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Abstract

Based on [17] we introduce and study a mathematical framework for analysis-suitable unstructured B-

spline spaces. In this setting the parameter domain has a manifold structure which allows for the definition

of function spaces such as, for instance, B-splines over multi-patch domains with extraordinary points

or analysis-suitable unstructured T-splines. Within this framework, we generalize the concept of dual-

compatible B-splines (developed for structured T-splines in [5]). This allows us to prove the key properties

that are needed for isogeometric analysis, such as linear independence and optimal approximation prop-

erties for h-refined meshes.

1. Introduction

Isogeometric analysis (IgA), as it was introduced in [20], is a discretization method that directly

uses the geometry models as they are present in CAD for the numerical solution of partial differential

equations, without the need of generating a mesh. In the basic setting of IgA the physical domain of

interest is parametrized by tensor-product B-splines or NURBS, therefore it has to be diffeomorphic to a

rectangle or hexahedron. In a broader context, the discretization is based on the geometry representation

as it is implemented in the CAD system. Hence, there is a need for a more flexible geometry representation

beyond tensor-product splines. Within the CAD community there exist several approaches to enhance the

geometric flexibility, such as multi-patch representations, unstructured T-splines or subdivision methods,

among others. These approaches have been also applied in IgA, with the same objective of obtaining

more flexible representations of the physical domain.

The first attempts to introduce more complicated geometric models in IgA were focused on multi-

patch representations, already addressed in [13], and developed in several recent contributions [23, 3, 24,

35, 21, 8]. The idea is to define the domain as the image of several rectangles (or hexahedra), called

patches, that have to be glued together at the interfaces. In most constructions the basis functions are

only C0 across patch interfaces, but we want to point out the recent paper [8], in which the smoothness

across patch interfaces is enhanced away from extraordinary features.

Another way to handle complex geometries is to use a specific space of non-tensor product functions,

such as unstructured T-splines [31]. In this case, the T-spline functions are defined via their contributions

within the (quadrilateral or hexahedral) elements of a T-mesh, and the underlying elemental T-mesh has

a manifold structure. The construction of unstructured T-splines for their use in IgA has been studied in

[33, 34], reducing the continuity of the spline functions in the vicinity of extraordinary features, as well

as in [30], in this case raising the degree in the elements adjacent to extraordinary points.
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Smooth constructions over general meshes can also be introduced by means of subdivision surfaces.

They have been studied in the context of IgA in, e.g., [1, 9, 11, 12, 22]. While subdivision constructions

are based on a manifold, they do not fit into our specific spline manifold framework, since we require

the functions to be piecewise polynomials on a given mesh. Indeed, function spaces based on classical

subdivision schemes (e.g., Doo-Sabin [16] for biquadratics or Catmull-Clark [10] for bicubics) are spanned

by B-splines but also by special functions near extraordinary points. These special functions are piecewise

polynomials over infinitely many rings of quadrilateral elements.

Despite their differences, all these approaches have in common an underlying manifold structure which

allows to handle complex geometries with extraordinary points or edges. In this work we propose the use

of spline manifold spaces to introduce a common general framework that is valid for the definition and

the study of these different approaches. We note that it is not the purpose of this paper to introduce a

new way to define or implement unstructured spline spaces. The aim is rather to develop a framework

for studying the theoretical properties of a wide range of spline representations over non-rectangular

parameter domains based on manifolds. It is worth to remark that an exhaustive, uniform mathematical

theory for all the approaches mentioned above is still missing. We would also like to point out that

we do not address the problem of trimming here, even though it is a standard procedure in CAD. The

concept of trimming extends the flexibility of the geometry representation and it can be generalized

straight-forwardly to spline manifolds.

The idea of spline manifolds was first developed in [17], where the authors present a constructive

approach to build a manifold from a polyhedral “sketch” using splines. Despite the constructive approach

in the paper, the method relies on an abstraction of the concept of geometry parametrization, that includes

parameter domains with a manifold structure. This structure is then inherited by the constructed physical

domain. Our framework for the analysis of unstructured spline spaces makes use of this abstraction, that

we briefly review now.

We consider a domain Σ ⊂ Rn which can be interpreted as a d-dimensional manifold with d ≤ n, but

we mostly focus on planar surfaces (d = n = 2), three-dimensional surfaces (d = 2, n = 3) and volumetric

domains (d = n = 3). In an abstract setting, the manifold Σ is defined by an atlas, i.e., a family of charts

Σi such that they cover completely the domain

Σ =

N⋃
i=1

Σi,

together with a collection of suitable transition maps between intersecting charts Σi and Σj . In the setting

introduced in [17], one first defines a family of open parameter subdomains Ωi, along with a spline space

on each subdomain. Then each chart is the image of a spline parametrization Gi : Ωi → Σi. The union of

the subdomains Ωi forms an unstructured parameter domain Ω, and suitable transition functions between

the parametric subdomains endow Ω with a manifold structure. Introducing a relation between the spline

spaces on the subdomains, this manifold structure is then inherited by the physical domain Σ.

Notice that to cover completely the domain Σ, the charts Σi, and also the open parameter subdomains

Ωi must overlap. Hence, in order to cover the extraordinary points (or edges) it is necessary that some

of the subdomains Ωi also have an unstructured configuration, and non-tensor product spline functions

need to be defined. This is in contrast to traditional multi-patch representations, where only the patch
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boundaries intersect, and the (closed) domain is defined as the union of the closure of the patches.

Although the framework of spline manifolds can be used to define and study the constructions men-

tioned above, namely, multi-patch configurations and unstructured T-splines, it is out of the scope of

this paper to analyse each of them. Instead, we will apply the framework to generalize the concept of

dual-compatible T-splines, introduced in [4, 5] for structured T-splines, to unstructured T-splines with

low continuity in the neighbourhood of the extraordinary points. With the dual-compatibility condition

it is possible to define a dual basis, which is then used to prove that these spaces have the key properties

that are needed for their use in IgA, such as linear independence of the basis functions, and optimal

approximation properties under h-refinement.

The remainder of the paper is organized as follows. In Section 2 we recall in detail the notion of

a parameter manifold as presented in [17]. We introduce the mesh on the parameter manifold and

corresponding mesh constraints in Section 3. In Section 4 we introduce spline manifold spaces based on

tensor product B-splines and relate them to existing constructions [8, 33, 34, 30]. Finally, we develop

the framework of analysis suitable spline manifold spaces in Section 5, where we extend the notion of

dual-compatibility to B-spline manifolds. In the main part of the paper we assume that the manifold

has no boundary. For a more detailed study of spline manifolds with boundary see Appendix A. We

conclude the paper and present possible extensions in Section 6.

2. Parameter manifold

Before we can define unstructured spline spaces on manifolds we need to introduce the abstract

representation of the parameter domain, the so-called parameter manifold. The following definitions are

taken from [17]. The definitions are valid for arbitrary dimension d, but we will mostly consider d = 1, 2, 3.

Definition 1 (Proto-manifold). A proto-manifold of dimension d consists of

• a finite set {ωi}i=1,...,N (named proto-atlas) of charts ωi, that are open polytopes ωi ⊂ Rd, line

segments for d = 1, polygons for d = 2 or polyhedra for d = 3;

• a set of open transition domains {ωi,j}i,j=1,...,N that are polytopes such that ωi,j ⊂ ωi, ωi,i = ωi,

and each ωi,j is the interior of its closure;

• a set of transition functions {ψi,j}i,j=1,...,N , that are homeomorphisms ψi,j : ωi,j → ωj,i fulfilling the

cocycle condition ψj,k ◦ ψi,j = ψi,k in ωi,j ∩ ωi,k for all i, j, k = 1, . . . , N ;

• For every i, j, with i 6= j, for every ζi ∈ ∂ωi,j ∩ ωi and ζj ∈ ∂ωj,i ∩ ωj , there are open balls, Vζi
and

Vζj
, centered at ζi and ζj , such that no point of Vζj

∩ ωj,i is the image of any point of Vζi
∩ ωi,j by

ψj,i.

In Figure 1 we visualize the cocycle condition, depicting three domains ωi, ωj and ωk and respective

transition functions ψi,j , ψj,k and ψi,k. The hatched regions represent corresponding transition domains.

