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Complex Variable Functions — Jenkins-Strebel di¤erentials, by Enrico
Arbarello and Maurizio Cornalba, communicated on 12 February 2010.1

Abstract. — In this mostly expository paper we revisit a fundamental result of Strebel, asserting
the existence and uniqueness, on Riemann surfaces of finite type, of Jenkins-Strebel di¤erentials
having double poles with prescribed ‘‘residues’’ at prescribed points. In particular, we give a self-
contained and somewhat shortened proof of Strebel’s result.
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1. Introduction

In this largely expository paper we revisit a rather astonishing result, due to
Strebel [19], which we briefly describe. Let ðC; x1; . . . ; xnÞ be a stable pointed
Riemann surface of genus gb 0. Consider the space of quadratic di¤erentials
o a H 0ðC;K 2

Cð2x1 þ $ $ $ þ 2xnÞÞ having poles of order two at the points xi.
Among these quadratic di¤erentials, look at the ones having the following prop-
erty: for each i ¼ 1; . . . ; n, one can find a suitable coordinate zi vanishing at xi
for which the local expression of o is

o ¼
! ai
2pi

d log zi
"2

¼ &
! ai
2p

"2 dz2i
z2i

;ð1Þ

where the ai are positive real numbers. Let us recall (see for instance section 5 of
Chapter 16 in [1]) that, away from its zeros and poles, the di¤erential o defines
a hermitian metric, the o-metric, which is defined to be the one with local
expression

j f j dz dz;

where f dz2 is a local expression for o. If we look at one of the points xi and set
x ¼ xi, a ¼ ai, z ¼ zi and z ¼ re iy, we see that the Riemannian metric associated
to the o-metric is just

#
a
2p

$2#dr2
r2

þ dy2
$
. The concentric circles r ¼ constant, which

are geodesics with respect to the o-metric, all have length equal to a, so that a
punctured disc around x, in the o-metric, looks like a semi-infinite cylinder:

1Research partially supported by PRIN 2007 Spazi di moduli e teoria di Lie.



The question Strebel addresses is whether there exist quadratic di¤erentials for
which these local pictures fit into a nice global one. The answer is quite beautiful:
there exists a unique quadratic di¤erential o with poles of order two at the points
xi and with local expressions given by (1), having the following additional prop-
erty. We can choose the coordinates zi so that their codomains are disks centered
at the origin and, furthermore, if Ui stands for the domain of zi,

G ¼ C n
[n

i¼1

Ui

is a graph (i.e., a 1-dimensional complex), called the Strebel graph, having a ver-
tex of valency nþ 2 for each n-th order zero of o. Moreover the edges of G are
horizontal o-geodesics for o. The following picture illustrates the case g ¼ 0,
n ¼ 3, a1 ¼ a2 ¼ a3.

In this paper we will give a self-contained and somewhat shorter proof of
Strebel’s result by using ideas already partly contained in [13].

Perhaps the most striking application of Strebel’s theorem is the one to the cel-
lular decomposition of moduli spaces of pointed curves. Let Mg;n be the moduli
space of n-pointed, genus g, smooth complete curves. The idea of using Jenkins-
Strebel di¤erentials to define a cellular decomposition of Mg;n is due to (unpub-
lished) work of Mumford and Thurston and to Harer [6, 5]. Actually, from the
point of view of Strebel di¤erentials, the natural space to work with is the space
Mg;n ' Rn

þ. Given a point y ¼ ½C; x1; . . . ; xn; a1; . . . ; an) a Mg;n ' Rn
þ, take the

Jenkins-Strebel di¤erential o associated to it and consider the Strebel graph G
equipped with the metric induced by o. Then y can be viewed as a point of the
orbi-cell

Figure 1

Figure 2
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eG ¼ RNG
þ =AutðGÞ

where NG is the number of edges of G. Moving from one cell to another corre-
sponds to a Feynman move. Moving inside a cell eG corresponds to changing
the o-length of the edges of G. Using this cell decomposition one can easily prove
vanishing theorems for the homology of Mg;n (see [5]). Following Harer and
Zagier [4] one can also compute the virtual Euler-Poincaré characteristic of Mg;n

by first expressing it as

wvirtðMg;nÞ ¼
X

G AGg; n

ð&1ÞNG

AutðGÞ
;

where Gg;n is the set of isomorphism classes of Strebel graphs of genus g with n
boundary components. Kontsevich, in proving Witten’s conjecture, shows that a
similar method can be used to compute the intersection numbers of tautological
classes on Mg;n (see [10, 11, 3, 12]).

2. Annular regions and their moduli

Throughout this paper we shall make free use of the uniformization theorem,
which says that, up to isomorphism, there are just three simply connected Rie-
mann surfaces, namely the Riemann sphere, the complex plane, and the unit disk.
Every Riemann surface inherits from its universal covering a hermitian metric of
constant curvature. In particular, the Poincaré metric induces on the hyperbolic
surfaces, that is, those whose universal covering is the disk, a hermitian metric
of constant curvature &1; we shall often refer to this as the hyperbolic metric.
From a conformal point of view, a Riemann surface whose fundamental group
is infinite cyclic is isomorphic to the punctured plane C* ¼ fz a C : zA 0g or to
an annulus

TR ¼ fz a C : R < jzj < 1g; 0aR < 1:

The modulus of TR is defined by

MðTRÞ ¼ & logR

2p
:

When R ¼ 0, the annulus TR coincides with the punctured unit disk and is said to
be degenerate; its modulus equals þl. An open region W in a Riemann surface is
said to be annular if it is isomorphic to TR, with Rb 0. As we shall presently see,
R is completely determined by W, and one defines the modulus MðWÞ of W to be
the one of TR. For example, it is immediate to check that the modulus of the
annulus Tr1; r2 ¼ fz a C : r1 < jzj < r2g is given by

MðTr1; r2Þ ¼
logðr2=r1Þ

2p
:
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In general it is not so easy to work with the above definition of modulus. How-
ever, it is possible to give an intrinsic definition of MðWÞ, that is, one which
clearly depends only on the isomorphism class of W as an abstract complex man-
ifold. To this end, we will consider the family F of all simple closed curves in W
that are not homotopic to the identity and we will introduce the conformal invari-
ant notion of extremal length LWðFÞ for curves in this family. We shall then see
that

MðWÞ ¼ 1

LWðFÞ
:ð2Þ

Let S be a Riemann surface, and consider all the metrics of finite area on S which
are compatible with the conformal structure. We call these metrics admissible.
For a given admissible metric r, we denote by the symbol lrðgÞ the length of a
curve g and by ArðWÞ the area of a region WHS. Now let F be a family of
closed curves in S. We set

lrðFÞ ¼ inf
g AF

lrðgÞ:

The quantity

LSðFÞ ¼ sup
admissible r

l2r ðFÞ
ArðSÞ

is clearly invariant upon multiplication of r by a positive constant and is called
the extremal length of F. There are two ways of rescaling data which lead to use-
ful expressions for LSðFÞ. First of all one could rescale the area of S to be equal
to 1 and get

LSðFÞ ¼ sup
r s:t: ArðSÞ¼1

l2r ðFÞ:ð3Þ

On the other hand, in case lrðFÞ < þl for all admissible r, one has

LSðFÞ ¼ sup
r s:t: lrðFÞ¼1

1

ArðSÞ
:ð4Þ

From the definition it follows that LSðFÞ is a conformal invariant in the sense
that, given an isomorphism j : S ! S 0 transforming the family F into a family
F 0, one has LS 0ðF 0Þ ¼ LSðFÞ. Let us look at an annulus TR with R > 0, and let
us show that, if F is the family of all closed simple curves contained in TR and
not homotopic to the identity, then

LTR
ðFÞ ¼ & 2p

logR
¼ 1

MðTRÞ
:ð5Þ
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This will show that indeed we can use (2) as a definition of the modulus of an
annular region. To prove (5), let rðzÞjdzj be the length element associated to an
admissible metric on TR. The function rðzÞ is square integrable. By abuse of
notation we shall write lr and Ar to designate the length and area functions asso-
ciated to the metric. Looking at a circle of radius r in TR we get

lrðFÞa
Z 2p

0
rðre iQÞr dQ:

