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Abstract. Let D be a linear space of real bounded functions and

P : D → R a coherent functional. Also, let Q be a collection of coherent
functionals on D. Under mild conditions, there is a finitely additive probabil-

ity Π on the power set of Q such that P (f) =
∫
Q Q(f) Π(dQ) for each f ∈ D.

This fact has various consequences and such consequences are investigated in
this paper. Three types of results are provided: (i) Existence of common ex-

tensions satisfying certain properties, (ii) Finitely additive mixtures of extreme

points, (iii) Countably additive mixtures.

1. Introduction

Let Ω be a set and l∞(Ω) the collection of real bounded functions on Ω. Let D be
a linear subspace of l∞(Ω) and P : D → R a coherent functional. (If D includes the
constants, coherence just means that P is linear positive and P (1) = 1; see Section
2). Also, fix a collection Q of coherent functionals on D and denote by Σ(Q) the
σ-field over Q generated by the maps Q 7→ Q(f) for all f ∈ D. Then,

P (f) ≥ inf
Q∈Q

Q(f) for each f ∈ D(1)

if and only if

P (f) =

∫
Q
Q(f) Π(dQ) for all f ∈ D(2)

and some finitely additive probability Π on Σ(Q); see Lemma 1.
The equivalence between (1) and (2) is the starting point of this paper. Indeed,

even if apparently innocuous, such equivalence has various consequences and this
paper investigates (some of) them. Three types of results are provided.

• Common extensions (Theorem 3). Let Pi be a coherent functional on a
linear subspace Di ⊂ l∞(Ω), where i ranges over some index set I. A
common extension of (Pi : i ∈ I) is a coherent functional P on l∞(Ω) such
that P = Pi on Di for each i ∈ I. Here, we give conditions for the existence
of a common extension satisfying some additional properties. For instance,
fix F ⊂ l∞(Ω) and, for each f ∈ F , take Gf ⊂ l∞(Ω). Then, we give
conditions for the existence of a common extension P such that

P (f) ≤ P (g) for all f ∈ F and g ∈ Gf .
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In particular, if f ∈ F and a ≤ b are given constants, one obtains
a ≤ P (f) ≤ b choosing a suitable Gf ; see Remark (ii). Moreover, in-
stead of such inequalities, the common extension P can be asked to satisfy
any other requirement which is preserved under mixtures; see Remark (iii).
• Finitely additive mixtures of extreme points (Theorem 9). Take Q to be the

set of extreme points of a collection R of coherent functionals on D. If R
is convex and closed under pointwise convergence (see Section 4) condition
(2) amounts to P ∈ R. Apart from the quoted conditions on R, this result
does not require any other assumption.
• Countably additive mixtures (Theorem 11 and its consequences). Suppose

that P and each Q ∈ Q are integrals with respect to σ-additive probability
measures. In this case, if condition (2) holds, it is natural to investigate
wether Π can be taken to be σ-additive. Hence, conditions for Π to be σ-
additive are given. Such conditions are then applied to disintegrability and
invariant probability measures. The same conditions can be also exploited
to get simple proofs of some classical known results. One first proves con-
dition (1), so that P is a finitely additive mixture of the elements of Q, and
then shows that Π can be taken to be σ-additive. This strategy actually
works in Example 12 and Theorem 17.

2. Basics on de Finetti’s coherence

Let F be a field of subsets of Ω and µ a finitely additive probability (f.a.p.)

on F . A function f ∈ l∞(Ω) is µ-integrable if fn
µ−→ f for some sequence fn of

F-simple functions; see [6, Chap. 4]. In that case,
∫
f dµ := limn

∫
fn dµ where

the µ-integral of a simple function is defined in the obvious way. In what follows,∫
f dµ is also denoted by µ(f).
For any topological space S, the Borel σ-field on S is denoted by B(S). We also

adopt the usual convention

inf ∅ =∞.

Let us turn to de Finetti’s coherence principle. Let F ⊂ l∞(Ω) and P : F → R.
Then, P is coherent if

sup

n∑
i=1

αi
{
fi − P (fi)} ≥ 0

for all n ≥ 1, α1, . . . , αn ∈ R and f1, . . . , fn ∈ F .
Heuristically, suppose P describes your previsions on the members of F . If P is

coherent, it is impossible to make you a sure loser, whatever ω ∈ Ω turns out to be
true, by some finite combinations of bets (on f1, . . . , fn with stakes α1, . . . , αn).

