GEOMETRIA B

Secondo scritto a.a. 09/10: 22 febbraio 2010

Esercizio 1. Nel piano euclideo siano (x, y) coordinate cartesiane ortogonali, e siano $[x_1, x_2, x_3]$ le corrispondenti coordinate omogenee nel piano proiettivo reale $\mathbb{P}_2(\mathbb{R})$.

- 1) Sia R la rotazione attorno all'origine che porta il punto (1,0) nel punto (0,1). Si estenda R a $\mathbb{P}_2(\mathbb{R})$ e se ne trovino i punti fissi in $\mathbb{P}_2(\mathbb{R})$. Ci sono rette fisse per R in $\mathbb{P}_2(\mathbb{R})$?
- 2) Si consideri poi la conica $\Gamma \subseteq \mathbb{P}_2(\mathbb{R})$ di equazione

$$x_2^2 + x_3^2 - x_1 x_3 + 2x_2 x_3 = 0.$$

Si classifichi Γ dai punti di vista proiettivo e affine. Si trovi $R(\Gamma)$.

3) Sia Γ_0 l'intersezione di Γ con il piano euclideo. Mostrare che Γ_0 è connessa per archi e calcolarne il gruppo fondamentale.

Esercizio 2. Sia $I \subseteq \mathbb{R}$ un intervallo aperto e $\sigma: I \to \mathbb{R}^3$ una curva p.r.l.a., biregolare, con curvatura κ , torsione τ , e sistema di riferimento di Frenet $\mathbf{t}, \mathbf{n}, \mathbf{b}$. Sia $\beta: I \to \mathbb{R}^3$ la curva data da $\beta(s) = \mathbf{n}(s)$ per ogni $s \in I$.

- 1) Mostrare che β è p.r.l.a. se e solo se $\kappa(s)^2 + \tau(s)^2 = 1$ per ogni $s \in I$.
- 2) Supponiamo che esista una funzione $\theta: I \to \mathbb{R}$, di classe \mathcal{C}^{∞} , tale che $\kappa(s) = \cos \theta(s)$ e $\tau(s) = \sin \theta(s)$ per ogni $s \in I$. Mostrare che β è biregolare e calcolarne la curvatura κ_{β} e il sistema di riferimento di Frenet $\mathbf{t}_{\beta}, \mathbf{n}_{\beta}, \mathbf{b}_{\beta}$ in funzione di θ e di $\mathbf{t}, \mathbf{n}, \mathbf{b}$.

Esercizio 3. Sia $S = \{(x, y, z) \in \mathbb{R}^3 \mid x^4 + y^4 + z^4 = 1\}.$

- 1) Mostrare che S è una superficie regolare e orientabile.
- 2) Mostrare che l'applicazione $F\colon S\to S^2$ data da F(p)=p/||p|| è un diffeomorfismo tra S e la sfera unitaria.
- 3) Mostrare che S è compatta e connessa, e calcolare l'integrale su S della curvatura gaussiana.
- 4) Sia $\sigma \colon \mathbb{R} \to \mathbb{R}^3$ l'applicazione data da $\sigma(t) = q(t)$ (cos t, sin t, 0), dove

$$g(t) = ((\cos t)^4 + (\sin t)^4)^{-1/4}$$
.

Mostrare che $\sigma(\mathbb{R}) \subset S$ e calcolare $||\sigma'(\pi/4)||$ e $||(F \circ \sigma)'(\pi/4)||$. F è un'isometria?