The transition domains ωi,j may be empty. It follows directly from the cocycle condition that the

transition function ψi,i is the identity function on ωi,i = ωi and that ψ−1
i,j = ψj,i for all i, j.
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Figure 1: Visualization of the cocycle condition

Remark 1. The last condition in Definition 1 is taken from [32]. It guarantees that the proto-manifold

actually represents a manifold, i.e. that there are no bifurcations of the domain. Note that this condition

is not necessary for the following definitions. However, if the condition is omitted, the resulting object is

not a manifold anymore.

By merging and identifying the charts of the proto-manifold we obtain a manifold, which will serve

as the parameter domain in our setting, thus the name parameter manifold.

Definition 2 (Parameter manifold). Given a proto-manifold, the set

Ω =

 ⊔
i=1,...,N

ωi

/ ∼ (1)

is called a parameter manifold. Here
⊔

denotes the disjoint union, i.e.,⊔
i=1,...,N

ωi = {[ζi, i], ζi ∈ ωi, i = 1, . . . , N}

and the equivalence relation ∼ is defined for all ζi ∈ ωi and ζj ∈ ωj , as

[ζi, i] ∼ [ζj , j]⇔ ψi,j(ζi) = ζj .

We denote by πi(ζi) ∈ Ω the equivalence class corresponding to ζi ∈ ωi.

In the following we use the notation Ωi = πi(ωi) and Ωi,j = πi(ωi,j), where Ωi,Ωi,j ⊂ Ω. Hence we

have Ωi,j = Ωj,i = Ωi ∩ Ωj . Note that πi is a one-to-one correspondence between each ωi and Ωi, and

plays the role of a local representation.

To motivate the definition (and wording) above, we recall the following result, which states that Ω is

indeed a manifold (see [17, 32]).

Proposition 1. Given a proto-manifold, the set Ω as in Definition 2 is a topological manifold, where the

inverse π−1
i of the mapping πi is the coordinate chart corresponding to the set Ωi ⊂ Ω.
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To be more precise, a parameter manifold is a class of piecewise smooth manifolds, which is a sub-class

of topological manifolds and a super-class of smooth manifolds. It is similar to the concept of piecewise

linear manifolds (see [28]). Depending on its local structure, the parameter manifold is either C0 or C∞

locally. In general the parameter manifold is globally C0 and piecewise C∞.

We assume that there exists a metric on Ω, that allows us to introduce the usual Lebesgue space

L2(Ω). In Section 5 we present in more detail the function spaces that are necessary for the analysis.

3. Mesh and mesh constraints on the parameter manifold

We introduce the general concept of a mesh T on a parameter manifold Ω in Section 3.1 and then

develop the specific configurations we consider in Section 3.2. Following that, we present some example

configurations and discuss about the meshing of complex geometries in Section 3.3.

3.1. Mesh on a parameter manifold

First we define a proto-mesh on the charts.

Definition 3. A proto-mesh on a proto-manifold is a collection of conforming meshes, i.e. it is a set

{τi}i=1,...,N with τi = {q ⊂ ωi}, (2)

where

• each set τi is composed of open polytopes q, called elements; these are intervals, quadrilaterals,

hexahedra, etc., depending on the dimension d = 1, 2, 3, . . ., respectively, and each set τi is a mesh

on ωi, i.e. the elements are disjoint and the union of the closures of the elements is the closure of

ωi;

• for every i, j, ωi,j is the interior of the union of the closure of elements of τi; and

• the transition functions ψi,j map elements onto elements, i.e.

∀q ∈ τi, ψi,j(q) ∈ τj . (3)

Furthermore, we have the following.

Assumption 4. The transition functions are continuous piecewise d-linear mappings with respect to the

mesh.

The proto-mesh naturally defines a mesh on Ω.

Definition 5 (Mesh on Ω). We define the mesh on the parameter manifold Ω as

T = {Q ⊂ Ω : Q = πi(q), q ∈ τi, i = 1, . . . , N}. (4)

Remark 2. Thanks to (3), the set T in (4) is indeed a well defined mesh on Ω. The elements of T are

subsets of Ω that fulfill the standard properties of a mesh, i.e. the elements are disjoint, the union of the

closures of the elements is the closure of Ω. Since Ω is a topological manifold the notion of the closure of

elements, boundary edges, faces, etc. is well defined and derives from the local definition on each chart

and the equivalence relation given by the transition functions.
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3.2. Structured and unstructured charts on the parameter manifold

In the following we classify and restrict to specific but relevant charts, depending on their local mesh

topology.

We will say that several objects share a common object A, if A is contained in the closure of each of

the objects. Mesh objects and properties defined on the charts can be carried over to the mesh T on Ω.

We will not distinguish between the mesh T on Ω and the proto-mesh defined on the charts, unless it is

necessary. The relations between vertices, edges, faces and elements are stated within the global mesh.

Moreover, these geometric objects are always assumed to be open.

Definition 6 (Structured chart). A d-dimensional chart ωi is called a structured chart if

(a) ωi is a d-box, that is

ωi =
d∏
`=1

]ai,`, bi,`[ ,

and τi is a box mesh (see, e.g., [15]);

(b) for every j, ωi,j is a d-box or the union of d-boxes with disjoint closures; and

(c) for every j, if ωj is a structured chart then the transition function ψi,j : ωi,j → ωj,i is an affine

mapping (a linear polynomial) in each connected component of ωi,j .

Considering unstructured charts we need to distinguish three different types, depending on the di-

mension and on the topological structure.

Definition 7 (Unstructured vertex chart, two-dimensional). A two-dimensional chart ωi is called an

unstructured vertex chart with an associated extraordinary vertex ξi ∈ R2 of valence ki 6= 4 if

(a) ωi is formed by a ring of ki conforming quadrangular segments si,`, with ` = 1, . . . , ki, around ξi,

where each segment has a mesh σi,` which is topologically equivalent to a box mesh, and the mesh

τi is given as the union of the meshes σi,`;

(b) ωi, except for the extraordinary vertex ξi, is covered by the transition domains ωi,j with structured

charts, i.e. ⋃
j=1,...,N

ωj structured

ωi,j = ωi \ ξi,

and the transition domains ωi,j are given by the union of segments; and

(c) if ωj is an unstructured chart with i 6= j, then ωi,j = ∅.

To give more insight into the definition of an unstructured vertex chart via its segments, we present

some example configurations, which are all constructed from the same three conforming segments. Fig-

ure 2(a) depicts a mesh where each segment is covered by a single element. Figure 2(b) depicts a con-

forming mesh and Figure 2(c) contains two hanging vertices, hence it is a non-conforming mesh. This

figure also tells that the non-conformity of the mesh over the unstructured vertex chart may have two

reasons, either the meshes on two neighbouring segments do not match (upper right hanging vertex) or

the T-node is already present within the mesh σi,` on the segment (lower left hanging vertex).
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(a) (b) (c)

Figure 2: Examples of meshes on a ring of three conforming segments around a two-dimensional extraordinary vertex of

valence 3

Definition 8 (Unstructured edge chart). A three-dimensional chart ωi is called an unstructured edge

chart of valence ki 6= 4 if

(a) ωi =
�
ωi × ω̄i, where the chart

�
ωi is a two-dimensional unstructured vertex chart, as in Definition 7

(a), with an extraordinary point
�
ξi of valence ki, partitioned into two-dimensional segments

�
si,` for

` = 1, . . . , ki; ω̄i is an interval ω̄i = ]ai,3, bi,3[; each three-dimensional segment si,` =
�
si,` × ω̄i has a

mesh σi,` which is equivalent to a three-dimensional box mesh, and the mesh τi is again given as

the union of all meshes σi,` on the segments;

(b) ωi, except for the extraordinary line
�
ξi × ω̄i, is covered by transition domains ωi,j with structured

charts, i.e. ⋃
j=1,...,N

ωj structured

ωi,j = ωi \
�
ξi × ω̄i,

and the transition domains ωi,j are given as the Cartesian product of the union of two-dimensional

segments with an interval in the third direction;

(c) for structured charts ωj the transition function ψi,j is linear in the third coordinate ζ3; and

(d) if ωj is an unstructured edge chart with i 6= j and ωi,j 6= ∅, then there exists a structured chart ωk

as well as an unstructured vertex chart ω` such that ωi,j ⊆ ωi,k and ωi,j ⊆ ωi,`.