Here, F is an arbitrary subset of l∞(Ω). Under some assumptions on F , however,
coherence reduces to some simpler condition. For instance, if F is a linear space
including the constants, P is coherent if and only if it is linear positive and P (1) = 1.
Similarly, if F = {1A : A ∈ F} where F is a field of subsets of Ω, then P is coherent
if and only if A 7→ P (1A) is a f.a.p. on F .

If P is coherent, by Hahn-Banach theorem, P can be extended to a coherent
functional T on l∞(Ω). Let µ(A) = T (1A) for each A ⊂ Ω. Then, µ is a f.a.p. and

T (f) =

∫
f dµ for all f ∈ l∞(Ω).
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Thus, P is coherent if and only if P (f) =
∫
f dµ, f ∈ F , for some f.a.p. µ on the

power set of Ω.
Let D ⊂ l∞(Ω) be a linear subspace. Is there a f.a.p. µ on the power set of Ω

such that
∫
f dµ = 0 for each f ∈ D ? Various problems in probability theory can

be actually reduced to such a question, possibly requesting µ to be σ additive on
σ(D) (i.e., on the σ-field generated by D); see [3] and [4]. Anyway, the answer is
surprisingly simple: Such a µ is available if and only if

sup f ≥ 0 for every f ∈ D.

Define in fact P (f) = 0 for all f ∈ D. Since D is a linear space, the above condition
implies that P is coherent. Thus, 0 = P (f) =

∫
f dµ, f ∈ D, for some f.a.p. µ.

The previous remark allows to prove the equivalence mentioned in Section 1.

Lemma 1. Conditions (1) and (2) are equivalent provided D ⊂ l∞(Ω) is a linear
subspace, P a coherent functional on D and Q a collection of coherent functionals
on D.

Proof. It is trivial that (2) ⇒ (1). Conversely, assume condition (1) and define
Yf (Q) = P (f)−Q(f) for f ∈ D and Q ∈ Q. Then, {Yf : f ∈ D} is a linear space
of real bounded functions on Q. By condition (1),

sup
Q∈Q

Yf (Q) = P (f)− inf
Q∈Q

Q(f) ≥ 0 for each f ∈ D.

Thus, there is a f.a.p. Λ on the power set of Q such that

P (f)−
∫
Q
Q(f) Λ(dQ) =

∫
Q
Yf dΛ = 0 for all f ∈ D.

Then, condition (2) holds with Π the restriction of Λ on Σ(Q). (Recall that Σ(Q)
is the σ-field over Q generated by the maps Q 7→ Q(f) for all f ∈ D). �

Let D be a linear subspace of l∞(Ω) including the constants and P a coherent
functional on D. The inner and outer functionals associated to P (also known as
lower and upper previsions [16, 17]) are

P∗(f) = sup {P (h) : h ∈ D, h ≤ f} and P ∗(f) = inf {P (h) : h ∈ D, h ≥ f}

where f ∈ l∞(Ω). They are connected through P∗(f) = −P ∗(−f), and each
coherent extension T of P to l∞(Ω) satisfies

P∗ ≤ T ≤ P ∗.
A nice feature of coherence is that the above extremes are actually attained.

This fact is essentially known (see e.g. [7] and [16, 17]) but we provide a simple
proof to make the paper self-contained.

Lemma 2. Let D ⊂ l∞(Ω) be a linear subspace including the constants and P a
coherent functional on D. For each f ∈ l∞(Ω), there is a coherent functional T on
l∞(Ω) such that T = P on D and T (f) = P∗(f).

Proof. First note that P ∗ is a Minkowski functional, namely, P ∗(λφ) = λP ∗(φ)
and P ∗(φ + ψ) ≤ P ∗(φ) + P ∗(ψ) whenever φ, ψ ∈ l∞(Ω) and the scalar λ is non-
negative. Since P ∗ = P on D, by Hahn-Banach theorem, there is a linear functional
T : l∞(Ω)→ R such that

T = P on D, T (−f) = P ∗(−f), T ≤ P ∗.
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If h ∈ l∞(Ω) and h ≥ 0, then

T (h) = −T (−h) ≥ −P ∗(−h) = P∗(h) ≥ 0.