Dividing by r and integrating we get

lrðFÞ logRa

Z 1

R

Z 2p

0
rðre iQÞ dQ dr;

so that, by the Schwarz inequality,

ðlrðFÞ logRÞ2 a
Z

TR

r2r dQ dr

Z

TR

1

r
dQ dr ¼ &2p logðRÞArðTRÞ:

Hence

l2r ðFÞ
ArðTRÞ

a& 2p

logR

showing that

LTR
ðFÞa& 2p

logR

On the other hand, if g is a homotopically non-trivial, simple curve, and if
rðr; QÞ ¼ 1

2pr , then

lrðgÞ ¼
Z

g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dr2 þ r2 dQ2

p

2pr
b

Z 2p

0

dQ

2p
¼ 1:

Hence lrðFÞb 1. Also

ArðTRÞ ¼
Z

TR

r dr dQ

ð2prÞ2
¼ & logR

2p
:

Therefore

LTR
ðFÞb& 2p

logR
;

proving (5).
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Lemma 1. Let W and W1 be two regions on a Riemann surface S. Let F (resp.,
F1) be a family of closed simple curves in W (resp., W1) none of which is homotopic
to the identity. Assume that W1 HW and F1 HF. Then

LWðFÞaLWðF1ÞaLW1ðF1Þ:

Proof. Since

lrðFÞ ¼ inf
g AF

lrðgÞa inf
g1 AF1

lrðg1Þ ¼ lrðF1Þ;

the first inequality is clear. The second inequality follows from (4) and from the
fact that any admissible metric r on W such that lrðF1Þ ¼ 1 restricts to an admis-
sible metric on W1 having the same property, so that

inf
lr1 ðF1Þ¼1

Ar1ðW1Þa inf
lrðF1Þ¼1

ArðWÞ: r

We will use the following terminology. Let g be a simple closed curve in S. An
annular region WHS has the homotopy type of g if g is freely homotopic to a
simple closed curve in W which is not homotopically trivial.

Lemma 2. Let W be an annular region. Let W1 and W2 be two disjoint annular
regions contained in W, both having the homotopy type of W. Then MðWÞb
MðW1Þ þMðW2Þ. In particular MðWÞbMðWiÞ, for i ¼ 1; 2.

Proof. Let F (resp., F1, F2) be the family of simple closed curves in W (resp.,
W1, W2) which are not homotopic to the identity. By assumption F1 AF2 HF.
By the previous lemma we have

LW1AW2ðF1 AF2ÞbLWðF1 AF2ÞbLWðFÞ:

It then su‰ces to prove that

1

LW1AW2ðF1 AF2Þ
¼ 1

LW1ðF1Þ
þ 1

LW2ðF2Þ
:ð6Þ

Given any admissible metric r on W1 AW2, with lrðF1 AF2Þ ¼ 1, denote by ri its
restriction to Wi, for i ¼ 1; 2 and let r 0

i ¼ ri=lriðFiÞ. Since lriðFiÞb 1, we have

ArðW1 AW2ÞbAr 0
1
ðW1Þ þ Ar 0

2
ðW2Þ:

It then follows from (4) that the left hand side of (6) is greater or equal than the
right hand side. Conversely, given admissible metrics ri on Wi, with lriðFiÞ ¼ 1,
one can simply define an admissible metric r on W1 AW2 with lrðF1 AF2Þ ¼ 1 by
setting rjWi

¼ ri, so that ArðW1 AW2Þ ¼ Ar1ðW1Þ þ Ar2ðW2Þ. This implies the re-
verse inequality, proving (6). r
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Lemma 3. Let W be an annular region and suppose that W ¼
S

nb1 Wn, where
W1 HW2 H $ $ $ is an increasing sequence of annular domains having the same ho-
motopy type of W. Then MðWÞ ¼ limn!l MðWnÞ.

Proof. Lemma 2 implies that the sequence fMðWnÞg is non-decreasing and that
MðWnÞaMðWÞ for any n. We must show that limn!l MðWnÞ is not strictly less
than MðWÞ. It su‰ces to treat the case when W is a standard annulus TR. If k
is any number such that

ffiffiffiffi
R

p
< k < 1, the closure of the subannulus TR=k;k ¼

fz a C : R=k < jzj < kg is contained in Wn for large enough n, by compactness.

Thus the limit of fMðWnÞg is not less than MðTR=k;kÞ ¼
logðk2=RÞ

2p . The conclusion
follows by taking the limit of this inequality for k ! 1. r

We now turn our attention to degenerate annular regions. A degenerate annu-
lar region, or a punctured disk, on a Riemann surface S is a region _WW which is
analytically equivalent to the punctured unit disk _DD ¼ fz a C : 0 < jzj < 1g. We
fix a specific isomorphism j : _DD ! _WW. Suppose that, for any sequence fxng in _DD
converging to the origin of D ¼ fz a C : jzj < 1g, the image sequence fjðxnÞg
does not converge in S. Then, if we use j to glue the unit disk D to S, the result-
ing surface S is Hausdor¤ and is obtained by adding to S a point p, correspond-
ing to the origin of D. We shall refer to the point p a S as a puncture of S. Sup-
pose instead that there is a sequence fxng in _DD which converges to 0 and has the
property that its image in S also converges to some point p. We claim that in this
case W ¼ _WWA fpg is open in S, and that the analytic isomorphism j : _DD ! _WW
extends to a biholomorphism between D and W. We may assume that S is con-
nected. It su‰ces to show that j extends to a holomorphic map from D to S, or
even, by the uniqueness of the limit, from D to some Riemann surface T con-
taining S as an open subset. When S is an algebraic curve, we may take as T a
smooth completion of S. Let q be a point of _WW, and V a small neighborhood of q
in S. We may choose V in such a way that it does not meet jð _DDrÞ for some r < 1,
where _DDr ¼ fz a C : 0 < jzj < rg. There is a projective embedding T ,! PN such
that there exists a hyperplane H meeting T only at q. Hence TnV is a bounded
subset of CN ¼ PNnH, and the restriction of j to _DDr extends to a holomorphic
map from Dr ¼ fz a C : jzj < rg to T , by the Riemann extension theorem. This
argument takes care, in particular, of all the non-hyperbolic Riemann surfaces.
In fact, these are just the Riemann sphere, the complex plane, the punctured com-
plex plane, and the one-dimensional complex tori, which are all algebraic. The
argument for general hyperbolic surfaces is quite di¤erent, and uses the following
fundamental result.

Lemma 4. (Generalized Schwarz lemma) Let D be the unit disk, endowed with the
Poincaré metric of constant curvature &1, let T be a Riemann surface endowed
with a hermitian metric whose curvature is everywhere a&1, and let f : D ! T
be holomorphic. Then f is distance-decreasing, in the sense that, for any pair of
points x; y a D, the distance between f ðxÞ and f ðyÞ does not exceed the one be-
tween x and y.
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We postpone the proof of Lemma 4, and assume its validity. Put the hyper-
bolic metric on both _DD and S. Composing j with the universal covering map
D ! _DD we get a holomorphic map from D to S, which is distance-decreasing by
the generalized Schwarz lemma; hence j is also distance-decreasing. A conse-
quence is the following. Set Cr ¼ fz : jzj ¼ rg. Since the length of Cr in the hyper-
bolic metric of _DD goes to zero with r, the distance-decreasing property of j implies
that the same is true for the length of jðCrÞ in S. Let D be a geodesically convex
geodesic disk of radius 3e centered at p, where e is a small positive number. If n is
a large enough integer, the distance between p and jðxnÞ and the length of jðCrÞ
are both less than e, for every ra r0 ¼ jxnj. Thus jðCr0Þ lies entirely inside the
geodesic disk of radius 2e centered at p. Now let r1 < r0 be such that jðCr1Þ
is contained in D. By the Jordan curve theorem, either jðCr1Þ is enclosed by
jðCr0Þ, or jðCr0Þ is enclosed by jðCr1Þ. In the first case, jðCr1Þ is clearly contained
in the disk of radius 2e centered at p. The same is true in the second case, since
the length of jðCr1Þ is less than e, and jðCr1Þ encloses a point whose distance from
p is less than e. The conclusion is that, for any r < r0, the curve jðCrÞ cannot
escape outside D. By the Riemann extension theorem, then, j extends to a map
D ! S, as desired.