Definition 9 (Unstructured vertex chart, three-dimensional). A three-dimensional chart ωi is called an

unstructured vertex chart with an associated extraordinary vertex ξi ∈ R3 of valence ki if

(a) ωi is formed by a ring of ki conforming hexahedral segments si,`, with ` = 1, . . . , ki, around ξi,

where each segment has a mesh σi,` which is topologically equivalent to a box mesh, and the mesh

τi is given as the union of the meshes σi,` on the segments si,`;

(b) ωi, except for the extraordinary vertex ξi, is covered by the transition domains ωi,j with structured

charts or unstructured edge charts , i.e., ⋃
j=1,...,N

ωjstructured or unstructured edge chart

ωi,j = ωi \ ξi,
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and the transition domains ωi,j are given by the union of segments; and

(c) if ωj is an unstructured vertex chart with i 6= j, then ωi,j = ∅.

Note that from Definition 8(b) and Definition 9(b) it follows that for every unstructured vertex chart in

3D the transition domains with structured charts cover everything, except for the extraordinary features

(union of extraordinary vertex and extraordinary edges). In particular, the interior ef every element is

covered.

Remark 3. We would like to point out that Definitions 7(c), 8(d) and 9(c) are not strictly necessary,

but technicalities to simplify the definition of spline manifold spaces in Section 4. The conditions in

Definitions 7(c) and 9(c) guarantee that unstructured vertex charts do not overlap. Considering Definition

8(d), the set ωi,j forms a structured mesh (i.e. it does not contain extraordinary features in its interior).

Therefore, the condition ωi,j ⊆ ωi,k for some structured chart Ωk is natural. Moreover, unstructured edge

charts cover unstructured edges, which meet at unstructured vertices. Hence, we assume that whenever

two unstructured edge charts overlap, there exists an unstructured vertex chart covering the intersection.

Notice that it is not possible that one element of the mesh T is adjacent to two unstructured vertices.

In the context of meshing, this is not a severe restriction as we point out in the following section. Moreover,

each unstructured vertex and each unstructured edge correspond to exactly one unstructured vertex chart

or unstructured edge chart, respectively.

Assumption 10. We assume that each chart ωi can be either structured as in Definition 6 or unstructured

as in Definitions 7, 8 and 9.

In the following section we give some example configurations and study in more detail the meshing of

complex geometries.

3.3. Example configurations and meshing of complex geometries

For simplicity, in the classification above we have restricted ourselves to a limited number of types of

charts, which nevertheless contain most mesh configurations of practical interest. We first give a summary

of the different types of vertices that can occur (depending on the dimension), which motivates our chart

classification. Each unstructured chart is formally defined in such a way, that it can be used to cover a

certain type of unstructured vertex. Following the discussion of the types of vertices, we present some

simple example configurations and discuss the issues of meshing with manifolds. Without being thorough,

we present the configurations that can be covered in our framework. Since we do not want to go into the

details of meshing we refer to the following literature for quad-meshing [27] and hex-meshing [27, 21, 26].

3.3.1. Classification of vertices and edges

For 1D domains (intervals, planar or spatial curves) there are only regular vertices, which are equivalent

to the knots in the classical B-spline language. Hence no unstructured charts are needed.

For 2D domains we consider three types of vertices. A 2D vertex can be a regular vertex, a hanging

vertex (a T-node), or an extraordinary vertex (see Table 1 and Figure 3). Both regular and hanging vertices
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structured vertex regular vertex (Figure 3(a))

hanging vertex (Figure 3(b))

unstructured vertex extraordinary vertex (Figures 3(c) and 3(d))

Table 1: Classification of vertices in 2D

(a) (b) (c) (d)

Figure 3: Different types of vertices in 2D ((a) regular, (b) hanging, (c) extraordinary of valence 3, (d) extraordinary of

valence 5

are covered by structured charts, although they may also belong to an unstructured chart. Unstructured

vertex charts cover a neighbourhood of an extraordinary vertex.

For 3D domains we have three types of edges and four types of vertices. A 3D edge can be a regular

edge, a hanging edge, or an extraordinary edge of valence k 6= 4. A 3D vertex is called a regular vertex, if it

is shared by regular edges only; or a hanging vertex, if it is shared by regular and hanging edges. Otherwise,

the vertex is called an unstructured vertex. The notion of unstructured vertices contains both vertices of

extraordinary edges, so called partially unstructured vertices, as well as fully unstructured vertices. To be

precise, a partially unstructured vertex is a vertex that is shared by exactly two extraordinary edges that

can be covered by a single unstructured edge chart. If this is not possible, the vertex is a fully unstructured

vertex. For a complete list of types of vertices and edges in 3D see Table 2. Regular and hanging edges

as well as regular and hanging vertices are covered by structured charts. Hence, we have considered two

classes of three-dimensional unstructured charts: unstructured vertex charts (covering fully unstructured

vertices) and unstructured edge charts (covering partially unstructured vertices and extraordinary edges).

Unstructured edge charts are Cartesian products of an unstructured vertex chart in two dimensions and

an interval in the third dimension: there is an inner sequence of extraordinary edges and all other interior

edges are either regular or hanging. Similar to the two-dimensional case, an unstructured vertex chart in

3D covers a neighbourhood of the fully unstructured vertex.

3.3.2. Example configurations

Let us consider an unstructured vertex chart ωi composed of ki segments, where each segment is

meshed with only one element. From Definition 6 it follows that for any structured chart ωj with ωi,j 6= ∅
the transition domain ψi,j(ωi,j) = ωj,i is a box-mesh. The same holds for ωi,j , which is then formed by

one or at most two quadrilateral elements. There must be (at least) ki subsets ωi,j , each one formed by

two adjacent elements, in order to cover ωi \ ξi.
Figure 4(a) depicts a two-dimensional unstructured vertex chart ωi of valence 3 and a structured

chart, as well as the corresponding transition domains. Since the transition domains are open, it can be

observed easily, that in this case three structured charts are needed to cover ωi, except the extraordinary
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structured edge regular edge

hanging edge

unstructured edge extraordinary edge

structured vertex regular vertex

hanging vertex

unstructured vertex partially unstructured vertex

fully unstructured vertex

Table 2: Classification of edges and vertices in 3D

(a) (b) (c)

Figure 4: Different types of unstructured charts

vertex. Figure 4(b) depicts a three-dimensional unstructured vertex chart ωi of valence 4 as well as an

unstructured edge chart of valence 3 and corresponding transition domains. Again, we may observe that ωi

(except for the extraordinary vertex) can be covered by the transition domains of four unstructured edge

charts. Moreover, ωi (except for the extraordinary vertex and edges) can be covered with six structured

charts. Figure 4(c) depicts an unstructured edge chart of valence 5 and two possible transition domains.

Note that all the transition domains are mapped box-meshes, due to the definitions above. In all the

examples presented here we assume that for each unstructured vertex chart each segment is meshed with

exactly one element. This is not necessarily the case, as we presented in Figure 2. Note that, by definition,

the transition domains with structured charts can cover no more than two segments of an unstructured

chart.

3.3.3. Meshing

Note that the types of charts we consider are sufficient to represent most meshes of practical interest.

Given an arbitrary quad- or hex-mesh without hanging vertices or edges, a global bisection of the mesh

can be covered by structured charts, as in Definition 6, and unstructured charts, as in Definitions 7, 8

and 9.

This statement becomes clear when looking at the types of vertices and edges that can occur in the

bisected mesh. We consider only 3D meshes in the following. We show that every vertex of the bisected

mesh can be covered by a valid chart of one of the three categories. Every vertex of the initial hex-
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mesh is one of the three: a structured vertex, a partially unstructured vertex or a fully unstructured

vertex. The bisection of the initial mesh introduces new vertices from midpoints of edges, faces and

hex-elements (one point for each edge, face and element). The midpoints of structured edges, faces and

elements become structured vertices. The midpoints of unstructured edges become partially unstructured

vertices. Hence no new fully unstructured vertices are introduced. All structured vertices can be covered

by structured charts, all partially unstructured vertices can be covered by unstructured edge charts and

all fully unstructured vertices can be covered by unstructured vertex charts. It is easy to see that, due

to the bisection, the closure of any element can contain at most one extraordinary vertex. All other

assumptions are trivially fulfilled.

4. Spline manifold space on the parameter manifold

In this section we introduce spline spaces over the mesh T on Ω, in short spline manifold spaces.

4.1. General spline manifold spaces

Again based on [17], we define a spline space on a parameter manifold using the charts. This is

achieved by defining proto-basis functions on the proto-mesh (Definition 11) and transferring them onto

the parameter manifold using the equivalence relation induced by the transition functions (Definition 13).

Each chart ωi plays the role of a local parameter domain.

