On the Locus of Curves with Automorphisms (*).

Maurizio Cornalba (**)

Sunto. - Si descrivono le componenti del luogo delle curve con automorfismi non banali all'interno dello spazio dei moduli delle curve algebriche di genere maggiore o uguale a tre. Si descrivono poi le componenti del luogo singolare dello spazio dei moduli delle curve di genere maggiore o uguale a due.

We shall describe the components of the locus of curves with non-trivial automorphisms in M_{g}, the moduli space of smooth genus g curves over the complex numbers; we shall denote this locus by S_{g}. As a byproduct, we shall obtain a description of the components of the singular locus of \boldsymbol{M}_{g}. We thank Dan Madden for drawing our attention to this entertaining little problem.

We begin by discussing cyclic coverings of prime order p. Let X be a smooth curve, and $D=\sum a_{i} q_{i}$ an effective divisor on X. Suppose that $a_{i}<p$ for every i and that p divides $\sum a_{i}$. Then there is a line bundle L on X such that

$$
L^{p}=\mathcal{O}(D) .
$$

If $D=0$ we also want L to be non-trivial; thus we have to exclude the case when X is rational. Let Γ be the inverse image of the section 1 of $\mathcal{O}(D)$ under the p-th power $\operatorname{map} L \rightarrow L^{p}, C$ the normalization of Γ, and $f: O \rightarrow X$ the natural projection. Then C is a connected p-fold cyclic covering of X, branched at the q_{i}. The covering transformations of C over X correspond to multiplication by p-th roots of unity in L. We shall write $C(p, X, D, L)$ to denote C when we will want to keep track of the way C was constructed.

Pick a primitive p-th root of unity ζ and let γ be the corresponding element of Aut ($C / X)$. Denote by Q_{i} the inverse image of q_{i} in C. If we view the sections of L^{-1} as functions on L and hence on C, such a function φ obeys the transformation rule

$$
\varphi(\gamma(P))=\zeta \varphi(P)
$$

[^0]Conversely, any function satisfying this rule extends, by linearity, to a section of L^{-1}. To see this it suffices to check that the section so obtained, a priori only meromorphic, is regular near each q_{i}. Let w and t be a coordinate on X centered at q. and a fiber coordinate on L, respectively. The equation of Γ near Q_{i} is

$$
t^{\nu}=w^{a_{i}}
$$

and the normalization map from C to Γ is

$$
t=z^{a_{i}} ; \quad w=z^{D}
$$

where z is a coordinate centered at Q_{i}. Then

$$
t(\gamma(P))=\zeta t(P)
$$

hence

$$
z(\gamma(P))=\zeta^{-b_{i}} z(P)
$$

where b_{i} is the inverse of a_{i} modulo p. Writing

$$
\varphi(z)=\sum_{j \geqslant 0} \alpha_{j} z^{j}
$$

we find that α_{j} must be zero except when $j b_{i}$ is congruent to 1 modulo p, i.e., except when j is congruent to a_{i} modulo p. Thus φ equals t times a holomorphic function of w. In conclusion, we have shown that, if we decompose $f_{*}\left(\mathcal{O}_{c}\right)$ according to the various irreducible representations of $\boldsymbol{Z} /(p)$, i.e., if we write

$$
f_{*}\left(\mathcal{O}_{C}\right)=\underset{\xi}{\oplus} f_{*}\left(\mathcal{O}_{C}\right)^{\xi},
$$

where ξ runs through the p-th roots of unity and a section of $f_{*}\left(\mathcal{O}_{C}\right)^{\frac{\xi}{s}}$ obeys the rule

$$
\varphi(\gamma(P))=\xi_{\varphi}(P)
$$

then $L^{-1}=f_{*}\left(\mathcal{O}_{o}\right)^{\xi}$.
Any p-sheeted cyclic covering of X can be obtained by the construction we have outlined. To see this, let $\psi: E \rightarrow X$ be such a covering, and δ a generator of the group of its covering transformations. Set $L^{-1}=\psi_{*}\left(\mathcal{O}_{z}\right)^{\frac{7}{2}}$. Let q_{1}, \ldots, q_{n} be the branch points of ψ and Q_{1}, \ldots, Q_{n} their inverse images in E. Choose local coordinates z_{i} centered at the Q_{i} in such a way that z_{i}^{p} is a local coordinate at q_{i}. Write

$$
z_{i}(\delta(P))=\zeta^{b_{i}} z_{i}(P)
$$

and let a_{i} be the inverse of b_{i} modulo p. It follows from the same calculations that we used to identify $f_{*}\left(\mathcal{O}_{C}\right)^{\zeta}$ that $L^{*}=\mathfrak{O}(D)$, where

$$
D=\sum a_{i} q_{i} .
$$

Then E is isomorphic to $C(p, X, D, L)$. The map j from E to L inducing this isomorphism is given by the following prescription. Let \langle,$\rangle be the duality pairing$ between L and $\psi_{*}\left(\mathcal{O}_{E}\right)^{\zeta}$. Then

$$
\langle j(P), \varphi\rangle=\varphi(P)
$$

LEMMA 1. - Let $D=\sum a_{i} q_{i}, D^{\prime}=\sum a_{i}^{\prime} q_{i}$ be effective divisors and L, L^{\prime} line bundles on X such that $L^{p}=\mathcal{O}(D), L^{\prime p}=\mathcal{O}\left(D^{\prime}\right)$. Then there is an isomorphism of coverings of X

$$
\alpha: C(p, X, D, L) \rightarrow C\left(p, X, D^{\prime}, L^{\prime}\right)
$$

if and only if there is an integer $b, 1 \leqslant b<p$, such that
i) $b a_{i} \equiv a_{i}^{I} \quad(\bmod p), \quad i=1, \ldots, n$,
ii) $L^{b} \cong L^{\prime}\left(\sum c_{i} q_{i}\right)$, where $b a_{i}=a_{i}^{\prime}+c_{i} p$.

