S(x, y) can be written as a linear combination λ1ν31−λ2ν32 with
either λ1, λ2 ∈ [0, 1] or λ1, λ2 ∈ [−1, 0] (depending on x, y, z ); since ν31 and −ν32 span an angle equal to
2π/3, the modulus of S(x, z)−S(x, y) is in this case less than or equal to 1. If (x, y) ∈ {σ1 > 0, σ2 > 0} ,
only two cases can occur: either S(x, z) − S(x, y) is a linear combination of ν31 and −ν32 of the same
kind as before (so, the same conclusion holds), or S(x, z)−S(x, y) can be written as µ1ν31 +µ2ν32 with
µi ∈ [0, σi(x, y)] (depending on x, y, z ). In this second case, we obtain

|S(x, z)− S(x, y)|2 ≤ σ2
1(x, y) + σ2

2(x, y) + σ1(x, y)σ2(x, y) ≤ (σ1(x, y) + σ2(x, y))2.

It is easy to see that, under condition (5.46), σ1(x, y) + σ2(x, y) ≤ 1 for every (x, y) ∈ {σ1 > 0, σ2 > 0} ,
so that (b1) is always satisfied.

Finally, using (5.45) we have that S(x, a2)−S(x, a1) = ν32 − ν31 = ν12 for every x ∈ S12 , S(x, a3)−
S(x, a2) = −ν32 = ν23 for every x ∈ S23 , while S(x, a1) − S(x, a3) = ν31 for every x ∈ S31 ; so, we can
conclude that (b2) holds true for every x ∈ Su .

We have thus proved that under conditions (5.45) – (5.46), u is a Dirichlet minimizer of MS in
B(0, r′) for every r′ < r . By an approximation argument this implies the Dirichlet minimality of u in
the whole B(0, r).

As in the previous example, the minimality of u can be proved by using the scalar result in [2]:
indeed, even if Suj is strictly contained in Su for every j , one can always find a rotation R in RN
tranforming the range of u in a set of three vectors which differ each other for the same component
and apply the scalar result to this component. This procedure leads to the following condition: u is a
Dirichlet minimizer if

max
v∈RN ,|v|=1

min {|〈a1 − a2, v〉|, |〈a2 − a3, v〉|, |〈a3 − a1, v〉|} ≥
√

2r,

which is always more restrictive than (5.45) – (5.46), except when the vectors ai − aj are collinear.



100 Chapter 5

Example 5.18 In this example we deal with the complete Mumford-Shah functional

MSα,β(u) :=
∫

Ω

|∇u|2dx+ αH1(Su) + β

∫
Ω

|u− g|2 dx, (5.49)

where Ω ⊂ R2 , g is a given function in L∞(Ω; RN ), and α, β are positive parameters.
Let {Γi}i∈I be a finite family of simple and connected curves of class C2 such that for every i Γi

is either a closed curve contained in Ω or it orthogonally meets ∂Ω. Suppose also that Γi ∩ Γh = ∅ if
i 6= h . If g is a piecewise constant function, whose discontinuity set coincides with ∪i∈IΓi , then for large
values of β the function g itself is an absolute minimizer of (5.49).

We prove the statement by calibration. We recall that conditions (a1), (a2), (b1), and (b2) in
Lemma 5.5 read for the functional (5.49) as

(a1) [divxSγ ](x, y) + S0(x) ≤ − 1
4 |DySγ(x, y)|2 + β|y − g(x)|2 for every γ ∈ A , for L2 -a.e. x ∈ Ω, and

for every y ∈ RN with (x, y) ∈ Uγ ;

(a2) [divxSγ ](x, u)+S0(x) = −|∇u(x)|2 +β|u− g|2 and (DySγ(x, u))τ = 2∇u(x) for every γ ∈ A , and
for L2 -a.e. x ∈ Ω such that (x, u(x)) ∈ Uγ ;

(b1) |S(x, z)−S(x, y)| ≤ α for H1 -a.e. x ∈ Ω and for every y, z ∈ RN such that (x, y) ∈ U , (x, z) ∈ U ;

(b2) S(x, u+)− S(x, u−) = ανu for H1 -a.e. x ∈ Su ,

where S(x, y) =
∑
γ∈A Sγ(x, y)1Uγ (x, y).