Definition 11 (Proto-basis functions). We define a proto-basis as a set

{{bAi : ωi → R}Ai∈Ai}i=1,...,N , (5)

where all proto-basis functions bAi , with Ai ∈ Ai, are linearly independent functions defined on ωi. We

further assume that for each i = 1, . . . , N and Ai ∈ Ai the function bAi fulfills

lim
ζ→∂ωi

bAi(ζ) = 0. (6)

Assumption 12. The proto-basis functions bAi with Ai ∈ Ai are piecewise polynomials with respect to

τi, i.e. bAi |q is polynomial for all q ∈ τi.

Definition 13 (Spline manifold space). For each i = 1, . . . , N and Ai ∈ Ai we define BAi : Ω→ R such

that

BAi |Ωi = bAi ◦ π
−1
i

BAi |Ω\Ωi
= 0,

(7)

and set

Bi = {BAi : Ω→ R,Ai ∈ Ai}. (8)

Furthermore, we introduce the global index set

A =

 ⊔
i=1,...,N

Ai

/ ≈ (9)
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where the equivalence relation ≈ is defined as follows: given [Ai, i] and [Aj , j] in
⊔
i=1,...,N Ai, then

[Ai, i] ≈ [Aj , j] if and only if the two functions BAi ∈ Bi and BAj ∈ Bj coincide. Therefore, BA : Ω→ R
is well defined for A ∈ A, and we set

B = {BA,A ∈ A} ≡
⋃

i=1,...,N

Bi. (10)

Finally, we set

B̃i = {BA|Ωi , A ∈ Ãi}, (11)

where

Ãi = {A ∈ A : supp(BA) ∩ supp(BAi) 6= ∅ for some Ai ∈ Ai}. (12)

The set B̃i is the restriction of B onto Ωi containing all the functions in Bi and also the restriction of any

function whose support intersects supp(Bi) but is not included in Bi. The functions in B̃i can be pulled

back to the chart ωi. Finally, the span of functions in (10) is the spline manifold space, the spline space

on the parameter manifold Ω, denoted by

S = span {BA,A ∈ A} . (13)

With some abuse of notation, for the global index A ∈ A we will say that A ∈ Ai if there exists an

index Ai ∈ Ai such that its equivalence class [Ai, i] through ≈ is equal to A.

Assumption 14. For each i = 1, . . . , N and each A ∈ A we have that if

supp(BA) ⊆ Ωi

then A ∈ Ai; furthermore we assume ⋃
Ai∈Ai

supp(BAi) = Ωi. (14)

Remark 4. Equation (6) together with (7) guarantees that the functions are globally continuous. If one

wants to allow for discontinuous functions, the condition (6) can be omitted.

4.2. B-Spline manifold spaces

In this section we characterise the B-spline functions as structured and unstructured (of edge or vertex

type) ones. To classify them, we introduce the notation

As =
⋃

i :ωi is structured

Ai,

Ae =

 ⋃
i :ωi is unstr. edge

Ai

 \ As,
Av =

 ⋃
i :ωi is unstr. vertex

Ai

 \ (As ∪ Ae) ,

(15)
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and we will call As the index set of structured functions, Ae the index set of edge (or partially) unstruc-

tured functions and Av the index set of vertex (or fully) unstructured functions. It is clear that

As ∩ Ae = As ∩ Av = Ae ∩ Av = ∅. (16)

In the following we do not distinguish between the two- and three-dimensional case. Since unstructured

edge charts do not exist in 2D, we simply set Ae = ∅ in that case.

Hence we conclude that the set Bi contains all functions that are completely supported in Ωi and

by (12) and (14) the set B̃i contains all functions that have a support intersecting with Ωi.

For simplicity we assume that the functions have the same degree p in each direction on each structured

chart.

Assumption 15. If ωi is a structured chart as in Definition 6, then each function BA in B̃i is a tensor-

product B-spline of degree p when restricted to ωi, i.e., there exist (local) knot vectors ΞA,i,1, . . . ,ΞA,i,d

such that

BA ◦ πi(ζ) = b[ΞA,i,1](ζ1) . . . b[ΞA,i,d](ζd), ∀A ∈ Ãi,∀ζ ∈ ωi, (17)

where b[Ξ](ζ) is the univariate B-spline with local knot vector Ξ. Moreover, if the support of a function

BA is structured, then there exists a structured chart that covers the support.

Finally, the previous assumption is extended to unstructured edge charts, since they behave like

structured charts along the third parametric direction, and like unstructured vertex charts along the first

two parametric directions.

Assumption 16. If ωi is an unstructured edge chart as in Definition 8, then each function BA in B̃i is

a product of a bivariate function and a B-spline of degree p in ζ3 when restricted to ωi, i.e. there exist a

function βA,i and a local knot vector ΞA,i,3 such that

BA ◦ πi(ζ) = βA,i(ζ1, ζ2)b[ΞA,i,3](ζ3), ∀A ∈ Ãi, ∀ζ ∈ ωi. (18)

Remark 5. From the definition of the unstructured charts ωj, and under Assumption 15, we have that

the functions BA, with A ∈ Aj, are fully defined by their restrictions to the transition domains ωj,i with

structured charts. On each ωj,i the functions in Bj∩B̃i are equivalent to (mapped) tensor-product B-splines

according to (17). Notice that in practice this limits the possible definitions of unstructured functions, but

less restrictive versions of Assumption 15 can be introduced to deal with other configurations.

4.3. Isogeometric function spaces using spline manifolds

We consider a domain Σ ⊂ Rn which can be interpreted as a d-dimensional manifold with d ≤ n. The

most interesting cases, and the ones we focus on, are a two-dimensional planar domain Σ ⊂ R2, a surface

Σ ⊂ R3 or a three-dimensional volumetric domain Σ ⊂ R3.

Definition 17. Σ ∈ Rn is a spline manifold domain

G : Ω→ Σ (19)

where Ω is a (spline) parameter manifold and G ∈ (S)n a spline manifold parametrization.
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In practical situations, this parametrization is defined by associating a control point to each function

in B. Notice that the geometry Σ inherits the manifold structure of the parameter manifold Ω. Indeed,

the parametrization G can be considered as a piecewise defined function, where Gi : Ωi → Σi is a

tensor-product B-spline (or structured T-spline) parametrization for every structured chart Ωi. Then we

have

Σ =

N⋃
i=1

Σi,

where the charts Σi form an atlas of Σ.

Then, the isogeometric function space over the manifold Σ is given as follows.

Definition 18. Given a spline manifold parametrization G ∈ (S)n as in Definition 17, we define on the

spline manifold domain Σ the isogeometric function space as

V = {f : Σ→ R, such that f = f̂ ◦G−1 for f̂ ∈ S}. (20)

The isogeometric space is well-defined, if the geometry parametrization is invertible.

Similar to the spline manifold space S itself, the isogeometric space V can be interpreted as a piecewise

defined function space. Indeed, each function in Bi can be composed with G−1 to define the corresponding

function in Σ, with its support contained in the chart Σi.

4.4. Relation to existing constructions

We note that several constructions of unstructured spline spaces existing in the literature fit in the

framework of B-spline manifolds, in some cases with minor modifications. For instance, the definition

of multi-patch B-splines with enhanced smoothness as developed in [8] or unstructured T-splines as

presented in [33, 34] for quad-meshes and hex-meshes, as well as the G1-continuous unstructured T-splines

as presented in [30]. The development of an abstract framework for the construction of these spaces can

serve as the starting point for a deeper mathematical analysis of their properties. In the following we

detail how these three particular examples fit into the framework of B-spline manifolds. In all three

cases, the idea is to split the set of basis functions into structured and unstructured basis functions, and

introduce a set of charts covering the whole mesh. In this context, and recalling the definition of the

index sets in (15), a function is called structured if its support is covered by a structured mesh (possibly

with hanging nodes). Otherwise it is called unstructured.