Proof. - Set $C=C(p, X, D, L), C^{\prime}=C\left(p, X, D^{\prime}, L^{\prime}\right)$, and let $f: C \rightarrow X, f^{\prime}: O^{\prime} \rightarrow X$ be the projections. We know that $L=f_{*}\left(\mathcal{O}_{C}\right)^{\xi}, L^{\prime}=f_{*}^{\prime}\left(\mathcal{O}_{C^{\prime}}\right)^{\xi}$, with respect to generators γ, γ^{\prime} of $\operatorname{Aut}(C / X)$ and $\operatorname{Aut}\left(C^{\prime} / X\right)$. Suppose α exists; write

$$
\alpha^{-1} \gamma^{\prime} \alpha=\gamma^{b}
$$

Thus

$$
L^{\prime-1}=f_{*}\left(\mathcal{O}_{C}\right)^{\xi^{b}} .
$$

Clearly L^{-b} is a subsheaf of $f_{*}\left(\mathcal{O}_{C}\right)^{\xi^{b}}$ and agrees with it away from q_{1}, \ldots, q_{n}. Thus

$$
f_{*}\left(\mathcal{O}_{c}\right)^{5^{b}}=L^{-b}(\boldsymbol{A})
$$

where A is supported at $\sum q_{i}$. Let z, w be local coordinates on C, X such that w is centered at q_{i} and $w=z^{p}$. Let t be a fiber coordinate on L. As we have already observed, we can choose t in such a way that $t=z^{a_{i}}$. The function $z^{a_{i}}$ is a local generator for L^{-1}, so

$$
z^{b a_{i}}=z^{a_{i}^{\prime}} w^{c_{i}}
$$

is a local generator for L^{-b}. On the other hand, $z^{a_{i}^{\prime}}$ is clearly a local generator for $f_{*}\left(\mathcal{O}_{C}\right)^{t^{t}}$, therefore

$$
\Delta=\sum c_{i} q_{i}
$$

and, as a consequence,

$$
L^{\prime}=L^{b}\left(-\sum c_{i} q_{i}\right)
$$

Taking p-th powers, we find that

$$
b a_{i}=a_{i}^{\prime}+c_{i} p
$$

This proves the «only if» part of the lemma. To prove the converse, simply observe that the b-th power morphism from L to $L^{\prime}\left(\sum c_{i} q_{i}\right)$ induces an isomorphism between C and C^{\prime}. q.e.d.

Remark 1. - Let $C_{t}=C\left(p, X, D_{t}, L_{t}\right), 0 \leqslant t \leqslant 1$, be a family of branched p-fold coverings of X, where $D_{t}=a_{1} q_{1}(t)+a_{2} q_{2}+\ldots+a_{n} q_{n}$ and $q_{1}(t)$ moves in a closed loop. Let ξ be the homology class of the loop. Then L_{1} equals $L_{0} \otimes M$, where M is the p-torsion point in the Jacobian of X corresponding to ξ / p.

Now we can address our original problem of describing the components of the locus of curves with non-trivial automorphisms in M_{g}. Of course, this is a problem only if $g \geqslant 3$.

Let then C be a smooth curve of genus $g \geqslant 3$ with non-trivial automorphisms. Obviously C has an automorphism γ of prime order p and hence is a p-fold covering of $X=C /\langle\gamma\rangle$. Thus the locus S_{g} of curves with automorphisms is just the locus of curves which are p-fold cyclic coverings, for some prime p. If $g^{\prime} \geqslant 0$ is an integer, p is a prime, and a_{1}, \ldots, a_{n} are integers between 1 and $p-1$, we let

$$
S\left(p, g^{\prime} ; a_{1}, \ldots, a_{n}\right)
$$

be the locus of curves which are p-fold coverings of a smooth curve X of genus g^{\prime} of the form $C\left(p, X, \sum a_{i} q_{i}, L\right)$ for some choice of the q_{i} and of L. We also allow n to be zero, meaning that we consider unbranched coverings. By the RiemannHurwitz formula, $S\left(p, g^{\prime} ; a_{1}, \ldots, a_{n}\right)$ is a subvariety of M_{g} if

$$
2 g-2=p\left(2 g^{\prime}-2\right)+n(p-1)
$$

An easy parameter count shows that, when $g \geqslant 2, S\left(p, g^{\prime} ; a_{1}, \ldots, a_{n}\right)$ always has dimension $3 g^{\prime}-3+n$. Lemma 1 implies that

$$
S\left(p, g^{\prime} ; a_{1}, \ldots, a_{n}\right)=S\left(p, g^{\prime} ; a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)
$$

if there are an integer b and a permutation j such that $a_{j(i)}^{\prime}$ is congruent to $b a_{i}$ modulo p for every i. In particular we can always take a_{1} to be equal to one. It follows from Remark 1 and the irreducibility of $M_{g^{\prime}}$ that $S\left(p, g^{\prime} ; a_{1}, \ldots, a_{n}\right)$ is irre-
ducible if $n>0$. If $n=0$, the same conclusion follows from the fact that the moduli space parametrizing couples

$$
\text { (genus } g^{\prime} \text { curve } X, p \text {-torsion point in the Jacobian of } X \text {) }
$$

is irreducible [2]. Thus

$$
S_{g}=\bigcup\left\{S\left(p, g^{\prime} ; a_{1}, \ldots, a_{n}\right): 2 g-2=p\left(2 g^{\prime}-2\right)+n(p-1)\right\},
$$

and the problem of finding the components of S_{g} is simply the problem of determining all the inclusions among the $S\left(p, g^{\prime} ; a_{1}, \ldots, a_{n}\right)$'s. The following observation will be useful on several occasions.

Remark 2. - Let O be a smooth connected curve and let Q be a point of C. If K is a finite subgroup of the isotropy group of Q in the automorphism group of C, then K is abelian. In fact, in a suitable local coordinate centered at C, the action of K is linear; in other words, K acts by multiplication by roots of mity in a neighbourhood of C. The conclusion follows by analytic continuation.

We begin our analysis of the inclusions among the $S\left(p, g^{\prime} ; a_{1}, \ldots, a_{n}\right)$ by studying $S\left(p, 0 ; a_{1}, a_{2}, a_{3}\right)$, where

$$
1=a_{1} \leqslant a_{2} \leqslant a_{3}<p ; \quad \sum a_{i}=p
$$

Notice that this locus consists of a single point, corresponding to a curve $C=C(p$, $\left.\boldsymbol{P}^{1}, \sum a_{i} q_{i}, \mathcal{O}(1)\right)$. We let g be the genus of C, and γ a generator of Aut ($\left.C / \boldsymbol{P}^{1}\right)$. The Riemann-Hurwitz formula yields $g=(p-1) / 2$. In particular $p \geqslant 3$. In the sequel, if D is a curve and A a subset of D, we shall denote by Aut (D, A) the group of those automorphisms φ of D such that $\varphi(A)=A$. If y is a point 'of D, we shall write $\operatorname{Aut}(D, y)$ instead of $\operatorname{Aut}(D,\{y\})$.