Thus, T is a linear positive functional such that T (1) = P (1) = 1, namely, T is
coherent. Finally, T (f) = −T (−f) = −P ∗(−f) = P∗(f). �

3. Common extensions

In this section, I is an arbitrary index set and, for each i ∈ I, Di is a linear
subspace of l∞(Ω) and Pi a coherent functional on Di.

Theorem 3. Let F ⊂ l∞(Ω) and, for f ∈ F , let Gf ⊂ l∞(Ω). Define Q to be the
collection of all coherent functionals Q on l∞(Ω) such that

Q(f) ≤ Q(g) for all f ∈ F and g ∈ Gf .
There is P ∈ Q such that P = Pi on Di for all i ∈ I if and only if∑

i∈J
Pi(fi) ≥ inf

Q∈Q

∑
i∈J

Q(fi)(3)

whenever J ⊂ I is finite and fi ∈ Di for each i ∈ J .

Proof. Let P ∈ Q be such that P = Pi on Di for all i ∈ I. Given a finite subset
J ⊂ I and fi ∈ Di for each i ∈ J , one trivially obtains∑

i∈J
Pi(fi) = P

(∑
i∈J

fi

)
≥ inf
Q∈Q

Q
(∑
i∈J

fi

)
= inf
Q∈Q

∑
i∈J

Q(fi).

Conversely, under condition (3), one obtains Q 6= ∅ (since inf ∅ =∞). Let

D =
{∑
i∈J

fi : J ⊂ I finite, fi ∈ Di for each i ∈ J
}
.

Fix f ∈ D. If f =
∑
i∈J1 fi and f =

∑
k∈J2 gk, with J1 ⊂ I and J2 ⊂ I finite,

fi ∈ Di and gk ∈ Dk for all i ∈ J1 and k ∈ J2, condition (3) yields∑
i∈J1

Pi(fi)−
∑
k∈J2

Pk(gk) ≥ inf
Q∈Q

Q
(∑
i∈J1

fi −
∑
k∈J2

gk

)
= 0.

Similarly,
∑
k∈J2 Pk(gk)−

∑
i∈J1 Pi(fi) ≥ 0, so that

∑
i∈J1 Pi(fi) =

∑
k∈J2 Pk(gk).

Hence, one can define

T (f) =
∑
i∈J

Pi(fi) for all f =
∑
i∈J

fi ∈ D.

Using (3) again, it follows that T is coherent on D and T (f) ≥ infQ∈QQ(f) for all
f ∈ D. By Lemma 1, there is a f.a.p. Π on Σ(Q) such that

T (f) =

∫
Q
Q(f) Π(dQ) for each f ∈ D.

Finally, take a finitely additive extension Λ of Π to the power set of Q and define
P (f) =

∫
QQ(f) Λ(dQ) for all f ∈ l∞(Ω). Then, P ∈ Q. Further, since P = T on

D, one obtains P (f) = T (f) = Pi(f) whenever i ∈ I and f ∈ Di. �

Some remarks are in order. Define Q as in Theorem 3.

(i) Q may be empty. In this case, however, condition (3) fails because of the
convention inf ∅ =∞. The same comment applies to the rest of this paper.
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(ii) Fix f ∈ l∞(Ω), two constants a ≤ b, and suppose that {f,−f} ⊂ F . Take
Gf = {fb} and G−f = {−fa}, where fc denotes the constant function
fc(ω) = c for all ω ∈ Ω. Then, each Q ∈ Q satisfies a ≤ Q(f) ≤ b.

(iii) Theorem 3 is still valid for other choices of Q. Say that a certain property
is preserved under mixtures if such property holds for P (·) =

∫
RQ(·) Π(dQ)

provided it holds for every Q ∈ R, where R is any collection of coherent
functionals and Π a f.a.p. on the power set of R. Then, Theorem 3 works
with Q the set of all coherent functionals on l∞(Ω) satisfying any set of
properties which are preserved under mixtures.

(iv) If F = ∅, then Q is the set of all coherent functionals on l∞(Ω) and

inf
Q∈Q

∑
i∈J

Q(fi) = inf
Q∈Q

Q
(∑
i∈J

fi

)
= inf
ω∈Ω

∑
i∈J

fi(ω).

Two special cases are to be stressed. First, condition (3) is connected to the
avoiding sure loss condition, introduced by Walley [16] in the framework of
imprecise probabilities. Second, Theorem 3 reduces to the following result.