Proof of Lemma 4. In local coordinates, a metric on S is of the form h dz dz,
where h is positive. If c ¼ h dzbdz is the corresponding exterior form, the curva-
ture of the metric is &2qq log h=c. If a ¼ a dzbdz and b ¼ b dzbdz are ð1; 1Þ-
forms with a and b real, we shall, somewhat improperly, write ab b to indicate
that ab b. With this convention, the assumption on the curvature of S translates
into 2qq log hbc. The hyperbolic metric on Dr corresponds to the form

hr ¼ kr dzbdz ¼ 4r2

ðr2 & jzj2Þ2
dzbdz:

What must be shown is that j*ðcÞa h1; clearly, it su‰ces to show that
j*ðcÞa hr on Dr for every r < 1. Notice that j*ðcÞ is bounded on Dr, while hr
goes to infinity at the boundary. Thus, if we write j*ðcÞ ¼ uhr, then u goes to
zero at the boundary, and hence has an interior maximum at some point z0.
This implies that qq log ua 0 at z0. On the other hand, ukr ¼ jqz=qzj2h + j, and
hence qq logðh + jÞ ¼ qq log uþ qq log kr. Putting everything together we find that

j*ðcÞa 2qq logðh + jÞ ¼ 2qq log uþ 2qq log kr a 2qq log kr ¼ hr

at z0, that is, uðz0Þa 1. Since u has a maximum at z0, ua 1 everywhere, hence
j*ðcÞa hr everywhere. r

Now let _WW be a punctured disk in S. Write _WW ¼ Wnfpg, where W is a disk in S
or in a Riemann surface S ¼ SA fpg containing S as an open subset. Let v be a
non-zero tangent vector to W at p, let F : W ! D be a biholomorphic map with
F ðpÞ ¼ 0, and set

r ¼ 1

jvðFÞj :ð7Þ
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Since the automorphisms of the unit disk carrying the origin to itself are just the
rotations, the number r does not depend on the isomorphism F , but only on _WW
and on the choice of v. It could be equivalently defined as the radius of a disk
Dr ¼ fz a C : 0 < jzj < rg for which there exists an isomorphism f : W ! Dr with

f ðpÞ ¼ 0; jvð f Þj ¼ 1:ð8Þ

The reduced modulus of _WW with respect to v is defined by:

_MMvð _WWÞ ¼ log r

2p
¼ &logjvðF Þj

2p
:ð9Þ

Sometimes, if no confusion is likely, we will omit the reference to the tangent vec-
tor v in the notation for the reduced modulus. To connect the notion of reduced
modulus with the notion of modulus of an annular region, pick a local coordinate
z centered at p and with v ¼ q

qz , denote by gr the preimage in W of a circle of
radius r centered at the origin in the z-plane, and denote by Wr the annular
region which is the connected component of Wngr not containing the point p.

We want to show that

lim
r!0

!
MðWrÞ þ

log r

2p

"
¼ _MMvð _WWÞ:ð10Þ

Let r be as in (7). Then

F ðzÞ ¼ z

r
þ a2z

2 þ $ $ $ :

Figure 3
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Let R 0, (resp., R 00) be the minimum (resp., the maximum) of jF j over gr. Then
! r

r
& ja2jr2 & $ $ $

"
aR 0 a jwðzÞjaR 00 a

! r

r
þ ja2jr2 þ $ $ $

"
:

By Lemma 2, we have

& 1

2p
log

! r

r
þ ja2jr2 þ $ $ $

"
aMðTR 00ÞaMðWrÞaMðTR 0Þ

a& 1

2p
log

! r

r
& ja2jr2 & $ $ $

"
;

which implies (10). A corollary of (10) is the following analogue of Lemma 2.

Lemma 5. Let _WW1 H _WW2 be two concentric punctured disks on a Riemann surface
S. Denote by W the annular region _WW2n _WW1. Then _MMvð _WW2ÞbMðWÞ þ _MMvð _WW1Þ.

Proof. Consider the annuli

Wi;r ¼ _WWinfjzj < rg; i ¼ 1; 2:

By Lemma 2 we have MðW2;rÞbMðWÞ þMðW1;rÞ. The result follows from
(10). r

Before proving further results on annular regions, we turn our attention to an-
nular coverings of Riemann surfaces. Denote by h : ~SS ! S the universal cover of
a Riemann surface S. Fix points x a S, ~xx a ~SS with hð~xxÞ ¼ x, and identify p1ðS; xÞ
with the group of deck transformations of h. Fix a simple, closed, homotopically
non-trivial loop g in S, based at x, and denote by Sg the quotient of ~SS by the cyclic
subgroup of p1ðS; xÞ generated by ½g). Denote by o : ~SS ! Sg the quotient map
and by p : Sg ! S the topological cover corresponding to the subgroup 3½g)4, so
that po ¼ h. Let ~gg be the image under o of the lifting of g to ~SS with initial point
~xx. Set y ¼ oð~xxÞ. The curve ~gg is a loop and is the lifting of g with initial point y.
Clearly, p1ðSg; yÞ ¼ 3½~gg)4. We are going to prove that, when S is a hyperbolic
surface, then ~gg is the only closed curve in Sg which is a lifting of g.

Figure 4
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Lemma 6. If S is hyperbolic, the loop ~gg is the only closed lifting of the simple loop
g. More generally, if a closed curve s in S has a closed lifting in Sg, then this lifting
is unique (and s is freely homotopic to gn, for some n).

Proof. Let s be a closed loop in S. Suppose s1 is a closed lifting of s to Sg. The
loop s1 is freely homotopic to ~ggn, for some n. As a consequence, s is freely homo-
topic to gn. We want to prove that s1 is the only closed lifting of s. Suppose there
is another closed lifting s2 of s. Let z be the base point of s1 and w the base point
of s2. Join y to z with a path t1. Let t be the projection of t1 and t&1

2 the lifting of
t&1 with initial point w. Then t1s1t

&1
1 and t2s2t

&1
2 are two closed liftings of tst&1

and the base point of t1s1t&1
1 is y. Hence, we may as well assume that s is based

at x and s1 is based at y. In particular s1 is homotopic to ~ggn. By the same argu-
ment we used above, we deduce that s2 is freely homotopic to ~ggn and hence to
s1. So, if s2 is based at y 0 a p&1ðxÞ, there is a path a from y to y 0 such that
as1a&1 P s2. The projection of a via p is a closed loop b, and ½b) commutes
with ½gn). Now, any abelian subgroup of AutðDÞUSL2ðRÞ=feIg is contained
in a one-parameter subgroup. Moreover, as p1ðS; xÞ is contained in AutðDÞ as
a discrete subgroup, there must be a cyclic subgroup containing ½b) and ½gn).
Since g is simple, 3½g)4 is the largest cyclic subgroup of p1ðS; xÞ containing
½gn), and hence ½b) is a power of ½g). This implies that y 0 ¼ y. But then, by
the uniqueness of liftings, s1 ¼ s2. r

Corollary 7. Let S be a hyperbolic surface. Let g be a simple, homotopically
non-trivial loop in S. Let W be an annular region in S with the same homotopy
type as g. Then there is a unique annular region ~WWHSg such that the covering
p : Sg ! S restricts to an isomorphism between ~WW and W. Moreover ~WW has the
same homotopy type as ~gg.

