A 3D plane wave basis for elastic wave problems

Teemu Luostari1, Tomi Huttunen1, Peter Monk2

1Department of Physics and Mathematics, University of Eastern Finland, Finland
2Department of Mathematical Sciences, University of Delaware, USA

June 29 - July 2, 2010
Non-Standard Numerical Methods for PDE’s
Introduction

Navier problem

Derivation of the UWVF

Numerical results

Conclusions
Non-polynomial basis methods

- The partition of unity finite element method (PUFEM) by Babuška and Melenk (1997).
- Discontinuous enrichment method (DEM) by Farhat et al. (2001).
- Discontinuous Galerkin method (DGM) by Farhat et al. (2003), Gittelson, Hiptmair and Perugia (2007).
- Discontinuous Petrov-Galerkin method (DPGM) by Demkowicz et al. (2009)
- Non-polynomial FEM by Barnett and Betcke (2009)
The UWVF

- Special form of the DGM, Huttunen, Malinen and Monk (2006), Gabard (2007)
- Originally plane wave basis functions, (in 2D Bessel basis possible choice)
- Uses FE meshes
- Number of basis functions can vary from element to element
- Matrices resulting in the UWVF are sparse
Navier equation

Let Ω be a computational domain with the boundary $\Gamma = \partial \Omega$ and let Ω consists of non-overlapping elements, i.e. $\Omega = \bigcup_{k=1}^{N} \Omega_k$ where N is the number of elements. For each Ω_k the Navier equation is

$$\mu \Delta \mathbf{u} + (\lambda + \mu) \nabla (\nabla \cdot \mathbf{u}) + \omega^2 \rho \mathbf{u} = 0 \quad \text{in } \Omega_k \quad (1)$$

where ω is the angular frequency of the field, \mathbf{u} is the time-harmonic displacement vector, λ and μ are the Lamé constants and ρ is the density of the medium.
Lamé constants and wave speeds

The Lamé constants can be expressed as

\[\mu = \frac{E}{2(1 - \nu)}, \quad \lambda = \frac{E\nu}{(1 + \nu)(1 - 2\nu)}, \]

where \(E \) is the Young's modulus and \(\nu \) is the Poisson ratio. The wave speeds for the P-wave and S-wave are,

\[c_P = \sqrt{\frac{\lambda + 2\mu}{\rho}}, \quad c_S = \sqrt{\frac{\mu}{\rho}}. \]
Traction operator

Traction operator $T^{(n)}(u)$ maps local displacements to local tractions on any closed surface S and it is defined as

$$T^{(n)}(u) = 2\mu \frac{\partial u}{\partial n} + \lambda n \nabla \cdot u + \mu n \times \nabla \times u.$$ (4)

where n is an outward unit normal to the surface S.
Traction operator

Traction operator $T^{(n)}(u)$ maps local displacements to local tractions on any closed surface S and it is defined as

$$T^{(n)}(u) = 2\mu \frac{\partial u}{\partial n} + \lambda n \nabla \cdot u + \mu n \times \nabla \times u. \quad (4)$$

where n is an outward unit normal to the surface S. In addition, the complex conjugate of the traction operator T is

$$\overline{T^{(n)}(u)} = 2\mu \frac{\partial u}{\partial n} + \overline{\lambda} n \nabla \cdot u + \overline{\mu} n \times \nabla \times u \quad (5)$$

and $\overline{T^{(n)}(u)} = T^{(n)}(\overline{u})$.

Luostari, Huttunen & Monk
Faces and exterior boundary

Let Ω_k and Ω_j be neighboring elements and share a common face. The interface between Ω_k and Ω_j is denoted by $\sum_{k,j}$. Therefore on $\sum_{k,j}$ the following conditions hold

$$u|_{\Omega_k} = u|_{\Omega_j}$$ \hspace{1cm} (6)

$$\mathbf{T}^{(n|_{\Omega_k})}(u|_{\Omega_k}) = -\mathbf{T}^{(n|_{\Omega_j})}(u|_{\Omega_j})$$ \hspace{1cm} (7)

where $n|_{\Omega_k}$ is an outward normal to Ω_k and similarly $n|_{\Omega_j}$ to Ω_j (note that $n|_{\Omega_k} = -n|_{\Omega_j}$).
Faces and exterior boundary