Let {Ej}j∈J be the partition of Ω generated by the family {Γi}i∈I . Then the function g can be
written as

g(x) =
∑
j∈J

aj1Ej (x),

where aj ∈ RN and aj 6= ak if j 6= k . For j < k we call Sjk the interface between Ej and Ek , oriented
by the normal νjk pointing from Ej to Ek (in other words, Sjk is the set of all x ∈ Sg such that
g−(x) = aj and g+(x) = ak ). In this way we have simply relabelled the curves Γi .

For every j < k we can construct a C1 -vectorfield ψjk : Ω → Rn such that it agrees with νjk on Sjk ,
is supported on a neighbourhood of Sjk , is tangent to the boundary of Ω, and |ψjk| ≤ 1 everywhere.
Since the curves Sjk are disjoint, the functions ψjk can be constructed in such a way that their supports
are still disjoint; moreover, if Sjk is closed, we can also assume that the support of ψjk is relatively
compact in Ω. Finally, for every j < k we define the functions λjk : RN → R as

λjk(y) := σ

(
〈y − aj , ak − aj〉

|ak − aj |2

)
,

where σ : R → [0, α] is a nondecreasing function of class C2 such that σ(t) := 1
3αt

3 for t ∈ [0, 1/8],
σ(t) := α+ 1

3α(t− 1)3 for t ∈ [7/8, 1], σ′(t) ∈ [0, 2α] for every t , and |σ′′(t)| ≤ 16α for every t .
Now we set

S(x, y) :=
∑

(j,k):j<k

λjk(y)ψjk(x), S0(x) := −α
∑

(j,k):j<k

divψjk(x)1Ek
(x),

and we claim that the pair (S,S0) is a calibration for g when β is large enough.
First of all, independently of the choice of σ , the function S has vanishing normal component on ∂Ω

because of the choice of ψjk , so that condition (5.13) of Theorem 5.7 is satisfied.
Using the fact that the supports of the functions ψjk are disjoint, and that |ψjk| ≤ 1, while λjk takes

values only on [0, α] , it is easy to see that condition (b1) is fulfilled.
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Since Sg is the union of the disjoint curves {Sjk}j<k , for every x ∈ Sg there exists one and only one
pair (j, k) with j < k such that x ∈ Sjk , so that

S(x, g+(x))− S(x, g−(x)) = (λjk(ak)− λjk(aj))ψjk(x) = (σ(1)− σ(0)) νjk(x) = ανg(x).

Therefore, also condition (b2) is satisfied.
By direct computations we obtain that

[divxS](x, y) =
∑

(j,k):j<k

λjk(y) divψjk(x),

while

DyS(x, y) =
∑

(j,k):j<k

σ′
(
〈y − aj , ak − aj〉

|ak − aj |2

)
ψjk(x)⊗

ak − aj
|ak − aj |2

.

If x ∈ Eh for any h ∈ J , then

[divxS](x, g(x)) = [divxS](x, ah) =
∑
j<h

λjh(ah) divψjh(x) +
∑
k>h

λhk(ah) divψhk(x)

= α
∑
j<h

divψjh(x),

where the last equality follows from the fact that λjh(ah) = σ(1) = α , while λhk(ah) = σ(0) = 0.
Arguing analogously, since σ′(0) = σ′(1) = 0, we have that DyS(x, g(x)) = 0, so that, taking into
account the definition of S0 , condition (a2) is satisfied.

It remains to prove condition (a1). Let (x, y) ∈ Ω×RN . If x does not belong to any of the supports
of the functions ψjk , then [divxS](x, y) = 0, S0(x) = 0, and DyS(x, y) = 0, so (a1) is trivially satisfied.
If x belongs to the support of ψjk for any j < k , then

[divxS](x, y) = λjk(y) divψjk(x), S0(x) = −α divψjk(x)1Ek
(x),

DyS(x, y) = σ′
(
〈y − aj , ak − aj〉

|ak − aj |2

)
ψjk(x)⊗

ak − aj
|ak − aj |2

;

if we write the vector y − aj as the sum v + t(ak − aj) where v ∈ RN is orthogonal to ak − aj , and
t ∈ R , condition (a1) turns to be equivalent to

divψjk(x)(σ(t)− α1Ek
(x)) ≤ −1

4
|ψjk(x)|2|σ′(t)|2 + β|v + t(ak − aj) + aj − g(x)|2. (5.50)