Lemma 2. - If $g \geqslant 2$, then $\operatorname{Aut}(C)=\operatorname{Aut}\left(C / \boldsymbol{P}^{1}\right)=\boldsymbol{Z} /(p)$ unless there is an automorphism τ of C that covers an automorphism σ of \boldsymbol{P}^{1}. This happens only in the following cases:
i) $a_{2}=1$ (or $a_{2}=a_{3}$); σ has order two, leaves q_{3} (resp. q_{1}) fixed, and interchanges q_{1} with $q_{2}\left(\right.$ resp. q_{2} with $\left.q_{3}\right)$.
ii) a_{2} is a non-trivial cubic root of 1 modulo p; σ has order three and permutes q_{1}, q_{2}, q_{3} cyclically.

It is always possible to choose τ to have the same order as σ.
Let y be the point of C that lies above q_{1} : Then, for any $g \geqslant 1$, Aut $(C, y)=$ $=$ Aut $\left(C / \boldsymbol{P}^{1}\right)$ unless we are in case i) and $a_{2}=a_{3}$. If this is the case, then Aut (C, y) is cyclic of order $2 p$ and generated by $\tau \gamma$.

Proof. - We set

$$
G=\operatorname{Aut}(C) ; \quad P=\operatorname{Aut}\left(C / \boldsymbol{P}^{1}\right)
$$

Suppose $G \neq P$. To prove the first statement in the lemma we must show that P is strictly contained in its normalizer. This is clear if P is strictly contained in the p-Sylow subgroup of G, since this group has non-trivial center. It remains to examine the case when the order of G equals $p k$, with k prime to p. Suppose P equals its normalizer; it follows, in particular, that k is congruent to 1 modulo p. Since P is abelian, a theorem of Burnside (Theorem 2.10 in chapter 5 of [4]) shows that G has a normal subgroup H such that $G / H \cong P$. Set $\Gamma=C / H, \Gamma^{\prime}=C / G$, and let $\pi: C \rightarrow \Gamma$ be the projection. Since Γ^{\prime} is covered by \boldsymbol{P}^{1}, it is a smooth rational curve; Γ is a cyclic p-fold covering of Γ^{\prime}. Let $\tilde{\gamma}$ be the generator of Aut (Γ / Γ^{\prime}) corresponding to γ. The fixed points of γ map to fixed points of $\tilde{\gamma}$. If these are distinct, the Riemann-Hurwitz formula shows that the genus of Γ is not less than g, a contradiction since Γ is a quotient of C. Suppose then that two or all three of the fixed points of γ map to the same point x of Γ. If $\pi^{-1}(x)$ did contain fower than k points, all of its points, in particular at least one of the fixed points of γ, would be fixed points for some non-trivial element of H. However, in view of Remark 2, this would contradict our assumption that P coincides with its normalizer. Since the k points of $\pi^{-1}(x)$ are partitioned into orbits of P, we find that k is congruent to 2 or 3 modulo p. This is impossible, since \hbar is congruent to 1 modulo p and $p \geqslant 5$. This proves the first part of the lemma.

Now let τ be an element of the normalizer of P, not belonging to P; it induces an automorphism σ of \boldsymbol{P}^{1} which permutes q_{1}, q_{2}, q_{3}. Thus the order of σ is 2 or 3 , hence prime to p, and we may arrange things so that τ has the same order as σ. Suppose σ has order 2; thus it interchanges two of the q_{i}^{\prime} 's q_{1} and q_{2}, say) and fixes the other. In this case, Lemma 1 says that there must be an integer b such that

$$
a_{2} \equiv b, \quad 1 \equiv b a_{2}, \quad a_{3} \equiv b a_{3} \quad(\bmod p)
$$

The only possibility is that $b=a_{2}=1$. If σ has order 3 , it permutes the q_{i} 's cyclically, sending q_{1} to q_{2} (say) and hence q_{2} to q_{3}. Thus, by Lemma 1 ,

$$
a_{3} \equiv a_{2}^{2}, \quad 1 \equiv a_{2} a_{3} \quad(\bmod p)
$$

In particular, a_{2} is a cubic root of 1 modulo p; it is non-trivial since otherwise we would have $p=3$. Conversely, if $a_{2}^{3} \equiv 1, a_{2} \equiv 1(\bmod p)$, then $a_{2}^{2}+a_{2}+1 \equiv 0(\bmod p)$, hence $a_{3} \equiv a_{2}^{2}(\bmod p)$.

It remains to prove the last statement of the lemma. Suppose there is an element δ of Aut (C, y) not belonging to P. By Remark $2, \delta$ centralizes P, hence descends to an automorphism σ of \boldsymbol{P}^{1} that fixes q_{1} and interchanges q_{2} and q_{3}. It follows that we are in case i), $a_{2}=a_{3}$, and δ is congruent to τ modulo P. q.e.d.

The description of the inclusions between the $S\left(p, g^{\prime} ; a_{1}, \ldots, a_{n}\right)$ is contained in the following result.

Theoren 1. - Let X be a general curve of genus $g^{\prime}, q_{1}, \ldots, q_{n}$ general points of X, a_{1}, \ldots, a_{n} integers such that

$$
\begin{gathered}
1=a_{1} \leqslant a_{2} \leqslant \ldots \leqslant a_{n}<p, \\
\sum a_{i} \equiv 0 \quad(\bmod p),
\end{gathered}
$$

and let L be a now-trivial p-th root of $O\left(\sum a_{i} q_{i}\right)$. Set $O=O\left(p, X, \sum a_{i} q_{i}, L\right)$, and suppose that C has genus $g \geqslant 2$. Then $\operatorname{Aut}(C)=\operatorname{Aut}(C \mid X)=Z /(p)$, except when there is an automorphism τ of O that covers an automorphism σ of X. This happens only in the following cases:
i) $g^{\prime}=0, n=3, a_{2}=1$ (or $a_{2}=a_{3}$); σ has order two, leaves $q_{3}\left(\right.$ resp. $\left.q_{1}\right)$ fixed, and interchanges q_{1} with $q_{2}\left(\right.$ resp. q_{2} with $\left.q_{3}\right)$.
ii) $g^{\prime}=0, n=3, a_{2}$ is a non-trivial cubic root of 1 modulo p; σ has order three and permutes q_{1}, q_{2}, q_{3} cyclically.
iii) $g=0, n=4, a_{2}=1, a_{3}=a_{4}=p-1$; σ acts on $\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}$ as the product of two disjoint transpositions.
iv) $g^{\prime}=1, n=2 ; \sigma$ is multiplication by -1 with respect to a suitable group law on X and interchanges q_{1} and q_{2}.
v) $g^{\prime}=2, n=0 ; \sigma$ is the hyperelliptio involution.