Corollary 4. There is a coherent functional P on l∞(Ω) such that P = Pi on Di

for each i ∈ I if and only if ∑
i∈J

Pi(fi) ≥ inf
ω∈Ω

∑
i∈J

fi(ω)

whenever J ⊂ I is finite and fi ∈ Di for all i ∈ J .

Proof. Apply Theorem 3 with F = ∅. �

It is worth noting that common extensions of linear positive functionals have
been studied for a long time. Thus, various characterizations similar to Corollary
4 are already available; see e.g. [13] and references therein.

In turn, Corollary 4 implies a classical result by Guy [11]; see also [6, page 82].

Corollary 5. Let µ be a f.a.p. on F and ν a f.a.p. on G, where F and G are fields
of subsets of Ω. There is a f.a.p. γ on the power set of Ω such that γ = µ on F
and γ = ν on G if and only if

µ(A) ≤ ν(B) whenever A ∈ F , B ∈ G and A ⊂ B.(4)

Proof. By Corollary 4, it suffices to see that µ(f) ≤ ν(g) whenever f is a F-simple
function, g a G-simple function, and f ≤ g. In fact, f ≤ g implies {f > t} ⊂ {g > t}
and {g < −t} ⊂ {f < −t} for each t > 0. Hence, condition (4) yields

µ(f) =

∫ ∞
0

{
µ(f > t)− µ(f < −t)

}
dt ≤

∫ ∞
0

{
ν(g > t)− ν(g < −t)

}
dt = ν(g).

�

It is well known that µ and ν may fail to admit a common σ-additive extension
to σ(F ∪G) even if they are σ-additive and condition (4) holds. We next provide a
simple example of this fact. In such example, in addition to (4) and σ-additivity of
µ and ν, various other conditions are satisfied. In fact, Ω is a compact metric space
and F and G are countably generated sub-σ-fields of B(Ω) such that F∩G = {∅,Ω}.
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Example 6. Let I = [0, 1], H = {(x, y) ∈ I2 : x > y} and

ϕ(C) = m{x ∈ I : (x, x2) ∈ C} for each C ∈ B(I2),

where m is the Lebesgue measure on B(I). Then,

ϕ(H) = 1 and ϕ
(
A× I

)
= m(A) for each A ∈ B(I).

Define

Ω = I2, F = σ
(
{H, A× I : A ∈ B(I)}

)
and G = {I ×A : A ∈ B(I)}.

Then, F and G are countably generated sub-σ-field of B(Ω) and F ∩ G = {∅,Ω}.
Take µ = ϕ|F and ν(I ×A) = m(A) for all A ∈ B(I).

As noted in [15, Example 2], there is a f.a.p. γ on B(Ω) such that γ(H) = 1 and
γ(A × I) = γ(I × A) = m(A) for all A ∈ B(I). Thus, condition (4) is satisfied.
Toward a contradiction, suppose now that µ and ν admit a common σ-additive
extension ρ to σ(F ∪ G) = B(Ω). Then,∫

Ω

(x− y) ρ(dx, dy) =

∫ 1

0

x dx−
∫ 1

0

y dy = 0.

But this is a contradiction, for ρ is σ-additive and ρ(H) = µ(H) = 1.

We close this section with a last application of Theorem 3. Next result improves
[5, Theorem 7].

Corollary 7. Let λ be a f.a.p. on a field E of subsets of Ω and

K = {A ∈ E : λ(A) = 1}.
There is a coherent functional P on l∞(Ω) such that

P = Pi on Di for all i ∈ I and P (1A) = 1 for each A ∈ K
if and only if ∑

i∈J
Pi(fi) ≥ inf

ω∈A

∑
i∈J

fi(ω)(5)

whenever A ∈ K, J ⊂ I is finite, and fi ∈ Di for each i ∈ J .

Proof. Let Z be the set of all functions Z : l∞(Ω)→ R satisfying

inf f ≤ Z(f) ≤ sup f for each f ∈ l∞(Ω).

When equipped with the product topology, Z is compact and convergence on Z is
pointwise convergence. Having noted this fact, assume condition (5). Fix A ∈ K
and define QA to be the set of those coherent functionals Q on l∞(Ω) such that
Q(1A) = 1. Because of condition (5) and Theorem 3,

MA :=
{
P ∈ QA : P = Pi on Di for all i ∈ I

}
is not empty. Thus, {MA : A ∈ K} is a collection of closed subsets of Z such that

n⋂
i=1

MAi
=M∩n

i=1Ai
6= ∅ for all n ≥ 1 and A1, . . . , An ∈ K.