Since we are assuming that x is in the support of ψjk , x belongs either to Ej or to Ek . When x ∈ Ej ,
inequality (5.50) reduces to

divψjk(x)σ(t) ≤ −1
4
|ψjk(x)|2|σ′(t)|2 + β|v|2 + β|ak − aj |2t2,

which is implied by

divψjk(x)σ(t) ≤ −1
4
|ψjk(x)|2|σ′(t)|2 + β|ak − aj |2t2. (5.51)

So, let us prove (5.51) for every t ∈ R and x ∈ Ej . Since in (5.51) the equality holds for t = 0, it is
enough to show the following inequality

divψjk(x)σ′(t) < −1
4
|ψjk(x)|22σ′(t)σ′′(t) + 2β|ak − aj |2t for t > 0 , (5.52)
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and the opposite inequality for t < 0. Since σ′ ≡ 0 for t > 1, inequality (5.52) is trivially satisfied for
t > 1. For 0 < t ≤ 1, (5.52) follows immediately from

−‖divψjk‖∞σ′(t) >
1
2
σ′(t)|σ′′(t)| − 2β|ak − aj |2t,

which is satisfied (taking into account the structure of the function σ ) for

β|ak − aj |2 > 8α‖divψjk‖∞ + 64α2.

The same condition implies also the opposite inequality for t < 0. Moreover, the same argument can be
applied in the case x ∈ Ek .

In conclusion, condition (a1) is fulfilled for β > β0 , where β0 is defined by

β0 := max
(j,k):j<k

1
|ak − aj |2

(
8α‖divψjk‖∞ + 64α2

)
. (5.53)

We conclude this example by noticing that this result generalizes Example 5.5 in [2], where g is the
characteristic function of a regular set. As in the previous examples, the vectorial statement can be
proved by applying the scalar result to one suitable component of g , but this leads to a worse estimate
on β0 .

5.4 Calibrations in terms of closed differential forms

In this section we develop the theory of calibrations in terms of differential forms. The scalar method
presented in Section 1.3 involves a divergence-free vectorfield on Ω×R (and its flux through the complete
graph of the maps u), which is now replaced by a closed n -form on Ω×RN , acting on the graphs of the
maps u , viewed as suitably defined n -surfaces in Ω×RN .

As we will see, this formulation is indeed not preferable to the one described in Section 5.1, since it
leads to the same kind of conditions, requiring a greater technical effort.

For simplicity we restrict our discussion to piecewise smooth functions u ∈ SBV (Ω; RN ) in the sense
of the following definition.

Definition 5.19 We say that a function u ∈ SBV (Ω; RN ) is piecewise smooth, and we write u ∈ A(Ω) ,
if the following conditions are satisfied: up to an Hn−1 -negligible set, Su is a finite union of pairwise
disjoint (n − 1)-dimensional boundaryless C1 -manifolds of Rn ; u is C1 on Ω \ Su up to Su , that is
u ∈ C1(Ω \ Su; RN ) and there exist the limits of u and ∇u on both sides of (the regular part of) Su .

For u ∈ A(Ω) we define the n -surfaces

Σu := {(x, y) ∈ Ω×RN : x ∈ Su and ∃ t ∈ [0, 1] such that y = tu+(x) + (1− t)u−(x)},

Γu := graphu ∪Σu.
Using notation from [19], let us consider an n -form

ω : Ω×RN → ∧nRn+N ,

ω(x, y) =
∑

|α|+|β|=n

ωαβ(x, y) dxα ∧ dyβ ,

whose coefficients ωαβ are of class C1 , and for u ∈ A(Ω) the following functional∫
Γu

ω, (5.54)
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where the orientation of Γu will be defined later in a precise way.
If ω is a closed form, then the functional (5.54) is constant on the functions u which take the same

value on ∂Ω. Moreover, if F is the functional (5.1), and if∫
Γv

ω ≤ F (v) for every v ∈ A(Ω),

and ∫
Γu

ω = F (u) for a given u ∈ A(Ω),

(5.55)

then u is a Dirichlet minimizer of F in the class A(Ω).
Let us now look for pointwise conditions on the coefficients of the form ω which guarantee (5.55).
By definition we have that ∫

Γu

ω =
∫

graphu

ω +
∫

Σu

ω. (5.56)

On the graph of u we consider the natural orientation given by the parameterization x ∈ Ω \ Su 7→
(x, u(x)), so that ∫

graphu

ω =
∑

|α|+|β|=n

∫
Ω

ωαβ(x, u(x))µαβ(x) dx, (5.57)

where

µαβ(x) := ε(α) det
(
∂uβ
∂xα̂

(x)
)
.