We can always choose τ to have the same order as σ. Cases i), ii), iii), iv), v) are mutually exclusive.

The proof is based on the following auxiliary result.
LEMMA 3. - Aut (C/X) is a normal subgroup of Aut (C), except possibly in case $g^{\prime}=0, n=3$, or $g^{\prime}=1, n=2$.

We shall first show how to deduce Theorem 1 from Lemma 3, and then prove the lemma. The case when $g^{\prime}=0, n=3$ is covered by Lemma 2. We next show that the exceptional cases iii), iv), and v) do indeed occur. In case iii) we can normalize things so that $\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}=\{0,1, \infty, \zeta\}$, where ζ is a complex number different from 0 and 1 . We let σ be the linear fractional transformation

$$
\sigma(z)=\zeta / z
$$

It follows from Lemma 1 that σ lifts to an automorphism of C.

To see that case iv) does occur, choose a group law on X such that q_{1} and q_{2} add to zero, and let σ be multiplication by -1 . Since $a_{2}=p-1$, L has degree 1 , hence is of the form $\mathcal{O}(q)$, for some point q of X. An easy application of Lemma 1 says that, in order for σ to be liftable to an automorphism τ of C, q must satisfy the relation

$$
\mathcal{O}(\sigma(q)) \cong \mathcal{O}\left((p-1) q-(p-2) q_{2}\right)
$$

Since $q+\sigma(q)$ is linearly equivalent to $q_{1}+q_{2}$, this is a formal consequence of the fact that $\mathcal{O}(p q)$ is isomorphic to $\mathcal{O}\left(q_{1}+(p-1) q_{2}\right)$.

To see that case v) does occur, in view of Lemma 1 it suffices to show that there exists a non-trivial line bomdle L on X such that L^{p} is trivial, and such that, if σ is the hyperelliptic involution of $X, \sigma^{*}(L)$ is a power of L. Since the Jacobian of X consists entirely of anti-invariants under the action of σ, any non-zero p-torsion point in it will do.

Our next task is to show that the automorphism group of C is different from $\boldsymbol{Z} /(p)$ only in cases i) through v). The case $g^{\prime}=0, n=3$ has already been dealt with, while the case $g^{\prime}=1, n=2$ presents no problems; we therefore exclude them from our considerations. Suppose Aut (O / X) is different from Aut (O), let τ be an element of Aut (O) not belonging to Aut (C / X), and σ the automorphism of X it induces. By the generality of X and of the q_{i}, the existence of σ excludes the cases when $g^{\prime} \geqslant 3, g^{\prime}=0$ and $n>4, g^{\prime} \geqslant 2$ and $n>0$, or $g^{\prime}=1$ and $n>2$. The cases when $g^{\prime}=0$ and $n=2$, or $g^{\prime}=1$ and $n=0$ are excluded by the requirement that $g \geqslant 2$. There remain two cases:
a) $g^{\prime}=0, n=4 ;$
b) $g^{\prime}=2, n=4$.

Case b) corresponds to case v) of the theorem. By the generality of the q_{i} 's, in case a) σ must act on $\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}$ as the product of two disjoint transpositions. Suppose, for example, that it interchanges q_{1} and q_{2}. Then a_{2}^{2} is congruent to 1 modulo p, so it equals 1 or $p-1$. Since the a_{i} 's are non-decreasing and add to a multiple of p, and σ interchanges q_{3} and q_{4}, the only possibility is that $a_{2}=1$ and $a_{3}=a_{4}=p-1$. The other cases are similar.

It is clear that we can always choose τ to have the same order as σ, except possibly when the order of σ equals p. This never happens in cases i), ii), iii) since $g \geqslant 2$. Suppose then that we are in case iv) or v), and that $p=2$. In both cases σ fixes at least one point Q that is not a branch point of $f: C \rightarrow X$. Let Q_{1} and Q_{2} be the points of O lying over Q, and denote by γ the non-trivial covering transformation of C over X. Since τ^{2} covers the identity of X, it must be either the identity or γ. The latter case cannot occur; in fact τ either fixes or interchanges Q_{1} and Q_{2}, so τ^{2} fixes Q_{1} and Q_{2}, while γ interchanges them. This concludes the proof of the theorem, if we assume Lemma 3.

Proof of Lemma 3. - We first deal with the case $g^{\prime}=0$. The proof is by induction on n and relies on a degeneration argument. Assume that $n \geq 4$. Set

$$
\mathrm{O}_{1}=O\left(p, \boldsymbol{P}^{1}, \sum_{i=1}^{3} b_{i} \gamma_{i}, \mathcal{O}(1)\right) ; \quad C_{2}=C\left(p, \boldsymbol{P}^{1}, \sum_{i=1}^{n-1} c_{i} s_{i}, L\right)
$$

where the s_{i} are general points of $P_{1}, b_{1}=c_{1}=1$, and $L^{p}=\mathcal{O}\left(\sum c_{i} s_{i}\right)$. Let R, S be the points of C_{1} and C_{2} that lie above r_{1} and s_{1}. Let D be the stable curve obtained from the union of O_{1} and C_{2} by identifying R with S. The curve D is an admissible covering of the union E of two copies of \boldsymbol{P}^{1} with r_{1} on the first copy identified with s_{1} on the second (cf. [1] or [3] for a discussion of admissible coverings(1)). Let $\alpha: D \rightarrow E$ be the natural projection. The group Aut (D / E) is equal to Aut $\left(C_{1} \mid \boldsymbol{P}_{1}\right) \times$ \times Aut $\left(C_{2} / \boldsymbol{P}^{1}\right)$. Let G be the group of antomorphisms of D sending C_{1} to itself (and hence C_{2} to itself). Clearly

$$
G=\operatorname{Aut}\left(C_{1}, R\right) \times \operatorname{Aut}\left(C_{2}, S\right)
$$

The first factor is described by Lemma 2. Moreover, G equals Aut (D) unless $n=4$ and $\left\{b_{2}, b_{3}\right\}=\left\{c_{2}, c_{3}\right\}$, in which case G has index 2 in Aut (D).

