Skin effect in electromagnetism

Gabriel CALOZ	extsuperscript{1} Monique Dauge	extsuperscript{1} Erwan FAOU	extsuperscript{1} Victor PÉRON	extsuperscript{2} Clair POIGNARD	extsuperscript{2}

	extsuperscript{1} IRMAR, Université de Rennes 1
	extsuperscript{2} Projet MC2, INRIA Bordeaux Sud-Ouest

Workshop “Non-Standard Numerical Methods for PDE’s”
(Pavia, June 29-July 2, 2010)
Outline

1. Framework

2. Equations

3. 3D Multiscale Asymptotic Expansion

4. Axisymmetric Problems

5. Numerical simulations of skin effect

6. Exponential rates
The Skin Effect: A 3-D Problem

\[\sigma + \Omega - \sigma \gg 1 \Omega - \Omega + \Sigma \]

- \(\Omega - \) Highly Conducting body \(\subset \subset \Omega \): Conductivity \(\sigma - \equiv \sigma \gg 1 \)
- \(\Sigma = \partial \Omega - \): Interface
- \(\Omega + \) Insulating or Dielectric body: Conductivity \(\sigma + = 0 \)

The Skin Effect: rapid decay of electromagnetic fields inside the conductor.

The classical Skin Depth: \(\ell(\sigma) = \sqrt{2/\omega \mu_0 \sigma} \)
Our references

V. Péron (PhD thesis, Université Rennes 1, 2009)
Modélisation mathématique de phénomènes électromagnétiques dans des matériaux à fort contraste.

M. Dauge, E. Faou, V. Péron (Note CRAS, 2010)
Comportement asymptotique à haute conductivité de l’épaisseur de peau en électromagnétisme

G. Caloz, M. Dauge, V. Péron (Article JMAA, 2010)
Uniform estimates for transmission problems with high contrast in heat conduction and electromagnetism

On the influence of the geometry on skin effect in electromagnetism

M. Dauge, V. Péron, C. Poignard (In preparation, 2010)
Asymptotic expansion for the solution of a stiff transmission problem in electromagnetism with a singular interface

Aim: Understanding the influence of the geometry on the skin effect.
Outline

1 Framework

2 Equations

3 3D Multiscale Asymptotic Expansion

4 Axisymmetric Problems

5 Numerical simulations of skin effect

6 Exponential rates
Maxwell Problem

Maxwell equations with perfectly insulating exterior b.c.

\[
\begin{align*}
(P_{\sigma}) \quad \begin{cases}
\text{curl } E - i\omega \mu_0 H = 0 \quad \text{and} \quad \text{curl } H + (i\omega \varepsilon_0 - \sigma)E = J \\
E \cdot n = 0 \quad \text{and} \quad H \times n = 0 \quad \text{on} \quad \partial \Omega
\end{cases}
\end{align*}
\]

with the piecewise constant conductivity

\[
\sigma = (\sigma_+, \sigma_-) = (0, \sigma \gg 1)
\]

and the rhs

\[
J \in H_0(\text{div}, \Omega) = \{ u \in L^2(\Omega)^3 \mid \text{div } u \in L^2(\Omega), \ u \cdot n = 0 \text{ on } \partial \Omega \}
\]
Existence of solutions

Hypothesis (SH)

The angular frequency ω is not an eigenfrequency of the problem

\[
\begin{align*}
\text{curl } E - i\omega \mu_0 H &= 0 \quad \text{and} \quad \text{curl } H + i\omega \varepsilon_0 E &= 0 \quad \text{in} \quad \Omega_+ \\
E \times n &= 0 \quad \text{and} \quad H \cdot n &= 0 \quad \text{on} \quad \Sigma \\
E \cdot n &= 0 \quad \text{and} \quad H \times n &= 0 \quad \text{on} \quad \partial \Omega
\end{align*}
\]

Theorem (CALOZ, DAUGE, PÉRON, 2009)

If the surface Σ is Lipschitz, under Hypothesis (SH), there exist σ_0 and $C > 0$, such that for all $\sigma \geq \sigma_0$, (P_{σ}) with B.C. and $J \in H_0(\text{div}, \Omega)$ has a unique solution (E, H) in $L^2(\Omega)^6$, and

\[
\|E\|_{0,\Omega} + \|H\|_{0,\Omega} + \sqrt{\sigma} \|E\|_{0,\Omega} \leq C \|J\|_{H(\text{div}, \Omega)}
\]

Application: Convergence of asymptotic expansion for large conductivity.
1 Framework

2 Equations

3 3D Multiscale Asymptotic Expansion

4 Axisymmetric Problems

5 Numerical simulations of skin effect

6 Exponential rates
Earlier related references for asymptotics when $\sigma \to \infty$

- **S. M. Rytov.**

 Calcul du skin effect par la méthodes des perturbations.

 Journal of Physics (1940)

- **E. Stephan.**

 Solution procedures for interface problems in [...] electromagnetics.

- **R. C. MacCamy, E. Stephan.**

 Solution procedures for three-dimensional eddy current problems.

- **R. C. MacCamy, E. Stephan.**

 A skin effect approximation for eddy current problems.