In the previous formula α̂ denotes the increasing complement of α in {1, . . . , n} , ε(α) is the sign of
permutation of (1, . . . , n) into (α, α̂), and ∂uβ

∂xα̂
is the |β|×|β| matrix ∂uβi

∂xα̂j
.

On Σu we consider the orientation given by the following parameterization: since u ∈ A(Ω), without
loss of generality, we may assume that Su is an (n−1)-dimensional C1 -manifold of Rn without boundary
and that Su can be covered by just one parameter patch γ : S → Su , where S is an (n− 1)-dimensional
domain (the general case can be easily obtained by summing over the C1 -pieces). Assume that γ yields
νu as orientation, that is the vector

η(γ(σ)) :=
n∑
i=1

(−1)n−i det
(
dγ̂ı
dσ

(σ)
)
ei

(where {e1, . . . , en} is the canonical basis of Rn ) satisfies

η(γ(σ))
|η(γ(σ))|

= νu(γ(σ)) ∀σ ∈ S.

We consider as parameterization of Σu the function φ = (φx, φy) : S×[0, 1] → Ω×RN defined as
φx(σ, t) := γ(σ), φy(σ, t) := tu+(γ(σ)) + (1 − t)u−(γ(σ)) for every (σ, t) ∈ S×[0, 1], so that the second
integral in (5.56) is given by∫

Σu

ω =
∑

|α|+|β|=n

∫ 1

0

∫
S

ωαβ(φ(σ, t)) det
(
∂φαβ
∂(σ, t)

(σ, t)
)
dσdt, (5.58)

where φαβ = (φxα1
, . . . , φxαp

, φyβ1
, . . . , φyβq

) for |α| = p and |β| = q = n − p . By direct computations one
can find that

det
(
∂φ0̂0

∂(σ, t)

)
= 0,
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while for every 1 ≤ i ≤ n , 1 ≤ j ≤ N

det
(
∂φı̂j

∂(σ, t)

)
= (u+

j − u−j ) det
(
dγ̂ı
dσ

)
= (−1)n−i(u+

j − u−j )(νu)i|η|,

where all the functions at the right-hand side are computed at γ(σ). Finally, by straightforward compu-
tations, if we set a := α̂ , for |a| = |β| = q ≥ 2 it results that

det
(
∂φαβ
∂(σ, t)

)
=

q∑
m,k=1

ε(α, abk)(−1)n−q+m−ak(u+
βm

− u−βm
) det

(
∂(tu+ + (1− t)u−)βcm

∂xabk

)
(νu)ak

|η|,

where βbm , abk are the increasing complement of βm in {β1, . . . , βq} and of ak in {a1, . . . , aq} , respec-
tively, while ε(α, abk) is the sign of permutation of (α, abk) in âk ; again all the functions at the right-hand
side are computed at γ(σ). Set wt := tu+ +(1− t)u− and substitute all the above expressions in formula
(5.58); since |η| dσ is the area element of the manifold Su parameterized by γ , we obtain∫

Σu

ω =
∑
i,j

∫ 1

0

∫
Su

(−1)n−iωı̂j(x,wt)(u+
j − u−j )(νu)i dHn−1dt

+
∑

|a|=|β|=q
q≥2

∫ 1

0

∫
Su

ωâβ(x,wt)
q∑

m,k=1

ε(α, abk)(−1)n−q+m−ak(u+
βm

− u−βm
) det

(
∂wtβcm
∂xabk

)
(νu)ak

dHn−1dt

=:
∫
Su

gω(x, u−, u+,∇u−,∇u+, νu) dHn−1, (5.59)

where the last equality follows from changing the order of integration and calling gω the integrand with
respect to Hn−1 . Now we wonder what kind of conditions on ωαβ guarantee that

gω(x, u−, u+,∇u−,∇u+, νu) ≤ ψ(x, u−, u+, νu) on Su (5.60)

for every admissible u . The answer is given by the following proposition.