Since Z is compact, it follows that⋂
A∈K
MA 6= ∅.

This concludes the proof of the ”if” part, and the ”only if” part is trivial. �
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Example 8. (Common absolutely continuous extensions). Let µ, ν, λ be
f.a.p.’s on the fields F , G, E , respectively. Define K as in Corollary 7. There is a
f.a.p. γ on the power set of Ω such that

γ = µ on F , γ = ν on G, and γ(A) = 0 whenever Ac ∈ K

if and only if

µ(A) ≤ ν(B) whenever A ∈ F , B ∈ G(6)

and A ∩K ⊂ B ∩K for some K ∈ K.

In fact, by Corollary 7, it suffices to see that µ(f) ≤ ν(g) whenever f is a F-simple
function, g is a G-simple function, and f ≤ g on K for some K ∈ K. Under (6),
this can be shown exactly as in the proof of Corollary 5.

4. Finitely additive mixtures of extreme points

Recall that, for any subset H of a linear space, x is an extreme point of H if
x ∈ H and x 6= αy + (1− α)z for all α ∈ (0, 1) and y, z ∈ H with y 6= z.

Let F be a field of subsets of Ω and DF the linear space of F-simple functions.
Also, let Q be the set of all f.a.p.’s on F . As usual, for any Q ⊂ Q, we denote by
Σ(Q) the σ-field over Q generated by the maps Q 7→ Q(A) for all A ∈ F .

When dealing with Q, there is a natural topology to work with. (A version of such
topology has been already used in the proof of Corollary 7). Let [0, 1]F be the set of
all functions from F into [0, 1], equipped with the product topology. Then, [0, 1]F

is a compact Hausdorff space and convergence on [0, 1]F is setwise convergence.
Thus, Q is a compact Hausdorff space in the relative topology inherited from [0, 1]F .
Hereafter, this topology is referred to as the product topology. Note that P 7→ P (f)
is a continuous map on Q for any bounded F-measurable function f : Ω→ R.

Theorem 9. Let R ⊂ Q and

Q = {extreme points of R}.

Fix P ∈ Q and suppose R convex and closed in the product topology. Then, the
following statements are equivalent:

(a) P ∈ R;

(b) P (f) ≥ infQ∈QQ(f) for each f ∈ DF ;

(c) There is a f.a.p. Π on Σ(Q) such that P (A) =
∫
QQ(A) Π(dQ) for all

A ∈ F .

Proof. (a) ⇒ (b). By the Krein-Milman theorem,

R = conv(Q)

where conv(Q) is the convex hull of Q. Therefore, if P ∈ R, one obtains

P (f) ≥ inf
Q∈R

Q(f) = inf
Q∈Q

Q(f)

for each f ∈ DF , as the map Q 7→ Q(f) is continuous.

(b) ⇒ (c). Just apply Lemma 1 with D = DF .
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(c) ⇒ (a). Fix ε > 0 and a finite subset V ⊂ F . In view of (c), there is a finite
partition {S1, . . . , Sm} of Q such that Si ∈ Σ(Q) for all i and∣∣∣P (A)−

m∑
i=1

Π(Si)Qi(A)
∣∣∣ < ε whenever A ∈ V and Qi ∈ Si for all i.

Take Q1 ∈ S1, . . . , Qm ∈ Sm and define

QV,ε =

m∑
i=1

Π(Si)Qi.

Since R is convex, QV,ε ∈ R. Hence, it suffices to note that R is closed and the net
{QV,ε : ε > 0, V ⊂ F finite} converges to P . �

Example 10. (Invariant f.a.p.’s). Let Φ be an arbitrary class of measurable
functions from Ω into itself (i.e., φ : Ω → Ω and φ−1(F) ⊂ F for all φ ∈ Φ) and
let QΦ denote the collection of those f.a.p.’s P ∈ Q such that P ◦ φ−1 = P for all
φ ∈ Φ. If Pα is a net in QΦ and Pα → P ∈ Q, then

P ◦ φ−1(A) = P
(
φ−1(A)

)
= lim

α
Pα
(
φ−1(A)

)
= lim

α
Pα(A) = P (A)

for all A ∈ F and φ ∈ Φ. Hence, QΦ is (convex and) closed in the product topology.
Letting R = QΦ in Theorem 9, it follows that an invariant f.a.p. is a finitely

additive mixture of extreme invariant f.a.p.’s, without any assumptions on Φ or
(Ω,F). In a σ-additive framework, instead, the corresponding result requires some
conditions; see forthcoming Example 12.