Multi-patch B-splines with enhanced smoothness [8]. The authors propose a construction based on a

multi-patch representation of the domain. This can be interpreted as a manifold structure with closed

charts (patches), that intersect only at the boundary. However, since there is a one-to-one correspondence

of parameter directions along any shared boundary between two patches, the multi-patch representation

can be transformed naturally to a parameter manifold representation by simply enlarging the patches

along the parameter direction crossing the boundary to obtain open charts. Note that in general it is

necessary to define more than one chart to cover one patch. Again, there are unstructured functions at

the extraordinary vertices, and unstructured vertex charts have to be introduced to cover their support.
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T-splines over unstructured meshes [33]. In this configuration the mesh T we consider on Ω is the Bézier

mesh corresponding to the T-splines and not the T-mesh. Then, we can define the set of charts by taking

the support of each structured function as a single structured chart, while the support of each unstructured

function is taken as one unstructured vertex chart. In the construction of [33] it may happen that one

element contains two extraordinary vertices. In this case two unstructured vertex charts overlap, violating

Definition 7(c). This condition is a technicality which simplifies the mathematical framework, and could

be removed. It can also be fulfilled with one level of refinement of the T-mesh, as we explained in

Section 3.3. In a similar way, the constructions for trivariate functions as presented in [34] fit, with some

technical restrictions, into the present framework.

G1-smooth T-splines over unstructured meshes [30]. This construction is similar to the construction in

[33]. The support of each structured function can again be interpreted as a single structured chart. For

each extraordinary vertex we can define one sufficiently large unstructured chart ωj , such that it covers

the support of all functions that are non-zero at the extraordinary vertex. In this case the degree of the

unstructured functions is increased in the vicinity of the extraordinary vertex, and their restriction to a

structured chart is not a B-spline basis function as in (17), but a suitable linear combination of B-splines

of higher degree. Therefore, Assumption 15 has to be relaxed in order to accomodate the unstructured

functions.

5. Analysis-suitable spline manifold spaces

We introduce in this section the conditions for the construction of analysis-suitable B-spline spaces on

manifolds, that is, spaces that have good properties for the solution of differential problems. The key tool

for this construction is the definition of a (stable) dual basis, which is a set of functionals {ΛA,A ∈ A}
such that

ΛA(BA′) = δAA′ , ∀A,A′ ∈ A,

where δAA′ represents the Kronecker delta. A condition for the construction of a dual basis for structured

T-splines was given in [4, 5], under the name of dual-compatibility.

We present the construction of dual functionals on the parameter manifold Ω in Section 5.1, starting

from a proto-dual basis on each chart, and then following the scheme of spline manifold spaces introduced

in Section 4.1. To guarantee that these dual functionals form a dual basis we need to add some conditions

to the spline manifold. In Section 5.2 we give a dual-compatibility condition for spline manifolds, which

generalizes the condition in [4, 5] to the unstructured setting. In this configuration, a global dual basis

can be derived from the proto-dual bases defined on the charts. Then, in Section 5.3 we present an

explicit configuration, with a specific construction of the proto-basis functions and the proto-dual basis

on unstructured vertex and edge charts. In this configuration, which is only C0-continuous at extraor-

dinary features, the dual functionals in Ω can be derived from the proto-dual basis without any further

modification, which also guarantees the stability of the dual functionals. Finally, in Section 5.4 we show

the typical application of a dual basis: we prove optimal approximation properties of the isogeometric

space on a simple but interesting example configuration.
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5.1. The dual basis for spline manifold spaces

In the following we use this well-known fact.

Lemma 1. Given a set of finitely many L2 functions {bα} that are linearly independent, there exist

functionals λα : L2 → R that are dual to the functions, i.e., λα(bα′) = δαα′.

As for the definition of the basis functions for spline manifold spaces introduced in Section 4.1, the

starting point is a set of dual-functionals on each chart, that exist thanks to the previous proposition and

Definition 11.

Definition 19 (Proto-dual basis). We define a proto-dual basis as a set

{{λ̂Ai : L2(ωi)→ R}Ai∈Ai}i=1,...,N ,

where the functionals λ̂Ai form a dual basis for the proto-basis functions in the chart, that is

λ̂Ai(bA′i) = δAiA′i
, ∀Ai,A

′
i ∈ Ai.

Note that the existence of a proto-dual basis is guaranteed by Lemma 1, since the proto-basis functions

bAi are linearly independent by Definition 11. We will assume that the proto-dual functionals satisfy the

following.

Assumption 20. For any indices [Ai, i] ≈ [Aj , j] that belong to the same equivalence class A ∈ A,

defined as in (9), it holds that λ̂Ai(φ ◦ πi) = λ̂Aj (φ ◦ πj), ∀φ ∈ L2(Ω).

The assumption that two equivalent indices are associated to the same dual functional is natural, since

by (9) they are also associated to the same basis function, and it allows the following global definition.

Definition 21 (Manifold functionals). For any A ∈ A we define the functional

Λ̂A(φ) = λ̂Ai(φ ◦ πi), ∀φ ∈ L2(Ω), (21)

where [Ai, i] is one instance of the equivalence class A.

From (21), the support of the dual functional Λ̂A is contained in Ωi. The most used dual bases for

splines, such as the one by Schumaker [29] and the ones by Lee, Lyche and Mørken [25] satisfy the stronger

condition that the support of Λ̂A is the same as the support of the corresponding function BA.

Note that in general the dual functionals {Λ̂A,A ∈ A} do not form a dual basis for B = {BA,A ∈ A}.
In the following section we introduce a new condition that ensures that a dual basis can be derived by a

modification of the dual functionals Λ̂A.

5.2. Dual-compatible spline manifold spaces

For the definition of the dual-compatibility condition we follow and extend the recent review paper

[6]. Two knot vectors Ξ′ = {ξ′1, . . . , ξ′p+2} and Ξ′′ = {ξ′′1 , . . . , ξ′′p+2} overlap if there exists a knot vector

Ξ = {ξ1, . . . , ξk} and two integers k′ and k′′ such that ξ′i = ξi+k′ and ξ′′i = ξi+k′′ , for i = 1, . . . , p+ 2. We

generalize the dual-compatibility condition to spline manifold spaces in the following definition.
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Definition 22 (Dual-compatible spline manifold spaces). Under the previously stated assumptions, the

set B defined in (10) is dual-compatible if the following conditions hold

(a) for all A ∈ Ai ⊂ As and ∀A′ ∈ Ãi, with A 6= A′, there exists an index l ∈ {1, . . . , d}, such that the

knot vectors ΞA,i,l and ΞA′,i,l as in (17) are different and overlap;

(b) for all A ∈ Ai ∩ Ae, with ωi being an unstructured edge chart, and for all A′ ∈ Ai, with A 6= A′,

either the knot vectors ΞA,i,3 and ΞA′,i,3 as in (18) overlap and are different, or βA,i 6= βA′,i;

(c) for all A ∈ Ai∩Ae, with ωi being an unstructured edge chart, and for all A′ ∈ (Ãi \Ai)∩ (Ae∪Av)
the knot vectors ΞA,i,3 and ΞA′,i,3 as in (18) overlap and are different.

Here As, Ae and Av are defined as in (15).

In Definition 22(b) both BA and BA′ are unstructured edge functions from the same unstructured

edge chart. In 22(c) BA is an unstructured edge function and BA′ is an unstructured function from a

different chart.

In [6] (as well as the previous papers [4, 5]) the authors deal only with the structured case, and actually

the dual-compatibility condition in [6] corresponds to point (a) in Definition 22. The new definition

extends the dual-compatibility condition to an unstructured configuration. As in [6], Definition 22 gives

a sufficient condition for the existence of a dual basis. For that, we use two technical ingredients: the first

is a univariate L2-stable dual functional λ[Ξ], such that, if Ξ and Ξ′ are overlapping,

λ[Ξ](b[Ξ′]) =

{
1 if Ξ = Ξ′,

0 if Ξ 6= Ξ′;
(22)

see, for example, [29, 25]; the second is the existence of a proto-dual basis on each chart, guaranteed by

Lemma 1. Our main result follows.

Theorem 2. If the set B is dual-compatible, then there exists a set of functionals

B∗ =
{

ΛA : L2(Ω)→ R such that A ∈ A
}
,

that is dual to B, i.e.,

∀A,A′ ∈ A, ΛA(BA′) = δAA′ . (23)

Proof. First, we construct dual functionals for the different types of charts. Let ωi be a structured chart.

Given A ∈ Ai ⊂ As we set

λ̂A = λ[ΞA,i,1]⊗ . . .⊗ λ[ΞA,i,d], (24)

where the knot vectors ΞA,i,k are given as in (17). Let ωi be an unstructured edge chart. Given A ∈
Ai ∩Ae, let Ai,A ⊂ Ai ∩Ae be the set of indices A′ such that ΞA,i,3 = ΞA′,i,3 as in (18). Since the set Bi
is linearly independent, the same holds for the set

{βA′,i : A′ ∈ Ai,A} (25)

and by Lemma 1 there exist functionals {λ̂A′,i : A′ ∈ Ai,A} that are dual to (25). We define the

proto-dual functional λ̂A : ωi → R
λ̂A = λ̂A,i ⊗ λ[ΞA,i,3],
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Finally, let ωi be an unstructured vertex chart. Consider Ai ∩ Av, and again by Lemma 1 the set Bi,
which is assumed to be linearly independent, admits a proto-dual basis {λ̂A : A ∈ Ai ∩ Av}. Having

defined λA for all A ∈ A, we construct the corresponding Λ̂A as in (21).