Proposition 5.20 Inequality (5.60) holds true for every u ∈ A(Ω) if and only if the following conditions
are satisfied:

(b0’) ωαβ ≡ 0 for every α, β such that |β| ≥ 2 , |α|+ |β| = n ;

(b1’)
∑
i,j

∫ 1

0

(−1)n−iωı̂j(x, tz+(1−t)y)(zj−yj)νi dt ≤ ψ(x, y, z, ν) for every x ∈ Ω , for every y, z ∈ RN ,

and for every ν ∈ Sn−1 .

Moreover, the equality holds for a given u if and only if

(b2’)
∑
i,j

∫ 1

0

(−1)n−iωı̂j(x, tu+ + (1− t)u−)(u+
j − u−j )(νu)i dt = ψ(x, u−, u+, νu) for every x ∈ Su .

Proof. – Let (x, y) ∈ Ω×RN , and let us prove that ωαβ(x, y) = 0 for |α̂| = |β| = 2. By renumbering
the coordinates of x and y , we may suppose that β = (1, 2) and a = α̂ = (1, 2). Given C ∈ R , we
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can construct u ∈ A(Ω) such that x ∈ Su , ∇u−(x) = ∇u+(x) (hence ∇wt(x) = ∇u−(x) for every
t ∈ [0, 1]), and ∂xiw

t
j(x) = 0 for every (i, j) 6= (1, 1) and ∂x1w

t
1(x) = C . With this choice we have that

gω(x, u−, u+,∇u−,∇u+, νu) =
∑
i,j

∫ 1

0

(−1)n−iωı̂j(x,wt)(u+
j − u−j )(νu)i dt

+ C
∑

i 6=1,j 6=1

∫ 1

0

(−1)iω(c1,i)(1,j)(x,wt)(u+
j − u−j )(νu)i dt.

Since the value of C is arbitrary and independent of u−(x), u+(x), νu(x), inequality (5.60) implies that∑
i 6=1,j 6=1

∫ 1

0

(−1)iω(c1,i)(1,j)(x,wt)(u+
j − u−j )(νu)i dt = 0 (5.61)

whatever are the values of u−(x), u+(x), νu(x). Choosing νu(x) such that (νu(x))i = 0 for every i 6= 2,
(νu(x))2 = 1, we have that (5.61) is equivalent to∑

j 6=1

∫ 1

0

ω( c1,2)(1,j)(x,wt)(u+
j − u−j ) dt = 0 (5.62)

whatever are the values of u−(x), u+(x). Choosing u−(x) = y , while u+
j (x) = yj for every j 6= 2,

u+
2 (x) = y2 + c with c 6= 0, we obtain that (5.62) is equivalent to

c

∫ 1

0

ω( c1,2)(1,2)(x, y1, y2 + ct, y3, . . . , yN ) dt = 0 (5.63)

for every c 6= 0. By a change of variables, (5.63) can be rewritten as∫ y2+c

y2

ω( c1,2)(1,2)(x, y1, s, y3, . . . , yN ) ds = 0. (5.64)

Since (5.64) has to be true for every c 6= 0, this implies that ω( c1,2)(1,2)(x, y) = 0.
Using the fact that the coefficients ωαβ ≡ 0 for every |β| = 2, we can repeat the same proof to show

that ωαβ ≡ 0 for every |α̂| = |β| = 3, and so on.
We have thus proved that (5.60) implies condition (b0’). At this point, it is trivial that (5.60) implies

also condition (b1’), and that the equality holds in (5.60) for a given u if and only if also (b2’) is satisfied.
2

Summarizing, if conditions (b0’) and (b1’) hold true, by Proposition 5.20 inequality (5.60) is satisfied,
hence by (5.59) we have that ∫

Σu

ω ≤
∫
Su

ψ(x, u−, u+, νu) dHn−1 (5.65)

for every u ∈ A(Ω), while the equality holds in (5.65) for a given u if and only if also (b2’) is verified.
Assuming that ω satisfies condition (b0’), formula (5.57) reduces to∫

graphu

ω =
∫

Ω

ω0̂0(x, u(x)) +
∑
i,j

(−1)n−iωı̂j(x, u(x))∂xiuj(x)

 dx

=
∫

Ω

(ω0̂0(x, u(x)) + 〈Aω(x, u(x)),∇u(x)〉) dx,

where in the last equality (Aω(x, y))ji := (−1)n−iωı̂j(x, y). It is easy to see that, if we require the
following condition:
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(a1’) ω0̂0(x, y) ≤ −f∗(x, y,Aω(x, y)) for Ln -a.e. x ∈ Ω and every y ∈ RN ,

then ∫
graphu

ω ≤
∫

Ω

f(x, u,∇u) dx

for every u ∈ A(Ω); moreover, the equality holds for a given u if and only if

(a2’) (Aω)ij(x, u(x)) ∈ ∂ξij
f(x, u(x),∇u(x)) and ω0̂0(x, u(x)) = −f∗(x, u(x), Aω(x, u(x))) for Ln -a.e.