- **H. Haddar, P. Joly, H.-M. Nguyen.**

 Generalized impedance [...] for strongly absorbing obstacles [...]

Asymptotic Expansion

Hypothesis

1. Σ is a smooth surface, with (y_β, y_3) “normal coordinates” to Σ
2. ω satisfies the Spectral Hypothesis (SH)
3. J is smooth and $J = 0$ in Ω_-

Small parameter

$$\delta := \sqrt{\omega \varepsilon_0 / \sigma} \to 0 \quad \text{as} \quad \sigma \to \infty$$

$\text{Pb} \left(P_{\sigma} \right)$ has a unique sol. $H_{(\delta)}$ for δ small enough. Expansion:

$$H_{(\delta)}^+(x) = H_0^+(x) + \delta H_1^+(x) + \delta^2 H_2^+(x) + \cdots + O(\delta^N) \quad \text{in} \quad \Omega_+$$

$$H_{(\delta)}^-(x) = \mathcal{H}_0(y_\beta, \frac{y_3}{\delta}) + \delta \mathcal{H}_1(y_\beta, \frac{y_3}{\delta}) + \delta^2 \mathcal{H}_2(y_\beta, \frac{y_3}{\delta}) + \cdots + O(\delta^N) \quad \text{in} \quad \Omega_-$$

The fields $\mathcal{H}_j \in H(\text{curl}, \Sigma \times \mathbb{R}_+)$ are exponentially decreasing profiles

\[\cdots / \cdots \]
Profiles of the Magnetic Field

Exponential decrease rate λ in coordinate Y_3 with $Y_3 = \frac{V_3}{\delta}$

$$\lambda = \omega \sqrt{\varepsilon_0 \mu_0} e^{-i\pi/4}$$

1. Denote $h_0(y_\beta) := (n \times H_0^+) \times n(y_\beta, 0)$. Profile \tilde{H}_0 is tangential:

$$\tilde{H}_0(y_\beta, Y_3) = h_0(y_\beta) e^{-\lambda Y_3}$$

2. Denote by \tilde{H}_1^α and \tilde{H}_1^3 the tangential and normal components of \tilde{H}_1.

$$\tilde{H}_1^\alpha(y_\beta, Y_3) = \left[h_1^\alpha + Y_3 \left(\mathcal{H} h_0^\alpha + b_\sigma^\alpha h_0^\sigma \right) \right](y_\beta) e^{-\lambda Y_3}$$

$$\tilde{H}_1^3(y_\beta, Y_3) = \lambda^{-1} D_\alpha h_0^\alpha(y_\beta) e^{-\lambda Y_3}$$

Here, b_σ^α is the symmetric curvature tensor of Σ, and $\mathcal{H} = \frac{1}{2} b_\alpha^\alpha$ its mean curvature, and D_α is the covariant derivative. Finally,

$$h_j^\alpha(y_\beta) := (H_j^+)^\alpha(y_\beta, 0) \quad \text{(tangential traces)}.$$
A new definition of the skin depth (smooth interface Σ)

Denote $\mathcal{H}(\delta)(y_\alpha, y_3) := \mathbf{H}(\delta)(x)$, for $y_\alpha \in \Sigma$ and $0 \leq y_3$ small enough.

Recall the relation $\delta = \sqrt{\omega \varepsilon_0 / \sigma}$.

Definition

Let $y_\alpha \in \Sigma$ and $\sigma \geq \sigma_0$. Assume $\mathcal{H}(\delta)(y_\alpha, 0) \neq 0$.

The **skin depth** $\mathcal{L}(\sigma, y_\alpha)$ is the smallest length s.t.

$$\| \mathcal{H}(\delta)(y_\alpha, \mathcal{L}(\sigma, y_\alpha)) \| = \| \mathcal{H}(\delta)(y_\alpha, 0) \| e^{-1}$$

Theorem (Dauge, Faou, Péron, 2010)

Recall: \mathcal{H} mean curvature and $\ell(\sigma) = \sqrt{2 / \omega \mu_0 \sigma}$ the classical skin depth.

Assume $h_0(y_\alpha) \neq 0$.

$$\mathcal{L}(\sigma, y_\alpha) = \ell(\sigma) \left(1 + \mathcal{H}(y_\alpha) \ell(\sigma) + O(\sigma^{-1}) \right), \quad \sigma \to \infty$$
Outline

1. Framework
2. Equations
3. 3D Multiscale Asymptotic Expansion
4. Axisymmetric Problems
5. Numerical simulations of skin effect
6. Exponential rates
Axisymmetric domains
The meridian domain

Figure: The meridian domain $\Omega^m = \Omega^- \cup \Omega^+ \cup \Sigma^m$
Case of orthoradial data: a scalar problem

The curl in cylindrical coordinates:

\[
\begin{align*}
(curl \mathbf{H})_r &= \frac{1}{r} \partial_\theta H_z - \partial_z H_\theta, \\
(curl \mathbf{H})_\theta &= \partial_z H_r - \partial_r H_z, \\
(curl \mathbf{H})_z &= \frac{1}{r} \left(\partial_r (rH_\theta) - \partial_\theta H_r \right).
\end{align*}
\]

The Maxwell problem is axisymmetric.