5. Countably additive mixtures

From now on, a σ-additive f.a.p. is called a probability measure. Further, A is a
σ-field of subsets of Ω and P the set of all probability measures on A.

Let P ∈ P and Q ⊂ P. Some classical results state that, under suitable assump-
tions, P is a σ-additive mixture of the elements of Q. An obvious strategy for
proving such results is as follows. One first proves that

P (f) ≥ inf
Q∈Q

Q(f) for each A-simple function f,(7)

so that Lemma 1 yields P (·) =
∫
QQ(·) Π(dQ) for some f.a.p. Π on Σ(Q). Then,

one shows that Π is (or can be taken to be) a probability measure.
In this section, we aim to realize this program. Some new results, as well as

simple proofs of known facts, are obtained.
For any Q ⊂ P, define

G = {A ∈ A : Q(A) ∈ {0, 1} for each Q ∈ Q}

and call Σ0(Q) the σ-field over Q generated by the maps Q 7→ Q(A) for all A ∈ G.

Theorem 11. Given P ∈ P and Q ⊂ P, suppose P (·) =
∫
QQ(·) Π(dQ) for some

f.a.p. Π on Σ(Q). Let Π0 be the restriction of Π on Σ0(Q). Then, Π0 is a probability
measure determined by P |G. Moreover, Π is a probability measure determined by P
provided, for each A ∈ A, there is an A-measurable map hA : Ω→ [0, 1] such that

Q
{
ω ∈ Ω : hA(ω) = Q(A)

}
= 1 for all Q ∈ Q.(8)
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Proof. First note that Σ0(Q) consists of sets of the form {Q ∈ Q : Q(A) = 1} for
some A ∈ G. By definition of G, one also obtains

Π{Q ∈ Q : Q(A) = 1} =

∫
Q
Q(A) Π(dQ) = P (A) for each A ∈ G.

Thus, Π0 is determined by P |G. Fix a sequence Hn ∈ Σ0(Q) and take An ∈ G such
that Hn = {Q ∈ Q : Q(An) = 1}. Since ∪nHn = {Q ∈ Q : Q(∪nAn) = 1},∑

n

Π(Hn) =
∑
n

P (An) ≥ P (∪nAn) = Π(∪nHn)

where ≥ depends on P is σ-additive. Hence, Π0 is a probability measure.
To conclude the proof, it suffices to see that Σ(Q) = Σ0(Q) under condition (8).

Let H ∈ Σ(Q). By a routine argument, there is a countable class C ⊂ A such that
H ∈ ΣC(Q), where ΣC(Q) is the σ-field over Q generated by Q 7→ Q(C) for all
C ∈ C. Write C = {A1, A2, . . .} and define

g(Q) =
(
Q(A1), Q(A2), . . .

)
for all Q ∈ Q.

Then, g : Q → R∞ and ΣC(Q) can be written as ΣC(Q) =
{
{g ∈ B} : B ∈ B(R∞)

}
.

In particular, H = {g ∈ B} for some B ∈ B(R∞). Define

h(ω) =
(
hA1

(ω), hA2
(ω), . . .

)
for all ω ∈ Ω.

For each Q ∈ Q, condition (8) implies

Q
(
h = g(Q)

)
= Q

(
hAi = Q(Ai) for all i

)
= 1.

Thus, letting A = {h ∈ B}, one obtains

Q(A) = Q
(
h ∈ B, h = g(Q)

)
= 1H(Q).

Hence, A ∈ G and H = {Q ∈ Q : Q(A) = 1} ∈ Σ0(Q). �

Theorem 11 improves (and is inspired by) Proposition (3.4) of [9].
A few applications of Theorem 11 are discussed in the next three examples. We

first note that condition (8) holds true automatically if some sub-σ-field D ⊂ G is
sufficient for Q. We recall that D is sufficient for Q if, for each A ∈ A, there is a
D-measurable map hA : Ω→ [0, 1] such that∫

D

hA dQ = Q(A ∩D) for all D ∈ D and Q ∈ Q.