It is easy to check that, by the construction above and Definition 22, it holds

∀A ∈ As, ∀A′ ∈ (As ∪ Ae ∪ Av), Λ̂A(BA′) = δAA′ , (26)

∀A ∈ Ae,∀A′ ∈ (Ae ∪ Av), Λ̂A(BA′) = δAA′ , (27)

∀A ∈ Av,∀A′ ∈ Av, Λ̂A(BA′) = δAA′ . (28)

From Definition 21 we can also infer

∀A ∈ A,∀A′ ∈ A \ Ãi, Λ̂A(BA′) = 0. (29)

In general, the set of functionals {Λ̂A}A∈A is not dual to the set of functions B = {BA}A∈A, but we

can easily fix it by defining, for all φ ∈ L2(Ω), the functionals:

∀A ∈ As, ΛA(φ) = Λ̂A(φ),

∀A ∈ Ae, ΛA(φ) = Λ̂A(φ)−
∑

A′′∈(Ãi\Ai)∩As

Λ̂A(BA′′)ΛA′′(φ),

∀A ∈ Av, ΛA(φ) = Λ̂A(φ)−
∑

A′′∈Ãi\Ai

Λ̂A(BA′′)ΛA′′(φ).

(30)

By going through all combinations for A,A′ ∈ As,Ae,Av and using (26)–(28) as well as the condition

(29), it follows that the set {ΛA}A∈A as defined in (30) fulfills (23).

5.3. Definition of a basis and corresponding dual basis for a simplified configuration

In Section 5.2, we have generalized the dual compatibility condition in order to ensure the existence

of a dual basis to a basis of a manifold spline space, in a general setting. In this section we discuss a

simplified configuration which allows for exactly one extraordinary function in every unstructured vertex

chart. For this specific example, we give an explicit construction of the dual basis. Moreover, taking

advantage of the specific case considered here, we obtain dual functionals whose support is the same as

the support of the corresponding functions.

In this simplified configuration we restrict to unstructured vertex charts where each segment cor-

responds to an element of the mesh, and give an explicit representation for the extraordinary vertex

functions. Precisely, for each unstructured vertex chart ωi, we assume that the mesh τi is the union of

the meshes σi,` on the segments si,`, where each σi,` contains a single element qi,` which covers the whole

segment, and assume that there exists exactly one unstructured vertex function BA ∈ Bi. The extraor-

dinary vertex function is continuous, has the value 1 at the extraordinary vertex, and for each element

qi,` ∈ τi there exists a d-linear mapping ψ̂i,` : qi,` → ]0, 1[d, such that

BA ◦ πi(ζ) = b̂d ◦ ψ̂i,`(ζ), for all ζ ∈ qi,`, (31)
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where b̂d is defined as in

b̂d(ζ1, . . . , ζd) = (1− ζ1)p . . . (1− ζd)p,

= b[Ξ0](ζ1) . . . b[Ξ0](ζd), ∀(ζ1, . . . , ζd) ∈ ]0, 1[d , (32)

with Ξ0 = [0, . . . , 0, 1].

For each unstructured edge chart ωi =
�
ωi × ω̄i, the mesh of the underlying bivariate chart

�
ωi is

again given such that each segment
�
si,` of the bivariate chart is covered by a single element

�
qi,`, the

one-dimensional structured chart ω̄i is partitioned into a mesh τ̄i = {q̄1, . . . , q̄mi}, and the mesh τi on ωi

is given via

τi = { �qi,` × q̄k :
�
qi,` ∈

�
τi, q̄k ∈ τ̄i}.

Moreover, we assume that for all A′,A′′ ∈ Ai the unstructured edge functions BA′ , BA′′ are given as in

(18), where βA′,i = βA′′,i are equal to the same unstructured vertex function of dimension d = 2. Hence,

for each segment
�
qi,` × ]ai,3, bi,3[ there exists a bilinear mapping

�
ψi,` :

�
qi,` → ]0, 1[2, such that

BA ◦ πi(ζ) =
(
b̂2 ◦

�
ψi,`(ζ1, ζ2)

)
b[ΞA,i,3](ζ3), for all ζ ∈ �

qi,` × ]ai,3, bi,3[ ,

corresponding to the representation in (18).

Given an unstructured vertex chart ωi this means that, denoting by j(q) a chart index such that ωj(q)

is a structured chart and q ⊂ ωi,j(q), there exist knot vectors ΞA,q,j(q),1, . . . ,ΞA,q,j(q),d of the kind

[ξ′, . . . , ξ′︸ ︷︷ ︸, ξ′′
p+1 times

] or [ξ′, ξ′′, . . . , ξ′′︸ ︷︷ ︸
p+1 times

] (33)

such that

BA ◦ πj(ζ) = b[ΞA,q,j(q),1](ζ1) · . . . · b[ΞA,q,j(q),d](ζd),

for all ζ such that ψj(q),i(ζ) ∈ q. We can now define a dual basis explicitly, using this representation. A

similar representation can be derived for unstructured edge charts.

For each A ∈ As, the dual functional ΛA is given as the tensor-product of univariate functionals

(22). For A ∈ Av, we construct the dual functional ΛA by adding the contributions of each segment of

the unstructured vertex chart, each being a structured subdomain. For A ∈ Ae, we construct the dual

functional ΛA analogously to the basis function in (18), that is, the tensor-product of the dual functional

of a bivariate unstructured vertex function with the dual functional of a univariate B-spline in the third

direction.

Theorem 3. Given a dual-compatible spline manifold space let

B∗ = {ΛA,A ∈ A}

be a set of functionals ΛA : L2(Ω)→ R such that:

• for all A ∈ Ai ∩ As, we have

ΛA(φ) = (λ[ΞA,i,1]⊗ . . .⊗ λ[ΞA,i,d])(φ|Ωi ◦ πi), ∀φ ∈ L2(Ω), (34)

where the knot vectors ΞA,i,k are given as in (17);

19



• for A ∈ Ai ∩ Av, is the corresponding unstructured vertex function, then let Qi,` = πi(qi,`) and

ΛA(φ) =
1

ki

ki∑
`=1

ΛA,i,`(φ|Qi,`
), ∀φ ∈ L2(Ω), (35)

where

ΛA,i,`(φ) = (λ[Ξ0]⊗ . . .⊗ λ[Ξ0])(φ ◦ πi ◦ (ψ̂i,`)
−1),

for all φ ∈ L2(Qi,`), with Ξ0 = [0, . . . , 0, 1]; and

• for A ∈ Ai ∩ Ae, let Qi,` = πi(
�
qi,` × ]ai,3, bi,3[), and

ΛA(φ) =
1

ki

ki∑
`=1

ΛA,i,`(φ|Qi,`
), ∀φ ∈ L2(Ω), (36)

where

ΛA,i,`(φ) = (λ[Ξ0]⊗ λ[Ξ0]⊗ λ[ΞA,i,3])(φ ◦ πi ◦ ((
�
ψi,`)

−1, ζ3)),

for all φ ∈ L2(Qi,`).

The set B∗ is dual to B, that is

ΛA(BA′) = δAA′ , ∀A,A′ ∈ A.

Proof. It is easy to see that the ΛA fulfill Definition 21, that is, the associated proto-dual functionals

associated to (34)–(36) are a dual basis (in each chart). Then, it is enough to show that

ΛAi(BA′i
) = δAiA′i

, ∀Ai ∈ Ai, and ∀A′i ∈ Ãi. (37)

From the dual compatibility condition, it follows that (37) is fulfilled for all A ∈ Ai and A′ ∈ A, where

ωi is a structured chart. For unstructured charts ωi, it is obvious that

ΛAi(BA′i
) = δAiA′i

, ∀Ai ∈ Ai, and ∀A′i ∈ Ai ∪ (A \ Ãi).