Proof. Let F be an isomorphism between an annulus TR and W, and let r and
Q be polar coordinates in TR. By the preceding lemma there is a unique closed
lifting ~ggr of the curve gr defined by grðQÞ ¼ F ðr; QÞ. Since p is holomorphic, this
lifting depends holomorphically on the point ðr; QÞ and we define ~WW to be the
image of the holomorphic map ~FF given by ~FFðr; QÞ ¼ ~ggrðQÞ. r

Lemma 8. Let g be a simple closed curve on a hyperbolic surface S. Let AðgÞ be
the set of annular subregions of S with the same homotopy type as g, and define

MðgÞ ¼ sup
W AAðgÞ

fMðWÞg:ð11Þ

Then MðgÞ ¼ þl if and only if g can be contracted to a point of S or to a
puncture.

Proof. Only one implication is non-trivial. Let us then assume thatMðgÞ ¼ þl
and that g is not contractible in S. We keep the notation of the previous lemma.
Since S is hyperbolic, Sg is either an annulus or a punctured disk. Because of the
previous corollary, we have Mð~ggÞ ¼ þl. By Lemma 2, Mð~ggÞ ¼ MðSgÞ. Thus Sg
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is a punctured disk. Let W be the connected component of Sgnf~ggg which is
isomorphic to a punctured disk. The lemma will be proved if we can show that
p : W ! pðWÞ is an isomorphism. Of course it is enough to prove that this map
is injective. We contend that for this it is enough to prove that there is no pair
of points x a ~gg ¼ qW and y a W such that pðxÞ ¼ pðyÞ. Suppose in fact that there
are z;w a W with pðzÞ ¼ pðwÞ. Join z to a point of ~gg with a smooth path a in W
not passing through w, and let b be the lifting of pðaÞ with initial point w. The end
points of b and a lie in the same fiber of p, so that the end point of b cannot
belong to ~gg. If b stays inside W denote by y its final point and by x the final point
of a (picture on the left in Figure 5).

Evidently pðxÞ ¼ pðyÞ. If, on the other hand, b does intersect ~gg, denote by x
the first point of intersection, by b 0 the portion of b going from w to x, and by y
the final point of the lifting a 0 of pðb 0Þ with initial point z (picture on the right in
Figure 5). The point y cannot coincide with x by the uniqueness of lifting. Since x
and y lie in the same fiber of p, they cannot both belong to ~gg. It follows that a 0 is
a proper sub-path of a, so that y lies in W. But then again pðxÞ ¼ pðyÞ.

We claim that p&1pðxÞBW is a finite set. If this were not the case, since the
fiber of p over x is discrete, we could find a sequence fxngn>0 H p&1pðxÞ converg-
ing to the puncture of W. Identify W with the standard punctured disk _DD. Assum-
ing, as we may, that the sequence fjxnjg is strictly decreasing, we let Cn denote the
circle centered at zero with radius jxnj. Both Sg and S inherit the hyperbolic met-
ric from the Poincaré disk. In this metric, the length of Cn tends to zero as n tends
to infinity. Since p is a local isometry, the same is true for the length of the lifting
sn of pðCnÞ with initial point x. By Lemma 6 this lifting is not closed and we
denote by yn a p&1ðxÞ its final point.

Figure 5

Figure 6
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Since the length of sn tends to zero as n tends to infinity, we have lim
n!l

yn ¼ x,

which is absurd, since the fiber over x is discrete. Our claim on the finiteness of
p&1pðxÞBW is proved.

Now we shall show that p&1pðxÞBW is empty. Suppose not, and let x1 be one
of its points. By construction, xAx1. The lift of g with initial point x1, which we
denote g1, does not intersect ~gg, by the uniqueness of liftings. In particular, its final
point x2 belongs to p&1pðxÞBW. Now let g2 be the lift of g with initial point x2,
denote by x3 its endpoint, then lift g to a path g3 with initial point at x3, and so
on. Denote by t the curve obtained by joining all the gi. As we observed, t does
not intersect ~gg. On the other hand, since p&1pðxÞBW is finite, it must contain a
simple closed loop sHW. As s is simple and Sg is isomorphic to a punctured
disk, either s is contractible or it is freely homotopic to ~gg. Since the projection
of s is gk, with kA 0, only the second possibility may occur. But then, by Lemma
6, s ¼ ~gg, contradicting the fact that s is entirely contained in W. r

It is useful to introduce a notion of convergence for annular regions.

Definition 9. A sequence fWng of annular regions on a Riemann surface S
is said to converge to an annular region WHS, if there exist a sequence of non-
negative numbers Rn < 1 converging to a number R0 < 1 and a sequence of iso-
morphisms fn : TRn

! Wn, converging uniformly on compact subsets of TR0 to an
isomorphism f : TR0 ! W.

Lemma 10. Let g be a simple closed loop on a hyperbolic Riemann surface S. Let
fWng be a sequence of annular regions with the same homotopy type as g. Assume
that MðgÞ < þl and that lim

n!l
MðWnÞ ¼ M > 0. Then there exists an annular

region W with MðWÞ ¼ M such that a suitable subsequence of fWng converges to W.

Proof. Since MðgÞ < þl, there is an isomorphism j : TR ! Sg with R > 0.
Choose isomorphisms fn : TRn

! Wn. By Corollary 7, there are holomorphic
maps gn : Wn ! Sg such that p + gn is the inclusion Wn ,! S, whence commutative
diagrams

TR &&&!j Sg

hn

x???

x???gn

TRn &&&!
fn

WnHS

ð12Þ

Clearly, each hn is an isomorphism onto its image. Set R0 ¼ e&2pM . The sequence
fhng is a uniformly bounded sequence of holomorphic maps. Therefore, passing
to a subsequence if necessary, we may suppose that fhng converges uniformly on
compact subsets of TR0 to a conformal map h : TR0 ! TR, and hence that f fng
converges uniformly on compact subsets of TR0 to f ¼ p + j + h : TR0 ! S. The
map h is not constant, since hn is a homotopy equivalence for every n. Thus
h and f are open. To see that f is injective, suppose that f ðxÞ ¼ f ðyÞ, with
xA y. Choose small disjoint disks A and B around x and y, respectively. We

127jenkins-strebel differentials



claim that fnðAÞ C f ðxÞ for large n, and similarly for fnðBÞ, which contradicts the
injectivity of fn. To prove the claim, we argue by contradiction, and suppose
that f ðxÞ B fnðAÞ for every n. The distance between f ðxÞ and fnðAÞ which, by
our assumption, equals the distance between f ðxÞ and fnðqAÞ, goes to zero as
n ! l. On the other hand, the distance between f ðxÞ and f ðqAÞ is strictly posi-
tive, a contradiction. It follows that f is an isomorphism between TR0 and
W ¼ f ðTR0Þ, and the lemma is proved. r

Corollary 11. Let g be a simple closed curve on a hyperbolic surface S. Sup-
pose MðgÞ < þl. Then there exists an annular region WHS with MðWÞ ¼ MðgÞ.

The next result is an analogue, for punctured disks, of the preceding lemma.

Lemma 12. Let g be a homotopically non-trivial simple closed loop on a hyper-
bolic Riemann surface S. Suppose that MðgÞ ¼ þl. Let f _WWng be a sequence of
punctured disks with the same homotopy type as g. Let v be a non-zero tangent vec-
tor to the completed surface SA fpg at the puncture p. Assume that the sequence
of reduced moduli _MMvð _WWnÞ converges to MA&l as n tends to infinity. Then a
subsequence of f _WWng converges to a punctured disk _WW with reduced modulus equal
to M.

Proof. Set Wn ¼ _WWn A fpg. Choose isomorphisms fn : Dn ¼ fz a C : jzj < rng
! Wn such that fnð0Þ ¼ p and vð f &1

n Þ ¼ 1. Then _MMvð _WWnÞ ¼ 1
2p log rn. Set

r ¼ e2pM . Now one looks at the annular cover Sg of S, which is a punctured
disk, and proceeds exactly as in the proof of Lemma 10. r

We end this section by proving two topological lemmas that we will need in
the sequel.

