Hilbert Complexes and the Finite Element Exterior Calculus

D. N. Arnold, joint work with R. Falk and R. Winther

Pavia, 29 June 2010

Outline

1. Motivation
2. Hilbert complexes
3. Discretization
4. Finite element differential forms
5. Additional applications

reference:

Motivation

Vector Poisson equation

\[
\text{curl curl } u - \text{grad div } u = f \quad \text{in } \Omega \\
\quad u \cdot n = 0, \text{curl } u \times n = 0 \quad \text{on } \partial \Omega
\]

\(f \equiv 0 \) does not imply \(u \equiv 0 \):

\[
\dim \mathcal{H} = b_1
\]

harmonic forms (solutions for \(f = 0 \))

1st Betti number (number of holes)

curl curl \(u - \text{grad div } u = f \) (mod \(\mathcal{H} \)), \(u \nabla \mathcal{H} \), b.c.

\[
u = \arg \min_{H(\text{curl}) \cap H(\text{div}) \cap \mathcal{H}^1} \frac{1}{2} \int_{\Omega} |\text{curl } u|^2 + |\text{div } u|^2 \, dx - \int_{\Omega} f \cdot u \, dx
\]
Standard Galerkin does not work

\[f = (0, x) \]

\[P_1 \text{ elements} \]

\[f = (-1, 0) \]

\[P_1 \text{ elements} \]

A mixed formulation

\[
\sigma = -\text{div} u, \quad \text{grad} \sigma + \text{curl} \text{curl} u = f \pmod{\mathcal{N}}, \quad u \perp \mathcal{N}
\]

\[\sigma \in H^1, \; u \in H(\text{curl}), \; p \in \mathcal{N}: \]

\[
\int_{\Omega} \sigma \tau \; dx - \int_{\Omega} u \cdot \text{grad} \tau = 0, \quad \tau \in H^1,
\]

\[
\int_{\Omega} \text{grad} \sigma \cdot v \; dx + \int_{\Omega} \text{curl} u \cdot \text{curl} v \; dx + \int_{\Omega} pv \; dx = \int_{\Omega} f \cdot v \; dx, \; v \in H(\text{curl})
\]

\[
\int_{\Omega} uq \; dx = 0, \quad q \in \mathcal{N}
\]

\[
\frac{1}{2} \int_{\Omega} |\sigma|^2 \; dx - \int_{\Omega} \text{grad} \sigma \cdot u \; dx - \frac{1}{2} \int_{\Omega} |\text{curl} u|^2 \; dx - \int_{\Omega} p \cdot u \; dx + \int_{\Omega} f \cdot u \; dx \rightarrow \text{saddle point}
\]

The Galerkin method works for this formulation, if we use stable els.

Hilbert complexes: basic definitions

- A cochain complex is a sequence of vector spaces and linear maps
 \[\ldots \xrightarrow{d^{k-1}} V^k \xrightarrow{d^k} V^{k+1} \xrightarrow{d^{k+1}} \ldots \]
 with \(d^k \circ d^{k-1} = 0 \).

- Cycles, boundaries, cohomology:
 \[
 Z^k = \mathcal{N}(d^k), \quad B^k = \mathcal{R}(d^{k-1}), \quad H^k = Z^k / B^k
 \]

- A Hilbert complex is a sequence of Hilbert spaces and densely-defined closed operators
 \[\ldots \xrightarrow{d^{k-1}} W^k \xrightarrow{d^k} W^{k+1} \xrightarrow{d^{k+1}} \ldots \]
 with \(d^k \circ d^{k-1} = 0 \).

- Closed Hilbert complex: \(\mathcal{B}^k \) is closed

 Bounded Hilbert complex: operators are bounded

- The domain complex:
 \[V^k = \mathcal{D}(d^k) \]

 is a H-space with \(\| u \|_V^2 = \| u \|^2 + \| du \|^2 \):

 \[
 \ldots \xrightarrow{d^{k-1}} V^k \xrightarrow{d^k} V^{k+1} \xrightarrow{d^{k+1}} \ldots
 \]

 This is a bounded Hilbert complex (so a cochain complex).
Mixed formulation of the Hodge Laplacian

Given \(f \in W^k \), find \(\sigma \in V^{k-1}, u \in V^k, p \in \mathcal{S}^k \):

\[
\begin{align*}
\langle \sigma, \tau \rangle - \langle d\tau, u \rangle &= 0 & \forall \tau \in V^{k-1} \\
\langle \sigma, v \rangle + \langle du, dv \rangle + \langle p, v \rangle &= \langle f, v \rangle & \forall v \in V^k \\
\langle u, q \rangle &= 0 & \forall q \in \mathcal{S}^k
\end{align*}
\]