In other terms, hA is a version of EQ(1A|D) for all Q ∈ Q.

Example 12. (Invariant probability measures). Let Φ be a collection of
measurable maps of Ω into itself and QΦ the set of those probability measures
P ∈ P such that P ◦ φ−1 = P for all φ ∈ Φ. Define

Q = {extreme points of QΦ}.

Suppose Φ is separable (i.e., QΦ = QΦ0
for some countable Φ0 ⊂ Φ) and Ω is an

universally measurable subset of a Polish space equipped with A = B(Ω). Then,
for each P ∈ QΦ, there is a unique probability measure Π on Σ(Q) such that
P (·) =

∫
QQ(·) Π(dQ); see [14, Theorem 1]. We just make two remarks.

First, this result admits the following simple proof. Let

D =
{
A ∈ A : P

(
A∆φ−1A

)
= 0 for all φ ∈ Φ and P ∈ QΦ

}
.
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Then, D ⊂ G and, since Φ is separable, D is sufficient for QΦ; see [14, Lemma
4]. Thus, condition (8) holds. By Theorem 11, it remains only to show that each
P ∈ QΦ satisfies condition (7). This can be actually done, with a reasonable effort,
exploiting the assumptions on (Ω,A). We omit the explicit calculations.

Second, the assumptions on (Ω,A) are required only to check condition (7) and
are superfluous to apply Theorem 11. Hence, the following result is available.

Proposition 13. Let (Ω,A, P ) be any (σ-additive) probability space. Take Φ and
Q as in Example 12 and suppose Φ separable. Then, P (·) =

∫
QQ(·) Π(dQ) for

some (unique) probability measure Π on Σ(Q) if and only if P meets condition (7).

Example 14. (Exchangeable probability measures). This is just a special
case of Example 12. Given any measurable space (S, E), let

Ω = S∞, A = E∞, Φ = {finite permutations of S∞}.
Then, the elements of QΦ are the exchangeable probability measures on E∞ and

Q = {extreme points of QΦ} = {i.i.d. probability measures on E∞}.
Let P ∈ P. By Proposition 13, since Φ is countable, P is a σ-additive mixture of
i.i.d. probability measures if and only if it satisfies condition (7). Note that, since
(S, E) is arbitrary, it may be that some P ∈ QΦ does not admit the representation
P (·) =

∫
QQ(·) Π(dQ) with Π a probability measure on Σ(Q); see [9]. Hence,

condition (7) may fail for some P ∈ QΦ.

Example 15. (Disintegrability). Let H ⊂ A be a partition of Ω. Given P ∈ P,
a pair (α, β) is a disintegration for P on H if

• For each H ∈ H, α(·|H) is a f.a.p. on A such that α(H|H) = 1;
• β is a f.a.p. on the power set of H;
• P (A) =

∫
H α(A|H)β(dH) for all A ∈ A;

see [1], [2], [8], [10]. Here, we also assume α(·|H) ∈ P for each H ∈ H.
Let σ(α) be the σ-field overH generated by the maps H 7→ α(A|H) for all A ∈ A.

Only the restriction of β on σ(α) plays a role in the above definition. Thus, since
P ∈ P, a (natural) question is whether β is a probability measure on σ(α). For
instance, if each α(·|H) is 0-1 valued, Theorem 11 implies that β is a probability
measure on σ(α). (Just let Q =

{
α(·|H) : H ∈ H

}
and note that G = A). To get

a more general answer, a certain extension P0 of P is to be involved.
Each S ⊂ H can be identified with a subset of Ω, denoted by S∗. Let A0 be

the σ-field on Ω generated by A ∩ S∗ for all A ∈ A and S ∈ σ(α). On noting
that α(H|H) = 1 and C ∩ H ∈ A for each C ∈ A0 and H ∈ H, one can define
α0(C|H) = α

(
C ∩H|H

)
and

P0(C) =

∫
H
α0(C|H)β(dH) for all C ∈ A0.

Proposition 16. β is σ-additive on σ(α) if and only if P0 is σ-additive on A0.