Lemma 13. Let g be a homotopically trivial simple closed curve on a Riemann
surface S. Then there is a region WHS isomorphic to a disk such that qW ¼ g.
This region is unique, unless S ¼ P1.

Proof. The case S ¼ P1 is the classical theorem of Jordan. If S is not P1, let
p : ~SS ! S be the universal cover. Since ~SS is either C or the unit disk, the curve g
lifts to a simple closed curve ~gg which, again by Jordan’s theorem, bounds a disk
DH ~SS. It now su‰ces to show that p : D ! S is injective. If two points of D map
to the same point of S, there is a deck transformation T carrying one to the other.
Thus D and TðDÞ are not disjoint. By the uniqueness of liftings, Tð~ggÞB ~gg ¼ j.
But then either TðDÞHD or DHTðDÞ. In the first case T has a fixed point
in D, by the Brouwer fixed point theorem, and hence is the identity. In the sec-
ond case, replacing T with T &1, we reach the same conclusion. Thus D ! S is
injective. r

Lemma 14. Let g and d be non-intersecting, freely homotopic and homotopically
non-trivial simple closed curves on a Riemann surface S. Then there is a an annular
region WHS such that qW ¼ gA d.

128 e. arbarello and m. cornalba



Proof. The cases when S is not hyperbolic can be dealt with directly and are
left to the reader. We thus assume that S is hyperbolic. Consider the annular cov-
ering p : Sg ! S, and identify Sg with TR, where Rb 0. Let ~gg and ~dd be liftings of
g and d, respectively. Clearly, ~gg and ~dd bound an annular region ~WWHTR. It now
su‰ces to show that p : ~WW ! S is injective, and this is done exactly as in the
beginning of the proof of Lemma 8. r

3. Trajectories of quadratic differentials

Let us briefly recall the geometry associated to a quadratic di¤erential
o a H 0ðS;K 2

SÞ on a Riemann surface S. Let Z be the set of zeroes of o. Away
from Z, one can define a hermitian metric, the so-called o-metric, which is the
metric with local expression

j f j dz dz;

where f dz2 is a local expression for o. On a neighborhood of each point p a SnZ
the quadratic di¤erential o defines a set of distinguished coordinates, any two of
which di¤er at most by a sign and the addition of a constant. In a neighborhood
of a point p a SnZ, such a coordinate z is simply defined by

z ¼
Z ffiffiffiffi

o
p

:

If we impose its vanishing at p, a distinguished coordinate is fixed up to a sign.
These distinguished coordinates are called the o-coordinates. In terms of these
coordinates, the o-metric has local expression dz dz and therefore S0 ¼ SnZ,
equipped with the o-metric, looks locally like the euclidean plane. Geodesics for
the o-metric will be called o-geodesics. Clearly, a curve is an o-geodesic if and
only if, at each one of its points, it is a straight line in o-coordinates. There is
also an intrinsic notion of horizontal (resp. vertical) geodesic. In terms of an o-
coordinate z ¼ xþ ih, the horizontal (resp. vertical) geodesics are the curves
h ¼ constant (resp., x ¼ constant). Figure 7 shows the structure of the horizontal
and vertical geodesics in the neighborhood of a point p a S which is a zero of
order n, with n equal to 1, 2 and 3, respectively.

Figure 7

129jenkins-strebel differentials



A geodesic arc a in S0 locally minimizes distances. In fact, for arcs entirely con-
tained in S0, the local minimizing property characterizes geodesics. Since it makes
sense to talk about the length of an arc in S (and not only in S0), one defines an
o-geodesic in S to be a path in S having the property of locally minimizing dis-
tances. Geodesics passing through a zero of o are called singular. It can be shown
that, on a compact Riemann surface of genus g > 1, any two points can be joined
by an o-geodesic, and that such a geodesic is unique within its homotopy class. In
proving this fact the main ingredient is a Gauss-Bonnet-type result which we are
now going to state.

Consider an o-geodesic polygon P in a connected Riemann surface S, so that
P is homeomorphic to a disk and the boundary of P is the union of finitely many
o-geodesic arcs whose interiors do not contain zeroes of o. Let q1; . . . ; qs be the
points of the boundary of P where two of these arcs meet, let mj be the multiplic-
ity of qj as a zero of o, and denote by Qj the interior angle formed by the sub-arcs
of qP adjoining qj, for j ¼ 1; . . . ; s. By compactness, P contains a finite number
of zeroes of o; let them be p1; . . . ; pr, and let ni > 0 be the multiplicity of pi as a
zero of o. The situation is illustrated in Figure 8.

Set n ¼
Pr

i¼1 ni. Then the following Gauss-Bonnet formula holds:

ðnþ 2Þ2p ¼
Xs

j¼1

ð2p& ðmj þ 2ÞQjÞ:ð13Þ

Let us finally recall that the critical points of o are the zeroes of o and the punc-
tures of S. A horizontal o-geodesic is said to be a trajectory of o if it does not
pass through any critical point and is maximal with respect to this property. A
trajectory is said to be closed if it is a (simple) loop. A horizontal o-geodesic is
said to be a critical trajectory if it joins two critical points of o. It is a trivial but
important observation that distinct trajectories do not intersect, and that a trajec-
tory crosses itself only if it is closed. We refer the reader to section 5 of Chapter
16 in [1] for the proof of all the above facts.

In our study, we are going to restrict ourselves to the case of admissible
quadratic di¤erential on Riemann surfaces of finite type. Recall that a Riemann

Figure 8
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surface S is said to be of finite type if it is obtained from a compact surface S
by deleting a finite number of points

S ¼ Snfy1; . . . ; ymg:ð14Þ

On the other hand, a quadratic di¤erential on a Riemann surface of finite type is
said to be admissible if S has finite o-area:

Z

S

joj < l:ð15Þ

It is straightforward to show that an admissible quadratic di¤erential on S ex-
tends meromorphically to a di¤erential on S, having at worst simple poles at
the points yi. Since these simple poles are naturally brought into the picture let
us examine the trajectory structure of o near one of them, call it p. We can al-
ways find a local coordinate z on S near p and vanishing at p, such that, locally

o ¼ 1

4z
dz2 ¼ ðdz1=2Þ2:

It is then clear that the trajectories of o near p can be described by the picture in
Figure 9.

In this section we are going to prove two main results. The first one concerns
closed trajectories. We will prove that any such trajectory is contained in a max-
imal annular region which is swept out by trajectories. The second one concerns
trajectories that are neither closed nor critical. We will prove that the closure of
such a trajectory is a set of positive measure.

We fix, for the remainder of this section, a Riemann surface S ¼ Snfy1; . . . ymg
of finite type and an admissible quadratic di¤erential o on it.

Let a be a trajectory of o. We view a as a path r : I ! S parametrized by arc-
length, where I is an open interval which may be finite or infinite. Let z be a dis-
tinguished coordinate at a point rðtÞ. Recall that z is well defined only up to sign
and translation. We can get rid of these ambiguities by asking that zðrðtÞÞ ¼ t.
Denote by nt the unit tangent vector to S at rðtÞ orthogonal to a and pointing

Figure 9
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in the direction of increasing ImðzÞ; by the way z has been chosen, nt depends
smoothly on t. Then let s 7! btðsÞ be the geodesic with initial point rðtÞ and initial
tangent vector nt. It is a vertical geodesic, which we think of as extending in both
directions as far as, and excluding, the first critical point encountered, or indefi-
nitely, if none is met. We denote by Jt the interval on which bt is defined, and by
ut, lt its upper and lower endpoints. It is useful to notice that, if z is a distin-
guished coordinate as above, then, by definition, zðbtðsÞÞ ¼ tþ is for small s.
We now regard t and s as the real and imaginary parts of a complex coordinate
z ¼ tþ is, and set CðzÞ ¼ btðsÞ. This defines a map from a connected subset D of
the z-plane to S. By what we just observed, C is defined and holomorphic on a
neighborhood of I . Moreover, near any point of I , it has a local inverse which is
a distinguished coordinate.