Equivalently \(\frac{1}{2} \langle \sigma, \sigma \rangle - \langle d\sigma, u \rangle - \frac{1}{2} \langle du, du \rangle - \langle p, u \rangle + \langle f, u \rangle \rightarrow \text{saddle point} \)

Theorem

\[\forall f \exists! (\sigma, u, p) \text{ and } ||\sigma|| + ||u|| + ||v|| \leq c ||f|| \text{ with } c \text{ depending only on } c_P. \]

Need to control \(||\sigma|| + ||u|| + ||v|| + ||p|| \) by a bounded choice of \(\tau, v, \) and \(q \).
\(\tau = \sigma \) controls \(||\sigma|| \), \(v = d\sigma \) controls \(||d\sigma|| \), \(v = p \) controls \(||p|| \).
\(v = u \) controls \(||du|| \), \(u \rightarrow \text{controls} \) \(||du|| \). \text{How to control} \(||u|| ?? \)

Hodge decomposition:

\[u = d\eta + s + z, \quad \eta \in V^{k-1}, s \in \mathcal{S}^k, z \in (3^k)^\perp \]

\(\tau = \eta \) controls \(||d\eta|| \) and \(q = s \) controls \(||s|| \). To bound \(||z|| \) we use \text{Poincaré's inequality: } ||z|| \leq c_P ||dz|| = c_P ||du|| \text{ (which is under control)}

Hilbert complex:

\[0 \rightarrow L^2(\Omega) \xrightarrow{\text{grad}} L^2(\Omega; \mathbb{R}^3) \xrightarrow{\text{curl}} L^2(\Omega; \mathbb{R}^3) \xrightarrow{\text{div}} L^2(\Omega) \rightarrow 0 \]

Domain complex:

\[0 \rightarrow H^1(\Omega) \xrightarrow{\text{grad}} H(\text{curl}, \Omega) \xrightarrow{\text{curl}} H(\text{div}, \Omega) \xrightarrow{\text{div}} L^2(\Omega) \rightarrow 0 \]

Dual domain complex:

\[0 \xleftarrow{\text{div}} \overset{\text{curl}}{L^2(\Omega)} \xleftarrow{\text{curl}} \overset{\text{grad}}{H(\text{curl}, \Omega)} \xleftarrow{\text{grad}} H^1(\Omega) \xleftarrow{0} \]

Mixed form of Hodge Laplacian:

0: Poisson equation, usual \(H^1 \) formulation \((\sigma = 0) \)
1: Vector Poisson equation, scalar–vector mixed method \((\sigma = - \text{div } u) \)
2: Vector Poisson equation, vector–vector mixed method \((\sigma = \text{curl } u) \)
3: Poisson equation, mixed formulation \((\sigma = - \text{grad } u) \)

Restricting \(f \) to \(\mathcal{B}^k \) or \(\mathcal{B}^k_* \) for \(k = 1, 2 \) we get additional problems

\[\bullet \text{ curl curl } u = f, \text{ div } u = 0 \quad \bullet \text{ div } u = f, \text{ curl } u = 0 \]
Harmonic forms and Betti numbers

For the de Rham complex, \(\dim \delta^k = b_k \), the \(k \)th Betti number. These are the most basic topological invariants of the domain.

\[
b_k = \begin{cases}
\# \text{ components of } \Omega, & k = 0 \\
\# \text{ tunnels thru } \Omega, & k = 1 \\
\# \text{ voids in } \Omega, & k = 2 \\
0, & k = 3
\end{cases}
\]

The de Rham complex in \(n \)-dimensions

Hilbert complex:

\[
0 \to L^2 \Lambda^0(\Omega) \overset{d}{\to} L^2 \Lambda^1(\Omega) \overset{d}{\to} \cdots \overset{d}{\to} L^2 \Lambda^{n-1}(\Omega) \overset{d}{\to} L^2 \Lambda^n(\Omega) \to 0
\]

Domain complex:

\[
0 \to H \Lambda^0(\Omega) \overset{d}{\to} H \Lambda^1(\Omega) \overset{d}{\to} \cdots \overset{d}{\to} H \Lambda^{n-1}(\Omega) \overset{d}{\to} H \Lambda^n(\Omega) \to 0
\]

Dual domain complex:

\[
0 \leftarrow \check{H} \Lambda^0(\Omega) \overset{d^*}{\leftarrow} \check{H} \Lambda^1(\Omega) \overset{d^*}{\leftarrow} \cdots \overset{d^*}{\leftarrow} \check{H} \Lambda^{n-1}(\Omega) \overset{d^*}{\leftarrow} \check{H} \Lambda^n(\Omega) \leftarrow 0
\]