What remains to be shown is that ΛAi(BA′i
) = 0 for all A′i ∈ Ãi\Ai. This becomes clear, as for all

unstructured functions BA the functional ΛA evaluates to zero for all piecewise polynomials that are zero

at the extraordinary features. This concludes the proof.

For simplicity, we considered only one C0 continuous extraordinary vertex function for each unstruc-

tured vertex chart. Note that one may also define a collection of extraordinary vertex functions that are

discontinuous at all or some of the element boundaries within the unstructured vertex chart.

5.4. Approximation properties of spline manifolds on uniform meshes

In the following we show approximation properties for a simplified configuration. The result is based

on the construction of a stable dual basis, from which one can define a projection operator and use it to

prove approximation properties of the spline manifold space. In this section we consider uniform, regular

meshes as in Lemma 4. Note that the results can be extended easily to more general configurations, by

suitably extending the scope of Lemma 4.
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Here we consider h-refinement: a spline manifold Ω is given, with an initial mesh Th0 over it. From

this we construct a family of meshes {Th} by mesh refining each structured chart. The refinement has to

be consistent with the manifold structure, fulfilling Definition 3, in particular (3), and Definitions 7–9.

Note that during h-refinement the structured charts and transition functions between them are unchanged,

while we modify the unstructured charts in such a way that only the elements adjacent to an extraordinary

vertex are included in those charts. Accordingly, we assume that a family of nested spaces {Sh} is given.

The subscript h always denotes the dependence on the refinement level.

A spline manifold domain Σ is given by a coarse mesh parametrization G ∈ (Sh0)3, as in (19). For

simplicity, we consider a bivariate Ω, then Σ is a closed surface in the space R3. During h-refinement G

is kept unchanged. This gives a sequence of nested isogeometric spaces Vh via (20).

To study the approximation properties of Vh we follow the approach in, e.g., [2, 5, 7] for structured

spline spaces, which applies to the present framework as well. To keep it simple, we focus on a simple

configuration: we consider a manifold obtained by merging tensor-product patches with Cp−1 continuity

except around the extraordinary vertices, where the continuity is only C0. This configuration is referred

to as multi-patch B-splines with enhanced smoothness as in [8], where it has been first introduced and

studied in the context of IgA. On the coarsest mesh Th0 , the length of the C0 lines is p+ 1 element edges,

which corresponds to the condition that a function in Sh0 is C0 across the patch interfaces if and only if

it has an extraordinary vertex in the closure of its support. The structured charts for this configuration

can be taken as the union of each pair of patches that have a common interface. For each unstructured

vertex there exists an unstructured vertex chart composed of all elements in the one-ring around, i.e.

all elements that contain the unstructured vertex in their closure. This is not the only possibility but

it simplifies the next steps. In this case each transition function ψi,j between structured charts is the

composition of a translation and a rotation by a multiple of π
2 . To further simplify, we assume the mesh

on each structured chart is uniform with mesh-size h.

We assume by construction that each space Sh is complete. By this, we mean that for every structured

chart ωi the set B̃i spans all piecewise polynomials of degree p and continuity stated above.

The space L2(Ω) is defined as

L2(Ω) =
{
φ : Ω→ R | φ ◦ πi ∈ L2(ωi) for all structured charts ωi

}
,

having the corresponding norm

‖φ‖2L2(Ω) =
∑
Q∈Th

‖φ ◦ πi,Q‖2L2(π−1
i,Q(Q))

, (38)

where ωi,Q is a structured chart covering Q, i.e. Q ⊆ πi,Q(ωi,Q). Due to the isometry of the transition

function, the L2-norm of a function defined on a chart fulfills ‖ϕ‖2L2(ωi,j) = ‖ϕ◦ψj,i‖2L2(ωj,i)
for all structured

charts ωi, ωj . Hence, the L2-norm on Ω is well-defined because all elements are covered by structured

charts. Moreover, the definition of the L2-norm is independent of the level of refinement. We define bent

Sobolev spaces Hk(Ω) in the same fashion. Bent Sobolev spaces are piecewise Sobolev spaces with some

regularity at the element interfaces, see [2, 6]. For example, the space Hp+1(Ω) is defined as the closure

of the space of piecewise C∞ functions having the same continuity at the mesh lines of the space Sh0 ,
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with respect to the norm

‖φ‖2Hp+1(Ω) = ‖φ‖2L2(Ω) +

p+1∑
k=1

|φ|2Hk(Ω), (39)

where

|φ|2Hk(Ω) =
∑
Q∈Th

|φ ◦ πi,Q|2Hk(π−1
i,Q(Q))

(40)

and | · |Hk(q) is the usual k-th order Sobolev seminorm. Obviously, all the spaces and norms can be defined

accordingly on subdomains of Ω and are independent of the level of refinement.

Using the dual basis defined in Theorem 3 we introduce a projection operator ΠSh : L2(Ω) → Sh
onto the B-spline manifold space via

φ 7→ ΠSh(φ) =
∑

A∈Ah

ΛA(φ)BA (41)

The projector is L2 stable, uniformly with respect to h, i.e.

‖φ−ΠSh(φ)‖L2(Ω) ≤ C‖φ‖2L2(Ω), ∀φ ∈ L2(Ω), (42)

which follows directly from the L2 stability of the dual basis as defined in Theorem 3, see for example [6].

To prove its approximation properties we use the following Lemma.

Lemma 4. Let SR be the space of all piecewise polynomials with respect to a uniform Cartesian mesh of

a box R ∈ R2, such that

• the mesh is formed by up to 2p+ 1 elements per direction with meshsize h;

• the polynomial degree is p in each direction; and

• the continuity is Cp−1 globally with the exception of a mesh line e where the continuity is only C0,

i.e., SR ⊂ Cp−1(R \ e) ∩ C0(R).

Let Hp+1(R) be the bent Sobolev space associated to SR. Then for all φ ∈ Hp+1(R) there exists a ρ ∈ SR
such that

‖φ− ρ‖L2(R) ≤ Chp+1|φ|Hp+1(R) (43)

with a constant C only dependent on p.

Proof. The size of R depends on the number of elements n = (n1, n2) in each direction and the element

size h. Given φ ∈ Hp+1(R) there exists indeed ρ ∈ SR such that

‖φ− ρ‖L2(R) ≤ C(p, h,n, e)|φ|Hp+1(R)

with C(p, h,n, e) independent of φ. The proof is the same as for the classical Bramble-Hilbert lemma,

see, e.g., [2]. The dependence of the constant with respect to h, that is C(p, h,n, e) = C(p,n, e)hp+1,

follows from a scaling argument. Finally, there are a finite number of different configurations for n and

e, therefore we can set C(p) = maxn,eC(p,n, e).
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Figure 5: Possible configuration of a box R and mesh line e for degree p = 2

See Figure 5 for a possible configuration of R. Here, the line of C0 continuity is shown in blue.

Given Q ∈ Th, we define Q̃ ⊂ Ω in the following way: for each structured chart ωi, Q̃ ∩ Ωi is the

minimal box containing all the supports of functions in Bh whose support contains Q. We can now state

the local approximation estimate.

Theorem 5. Under the assumptions of this Section, for φ ∈ Hp+1(Q̃) it holds

‖φ−ΠSh(φ)‖L2(Q) ≤ Chp+1|φ|Hp+1(Q̃)
, (44)

where the constant C depends only on p.

Proof. The first step of the proof is to show that, given φ ∈ Hp+1(Q̃), there exists ρ ∈ Sh such that

‖φ− ρ‖
L2(Q̃)

≤ Chp+1|φ|Hp+1(Q̃)
. (45)

We are in one of two cases, either

(a) Q̃ contains an extraordinary vertex, or

(b) Q̃ ⊂ πi(ωi) where ωi is a structured chart.

(a) (b)

Figure 6: Different types of support extensions Q̃ for p = 2

See Figure 6 for a representation of the two possible cases. In the figure the C0-continuity lines are

depicted in blue. The dark green element represents Q and the light green region represents its support

extension Q̃. Due to the assumption on the length of the C0 lines, case (a) only occurs when Q is adjacent

to an extraordinary vertex, i.e., there exists an unstructured chart ωi such that Q ⊂ πi(ωi). In this case we
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can split Q̃ into Q̃1, . . . , Q̃ki such that each Q̃` intersects only the segment πi(si,`) (see Definition 7). Each

Sh |Q̃`
is a standard tensor-product spline space therefore we can use [6, Section 2.2.2 and Section 4.4] in

order to construct splines ρ` ∈ Sh |Q̃`
which approximate φ |

Q̃`
and match continuously in the whole Q̃.