We now wish to show that this is true on all of D. We shall prove that D is
open and that, locally near any point of D, the map C is the inverse of a distin-
guished coordinate, so that in particular it is holomorphic. For any t a I let u 0

t
(resp., l 0

t ) be the supremum (resp., the infimum) of all points s a Jt, sb 0 (resp.,
sa 0) such that C is defined and equal to the inverse of a distinguished coordi-
nate on a neighborhood of tþ is for every s between 0 and s. We must show that
u 0
t ¼ ut and l 0

t ¼ lt for all t a I . We shall deal only with u 0
t , the argument for l 0

t
being just the same. We begin by noticing that u 0

t > 0, by what we observed
above. Suppose u 0

t0
< ut0 for some t0 a I ; then p ¼ Cðt0 þ iu 0

t0
Þ is not critical.

Let z be a distinguished coordinate in a geodesically convex neighborhood U
of p. If s0 < u 0

t0
is large enough, Cðt0 þ is0Þ a U . On the other hand, by com-

pactness, C is defined and locally equal to the inverse of a distinguished coor-
dinate at every point of a rectangle R ¼ ftþ is : t0 & ea ta t0 þ e; 0a sa s0g;
moreover, if e is small enough, C maps the entire top edge of R into U . Since
distinguished coordinates are unique up to sign and translation, on this edge
the composition z +C is of the form z 7!ezþ c, where c is a constant; chang-
ing z if necessary, we may thus suppose that zðCðzÞÞ ¼ z for all z belonging
to the top edge of R. But then the vertical geodesic ReðzÞ ¼ t is part of the
geodesic bt for t0 & ea ta t0 þ e. Hence C is defined and equal to z&1 on
zðUÞB fz : t0 & eaReðzÞa t0 þ eg, which is a neighborhood of t0 þ iu 0

t0
. This

contradicts the definition of u 0
t0
, and establishes our claim.

Figure 10
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It is important to notice that C sends segments in D to pieces of geodesics and
horizontal segments to pieces of trajectories. Moreover, C*ðoÞ ¼ dz2. To better
understand the nature of the domain D we need to make a preliminary remark.
By construction, D is contained in the infinite strip

T ¼ ftþ is a C : t a Ig:

If ut < þl (resp., if lt > &l) we set zt ¼ tþ iut (resp., wt ¼ tþ ilt). The set D is
just the complement, inside T , of the vertical closed half-lines extending upwards
from each zt and downwards from each wt. Since D is open, the functions t 7! ut
and t 7! lt are, respectively, lower and upper semicontinuous. We can be even
more precise.

Lemma 15. The points zt and wt are isolated in T.

Proof. We shall deal only with zt; the proof for wt is no di¤erent. Suppose
ut0 < þl. Then Cðt0 þ isÞ has a limit p as s ! ut0 . By the very definition of ut0 ,
the pp is a critical point of o. As we know, there is a coordinate z centered at p
such that o ¼ zn dz2 near p, where either n ¼ &1 or n > 0. Let U be the disk
fjzj < rg, for some small r. If s0 is close enough to ut0 , then bt0ðs0Þ ¼ Cðt0 þ is0Þ
belongs to U . Hence, if e is small enough, the horizontal geodesic segment L ¼
fCðtþ is0Þ : t0 & e < t < t0 þ eg is entirely contained in U . We set d ¼ ut0 & s0.
We claim that the only point of the form zt contained in the rectangle
fz a C : jReðzÞ & t0j < e; jImðzÞ & ut0 j < dg is zt0 . This will clearly follow if we
can show that ut b ut0 þ d when jt& t0j < e and tA t0. We shall give a proof
‘‘by pictures’’. The case in which n ¼ &1 is clear. We can then assume that
n > 0. Recall that the pattern of horizontal and vertical geodesics in the z co-
ordinate is as shown in Figure 7. Then look at Figure 11. This illustrates what
happens for n ¼ 1, but things are no di¤erent for arbitrary positive n.

The curves g, g 0 and g 00 are horizontal geodesics, and L is contained in g. The
geodesic g 00 is chosen so that its distance from p equals the distance between p
and g. Thus the piece of the vertical geodesic bt between g 0 and g 00 is just as long

Figure 11
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as the one between g and g 0. This, in turn, has the same length as the part of bt0
between g and p, that is, d. This means that ut b s0 þ 2d or, equivalently, that
ut b ut0 þ d. r

Figure 12 is the picture of a domain D ¼ Cnfdotted linesg when I ¼ R.

It is important to notice that C cannot be extended holomorphically (or for
that matter even continuously) to a neighborhood of zt or wt, for any t.

Our next task is to examine the case in which a is a closed trajectory. In this
case, we have I ¼ R and the map C : I ! a is periodic. We let a a Rþ be its
period. Keeping the notation introduced above, we set

b1 ¼ maxflt : 0a ta ag; b2 ¼ minfut : 0a ta ag;

and we consider the infinite strip

R ¼ ftþ is a C : b1 < s < b2gHD:ð16Þ

Lemma 16. Let a be a closed trajectory for an admissible quadratic di¤erential o
on a Riemann surface S of finite type. Two cases can occur.

i) S is a genus 1 curve, that is, the quotient of C by a lattice L, R ¼ D ¼ C, and C
can be identified with the quotient map C ! C=L.

ii) If z1, z2 belong to R, then Cðz1Þ ¼ Cðz2Þ if and only if z2 & z1 is an integral
multiple of a. Moreover, W ¼ CðRÞ is an annular region, or a copy of C*, con-
taining a; it is swept out by closed trajectories of o, and is the maximal region
with these properties.

In either case, C*ðoÞ ¼ dz2.

Figure 12
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Proof. If x a C, we denote by tx the translation by x. Since Cðtþ aÞ ¼ CðtÞ
for all real t, and DB t&aðDÞ is connected, analytic continuation implies that
Cðzþ aÞ ¼ CðzÞ for all z a DA t&aðDÞ. On the other hand, D ¼ t&aðDÞ, since
otherwise Cðzþ aÞ would provide a holomorphic extension of C across some
of the zt or wt. Now suppose that there are points z1A z2 of R such that
Cðz1Þ ¼ Cðz2Þ but u ¼ z2 & z1 is not an integral multiple of a. We can assume
that these two points have minimal distance with respect to this property, so
that in particular jReðuÞj < a. We denote by L the piece of the line joining z1
and z2 lying inside D. The image of L under C is a closed geodesic. Hence, if z
and zþ u both belong to L, then CðzÞ ¼ Cðzþ uÞ; this implies, in particular, that
CðzÞ ¼ Cðzþ uÞ for any point z belonging to L and su‰ciently close to z1. Argu-
ing as for a, we conclude that D ¼ t&uðDÞ and that Cðzþ uÞ ¼ CðzÞ for any
z a D. Since jReðuÞj < a and a is a period, u cannot be a real number. Since D
is equal to t&uðDÞ, a consequence is that D must be the whole plane. If L is the
lattice generated by a and u, the minimality of juj shows that C induces an iso-
morphism C=L ! S, as desired. We can now assume to be in case ii). From the
construction it follows that W is an annular region, or a copy of C*, containing a,
that it is swept out by trajectories, and that it is maximal with respect to these
properties. r

The region W in the statement of the preceding lemma is called the maximal
annular domain associated to the closed trajectory a. This is a slight departure
from our customary usage of the word ‘‘annular’’, since it may well be that W is
isomorphic to C*. Clearly, W is completely determined by a. Setting

rj ¼ expð&2pbjÞ; FðzÞ ¼ C
! a

2pi
log z

"
;

then F is a biholomorphic map between the annulus Tr1; r2 and W, and F*ðoÞ is of
the form

! a

2pi
d log z

"2
:ð17Þ

It may well be that r1 ¼ 0 and r2 ¼ þl. In this case S is the Riemann sphere and
W ¼ C*. On the other hand, when r1 ¼ 0, r2 < þl or r1 > 0, r2 ¼ þl, the re-
gion W is a punctured disk.