Mixed form of Hodge Laplacian:

0: Poisson equation, usual \(H^1 \) formulation (\(\sigma = 0 \))
1: Vector Poisson equation, scalar–vector mixed method (\(\sigma = - \text{div } u \))

\(n-1 \): Vector Poisson equation, skew-matrix–vector mixed method (\(\sigma = \text{curl } u \))
n: Poisson equation, mixed formulation (\(\sigma = - \text{grad } u \))

Discretization

We now want to discretize the mixed formulation with f.d. subspaces \(V_h^k \subset V^k \) indexed by \(h \) (Galerkin). Of course we assume

\[
\inf_{v_h \in V_h^k} \| v - v_h \|_V \to 0 \quad \text{as } h \to 0 \quad \forall v \in V \quad (A)
\]

It turns out that there are two more key assumptions.

Subcomplex assumption (SC):
\[
d(V_h^k) \subset V_{h+1}^k
\]

The subcomplex

\[
\cdots \overset{d^1}{\to} V_h^0 \overset{d}{\to} V_h^1 \overset{d}{\to} V_{h+1}^1 \overset{d^1}{\to} \cdots
\]

is itself an H-complex so we have (discrete) harmonic forms \(H_h^k \), Hodge decomposition, and Poincaré inequality with constant \(c_{P,h} \).

Bounded Cochain Projection assumption (BCP):
\[
\exists \pi_h^k : V^k \to V_h^k
\]

\[
\cdots \quad \overset{d}{\to} V^k \overset{d}{\to} V_{h+1}^k \quad \overset{d}{\to} \cdots
\]

\[
\pi_h^k : V^k \text{ bounded, uniform in } h
\]

\[
\pi_h^k : \text{ a projection}
\]

\[
\pi_{h+1}^k d^h = d^h \pi_h^k
\]
Stability theorem

Theorem

Let \((V^k, d^k)\) be a Hilbert complex and \(V^k_h\) finite dimensional subspaces satisfying A, SC, and BCP. Then

- \(\pi_h\) induces an isomorphism on cohomology for \(h\) small
- \(\text{gap}(\pi^k_h, \tilde{\pi}^k_h) \to 0\)
- The discrete Poincaré inequality \(\|\omega\| \leq c\|d\omega\|, \ \omega \in \mathcal{Z}^k_h\), holds with \(c\) independent of \(h\)

Proof of discrete Poincaré inequality: Given \(\omega \in \mathcal{Z}^k_h\), define \(\eta \in \mathcal{Z}^k \subset V_h\) by \(d\eta = d\omega\). By the Poincaré inequality, \(\|\eta\| \leq c_p\|d\omega\|\), whence \(\|\eta\|_V \leq c'\|d\omega\|\), so it is enough to show that \(\|\omega\| \leq c'\|\eta\|_V\). Now, \(\omega - \pi_h\eta \in V^k_h\) and, by SC and BCP, \(d(\omega - \pi_h\eta) = d\omega - \pi_h d\omega = 0\), so \(\omega - \pi_h\eta \in \mathcal{Z}^k_h\). Thus \(\omega = \pi_h\omega\), so \(\|\omega\| \leq \|\pi_h\eta\|\) by Pythagoras. Result follows since \(\pi_h\) is bounded. Note \(c_{P,h} \leq (c_p^2 + 1)^{1/2} \|\pi_h\|\).

Galerkin’s method

\[\sigma \in V^{k-1}, \quad u \in V^k, \quad p \in \tilde{\pi}^k : \]
\[\langle \sigma, \tau \rangle - \langle d\tau, u \rangle = 0 \quad \forall \tau \in V^{k-1} \]
\[\langle d\sigma, v \rangle + \langle du, dv \rangle + \langle p, v \rangle = \langle f, v \rangle \quad \forall v \in V^k \]
\[\langle u, q \rangle = 0 \quad \forall q \in \tilde{\pi}^k \]

\[\sigma_h \in V^{k-1}_h, \quad u_h \in V^k_h, \quad p_h \in \tilde{\pi}^k_h : \]
\[\langle \sigma_h, \tau \rangle - \langle d\tau, u_h \rangle = 0 \quad \forall \tau \in V^{k-1}_h \]
\[\langle d\sigma_h, v \rangle + \langle du_h, dv \rangle + \langle p_h, v \rangle = \langle f, v \rangle \quad \forall v \in V^k_h \]
\[\langle u_h, q \rangle = 0 \quad \forall q \in \tilde{\pi}^k_h \]

If \(\tilde{\pi}^k \nsubseteq V^k\), then \(\tilde{\pi}^k \nsubseteq \tilde{\pi}\), so this is a nonconforming method. The consistency error is related to \(\text{gap}(\tilde{\pi}^k, \tilde{\pi}^k_h)\).