Let Ω_k and Ω_j be neighboring elements and share a common face. The interface between Ω_k and Ω_j is denoted by $\sum_{k,j}$. Therefore on $\sum_{k,j}$ the following conditions hold

$$u|_{\Omega_k} = u|_{\Omega_j} \quad (6)$$

$$T^{(n|_{\Omega_k})}(u|_{\Omega_k}) = -T^{(n|_{\Omega_j})}(u|_{\Omega_j}) \quad (7)$$

where $n|_{\Omega_k}$ is an outward normal to Ω_k and similarly $n|_{\Omega_j}$ to Ω_j (note that $n|_{\Omega_k} = -n|_{\Omega_j}$). On the exterior boundary Γ we have

$$T^{(n)}(u) - i\sigma u = Q(-T^{(n)}(u) - i\sigma u) + g \quad \text{on } \Gamma \quad (8)$$

where g is the source term, Q specifies the boundary conditions and σ is a coupling parameter (flux parameter).
Isometry Lemma

It can be shown that
\[
\sum_k \int_{\partial \Omega_k} \sigma^{-1} \left(-\mathbf{T}^{(n_k)}(u_k) - i\sigma u_k \right) \cdot \left(-\mathbf{T}^{(n_k)}(e_k) - i\sigma e_k \right) = \sum_k \int_{\partial \Omega_k} \sigma^{-1} \left(\mathbf{T}^{(n_k)}(u_k) - i\sigma u_k \right) \cdot \left(\mathbf{T}^{(n_k)}(e_k) - i\sigma e_k \right)
\]

where u_k is the solution of the Navier equation (1) and e_k is the test function that satisfies the adjoint Navier's equation.
The UWVF

Using the “Isometry Lemma” and boundary conditions we obtain the UWVF as

\[
\sum_k \int_{\partial \Omega_k} \sigma^{-1} \mathcal{X}_k \cdot (\overline{T(n_k)(e_k)} - i\sigma e_k) - \sum_k \sum_j \int_{\sum_k} \sigma^{-1} \mathcal{X}_j \cdot (\overline{T(n_k)(e_k)} - i\sigma e_k)
\]

\[
- \sum_k \int_{\Gamma_k} Q \sigma^{-1} \mathcal{X}_k \cdot (\overline{T(n_k)(e_k)} - i\sigma e_k) = \sum_k \int_{\Gamma_k} \sigma^{-1} g \cdot (\overline{T(n_k)(e_k)} - i\sigma e_k)
\]

(10)

where \(\mathcal{X}_k = T(n_k)(u_k) - i\sigma u_k \) on \(\partial \Omega_k \).
Discretization

The solution of the adjoint Navier equation is separated into three components (Helmholtz decomposition): P-wave, SH-wave and SV-wave. Therefore

$$e_k = e_{k,P} + e_{k,SH} + e_{k,SV}$$

(11)

which satisfy $\nabla \times e_P = 0$ and $\nabla \cdot e_{SH} = \nabla \cdot e_{SV} = 0$.
Similarly, the approximation for X_k is

$$X_k \approx \sum_{\ell=1}^{p_p^k} x_{k,\ell}^P \left[-T^{(n_k)}(e_{k,\ell}^P) - i\sigma e_{k,\ell}^P \right]$$

$$+ \sum_{\ell=1}^{p_s^k} x_{k,\ell}^{SH} \left[-T^{(n_k)}(e_{k,\ell}^{SH}) - i\sigma e_{k,\ell}^{SH} \right]$$

$$+ \sum_{\ell=1}^{p_s^k} x_{k,\ell}^{SV} \left[-T^{(n_k)}(e_{k,\ell}^{SV}) - i\sigma e_{k,\ell}^{SV} \right].$$

where

$$e_{k,\ell}^P = \begin{cases} a_{k,\ell} \exp(iK_P a_{k,\ell} \cdot x) & \text{in } \Omega_k \\ 0 & \text{elsewhere} \end{cases}$$

$$e_{k,\ell}^{SH} = \begin{cases} a_{k,\ell}^{\perp} \exp(iK_{SH} a_{k,\ell} \cdot x) & \text{in } \Omega_k \\ 0 & \text{elsewhere} \end{cases}$$

$$e_{k,\ell}^{SV} = \begin{cases} a_{k,\ell}^{\perp} \times a_{k,\ell} \exp(iK_{SV} a_{k,\ell} \cdot x) & \text{in } \Omega_k \\ 0 & \text{elsewhere} \end{cases}$$