x ∈ Ω.

Therefore by (5.56) we can conclude that (5.55) is guaranteed if conditions (a1’), (a2’), (b0’), (b1’),
and (b2’) are satisfied. In other words, we have proved the following theorem.

Theorem 5.21 Let u be a function in A(Ω) . Assume that there exists a closed n-differential form
ω : Ω×RN → ∧nRn+N with coefficient of class C1 and satisfying condition (a1’), (a2’), (b0’), (b1’), and
(b2’). Then u is a Dirichlet minimizer of the functional (5.1) in the class A(Ω) .

We conclude this section by proving that, if u ∈ A(Ω) and there exists a differential form ω which
calibrates u in the sense of Theorem 5.21, then there exists a calibration (S,S0) for u in the sense of
Definition 5.6.

Proposition 5.22 Let u be a function in A(Ω) and let ω : Ω×RN → ∧nRn+N be a closed n-differential
form satisfying all the assumptions of Theorem 5.21. Then there exists a calibration (S,S0) for u , with
S ∈ C2(Ω×RN ; Rn) and S0 ∈ C1(Ω) .

Proof. – First of all, we notice that from condition (b0’) it follows that

ω(x, y) = ω0̂0(x, y) dx+
∑
i,j

ωı̂j(x, y) dxı̂ ∧ dyj .

Since ω is a closed form, by computing explicitly the exterior derivative of ω , we obtain that the
coefficients ω0̂0, ωı̂j satisfy the two following equations:

n∑
i=1

(−1)n−i
∂ωı̂j

∂xi
(x, y)− ∂ω0̂0

∂yj
(x, y) = 0 1 ≤ j ≤ N, (5.66)

(−1)n−i
∂ωı̂j

∂yk
(x, y) = (−1)n−i

∂ωı̂k

∂yj
(x, y) 1 ≤ i ≤ n, 1 ≤ j, k ≤ N. (5.67)

The last condition is equivalent to require that for every i the vector ((−1)n−iωı̂j(x, y))j=1,...,N is
the gradient with respect to y of a function of class C2 ; more precisely, there exists a function S ∈
C2(Ω×RN ; Rn) such that

∂yjSi(x, y) = (−1)n−iωı̂j(x, y) 1 ≤ i ≤ n, 1 ≤ j ≤ N. (5.68)

Equation (5.66) can be therefore rewritten as

0 =
n∑
i=1

∂2Si
∂xi∂yj

(x, y)− ∂ω0̂0

∂yj
(x, y) = ∂yj

[
n∑
i=1

∂xi
Si(x, y)− ω0̂0(x, y)

]
1 ≤ j ≤ N,
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and then there exists a function S0 : Ω → R of class C1 such that ω0̂0(x, y) = [divxS](x, y) + S0(x). By
substituting this equality and (5.68) in conditions (a1’) and (a2’), we directly obtain that the pair (S,S0)
satisfies conditions (a1) and (a2) of Lemma 5.4. Since the left-hand side in (b1’) can be rewritten as

∑
i,j

∫ 1

0

(−1)n+iωı̂j(x, tz + (1− t)y)(zj − yj)νi dt

=
∑
i,j

∫ 1

0

∂yjSi(x, tu+ + (1− t)u−)(u+
j − u−j )(νu)i dt

=
n∑
i=1

∫ 1

0

d

dt
[Si(x, tu+ + (1− t)u−)](νu)i dt

=
n∑
i=1

[Si(x, u+)− Si(x, u−)](νu)i

= 〈S(x, u+)− S(x, u−), νu〉,

condition (b1’) implies that the function S satisfies condition (b1) of Lemma 5.4, and in the same way
(b2’) implies (b2). 2
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