Convergence of Galerkin’s method

From stability we get an estimate which is quasi-optimal plus a small consistency error term.

Notation: for \(w \in V^k\) let \(E(w) := \inf_{w \in V^k_h} \|w - v\|_V\)

Theorem

Assume SC and BCP. Then

\[\|\sigma - \sigma_h\|_V + \|u - u_h\|_V + \|p - p_h\|_V \leq c \{ E(\sigma) + E(u) + E(p) + \epsilon \} \]

where \(\epsilon \leq \inf_{v \in V^k_h} E(P_{\tilde{\pi}}u) \times \sup_{r \in \tilde{\pi}^k} E(r)\).

Improved error estimates

Duality gives improved estimates. Two additional assumptions:

- \(V^k \cap V^k_h\) is a dense subset of \(W^k\) with compact inclusion (CI).
- The projections \(\pi^k_h\) are \(W\)-bounded uniformly in \(h\).

Using compactness and best approximation we define two quantities, \(\eta\) and \(\mu\) which are \(o(1)\). In applications \(\eta = O(h), \mu = O(h^{k+1})\).

Theorem

\[\|d\sigma - d\sigma_h\| \leq c E(d\sigma) \]
\[\|\sigma - \sigma_h\| \leq c\{ E(\sigma) + \eta E(d\sigma) \} \]
\[\|p - p_h\| \leq c\{ E(p) + \mu E(d\sigma) \} \]
\[\|du - du_h\| \leq c\{ E(du) + \eta [E(d\sigma) + E(p)] \} \]
\[\|u - u_h\| \leq c\{ E(u) + \eta [E(du) + E(\sigma)] + (\eta^2 + \delta)[E(d\sigma) + E(p)] + \mu E(P_{\tilde{\pi}}u) \} \]
Based on the abstract theory we want finite element subspaces of H^k which satisfy SC and BCP. A key finding of FEEC is that for simplicial meshes there are precisely two natural families: there are precisely two natural families:

- $P_r^k(T)$
- $P_r^{k-1}(T)$

Shape functions, degrees of freedom, and unisolvence can be treated uniformly. Shape functions for P_r^k are k-forms with P_r coefficients.

Equality for $k = 0$

Equality for $k = n$

FE subcomplexes of the de Rham complex

SC and BCP are obtained if we choose:

\[
\begin{cases}
P_r^{k-1}(T) \\
\text{or} \\
\end{cases} \xrightarrow{d} \begin{cases}
P_r^k(T) \\
\text{or} \\
\end{cases} \]

This leads to 2^{n-1} subcomplexes for each r. Extreme cases:

\[
0 \rightarrow P^-_r \Lambda^0(T) \xrightarrow{d} P^-_r \Lambda^1(T) \xrightarrow{d} \cdots \xrightarrow{d} P^-_r \Lambda^n(T) \rightarrow 0
\]

\[
0 \rightarrow \Lambda^0(T) \xrightarrow{\text{div}} \Lambda^1(T) \xrightarrow{\text{div}} \cdots \xrightarrow{\text{div}} \Lambda^n(T) \rightarrow 0
\]

\[
0 \rightarrow P^-_r \Lambda^0(T) \xrightarrow{d} P^-_r \Lambda^1(T) \xrightarrow{d} \cdots \xrightarrow{d} P^-_r \Lambda^n(T) \rightarrow 0
\]

\[
0 \rightarrow \Lambda^0(T) \xrightarrow{\text{grad}} \Lambda^1(T) \xrightarrow{\text{grad}} \cdots \xrightarrow{\text{grad}} \Lambda^n(T) \rightarrow 0
\]

\[
0 \rightarrow \Lambda^0(T) \xrightarrow{\text{curl}} \Lambda^1(T) \xrightarrow{\text{curl}} \cdots \xrightarrow{\text{curl}} \Lambda^n(T) \rightarrow 0
\]
Convergence of mixed FE for the k-form Hodge Laplacian

Thus we have four stable families of mixed method for the k-form Laplacian:

\[
\begin{align*}
\mathcal{P}^r \Lambda^{k-1}(T) & \times \mathcal{P}^r \Lambda^k(T) \\
\mathcal{P}^r \Lambda^{k-1}(T) & \times \mathcal{P}^{r-1} \Lambda^k(T) \\
\mathcal{P}^{r-1} \Lambda^{k-1}(T) & \times \mathcal{P}^r \Lambda^k(T) \\
\mathcal{P}^{r-1} \Lambda^{k-1}(T) & \times \mathcal{P}^{r-1} \Lambda^k(T)
\end{align*}
\]

For each one, the improved estimates are optimal order in each individual quantity (assuming sufficient smoothness).