where $a_{k,\ell}$ is the direction of propagation.
Discrete UWVF

Find $\chi_{h,k} \in V_{h,k}$, $k = 1, 2, \ldots, N$ such that

$$
\sum_k \int_{\partial \Omega_k} \sigma^{-1} \chi_{h,k} \cdot \mathcal{Y}_{h,k} - \sum_k \sum_j \int_{\sum_{k,j}} \sigma^{-1} \chi_{j,k} \cdot F_k(\mathcal{Y}_{h,k}) - \sum_k \int_{\Gamma_k} Q \sigma^{-1} \chi_{h,k} \cdot F_k(\mathcal{Y}_{h,k}) = \sum_k \int_{\Gamma_k} \sigma^{-1} g \cdot F_k(\mathcal{Y}_{h,k})
$$

for all $\mathcal{Y}_{h,k} \in V_{h,k}$, $k = 1, 2, \ldots, N$ where

$$
F_k(\mathcal{Y}_{h,k}) \approx \sum_{\ell=1}^{p_P^k} \left[y_{k,\ell} \left(T^{(n_k)}(e_{k,\ell}^P) - i \sigma e_{k,\ell}^P \right) \right]
+ \sum_{\ell=1}^{p_S^k} \left[y_{k,\ell} \left(T^{(n_k)}(e_{k,\ell}^{SH}) - i \sigma e_{k,\ell}^{SH} \right) \right]
+ \sum_{\ell=1}^{p_S^k} \left[y_{k,\ell} \left(T^{(n_k)}(e_{k,\ell}^{SV}) - i \sigma e_{k,\ell}^{SV} \right) \right].
$$

(12)
Matrices

The discrete UWVF can be written in a matrix form as

\[(D - C)X = b \Rightarrow (I - D^{-1} C)X = D^{-1} b\] (13)

where \(D\) is a sparse block diagonal matrix

\[D = \text{diag}(D^1, D^2, \ldots, D^k, \ldots, D^N)\]

so that

\[
D^k = \begin{pmatrix}
D^k_{P,P,l,m} & D^k_{SH,P,l,m} & D^k_{SV,P,l,m} \\
D^k_{P,SH,l,m} & D^k_{SH,SH,l,m} & D^k_{SV,SH,l,m} \\
D^k_{P,SV,l,m} & D^k_{SH,SV,l,m} & D^k_{SV,SV,l,m}
\end{pmatrix}.
\] (14)

where, for example,

\[
D^k_{P,SH,l,m} = \int_{\partial \Omega_k} \sigma^{-1} \left(-T^{(n_k)}(e^P_{k,m}) - i\sigma e^P_{k,m} \right) \cdot \left(-T^{(n_k)}(e^{SH}_{k,\ell}) - i\sigma e^{SH}_{k,\ell} \right) dA.
\] (15)
Matrices

Sparse matrix C consists of blocks C^k and $C^{k,j}$. Matrix blocks C^k are on the diagonal and $C^{k,j}$ are on the off-diagonal of matrix C. Matrix block C^k can be written as follows

$$
C^k = \begin{pmatrix}
C^k_{P,P,\ell,m} & C^k_{SH,P,\ell,m} & C^k_{SV,P,\ell,m} \\
C^k_{P,SH,\ell,m} & C^k_{SH,SH,\ell,m} & C^k_{SV,SH,\ell,m} \\
C^k_{P,SV,\ell,m} & C^k_{SH,SV,\ell,m} & C^k_{SV,SV,\ell,m}
\end{pmatrix}
$$

(16)

where, for example, $C^k_{P,SH,\ell,m}$ is of the form

$$
C^k_{P,SH,\ell,m} = \int_{\Gamma_k} Q\sigma^{-1} \left(-\mathbf{T}^{(n_k)}(e^P_{k,m}) - i\sigma e^P_{k,m} \right) \cdot \overline{\left(\mathbf{T}^{(n_k)}(e^{SH}_{k,\ell}) - i\sigma e^{SH}_{k,\ell} \right)},
$$

(17)

similarly others.
Matrices

The off-diagonal block matrix $C^{k,j}$ is as follows

$$
\begin{pmatrix}
C_{P,P,\ell,m}^{k,j} & C_{SH,P,\ell,m}^{k,j} & C_{SV,P,\ell,m}^{k,j} \\
C_{P,SH,\ell,m}^{k,j} & C_{SH,SH,\ell,m}^{k,j} & C_{SV,SH,\ell,m}^{k,j} \\
C_{P,SV,\ell,m}^{k,j} & C_{SH,SV,\ell,m}^{k,j} & C_{SV,SV,\ell,m}^{k,j}
\end{pmatrix}
$$