From the proof of the lemma it follows that both boundary components of W
must contain critical points of o, otherwise one could continue C either above
the line y ¼ b2 or below the line y ¼ b1, or both. The following can also be de-
duced from the proof of the lemma. Suppose that a 0 is another closed trajectory
of o, and let W 0 be its associated maximal annular domain. Then either W 0 ¼ W
or WBW 0 ¼ j.

As we anticipated, we shall now study the case of a trajectory which is neither
closed nor critical.
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Proposition 17. Let o be an admissible quadratic di¤erential on a Riemann
surface S of finite type. Let a be a trajectory of o. Assume that a is neither closed
nor critical, and denote by a the closure of a. Then the measure of a is strictly
positive.

Before proving the proposition we need a couple of remarks. We keep the no-
tation introduced so far in this section. Since a is not closed, C gives a bijection
between I and a. Since a is not critical, I cannot be finite. Without loss of gener-
ality, we may then assume that b ¼ þl. We set aþ ¼ C½0;þlÞ, a& ¼ Cða; 0),
and p0 ¼ Cð0Þ. Recall that C maps horizontal and vertical segments in D to hor-
izontal and vertical o-geodesics. By positive direction along a horizontal segment
in D or its image in S we shall mean the direction of increasing ReðzÞ, z a D. We
need three lemmas.

Lemma 18. Let b be the portion of vertical o-geodesic which is the image of a
vertical segment J ¼ fis : s a R; 0a sa cg under C. Then, for every t a ½0;þlÞ
there exists t1 a ½0;þlÞ, with t1 > t, such that aþ cuts b in Cðt1Þ in the positive
direction.

Proof. Clearly, if the conclusion of the lemma holds for a certain value of c, it
also holds for all larger values of c. Hence we may assume that the map C gives a
bijection between J and b. Also, it su‰ces to prove that there exists t1 > 0 such
that aþ cuts b in Cðt1Þ in the positive direction. Let K H J be defined by

K ¼ z a J :
the horizontal ray starting at CðzÞ in the positive direction
hits a critical point before hitting b in the positive direction

' (

We claim that K is finite. Since there are only a finite number of critical points
and a finite number of trajectories leading to any one of them, it su‰ces to
show that each trajectory leading to a critical point contains only one ray with
the above property. In fact, suppose that gþ and dþ are two rays contained in
the same trajectory. Then either gþ H dþ or gþ I dþ. Say that the former holds,
and say that dþ starts at q a CðKÞ while gþ starts at p a CðKÞ. This means that
dþ starts at q (in the positive direction), passes through p (in the positive direction)
changing its name into gþ, and then hits a critical point. But then q B CðKÞ, con-
trary to our assumption.

In conclusion, there exists a subinterval J 0H J containing p0 and having
empty intersection with K . We let b 0 be the image of J 0 under C. We claim
that there exists a point p a b 0 such that the horizontal ray starting at p comes
back to b in the positive direction. We argue by contradiction. Suppose this
is not the case. Since J 0BK ¼ j, every ray starting at a point of b 0 can be
continued indefinitely. Fix a point p ¼ CðibÞ a b 0. Look at the infinite strip
S ¼ fz ¼ tþ is a C : 0 < s < bg. By what we just observed, the map C is defined
on all of S. Since we are assuming that no ray starting at a point of b 0 comes back
to b, and a fortiori to b 0, the restriction of C to S must be injective. But this is
absurd, since CðSÞ would be a region in S with infinite o-area. Let us denote by
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gþ a horizontal ray starting at a point p a b 0 and coming back to b in the positive
direction. Figure 13 illustrates the three cases that can occur; in each, one sees
the rays aþ and gþ departing from the right of b and then coming back to the
left of b. If the top two cases occur, the ray aþ hits b in the positive direction
and we are done. In the third case, we denote by a 0 the length of portion of gþ

between the initial point and the point where it hits b in the positive direction,
and by b 0 the vertical distance between the endpoints of this portion. We also
set Ra ¼ fz a C : 0 < ReðzÞ < a; 0 < ImðzÞ < b 0g, for any positive a. We then
look at the portion of the ray a& inside the image of the strip S, and we trace it
back to the point of b where it started. This portion of a&, a segment of aþ, a
segment of b and its vertical mirror bound a region which is the image of Ra 0

under C, as shown in Figure 14.

Exactly as before, we look at the map C : Ra ! S as a tends to infinity, and
we observe that it cannot be injective for all values of a. So we are back to the
three cases of Figure 14, but now, in all cases, we get that ray aþ comes back to
b in the positive direction. r

The second lemma we need is the following.

Figure 13

Figure 14
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Lemma 19. The closure of a is

a ¼ p a S : bftngHR with lim
n!l

tn ¼ þl and lim
n!l

CðtnÞ ¼ p
n o

:ð18Þ

Proof. Denote by A the set on the right-hand side of (18). Clearly, AH a. The
set A is closed. In fact, suppose that p ¼ lim

n!l
pn, pn a A. Then, for each n, there

is a real number tn > n such that the distance between CðtnÞ and pn is less
than 1=n. But then lim

n!l
CðtnÞ ¼ p and lim

n!l
tn ¼ þl. It then su‰ces to show

that aHA. This follows immediately from the preceding lemma. In fact if p
is any point in a, the lemma tells us that there exists a sequence of points
pn ¼ CðtnÞ, lying in the vertical o-geodesic through p, such that lim

n!l
pn ¼ p

and lim
n!l

tn ¼ þl. r

The third lemma is the following.

Lemma 20. If p a a is a regular point, then a contains the trajectory through p.

Proof. Let g be the trajectory through p. Consider an arbitrary point q a g and
denote by a the o-length of the closed subinterval of g going from p to q. This
subinterval is contained in the middle interval of a small rectangle T HS swept
out by segments of trajectories (Figure 15). By Lemma 19, there is a sequence
ftngHR such that lim

n!l
tn ¼ þl and lim

n!l
CðtnÞ ¼ p. But then, possibly after

replacing ftng with a subsequence, either lim
n!l

Cðtn þ aÞ ¼ q or lim
n!l

Cðtn & aÞ ¼ q,
proving that q a a. r

We are now ready to prove Proposition 17. We keep the notation of the pre-
ceding lemmas. Let p be a point in a. We are going to prove that there is a rect-
angle T H a swept out by trajectories and having as one side a subinterval of a
centered at p (Figure 16). Let b be a segment of a vertical o-geodesic starting at

Figure 15

Figure 16
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p and not containing critical points. If the vertical interval b is entirely contained
in a, we are done, since by Lemma 20 all trajectories passing through a point of b
are entirely contained in a.

If the vertical interval b is not entirely contained in a, let q be a point of b
which is not in a. Since a is closed, there is a largest subinterval of b containing
q and not contained in a. Let r be the endpoint of this interval lying between p
and q, and s the other endpoint. Since r a a, the trajectory g through r, can not be
closed, otherwise a would be closed too. By Lemma 18, g crosses the interval
ðr; sÞ. This is absurd, since gH a by Lemma 20.