More on $\mathcal{P}^r \Lambda^k$ and $\mathcal{P}^{r-1} \Lambda^k$: Rick Falk’s talk

More on BCP: Ragnar Winther’s talk

Additional applications

Eigenvalue problems

Returning to the abstract setting we can consider the eigenvalue problem: Find $\lambda \in \mathbb{R}$, $0 \neq (\sigma, u, p) \in V^{k-1} \times V^k \times S^k$:

\[
\begin{align*}
\langle \sigma, \tau \rangle - \langle d\tau, u \rangle &= 0 & \forall \tau & \in V^{k-1} \\
\langle d\sigma, v \rangle + \langle du, dv \rangle + \langle p, v \rangle &= \lambda \langle u, v \rangle & \forall v & \in V^k \\
\langle u, q \rangle &= 0 & \forall q & \in S^k
\end{align*}
\]

This includes, e.g., the Maxwell eigenvalue problems

\[
\text{curl curl } u = \lambda u, \quad \text{div } u = 0.
\]

Under the same assumptions as for the source problem (SC, BCP, CI), we obtain a complete convergence theory. (We do not explicitly use the Discrete Compactness Property or Fortin property.)

Other Hilbert complexes

- Variable coefficients. Let $W^k = L^2 \Lambda^k$ but with a weighted L^2 inner product. Take $V^k = H\Lambda^k$ and d^* as before. The Hodge Laplacian is now a differential operator with variable coefficients. This allows us to treat, e.g., problems like the Maxwell eigenvalue problem for a general dielectric medium

\[
\text{curl } \mu^{-1} \text{curl } \mu = \lambda \epsilon u, \quad \text{div } \epsilon u = 0
\]

(with tensor coefficients).

- Boundary conditions. Again $W^k = L^2 \Lambda^k$, but now take $V^k = \tilde{H}\Lambda^k$:

\[
0 \rightarrow \tilde{H}\Lambda^0(\Omega) \xrightarrow{d} \tilde{H}\Lambda^1(\Omega) \xrightarrow{d} \cdots \xrightarrow{d} \tilde{H}\Lambda^{n-1}(\Omega) \xrightarrow{d} \tilde{H}\Lambda^n(\Omega) \rightarrow 0
\]

In this way we can treat essential boundary conditions.
For $\Omega \subset \mathbb{R}^2$, consider the Hilbert complex

$$0 \rightarrow L^2(\Omega) \overset{\text{airy}}{\longrightarrow} L^2(\Omega; \mathbb{S}) \overset{\text{div}}{\longrightarrow} L^2(\Omega; \mathbb{R}^2) \rightarrow 0,$$

where \(\text{airy} = \left(\begin{array}{cc} \partial_y^2 & -\partial_x \partial_y \\ -\partial_x \partial_y & \partial_x^2 \end{array} \right) \).

The domain complex is

$$0 \rightarrow H^2(\Omega) \overset{\text{airy}}{\longrightarrow} H(\text{div}, \Omega; \mathbb{S}) \overset{\text{div}}{\longrightarrow} L^2(\Omega; \mathbb{R}^2) \rightarrow 0$$

This is a closed Hilbert complex. If we weight the $L^2(\Omega; \mathbb{S})$ inner product by the compliance tensor, the rightmost Hodge Laplacian is the mixed elasticity system.

Conclusions

- Exterior calculus, de Rham cohomology, and Hodge theory capture the structure behind the well-posedness of various elliptic PDE.
- Hilbert complexes isolate the most relevant features, and provide a framework for studying Galerkin discretizations.
- Two basic properties, SC & BCP, are the key to capturing cohomology and to obtaining stability of discretizations.
- The finite element spaces $P_r \Lambda^k$ and $P_r \Lambda^k$ spaces are the natural finite element discretizations of $H\Lambda^k$ and can be combined into finite element de Rham subcomplexes satisfying SC & BCP.
- These spaces can be used to solve the Hodge Laplacian and many related problems, including Maxwell’s equations. They unify, clarify, and refine many known finite element methods, and allow for a clean, uniform, rigorous analysis.
- Applied to another complex, the FEEC approach has lead to the solution of the long-standing search for mixed finite elements for elasticity.