Consider a family of admissible coverings, i.e. a commutative diagram

such that, for any $t \in T,\left.\xi\right|_{\theta^{-1}(t)}: \vartheta^{-1}(t) \rightarrow \eta^{-1}(t)$ is an admissible covering. Set

$$
\xi_{t}=\left.\xi\right|_{\vartheta^{-1}(t)}, \quad D_{t}=\hat{\vartheta}^{-1}(t), \quad E_{t}=\eta^{-1}(t)
$$

It is possible to construct a family of admissible coverings as above in such a way that T is smooth, comnected and one-dimensional, there is a distinguished point $0 \in T$ such that

$$
\left(\xi_{0}: D_{0} \rightarrow E_{0}\right)=(\alpha: D \rightarrow E)
$$

and, for $t \neq 0, D_{t}$ is a p-sheeted cyclic covering of $E_{t}=\boldsymbol{P}_{1}$. Moreover we can arrange things so that, near the singular points of D and E, the surfaces \mathfrak{D} and \mathcal{E} are of the form

$$
x y=t ; \quad u v=t^{p}
$$

(${ }^{1}$) The admissible coverings of [3] have simple ramification, while ours have total ramification everywhere. The two notions agree for the degree two coverings considered in [1].
respectively, where t is a local coordinate on T centered at 0 , and ξ is given by

$$
u=x^{y} ; \quad v=y^{p} .
$$

We let $\beta: \mathcal{G} \rightarrow T$ be the group scheme over T of fiberwise automorphisms of $\mathfrak{D} \rightarrow T$. The morphism β is proper. Possibly after a base change, if t is a general point of T, for any point h of Aut $\left(D_{t}\right)$ there is a section χ of β passing through h. We get a homomorphism

$$
\operatorname{Aut}\left(D_{t}\right) \rightarrow \operatorname{Aut}(D)
$$

by sending h to $\chi(0)$. We claim that this is injective. In fact, suppose that $\chi(0)=1$. We can view χ as an automorphism of \mathfrak{D} over T restricting to the identity on D. Since χ has finite order, if w and z are suitable coordinates at a smooth point of D, then $D=\{w=0\}$ and χ sends (z, w) to $(\zeta z, w)$, where ζ is a root of unity. Thus χ can preserve the fibers of θ only if $\zeta=1$, i.e., if χ is the identity everywhere. Notice that this argument does not depend on the particular nature of $\mathfrak{D} \rightarrow T$, but only on the fact that we are dealing with a family of stable curves.

Suppose $n=4$. It follows from the preceding considerations that Aut $\left(D_{t}\right)$ is abelian for general t, unless $\left\{b_{2}, b_{3}\right\}=\left\{c_{2}, c_{3}\right\}$. In the latter case, let α be an isomorphism of C_{1} onto C_{2} carrying r_{1} to s_{1}, and let $\tau=\left(\alpha, \alpha^{-1}\right)$ be the corresponding order two element of $\operatorname{Aut}(D)$. The group $\operatorname{Aut}(D)$ is the semidirect product of the abelian normal subgroup G with the order two subgroup generated by τ. Recall that $\mathfrak{D}, \mathcal{E}, \xi$ are locally of the form

$$
x y=t ; \quad u v=t^{p} ; \quad u=x^{p}, \quad v=y^{p}
$$

respectively. Then, if ζ is a non-trivial p-th root of unity,

$$
(x, y) \rightarrow\left(\zeta x, \zeta^{-1} y\right)
$$

extends to an automorphism of \mathbb{D} over \mathcal{E} that restricts to a non-trivial element γ of $\operatorname{Aut}\left(D_{t} / E_{t}\right)$ for any t. It is clear that $\tau \gamma \tau^{-1}=\gamma^{-1}$. Thus τ normalizes Aut $\left(D_{t} / E_{t}\right)$ for any $t \neq 0$. This shows that $\operatorname{Aut}\left(D_{i} / E_{t}\right)$ is normal in Aut $\left(D_{t}\right)$ for any t, and concludes the proof of the lemma in case $g^{\prime}=0, n=4$. In fact, we can set $C=D_{t}$ for general t; thus C belongs to

$$
S\left(p, 0 ; b_{2}, b_{3}, p-c_{2}, p-c_{3}\right)
$$

and it is immediate to check that all possible $S\left(p, 0 ; a_{1}, \ldots, a_{4}\right)$ can be gotten by varying the b 's and the c 's. Notice also that the analysis of case iii) in the proof of Theorem 1 shows that, whenever Q is a point of C lying over one of the q_{i} 's, Aut (O, Q) is abelian.

Now let n be strictly larger than 4 , and assume the lemma proved for coverings of \boldsymbol{P}^{1} branched at $n-1$ points. The proof of the induction step is similar to the proof of the case $n=4$, but simpler. In fact Aut (C) is a subgroup of

$$
\text { Aut }(D)=\operatorname{Aut}\left(C_{1}, R\right) \times \operatorname{Aut}\left(C_{2}, S\right)
$$

and we may assume, inductively, that $\operatorname{Aut}\left(C_{2}, S\right)$ is abelian, so Aut (C) is abelian, too.

The same degeneration argument used for $g^{\prime}=0$, namely «attaching tails belonging to $S\left(p, 0 ; 1, b_{2}, b_{3}\right) \geqslant$, proves the lemma for $g^{\prime}=1$.

