CORSO DI GEOMETRIA 2

Appello del 15 febbraio 2013

Esercizio 1

Siano

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid x > 0, \ x^2 + y^2 + z^2 = 1\},\$$
$$X = \{(x, y, z) \in \mathbb{R}^3 \mid x > 0, \ x^2 + y^2 - xz = 0\}$$

e sia $F: S \to X$,

$$F(x,y,z) = \left(\frac{x^2}{(1-z)^2}, \frac{xy}{(1-z)^2}, \frac{x^2+y^2}{(1-z)^2}\right).$$

- (1) Dimostrare che X è una superficie regolare orientabile di classe C^{∞} .
- (2) Dimostrare che $F: S \to X$ è un'applicazione C^{∞} .
- (3) Dimostrare che $F \colon S \to X$ è un diffeomorfismo locale in un intorno del punto $(\frac{\sqrt{2}}{2}, \frac{1}{2}, \frac{1}{2})$. (4) Dire se F è un'isometria locale.

Esercizio 2

Siano

$$S_1 = \{(x, y, z) \in \mathbb{R}^3 \mid x, y > 0, \ \frac{\sqrt{3}}{3} > z > 0, \ x^2 + 2y^2 + 2z^2 = 2\},\$$

$$S_2 = \{(x, y, z) \in \mathbb{R}^3 \mid x, y > 0, \ \frac{\sqrt{3}}{3} > z > 0, \ x^2 + y^2 - z^2 = 1\},\$$

- e sia $C := S_1 \cap S_2$.
 - (1) Dimostrare che C è una sottovarietà differenziabile di \mathbb{R}^3 di dimensione 1.
 - (2) Determinare la retta tangente a C nel punto $(\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{6})$.
 - (3) Mostrare che $\gamma\colon (0,\frac{\sqrt{3}}{3})\to \mathbb{R}^3,\; \gamma(t)=(2t,\sqrt{1-3t^2},t)$ è una parametrizzazione regolare di C.
 - (4) Calcolare la curvatura e la torsione di C in $\gamma(t)$, per ogni $t \in (0, \frac{\sqrt{3}}{3})$.

Esercizio 3

Sia $n \ge 2$ un intero e

$$X_n = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_n(\sum_{i=1}^n x_i^2 - 1) = 0\}.$$

- (1) Posto $Y_n = \{(x_1, \dots, x_n) \in X_n \mid x_n \geq 0\}$, dimostrare che Y_n è un
- (2) Dimostrare che X_2 non è semplicemente connesso.
- (3) X_n è semplicemente connesso per n > 2?