Since on the coarsest mesh the C0 lines at the extraordinary vertex cover p+ 1 element edges (see Figure

6), each interface between two adjacent sets of Q̃1, . . . , Q̃ki is covered by the C0 continuity lines of ρ ∈ Sh
and (45) follows. In case (b), we can use Lemma 4, then (45) follows by (43).

Having (45) and recalling the L2 stability of the projector ΠSh , (44) is derived in the usual way, i.e.

‖φ−ΠSh(φ)‖L2(Q) = ‖φ− ρ−ΠSh(φ− ρ)‖L2(Q)

≤ C‖φ− ρ‖
L2(Q̃)

≤ Chp+1|φ|Hp+1(Q̃)
.

The stability constant as well as the approximation constant only depend on p, which concludes the

proof.

By means of inverse estimates and generalising (45), (44) can be extended to higher order Sobolev

norms. For 0 ≤ q ≤ p+ 1 it holds

|φ−ΠSh(φ)|Hq(Q) ≤ Chp−q+1|φ|Hp+1(Q̃)
, (46)

where the constant C depends only on p and q. The details are not reported for the sake of brevity.

We can extend the result to the spline manifold domain Σ, in this case a closed surface in R3,

parametrized by G ∈ (Sh0)3. We assume that G is regular, that is, there exist constants c, c, with

c ≥ det(∇GT (x)∇G(x)) ≥ c > 0

for all x ∈ Q and for all Q ∈ Th0 . Note that, in general, we cannot define Sobolev spaces of any order on

Σ, due to the lack of smoothness of the manifold itself. However the L2 space on Σ can be defined as

L2(Σ) = {f : f ◦G ∈ L2(Ω)}

and the corresponding norm is given via

‖f‖L2(Σ) = ‖f ◦G (det(∇GT∇G))1/4‖L2(Ω).

The bent Sobolev spaces can be defined similarly, as in (39)–(40). See [18, 19] for more details about

Sobolev spaces on manifolds. Then, for all f ∈ L2(Σ), we can define the isogeometric projector

ΠVh(f) = ΠSh(f ◦G) ◦G−1.

Approximation properties of ΠVh easily follow from the ones of ΠSh stated in Theorem 5, following the

same approach as in [2, 14].

Theorem 6. Under the assumptions of this Section, for all f ∈ Hp+1(Σ)

‖f −ΠVh(f)‖L2(Σ) ≤ Chp+1‖f‖Hp+1(Σ). (47)

where the constant C depends only on G and p.

Note that all the results presented here extend naturally to volumetric domains. In that case, the lines

of C0 continuity extend to faces of C0 continuity in a vicinity of the extraordinary vertices and edges.
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6. Conclusion and possible extensions

We have introduced a general mathematical framework, based on manifolds, for the definition and the

analysis of unstructured spline spaces. As it is done in [17] the main idea is to decompose the domain

into charts, which are meshed with quadrilaterals or hexahedra. Then spline basis functions and dual

functionals can be defined locally on each chart. Unstructured charts are necessary to cover extraordinary

vertices and edges of the domain.

We have used this framework to generalize the dual-compatibility condition of [4, 5] to unstructured

spline spaces, and in particular to analyse the approximation properties of splines with high continuity

everywhere except in the vicinity of extraordinary vertices and edges, where the continuity is only C0.

Although the analysis was restricted to the low continuity case, the framework allows for the definition

of spline functions with higher smoothness, and their analysis will be the aim of future work.

In our definitions the physical domain is necessarily a manifold. However, since we are defining the

charts in the parametric domain, and not in the physical domain, it is possible to extend our framework to

non-manifold domains using special bifurcation charts (such as T-shaped or X-shaped charts for curves,

etc.) This could be of interest for certain beam or shell formulations, or for the proper representation of

the medial axis or medial surface of an object, for instance.

Finally, for the sake of simplicity we have restricted ourselves to B-splines and T-splines on quadri-

lateral/hexahedral meshes. The framework can be generalized to other spline spaces, such as NURBS or

trigonometric splines.
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Appendix A. Spline manifolds with boundary

We can extend the definition of a spline manifold to a manifold with boundary. To do so, we first

need to extend Definition 1, defining a suitable proto-manifold that takes into account the boundary.

Definition 23 (Proto-manifold with boundary). A proto-manifold with boundary is a generalisation of a

proto-manifold, where the charts {ωi}i=1,...,N are given as ωi = interior (ωi)∪γi, such that interior (ωi) are

open polytopes forming a standard proto-manifold (with transition domains interior (ωi,j) and transition

functions ψi,j) and each γi ⊂ ∂ωi is a part of the boundary of the chart interior (ωi). Moreover, the

transition domains fulfill ωi,j = interior (ωi,j) ∪ γi,j , with γi,j = γi ∩ ∂ωi,j , and the transition functions

are the continuous extensions of ψi,j and map γi,j onto γj,i and interior (ωi,j) onto interior (ωj,i).

Similar to the standard parameter manifold in Definition 2, we can define the parameter manifold

with boundary Ω via the equivalence relation induced by the transition functions. Since the transition

functions always map the interior onto the interior and the boundary onto the boundary, the parameter

manifold Ω can be separated into interior (Ω) and the boundary denoted by Γ.
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This definition of the boundary of the (open) parameter manifold is equivalent to the classical definition

of a manifold with boundary, as discussed in [17]. In this case every boundary point of the manifold has a

neighbourhood that is homeomorphic to the half d-ball. Note that the boundary Γ itself can be interpreted

as a topological manifold of dimension d− 1.

For the definition of the spline spaces, we assume the following.

Assumption 24. The local boundary γi is conforming with respect to the elements, i.e. there exists a

subset of faces of elements q ∈ τi that forms a mesh for the boundary γi.

To be able to define manifolds with boundary containing non-convex features, we need additional types

of charts, so called boundary charts. To avoid the tedious formal definition of boundary charts, we present

figures that should explain the ideas behind. In Figure A.7 we present different types of two-dimensional

boundary vertices, regular boundary vertices (a) - (c), as well as a non-regular boundary vertex (d). The

vertices in Figures 7(a) and 7(b) can be covered by the boundaries of structured charts (see Figure 8(a) –

8(c)). For the vertex in Figure 7(c) we need a special boundary chart (see Figure 8(d)), associated with

the function which is non-zero at the corner. Note that the boundary vertex in Figure 7(d) is discarded

since it does not allow for functions that are non-zero at the corner.

(a) (b) (c) (d)

Figure A.7: Different types of valid (a)–(c) and non-valid (d) boundary vertices in 2D

(a) (b) (c) (d)

Figure A.8: Structured charts with boundary (a)–(c) and boundary chart (d) in 2D

In the three-dimensional case, there are more different configurations to consider, which are listed in

Table A.3. Here, we need to consider two different types of boundary charts.

Figures A.9 and A.10 depict several possible three-dimensional charts with boundary. In Figures 9(a)–

9(c) we show several examples of structured charts with boundary. Figure 9(d) shows an unstructured

edge chart with boundary. In Figure A.10 we show the two different types of unstructured boundary charts

that are needed to represent all meshes of practical interest. The one in Figure 10(a) is the Cartesian

product of a two-dimensional boundary chart with an interval in the third direction. The chart depicted

in Figure 10(b) is a boundary chart corresponding to a non-convex vertex at the boundary. One can
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structured edge regular boundary edge

structured vertex regular boundary vertex

hanging boundary vertex

unstructured vertex partially unstructured boundary vertex

Table A.3: Classification of valid boundary edges and vertices in 3D

(a) (b) (c) (d)

Figure A.9: Structured charts with boundary (a)–(c) and unstructured edge chart with boundary (d) in 3D

include more complex boundary configurations by introducing unstructured boundary charts, which we

will not consider for the sake of simplicity.

(a) (b)

Figure A.10: Boundary charts in 3D

Concerning spline manifold spaces on parameter manifolds with boundary, we need to adjust the

condition on proto-basis functions in equation (6) to the following one

lim
ζ→∂ωi\γi

bAi(ζ) = 0. (A.1)

With this modification, the spline manifold space can interpolate at the boundary. The theory concerning

dual-compatibility and approximation properties presented in Section 5 can be generalized directly to

spline manifolds with boundary. Most importantly, both Theorems 5 and 6 extend directly to manifolds

with boundary, using the boundary charts introduced here. Thus extending the approximation error

bounds to manifolds with boundary of general topology.
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