Proof. By a standard monotone argument, the mapH 7→ α0(C|H) is σ(α)-measurable
for all C ∈ A0. Also, for fixed H ∈ H, α0(·|H) is a probability measure on A0 (re-
call that α(·|H) ∈ P). Thus, P0 is σ-additive on A0 if β is σ-additive on σ(α).
Conversely, suppose P0 is σ-additive on A0. Define Q =

{
α0(·|H) : H ∈ H

}
and

hC(ω) =
∑
H∈H

1H(ω)α0(C|H) for all ω ∈ Ω and C ∈ A0.
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For fixed C ∈ A0, the map hC : Ω→ [0, 1] is A0-measurable, and clearly

α0

(
{ω ∈ Ω : hC(ω) = α0(C|H)} | H

)
= α(H|H) = 1 for all H ∈ H.

An application of Theorem 11 concludes the proof. �

We close the paper with a classical result. In what follows, Ω is a compact metric
space, A = B(Ω), and P is equipped with the usual topology of weak convergence
of probability measures, i.e., the weakest topology on P which makes continuous
the maps P 7→ P (f) for all f ∈ C(Ω). We need the following (well known) fact.

(*) If R ⊂ P is convex and closed, there is a strictly convex continuous function
ψ on R. Take one such ψ and define

ψ̂ = inf{ϕ : ϕ ∈ L, ϕ ≥ ψ}

where L is the linear space of affine continuous functions on R. Then, for

each Q ∈ R, one obtains ψ̂(Q) = ψ(Q) if and only if Q is an extreme point
of R. See e.g. [12].

Theorem 17. Suppose Ω is a compact metric space and R ⊂ P is convex and
closed. Let Q be the set of extreme points of R. Then, each P ∈ R admits the
representation P (·) =

∫
QQ(·) Π(dQ) for some probability measure Π on Σ(Q).

Proof. Take a strictly convex continuous function ψ on R and define L and ψ̂ as
in (*). For each map ϕ on R, denote by ϕ0 = ϕ|Q the restriction of ϕ on Q. Note
also that R is a compact metric space (for Ω is a compact metric space).

Fix P ∈ R and define T (ϕ0) = ϕ(P ) for all ϕ ∈ L. Since R = conv(Q),

ϕ(P ) ≥ inf
Q∈Q

ϕ(Q) for each ϕ ∈ L.

This inequality implies that T is a coherent functional on {ϕ0 : ϕ ∈ L}. Further,

ψ̂(P ) = inf{ϕ(P ) : ϕ ∈ L, ϕ ≥ ψ} = inf{T (ϕ0) : ϕ ∈ L, ϕ0 ≥ ψ0} = T ∗(ψ0).

By Lemma 2, there is a f.a.p. Γ on Σ(Q) such that

ϕ(P ) =

∫
Q
ϕ(Q) Γ(dQ) for all ϕ ∈ L and ψ̂(P ) =

∫
Q
ψ(Q) Γ(dQ).

By definition of ψ̂, one also obtains ψ̂(P ) =
∫
Q ψ̂(Q) Γ(dQ).

Regard Γ as a f.a.p. on Σ(R) such that Γ(Q) = 1. Since R is compact Hausdorff,
by Riesz theorem, there is a probability measure Π on Σ(R) such that Π(h) = Γ(h)
for all h ∈ C(R). Let hf (Q) = Q(f) for f ∈ C(Ω) and Q ∈ R. Since hf ∈ L,

P (f) = hf (P ) = Γ(hf ) = Π(hf ) =

∫
R
Q(f) Π(dQ) for each f ∈ C(Ω).

Hence, to conclude the proof, it suffices to see that Π(Q) = 1. In fact,

Π(ψ) = Γ(ψ) = Γ(ψ̂) = ψ̂(P ) = inf{Π(ϕ) : ϕ ∈ L, ϕ ≥ ψ} ≥ Π(ψ̂)

where the second equality is because Γ(ψ̂ = ψ) = Γ(Q) = 1; see (*). Since ψ ≤ ψ̂

and Π(ψ) ≥ Π(ψ̂), one finally obtains Π(Q) = Π(ψ̂ = ψ) = 1. �
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Theorem 17 is obviously known and our only goal is to provide it with a simple
proof. Indeed, Theorem 17 holds under more general assumptions. By a result of
Winkler [18], for any metric space Ω, it suffices to assume R a convex closed set of
tight probability measures. However, the crucial step of Winkler’s proof is the case
where Ω is compact. Once this is done, to prove the theorem in the general case is
not too hard.

Acknowledgments: We are grateful to Carlo De Bernardi for a very useful discussion.
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