(18)

where, for example, $C_{P,SH,\ell,m}^{k,j}$ is of the form

$$
C_{P,SH,\ell,m}^{k,j} = \int \sigma^{-1} \left(T^{(nk)}(e^P_{j,m}) - i\sigma e^P_{j,m} \right) \cdot \frac{\sqrt{T^{(nk)}(e^{SH}_{k,\ell}) - i\sigma e^{SH}_{k,\ell}}}{\sum_{k,j}}
$$

(19)

others can be derived in a similar manner.
Plane wave propagation in a unit cube

The exact solution is of the form

\[u = A_1 d \exp(i\kappa_P x \cdot d) + A_2 d_{SH} \exp(i\kappa_S x \cdot d) \]
\[+ A_3 d_{SV} \exp(i\kappa_S x \cdot d) \]

where the wave numbers are \(\kappa_P = \omega/c_P \), \(\kappa_S = \omega/c_S \), the direction \(d \approx [-0.73\, 0.45\, 0.51] \), \(d_{SH} = d^\perp \), \(d_{SV} = d^\perp \times d \) and the amplitudes \(A_1 = A_2 = A_3 = 1 \). In addition, \(\nabla \times u_P = 0 \) and \(\nabla \cdot u_{SH} = \nabla \cdot u_{SV} = 0 \). As a boundary condition we choose \(Q = 0 \).
Flux parameter

In numerical simulations we use an ad hoc choice for coupling parameter (flux parameter) that is

$$\sigma = \omega \rho R \{c_P\} I \quad (20)$$

where I is the unit matrix.

More investigations of the optimal flux parameter will be investigated in (near) future.
Figure: The mesh. The maximum centroid-vertex distance (element diameter) for element $h = 0.4979$. Number of tetrahedra 24, faces 60 and vertices 14.
Results for p-convergence

Figure: Results when $\kappa_p = 4.0551$, $\kappa_{SH} = \kappa_{SV} = 8.0503$ with different ratios between p_P/p_S and mesh size is fixed.
Coarsest and densest mesh

Figure: The coarsest $h_{max} = 0.7395$ and densest meshes $h_{max} = 0.1269$.
Results for h-convergence

Figure: Results when $\kappa_P = 4.0551$, $\kappa_{SH} = \kappa_{SV} = 8.0503$ with different ratios between p_P/p_S. Number of basis functions per element blue line $p_{tot} = 50$ and black line $p_{tot} = 49$.
Results for h-convergence

Figure: Results when $\kappa_P = 4.0551$, $\kappa_{SH} = \kappa_{SV} = 8.0503$ with different ratios between p_P/p_S. Number of basis functions per element $p_{tot} = 50$.
Figure: The mesh when $h_{\text{max}} = 0.4978$.

A 3D plane wave basis for elastic wave problems

Luostari, Huttunen & Monk

Outline
Introduction
Navier problem
Derivation of the UWVF
Numerical results
Conclusions
Table: Results when $p_P = 25$ and $p_S = 50$, mesh is fixed and wave number varies.

<table>
<thead>
<tr>
<th>κ_P</th>
<th>κ_S</th>
<th>error (%)</th>
<th>max($\text{cond}(D^k)$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0551</td>
<td>8.0503</td>
<td>0.0321</td>
<td>5.8143e8</td>
</tr>
<tr>
<td>5.0689</td>
<td>10.0629</td>
<td>0.1319</td>
<td>4.5035e7</td>
</tr>
<tr>
<td>6.0826</td>
<td>12.0755</td>
<td>0.4232</td>
<td>5.4503e6</td>
</tr>
<tr>
<td>7.0964</td>
<td>14.0881</td>
<td>1.1347</td>
<td>9.2297e5</td>
</tr>
<tr>
<td>8.1102</td>
<td>16.1007</td>
<td>1.6142</td>
<td>2.0051e5</td>
</tr>
</tbody>
</table>
Preliminary results show that the UWVF can be applied to the 3D elastic wave problems,

- Work in progress,
- More investigations needed, especially,
 - finding optimal flux parameter,
 - optimal ratio between the basis functions,
 - problems including surface waves,
 - scattering,
 - HIFU,
 - etc.
Acknowledgements

Authors thank from the support

- Finnish Graduate School in Computational Sciences (FICS)
- Vilho, Yrjö and Kalle Väisälä Fund
- Finnish Cultural Foundation: North Savo Regional Fund
- Saastamoinen’s foundation
- Emil Aaltonen’s foundation
- Finnish Centre of Excellence in Inverse Problems Research
Thank you for your attention!