\(\mathbf{H} \) is axisymmetric iff \(\vec{\mathbf{H}} := (H_r, H_\theta, H_z) \) does not depend on \(\theta \).

\(\mathbf{H} \) is orthoradial iff \(\vec{\mathbf{H}} = (0, H_\theta, 0) \).

Assume that the right-hand side is axisymmetric and orthoradial.

Then, \(\mathbf{H}(\delta) \) is axisymmetric and orthoradial

\[
\vec{\mathbf{H}}(\delta)(r, \theta, z) = (0, h_\theta(\delta)(r, z), 0).
\]
Configurations chosen for computations
Configuration A (Cylinder)

Figure: The meridian domain Ω^m in configuration A
Meshes

Configuration A

Figure: Meshes M_2, and M_3 in configuration A
Configurations chosen for computations

Configuration B (Spheroid)

Figure: The meridian domain Ω^m in configuration B
Figure: The meshes M_3 and M_6
Outline

1. Framework
2. Equations
3. 3D Multiscale Asymptotic Expansion
4. Axisymmetric Problems
5. Numerical simulations of skin effect
6. Exponential rates
Finite Element Method

In FEM computations, we use

1. the angular frequency $\omega = 3 \cdot 10^7$.
2. the rhs $g = r$ (trace on Γ^m). It is real.
3. the high order quadrangular elements available in the finite element library MÉLINA

We compute $h_\theta(\delta)$. Denote the discrete solution by

$$\tilde{h}_\theta(\delta) =: \tilde{h}_{\theta,\sigma}$$

with

$$\delta = \sqrt{\omega \varepsilon_0 / \sigma}.$$

We note that

1. The first term $h_{\theta,0}^+$ of the asymptotics of $h_\theta(\delta)$ is real.
2. Hence, the imaginary part $\text{Im} h_\theta(\delta)$ is $O(\delta)$ in the dielectric Ω_+^m.
3. Therefore the imaginary part of the computed field is expected to be larger in the conductor and to show the skin effect.
Skin effect in configuration B

Figure: Configuration B. $| \text{Im } \tilde{h}_{\theta,\sigma} |$ when $\sigma = 5$ and $\sigma = 80$
Skin effect in configuration A

Figure: Configuration A. $|\text{Im} \tilde{h}_{\theta,\sigma}|$ when $\sigma = 5$ and $\sigma = 80$
Influence of the geometry on the skin effect
Configuration B and swapped configuration B

$\mathcal{H} > 0$ on the left, and $\mathcal{H} < 0$ on the right

Figure: $|\text{Im} \tilde{h}_{\theta, \sigma}|, \sigma = 5$
Influence of the geometry on the skin effect
Configuration B2 and swapped configuration B2

\(\mathcal{H} > 0 \) on the left, and \(\mathcal{H} < 0 \) on the right, and more prolate ellipsoids

Figure: \(\left| \text{Im} \tilde{h}_{\theta,\sigma} \right|, \sigma = 5 \)
Influence of the geometry on the skin effect
Configuration B2 and swapped configuration B2

Zoom of the previous figures.

Figure: $|\text{Im } \tilde{h}_{\theta, \sigma}|$, $\sigma = 5$
Outline

1. Framework
2. Equations
3. 3D Multiscale Asymptotic Expansion
4. Axisymmetric Problems
5. Numerical simulations of skin effect
6. Exponential rates
Configuration B

We extract values of $\log_{10} |\tilde{h}_{\theta,\sigma}|$ in Ω^m along the axis $z = 0 : y_3 = 2 - r$.

Figure: On the left $\sigma = 20$. On the right, $\sigma = 80$.

The curves exactly behave like lines: the exponential decay shows up.
Configuration A

We extract values of \(\log_{10} |\hat{h}_{\theta,\sigma}| \) in \(\Omega_m \) along the diagonal axis \(r = z \)

Figure: On the left \(\sigma = 20 \). On the right, \(\sigma = 80 \).

The exponential decay is less obvious.
Rates of exponential decay

We plot the *slopes* in the 4 previous figures.
Conclusion

- In config. B, slopes tend to positive limits as $y_3 \to 0$ (exponential decay).
- The values of the slopes are very close to theoretical ones.
- In config. A, slopes tend to 0 as $\rho \to 0$ (no exponential decay at corner a).
- But exponential decay is restored further away from a.
- The principal asymptotic contribution inside the conductor is a profile v_0 globally defined on a sector S solving the model Dirichlet pb:

$$
\begin{cases}
(\partial_X^2 + \partial_Y^2)v_0 - \lambda^2 v_0 &= 0 \quad \text{in} \quad S, \\
v_0 &= h_0^+(a) \quad \text{on} \quad \partial S,
\end{cases}
$$

instead the 1D problem in configuration B

$$
\begin{cases}
\partial_Y^2 v_0 - \lambda^2 v_0 &= 0 \quad \text{for} \quad 0 < Y < +\infty, \\
v_0 &= h_0^+ \quad \text{for} \quad Y = 0.
\end{cases}
$$