Teoria dei Giochi

Anna Torre

Almo Collegio Borromeo 15 marzo 2018 email: anna.torre@unipv.it sito web del corso:www-dimat.unipv.it/atorre/borromeo2018.html

IL PARI O DISPARI

	P	D
P	(-1, 1)	(<mark>1</mark> , -1)
D	(1 , -1)	(-1 , 1)

- Questo gioco non ha equilibri di Nash;
- Cerchiamo di ampliare opportunamente lo spazio delle strategie in modo che abbia equilibri di Nash in questo nuovo spazio.

	q	1-q
p	(-1, 1)	(<mark>1</mark> , -1)
1-p	(<mark>1</mark> , -1)	(-1,1)

	q	1-q
p	pq	p(1-q)
1-p	(1-p)q	(1-p)(1-q)

Estensione mista

- "Estensione mista del gioco",
- Le strategie sono le distribuzioni di probabilità sull'insieme delle strategie (pure).
- ▶ Il giocatore I invece di fare una scelta per così dire "secca", può scegliere di giocare la strategia P con probabilità p e la strategia P con probabilità P con probabilità P.
- Analogamente il giocatore II.

- ► Una distribuzione di probabilità nel caso di due strategie è la scelta di un numero nell'intervallo [0,1].
- Abbiamo cambiato lo spazio delle strategie, facendolo diventare molto più grande.
- ► Una strategia per il primo giocatore è adesso rappresentata da un numero p compreso tra 0 e 1, mentre una strategia per il secondo da un numero q compreso tra 0 e 1.
- ► Il payoff dei giocatori in corrispondenza ai valori p e q delle strategie è l'utilità attesa, supponendo che i due agiscano indipendentemente.

	q	1-q
p	pq	p(1-q)
1-p	(1-p)q	(1-p)(1-q)

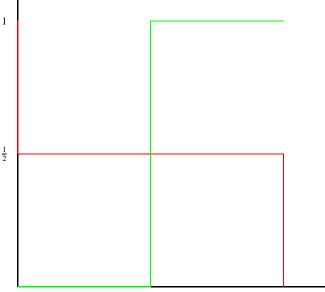
Utilità attesa del primo giocatore:

$$f(p,q) = pq \cdot (-1) + p(1-q) \cdot (+1) + q(1-p) \cdot (+1) + (1-p)(1-q) \cdot (-1) = -4pq + 2p + 2q - 1 = (-4q + 2)p + 2q - 1$$

L'utilità ettesa del secondo è il suo opposto.

- lacktriangledown $\max f(p,q)$ si ha per p=1 quando $-4q+2\geq 0$, cioè $q\leq \frac{1}{2}$
- lacktriangledown $\max f(p,q)$ si ha per p=0 quando $-4q+2\leq 0$, cioè $q\geq \frac{1}{2}$
- ► $\max f(p,q)$ si ha per ogni p quando -4q+2=0, cioè $q=\frac{1}{2}$
- g(p,q) = (4p-2)q 2p + 1
- $ightharpoonup \max g(p,q)$ si ha per q=1 quando $4p-2\geq 0$, cioè $p\geq \frac{1}{2}$
- $ightharpoonup \max g(p,q)$ si ha per q=0 quando $4p-2\leq 0$, cioè $p\leq \frac{1}{2}$
- $ightharpoonup \max g(p,q)$ si ha per ogni q quando 4p-2=0, cioè $p=\frac{1}{2}$

La linea rossa è la strategia di miglior risposta del primo giocatore. La linea verde è la strategia di miglior risposta del secondo giocatore.



In rosso è segnata la strategia di miglior risposta del primo giocatore e in blu quella del secondo. Nel punto di intersezione $(\frac{1}{2},\frac{1}{2})$, p è miglior risposta a q e viceversa.

EQUILIBRIO DI NASH!!!!!!!

 $(\frac{1}{2},\frac{1}{2})$ è un equilibrio di Nash del gioco del pari o dispari.

IL GIOCO DELLE DUE DITA

	P	D
P	(-2, 2)	(3, -3)
D	(<mark>3, -3</mark>)	(-4,4)

	q	1-q
p	pq	p(1-q)
1-p	(1-p)q	(1-p)(1-q)

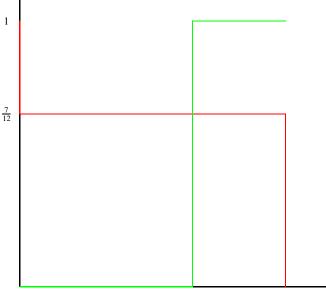
che nel nostro caso per il primo giocatore è:

$$f(p,q) = pq \cdot (-2) + p(1-q) \cdot (+3) + q(1-p) \cdot (+3) + (1-p)(1-q) \cdot (-4) = -12pq + 7p + 7q - 4 = (-12q + 7)p + 7q - 4$$

Naturalmente il payoff atteso del secondo è il suo opposto.

- ▶ $\max f(p,q)$ si ha per p=1 quando $-12q+7\geq 0$, cioè $q\leq \frac{7}{12}$
- ▶ $\max f(p,q)$ si ha per p=0 quando $-12q+7\leq 0$, cioè $q\geq \frac{7}{12}$
- ▶ $\max f(p,q)$ si ha per ogni p quando -12q+7=0, cioè $q=\frac{7}{12}$
- g(p,q) = (12p-7)q-7p+4
- ▶ $\max g(p,q)$ si ha per q=1 quando $12p-7\geq 0$, cioè $p\geq \frac{7}{12}$
- ▶ $\max g(p,q)$ si ha per q=0 quando $12p-7\leq 0$, cioè $p\leq \frac{7}{12}$
- ▶ $\max f(p,q)$ si ha per ogni q quando 12p-7=0, cioè $p=\frac{7}{12}$

La linea rossa è la strategia di miglior risposta del primo giocatore. La linea verde è la strategia di miglior risposta del secondo giocatore.