We now prove the lemma for an unramified p-iold covering of a genus 2 curve. This is done by degeneration to $\pi: D \rightarrow E$, where π, D, and E are as follows. Choose two general elliptic curves E_{1} and E_{2} and points $e_{1} \in E_{1}, e_{2} \in E_{2}$: Let $\pi_{1}: D_{1} \rightarrow E_{1}$ and $\pi_{2}: D_{2} \rightarrow E_{2}$ be two unramified p-sheeted cyclic coverings. Pick points $d_{1} \in$ $\in \pi_{1}^{-1}\left(e_{1}\right), d_{2} \in \pi_{2}^{-1}\left(e_{2}\right)_{1}^{t}$ and generators γ_{1}, γ_{2} of $\operatorname{Aut}\left(D_{1} / E_{1}\right)$ and Aut $\left(D_{2} / E_{2}\right)$. Then let E be the union of E_{1} and E_{2} with e_{1} and e_{2} identified, and let D be the union of D_{1} and D_{2} with $\gamma_{1}^{n}\left(d_{1}\right)$ identified to $\gamma_{2}^{n}\left(d_{2}\right)$ for every n. Let π be the unique map that restricts to π_{i} on each D_{i}. Then Aut (D) is a subgroup of

$$
\operatorname{Aut}\left(D_{1}, \pi_{1}^{-1}\left(e_{1}\right)\right) \times \operatorname{Aut}\left(D_{2}, \pi_{2}^{-1}\left(e_{2}\right)\right)
$$

On the other hand Aut $\left(D_{i}, \pi_{i}^{-1}\left(e_{i}\right)\right)$ is the dihedral group generated by the multiplication by -1 with respect to the origin d_{i}, which we denote by δ_{i}, and by γ_{i}. Thus Aut (D) is the dihedral group of order $2 p$ generated by (δ_{1}, δ_{2}) and (γ_{1}, γ_{2}), unless $p=2$, in which case it is the abelian group of order 8 generated by $\left(\delta_{1}, 1\right),\left(1, \delta_{2}\right)$, and $\left(\gamma_{1}, \gamma_{2}\right)$. In any case $\operatorname{Aut}(D / E)$ is normal in Aut (D).

We next prove the lemma for a p-fold covering of a genus 2 curve branched at two points. This is done by degenerating to an admissible covering $\pi: D \rightarrow E$ which we shall now describe. Let $\pi_{1}: D_{1} \rightarrow E_{1}$ be an unramified cyclic p-fold covering of a general genus 2 curve. Let D_{2}, E_{2} be two copies of \boldsymbol{P}^{1} and let $\pi_{2}: D_{2} \rightarrow E_{2}$ be the p-th power morphism. Fix a general point e on D_{1}, a point d in $\pi_{1}^{-1}(e)$, a generator γ for $\operatorname{Aut}\left(D_{1} / E_{1}\right)$, and a primitive p-th root of unity ζ. Let E be the union of E_{1} and E_{2} with $e \in E_{1}$ identified to $1 \in E_{2}$. Let D be the union of D_{1} and D_{2} with $\gamma^{n}(d) \in D_{1}$ identified to $\zeta^{n} \in D_{2}$ for every n. Let π be the unique map that restricts to π_{i} on each D_{i}. Suppose first that $p \geqslant 3$, so that D is stable. Then Aut $\left(D_{2}\right.$, $\left\{1, \zeta, \ldots, \zeta^{p-1}\right\}$) is the dihedral group of order $2 p$ generated by multiplication by ζ and by the inversion $z \mapsto z^{-1}$. On the other hand, by the generality of e and by the lemma applied to $\pi_{1}: D_{1} \rightarrow E_{1}$, Aut $\left(D_{1}, \pi_{1}^{-1}(e)\right)$ equals Aut $\left(D_{1} / E_{1}\right)$. Thus Aut (D) is isomorphic to $\operatorname{Aut}\left(D_{2},\left\{1, \zeta, \ldots, \zeta^{p-1}\right\}\right)$ and Aut (D / E) is normal in it. This takes care of the case $p \geqslant 3$. If $p=2$, then D is no more stable. To be able to apply our degeneration argument we must blow down D_{2}. Thus we have to examine Aut (\mathcal{D}^{\prime}), where D^{\prime} is obtained from D_{1} by identifying the two points of $\pi_{1}^{-1}(e)$. By the gen-
erality of e, Aut $\left(D^{\prime}\right)$ equals $\mathbb{Z} /(2)$. This concludes the proof of the lemma in the case at hand. Notice moreover that in the proof of Theorem 1 it was shown that the lemma implies that the automorphism group of a general cyclic p-sheeted covering of a genus two curve branched at two points is $\boldsymbol{Z} /(p)$.

We may now conclude the proof of Lemma 3 by yet another degeneration argument. This time we shall use induction on g^{\prime} and keep the number of branch points fixed. The induction starts with the cases $g^{\prime}=1, n \geqslant 3$ and $g^{\prime}=2, n=0$ or $n=2$. Notice that in all these cases, except when $g^{\prime}=2, n=0$, the full automorphism group is $\boldsymbol{Z} /(p)$. When $g^{\prime}=2, n=0$, Aut (O / X) has index two in Aut (O), the quotient being generated by the hyperelliptic involution of X. Fix a cyclic p-sheeted covering $\pi_{1}: D_{1} \rightarrow E_{1}$ branched at n general points, where E_{1} is a general curve of genus $g^{\prime} \geqslant 1\left(g^{\prime} \geqslant 2\right.$ if $\left.n \leqslant 2\right)$. Let E_{2} be a general elliptic curve. Choose a point e_{2} on E_{2} and a general point e_{1} on E_{1}. We let D be the union of D_{1} and of p copies of A_{2}, attached by e_{2} to the p points of $\pi_{1}^{-1}\left(e_{1}\right)$. Obviously, D is an admissible covering of the union of E_{1} and E_{2} with ϵ_{1} and e_{2} identified, which we denote by E. Clearly $\operatorname{Aut}(D)$ is the semidirect product of $\operatorname{Aut}\left(D_{1}, \pi_{1}^{-1}\left(e_{1}\right)\right)=\boldsymbol{Z} /(p)$ and $\operatorname{Aut}\left(\boldsymbol{E}_{2}\right.$, $\left.e_{2}\right)^{p}$, the first group acting on the second one by permuting the factors. The infinitesimal first order deformations of D are in one-to-one correspondence with the elements of $E x t^{1}\left(\Omega_{D}^{1}, \mathcal{O}_{D}\right)$. This group, in trurn, fits into an exact sequence