In rosso è segnata la strategia di miglior risposta det primo giocatore e in verde quella del secondo. Nel punto di intersezione $(\frac{7}{12},\frac{7}{12})$, p è miglior risposta a q e viceversa.

Calcoliamo il guadagno atteso del primo giocatore quando viene adottata la coppia di strategie di Nash:

$$\frac{49}{144} \cdot (-2) + \frac{25}{144} \cdot (-4) + \frac{35}{144} \cdot (3) + \frac{35}{144} \cdot (3) = \frac{210 - 198}{144} = \frac{1}{12}$$

È facile vedere se un gioco è pari?

	P	D
P	(-2, 2)	(3, -3)
D	(<mark>3, -3</mark>)	(- <mark>4,4</mark>)

	A_2	B_2	C_2
A_1	(-1, 1)	(<mark>1</mark> , -1)	(-, 1)
B_1	(1, -1)	(-1 ,1)	(<mark>1</mark> , -1)
C_1	(-1, 1)	(1,-1)	(-1, 1)

Poker semplificato

Rivediamo dal punto di vista dell'equilibrio di Nash il poker semplificato:

	P	S
$R_A R_K$	(<mark>1</mark> , -1)	(0,0)
$R_A P_K$	(<mark>0,0</mark>)	(1/2, -1/2)
$P_A P_K$	(-1, 1)	(-1, 1)
$P_A R_K$	(<mark>0</mark> , <mark>0</mark>)	(-3/2,3/2)

NB: la strategia $R_A R_K$ prevede (per via di R_K) che il giocatore I bluffi.

Poker semplificato dopo aver tolto le strategie dominate

		P	S
		q	1-q
$R_A P_K$	p	(<mark>0,0</mark>)	(<mark>1/2</mark> , -1/2)
$R_A R_K$	1-p	(<mark>1</mark> , -1)	(<mark>0,0</mark>)

- $f(p,q) = -\frac{3}{2}pq + \frac{1}{2}p + q = (-\frac{3}{2}q + \frac{1}{2})p + q$
- ▶ massimo per p = 1 quando $q \le \frac{1}{3}$
- ▶ massimo per p=0 se $q\geq \frac{1}{3}$ e per ogni valore di p se $q=\frac{1}{3}$
- $g(p,q) = (\frac{3}{2}p 1)q \frac{1}{2}p$
- ▶ massimo per q = 1 quando $p \ge \frac{2}{3}$
- ▶ massimo per q=0 se $p\leq \frac{2}{3}$ e per ogni valore di q se $p=\frac{2}{3}$
- ▶ Quindi l'equilibrio di Nash si ottiene per $p = \frac{2}{3}$ e $q = \frac{1}{3}$

- ▶ L"equilibrio di Nash prevede per il primo giocatore di giocare la prima strategia con probabilità $\frac{2}{3}$ e di conseguenza la seconda con probabilità $\frac{1}{3}$.
- ▶ La strategia $R_A R_K$ prevede (per via di R_K) che il giocatore I bluffi.
- Quindi la strategia ottimale per I prevede con probabilità positiva (1/3) che I adotti la strategia R_AR_K e quindi che, bluffi mediamente 1/3 delle volte
- È ottimale per I bluffare con questa "frequenza", nè più spesso nè meno spesso!

Teorema di Nash

Il merito di Nash sta nell'aver dimostrato l'esistenza di almeno un equilibrio (di Nash) in ipotesi abbastanza generali. Vale infatti il

TEOREMA DI NASH

Siano X e Y sottoinsiemi chiusi, convessi e limitati di $\mathbf{R}^{\mathbf{n}}$ (per esempio l'insieme delle strategie miste di un gioco finito soddisfa a queste proprietà) f e g funzioni continue , inoltre valgano le proprietà:

 $x \to f(x, \, , y)$ è quasi concava per ogniy fissato

 $y \to g(x,y)$ è quasi concava per ogni x fissato

Allora esiste almeno un equilibrio di Nash.

Una funzione h di una variabile si dice **quasi concava** se per ogni numero reale k, l'insieme

$$A_k = \{x \mid h(x) \ge k\}$$

è convesso.

FALCHI E COLOMBE

	F_2	C_2
F_1	(-2, -2)	(2, <mark>0</mark>)
C_1	(<mark>0</mark> , <u>2</u>)	(<mark>1</mark> , 1)

$$f(p,q) = -2pq + 2p(1-q) + (1-p)(1-q) = (-3q+1)p - q + 1$$

- ▶ massimo per p = 1 quando $q \le \frac{1}{3}$
- ▶ massimo per p=0 se $q\geq \frac{1}{3}$ e per ogni valore di p se $q=\frac{1}{3}$

$$g(p,q) = -2pq + 2q(1-p) + (1-p)(1-q) = (-3p+1)q - p + 1$$

- ▶ massimo per q = 1 quando $p \ge \frac{1}{3}$
- ▶ massimo per q=0 se $p \leq \frac{1}{3}$ e per ogni valore di q se $p=\frac{1}{3}$
- ▶ Quindi l'equilibrio di Nash si ottiene per $p = \frac{1}{3}$ e $q = \frac{1}{3}$ Il risultato è che con probabilità $\frac{1}{3}$ conviene comportarsi da falchi e con probabilità $\frac{2}{3}$ conviene comportarsi da colombe. Ovviamente questi numeri dipendono dai numeri scelti per le utilità dei falchi e delle colombe.