$$
0 \rightarrow H^{1}\left(\operatorname{Hom}\left(\Omega_{D}^{1}, \mathcal{O}_{D}\right)\right) \rightarrow \operatorname{Ext}^{1}\left(\Omega_{D}^{1}, \mathcal{O}_{D}\right) \rightarrow H^{0}\left(\operatorname{Ext}^{1}\left(\Omega_{D}^{1}, \mathcal{O}_{D}\right)\right) \rightarrow 0
$$

where the sheaf $\delta x t^{1}\left(\Omega_{D}^{1}, \mathcal{O}_{D}\right)$ consists of p copies of C concentrated at the singular points of D. The vector space $H^{1}\left(\mathscr{H}\right.$ om $\left.\left(\Omega_{D}^{1}, \mathcal{O}_{D}\right)\right)$ classifies the infinitesimal locally trivial deformations of D. The automorphisms of D act on $\operatorname{Ext}^{1}\left(\Omega_{D}^{1}, \mathcal{O}_{D}\right)$: an automorphism η extends along a first order deformation v if and only if v is η-invariant. In particular, in order to survive smoothing of the singular points of D, η must act trivially on $\delta x t^{1}\left(\Omega_{D}^{1}, \mathcal{O}_{D}\right)$. Now Aut $\left(E_{2}, e_{2}\right)$ is the group of order 2 generated by multiplication by -1 with respect to the origin e_{2}. Denote by $\delta_{1}, \delta_{2}, \ldots, \delta_{p}$ the generators of the p copies of $\operatorname{Aut}\left(E_{2}, e_{2}\right)$ in $\operatorname{Aut}(D)$, and by $Q_{1}, Q_{2}, \ldots, Q_{p}$ the corresponding singular points of D. The automorphism δ_{i} acts as multiplication by -1 on the stalk of $\delta x t^{1}\left(\Omega_{D}^{1}, \mathcal{O}_{D}\right)$ at Q_{i}, hence does not survive smoothing of the singular points of D. Thus, if $D_{t} \rightarrow E_{t}$ is a one-parameter family of cyclic p-sheeted coverings such that $\left(D_{0} \rightarrow E_{0}\right)=(D \rightarrow E)$ and D_{t}, E_{t} are smooth for $t \neq 0$, then, for general t, Aut $\left(D_{t} / A_{t}\right)=\boldsymbol{Z} /(p)$. This completes the proof of the induction step from cyclic p-sheeted coverings of genus g^{\prime} curves to cyclic p-sheeted coverings of genus $g^{r}+1$ curves. q.e.d.

Corollary 1. - If $g \geqslant 3$, the components of Φ_{g} are the subvarieties $S\left(p, g^{\prime} ; a_{1}, \ldots, a_{n}\right)$ with $1=a_{1} \leqslant \ldots \leqslant a_{n}<p$ such that

$$
2 g-2=p\left(2 g^{\prime}-2\right)+n(p-1)
$$

with the cxclusion of those satisfying one of the following conditions:
i) $g^{\prime}=0, n=3, a_{2}=1\left(\right.$ or $\left(a_{2}=u_{s}\right)$.
ii) $g^{\prime}=0, n=3, a_{2}$ is a non-trivial oubic root of 1 modulo p.
iii) $g^{\prime}=0, n=4, a_{2}=1, a_{3}=a_{4}=p-1$.
iv) $g^{\prime}=1, n=2$.
v) $g^{\prime}=2, n=0$.

If $S\left(p, g^{\prime} ; a_{1}, \ldots, a_{n}\right)$ and $S^{\prime}\left(p, g^{\prime} ; a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)$ do not satisty i), ii), iii), iv), or v), and are equal, then there are an integer b and a permutation j such that $a_{j(i)}^{\prime}$ is congruent to $b a_{i}$ modulo p for every i.

Proof. - The only point that requires some explanation concerns the exclusion of the components of type ∇) in genus 3 . In fact, if $f: C \rightarrow X$ is an unramified covering, X has genus 2, and O has genus 3, the Riemann-Hurwitz formula yields $p=2$. So, if τ is an order two automorphism of C covering the hyperelliptic involution of X, it might a priori be possible that the quotient of C by τ has genus 2, i.e. that τ has no fixed points. This, however, is not the case. Let γ be the generator of Aut (C / X). The fixed points of τ, if any, come in pairs of points lying above the Weierstrass points of X. Moreover, if Q is a Weierstrass point of X and Q_{1}, Q_{2} are the points of C above it, either τ fixes Q_{1} and Q_{2} and $\gamma \tau$ interchanges them, or viceversa. Thus, if τ has ν fixed points, $\gamma \tau$ has $12-\nu$ fixed points. The Riemann-Hurwitz formula implies that an order 2 automorphism of C can only have 0,4 , or 8 fixed points. Thus, either τ has four fixed points and γ_{τ} has eight, or viceversa. In particular, O is hyperelliptic and belongs to $S(2,1 ; 1,1,1,1)$. q.e.d.

Corollary 2. - a) The singular locus of M_{g} equals S_{g} if $g \geqslant 4$.
b) The components of the singular locus of M_{3} are:

$$
\begin{aligned}
& S(3,0 ; 1,1,1,1,2) \\
& S(7,0 ; 1,1,5) \\
& S(2,1 ; 1,1,1,1)
\end{aligned}
$$

Proof. - We first recall how the singularities of M_{g} arise. We assume that $g \geqslant 3$ throughout. Let Q be a point of M_{g}, corresponding to a curve C. Let

$$
f: e \rightarrow B
$$

be the universal deformation of C; thus there is a distinguished point $b \in B$ such that $f^{-1}(b)=C$. The action of Aut (C) on C extends to an equivariant action of

Aut (C) on C and B, and the quotient $B / \operatorname{Aut}(C)$ is isomorphic to a neighbourhood of Q in M_{g}. Moreover, the action of Aut (C) on the tangent space to B at b is faithful. The covering $B \rightarrow B /$ Aut (C) is unramified off the locus of curves with non-trivial automorphisms, so the singular locus of M_{g} is contained in \mathcal{S}_{g}. By the purity of the branch locus theorem, any component of δ_{g} of codimension two or more consists entirely of singular points. If $g \geqslant 4$, we know from Corollary 1 that every component of $\$_{g}$ has codimension at least two: this proves a). Now suppose that $g=3$. The only divisor component of S_{3} is the hyperelliptic locus. Therefore a non-hyperelliptic curve corresponds to a singular point of M_{3} if and only if it has non-trivial automorphisms. Suppose instead that C is hyperelliptic, and let τ be the hyperelliptic involution. The quotient of B by the action of the normal subgroup of Aut (C) generated by τ is a smooth manifold B^{\prime}, and B is a two-sheeted covering of B^{\prime} ramified along the locus of hyperelliptic curves. The moduli space M_{3} is, locally, the quotient of B^{\prime} by the action of Aut $(C) /\langle\tau\rangle$. Using again the purity of the branch locus theorem, we conclude that the singular points of M_{3} lying on the hyperelliptic locus correspond to the hyperelliptic curves with extra automorphisms.

The varieties $S\left(p, g^{\prime} ; a_{1}, \ldots, a_{n}\right)$ contained in M_{3} are the hyperelliptic locus and

$$
\begin{aligned}
& S(3,0 ; 1,1,1,1,2) \\
& S(7,0 ; 1,1,5) \\
& S(7,0 ; 1,2,4) \\
& S(2,1 ; 1,1,1,1) \\
& S(3,1 ; 1,2) \\
& S(2,2)
\end{aligned}
$$

We know from Theorem 1 that $S(3,0 ; 1,1,1,1,2)$ and $S(2,1 ; 1,1,1,1)$ are contained in no other component of S_{3} : In the proof of Corollary 1 we have seen that

$$
S(2,2) \subset \mathbb{S}(2,1 ; 1,1,1,1)
$$

We now show that

$$
S(3,1 ; 1,2) \subset S(2,1 ; 1,1,1,1)
$$

Let O be a three-sheeted cyclic covering of the elliptic curve X, branched at two points q_{1} and q_{2}. Denote by γ a generator of $\operatorname{Aut}(C / X)$ and by τ an order two automorphism of C covering an automorphism σ of X. Let Q be a fixed point of σ and Q_{1}, Q_{2}, Q_{3} the points of O above it. If γ commutes with τ, then τ fixes Q_{1}, Q_{2}, Q_{3}, otherwise τ fixes one among them and interchanges the other two. Since σ has four
fixed points, the first alternative would imply that τ has twelve fixed points, which would contradict the Riemann-Hurwitz formula. Hence τ has four fixed points, which proves our assertion. A similar argument shows that

$$
S(7,0 ; 1,2,4) \subset S(3,1 ; 1,2)
$$

The unique point of $S(7,0 ; 1,1,5)$ is the double covering of \boldsymbol{P}^{1} branched at 0 and at the seventh roots of unity. Its only automorphism of order two is the hyperelliptic involution. Hence $S(7,0 ; 1,1,5)$ is contained in the hyperelliptic locus and in no other variety $S\left(p, g^{\prime} ; a_{1}, \ldots, a_{n}\right)$. This finishes the proof of b) and of the corollary. q.e.d.

Corollary 2 describes the components of the singular locus of M_{g} when $g \geqslant 3$. When g equals zero or one, M_{g} is smooth, while it has been shown by Igusa [4] that the singular locus of M_{2} is $S(5,0 ; 1,1,3)$; thus M_{2} has only one singular point.

We conclude by noticing that the results proved in this paper make it possible to algorithmically calculate the components of the singular locus of moduli space. The results of these calculations, for genus up to 50 , are summarized in the tables that follow the bibliography. Due to space limitations, for genus greater than 13 only the number of components for each dimension and the total number of components are given.

REFERENCES

[1] A. Beauville, Prym varieties and the Schottky problem, Invent. Math., 41 (1977), pp. 149-196.
[2] P. Deligne - D. Mumford, The irreducibility of the space of curves of given genus, I.H.E.S. Publ. Math., 36 (1969), pp. 75-110.
[3] J. Harris - D. Mumford, On the Kodaira dimension of the moduli space of curves, Invent. Math., 67 (1982), pp. 23-86.
[4] J.-I. Igusa, Arithmetic variety of moduli for genus two, Ann. Math., 72 (1960), pp. 612-649.
[5] M. Suzuki, Group theory II, Springer-Verlag, New York, 1986.

The components of the singular locus of $H_{a}, 4 \leqslant 9 \leqslant 13$, arranged by dimension ($x: n$ stands for a sequence of $n x$'s).

The number of components of the singular loows of $M_{g}, 2 \leqslant g \leqslant 50$, by dimension (x : n meane (n components of amension $x \geqslant$).
0.1 total 1
a. $2: 14$ total 3
1233515.17 .1 total 8
$0: 14.20: 171$ 8:1 $9: 1$ tesal?
$0.11323548: 1811011111$ tolyl is
$3: 100$ s. $10111112: 1311$ totan 12
02357.4 11:1 $12: 1$ 13:1 14:1 $15: 1$ total 10

173.2 to $5: 199$ 14:1 15:1 $10.117: 118: 110: 1$ total 31
$03556.110015: 1$ 10:1 17:1-18:1 19:1 20.1211 total 20
tho $3: 45$ 5:10 6:1 119 17:1 18:1 $19120121: 1221231$ toted 51
4:405 12:12 10:1 19:1 $20: 121: 122: 123: 124: 125: 1$ tota 29
045161173139201211221231241251201271 totell 3
$042: 194: 1961708114: 1221: 122: 125: 124: 125: 1$ 28:1 $27: 128: 1$ 20:1 totel 71

$336149.11103182027128: 120.1301131: 1321 \quad 37: 1 \quad 34: 1$ 35:1 30:1 37.1 total 62

 Lotol 774
 tocal 412
 34:1 ©E:1 total 510
 87.1 10Lल 388

 641 65:1 S0: 57.1 6s: $69170171: 1$ told 1508

$70171172: 175$: totol 409

 $72: 173: 174175!175: 1771$ 70:1 79:1 totol 2072

 $72.174: 1$ 75:1 70:1 77:1 78:1 79:1 801 81:182! 33:1 total 2333

 $74.177178: 179.180 .181: 182183: 1$ Ed.1 85:1 80.1 87:1 88:1 89.1 totol 3878

[^0]: (*) Entrata in Redazione il 13 novembre 1986.
 (**) Durante questa ricerca l'autore ha usufruito di un finanziamento del Ministero della Pubblica Istruzione.

 Indirizzo dell'A.: Dipartimento di Matematica, Università di Pavia, Strada Nuova 6ã, 27100 Pavia,