4. Holomorphic Jenkins-Strebel differentials

Throughout this section, S will denote a compact Riemann surface. A holo-
morphic quadratic di¤erential on a Riemann surface is called a holomorphic
Jenkins-Strebel di¤erential if all its non-critical trajectories are closed. Suppose
a holomorphic Jenkins-Strebel di¤erential o is given on a Riemann surface
S ¼ Snfy1; . . . ; ymg of finite type with wðSÞ < 0. There are finitely many critical
trajectories of o, each joining a pair of critical points of o. Their union forms a
graph G which is called the critical graph of o. Let

SnG ¼ W1 A $ $ $AWN

be the decomposition of its complement into connected components. The as-
sumption that all trajectories are closed, together with Lemma 16, tells us that
each Wi is a maximal annular region. Moreover, if W ¼ Wi is one of these regions
and if

f : Tr ! W

is a biholomorphic map from a standard annulus Tr, then

f *ðoÞ ¼
! a

2pi
d log z

"2
ð19Þ

where a is the o-length of the trajectories in W. We recall that the modulus of W is
given by

MðWÞ ¼ & 1

2p
log r;

while the o-area is given by

AðWÞ ¼ a2MðWÞ:

Before stating the main theorem of this section, we need a remark and a couple of
definitions.
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Remark 21. For a quadratic di¤erential on an annulus W, to be of the form
(19) is an intrinsic property, in the sense that it does not depend on the choice of
the isomorphism f between Tr and W. In fact, if h is any automorphism of Tr,
then h*ðd log zÞ2 ¼ ðd log zÞ2; this follows immediately from the observation that
any such automorphism is of the form z 7! cz or z 7! cr=z, where c is a constant
of absolute value 1. There are several ways of proving the latter assertion; here is
a possible argument. We write Cr to indicate the circle of radius r centered at the
origin of C. For any given e, if d is small enough, hðfz a C : rþ d < jzj < 1& dgÞ
contains the closed annulus fz a C : rþ ea jzja 1& eg, as this is compact and h
is onto. Moreover, hðfz a C : rþ d < jzj < 1& dgÞ is bounded by the images of
the circles Crþd and C1&d, since h is injective. The image of one of these two
circles is on the outside of fz a C : rþ ea jzja 1& eg, and the other on the
inside; which side they are on does not depend on d, again since h is injective.
A consequence is that the function jhj2 extends continuously to the closure of
Tr, and takes on the value 1 on its outer boundary and the value r2 on the inner
one, or conversely. In the first case we set gðzÞ ¼ z, and in the second gðzÞ ¼ r=z.
The function logjhj2 & logjgj2 is harmonic in the interior of Tr, and vanishes at its
boundary; therefore, by the maximum principle, it vanishes identically. In other
words, jh=gj is identically equal to 1, and hence h=g is a constant of absolute
value 1, which is exactly what had to be proved.

Definition 22. Let S be a Riemann surface. An admissible system of curves
on S is a collection ðg1; . . . ; gkÞ of simple closed curves which are mutually dis-
joint, homotopically non-trivial, and such that gi is not freely homotopic to gj if
iA j.

The straightforward proof of following topological lemma is left to the reader.

Lemma 23. Let S ¼ Snfy1; . . . ; ymg be a Riemann surface of finite type and of
genus g. Assume that wðSÞ < 0. Let ðg1; . . . ; gkÞ be an admissible system of curves
on S; then ka 3g& 3þm, and one can find simple closed curves gkþ1; . . . ; g3g&3þm

such that ðg1; . . . ; g3g&3þmÞ is admissible.

Definition 24. Given an admissible system of curves ðg1; . . . ; gkÞ on a
Riemann surface S, a collection ðW1; . . . ;WkÞ of disjoint subsets of S is said to
be a system of annular regions of type ðg1; . . . ; gkÞ if Wi is either the empty set or
an annular region with the same homotopy type as gi, for i ¼ 1; . . . ; k.

The result we want to prove in this section is the following.

Theorem 25. Let S be Riemann surface of finite type with wðSÞ < 0. Let
ðg1; . . . ; gkÞ be an admissible system of curves on S and let a1; . . . ; ak be positive
real numbers. Then there exists a unique admissible Jenkins-Strebel di¤erential o
having the following properties.

i) If G is the critical graph of o, then SnG ¼ W1 A $ $ $AWk, where ðW1; . . . ;WkÞ is
a system of annular regions of type ðg1; . . . ; gkÞ.

ii) If Wi is not empty, it is swept out by trajectories whose o-length is ai.
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Before turning to the proof of this theorem we need to establish a number of
lemmas. In particular, the next three lemmas will provide the essential tool in
proving the uniqueness part of Theorem 25.

Lemma 26. Let S ¼ Snfy1; . . . ; ymg be a Riemann surface of finite type and of
genus g. Assume wðSÞ < 0. Let o be an admissible di¤erential on S. Let a be a
closed trajectory of o and let g be a closed curve on S which is freely homotopic
to a. Then loðgÞb loðaÞ, and equality holds if and only if one of the following two
cases occurs. Either g is a trajectory belonging to the maximal annular domain W
defined by a, or else it coincides with one of the two boundary components of W. In
particular, in the second case, g is a cycle inside the critical graph of W.

Proof. We may of course assume that g is di¤erent from a. First of all we re-
mark that a is not homotopically trivial for, if this were the case, a would bound
a disk contained in S, by Lemma 13, which would contradict the Gauss-Bonnet
formula (13). We can then consider the annular covering p : Sa ! S attached to
a. We may identify Sa with an annulus centered at the origin in the complex
plane. We set o 0 ¼ p*ðoÞ, and denote by a 0, g 0 the unique closed liftings of a
and g to Sa. Clearly, o 0 is a holomorphic Jenkins-Strebel di¤erential and a 0 is a
closed trajectory for it. We also recall that a 0 and g 0 map isomorphically to a and
g via p. Pick two concentric sub-annuli T and T 0 of Sa with the property that T
contains both a 0 and g 0, the closure of T is contained in T 0, and the closure of T 0

is contained in Sa. By compactness, only a finite number of zeros of o 0 are con-
tained in the closure of T 0, and in fact we may assume that they are all contained
in T 0. We let e > 0 be the o 0-distance between the boundaries of T and T 0. Let B
be the subset of a 0 consisting of all points b such that one of the two vertical geo-
desic rays beginning at b hits a zero of o 0 before leaving T 0; clearly, B is finite.
Let a be a point of a 0nB, and let b be one of the vertical geodesic rays starting at
a. We observe that b does not meet a 0 again before leaving T 0. Suppose in fact
that it did; let a 0 be the first point of intersection between b and a 0, and b 0 the
part of b between a and a 0. The curve a 0 bounds a region D in the complex plane
which is biholomorphic to a disk. If b 0 HD, then b 0 divides D in two connected
components. One of these contains the bounded component of the complement
of T in C. The other component is a region contained in T , bounded by geo-
desic segments, and isomorphic to a disk. This is impossible, again by the Gauss-
Bonnet formula (13). If b 0BD ¼ j, then b 0 and a segment of a 0 between a and a 0

bound a disk, which is again impossible.
Let I be any segment of length strictly less than e contained in a 0nB. Draw all

the vertical geodesic segments of given length d starting at points of I and lying
on a given side of a 0. If d is small these segments sweep out a subset R d HT 0. This
subset is the locally isometric image of a euclidean rectangle, and is actually a
homeomorphic image. In fact, the only way for this not to happen would be if
one of the vertical geodesic rays starting on I did meet I , and hence a 0, again
without leaving T 0. But we already excluded this. Since T 0 has finite o 0-area,
the rectangle R d cannot stay inside T 0 for every d > 0. Let d 0 be the first value
of d for which R d QT 0. Since the length of the top side of Rd 0 is strictly less
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than e, that is, strictly less than the distance between the boundaries of T and T 0,
this side of Rd 0 is entirely outside the closure of T . If d is su‰ciently close to d 0,
but smaller than it, then R d is contained in T 0, but its top side does not meet the
closure of T . Now we perform the same construction on the other side of a 0. The
end result is a rectangle R entirely contained in T 0 whose top and bottom sides do
not intersect the closure of T and whose intersection with a 0 is I . Every one of the
vertical segments spanning R has one endpoint in each of the two components
of the complement of T , and hence must meet g 0. This situation is depicted in
Figure 17.

Elementary euclidean geometry then says that the portion of g 0 intercepted by
R is longer than I , and strictly so unless it is a connected piece of trajectory. Since
all this can be done everywhere in a 0nB, and B is finite, the conclusion is that

loðgÞ ¼ lo 0ðg 0Þb lo 0ða 0Þ ¼ loðaÞ;

and that to have equality in the above g 0 must be the union of segments of trajec-
tories. The first statement of the lemma is proved. Now assume that loðgÞ ¼ loðaÞ.
As we just observed, g 0 must necessarily be a union of pieces of trajectories. A
first consequence is that it cannot intersect a 0, since the latter does not contain
zeros of o 0. Since a 0 divides T in two annular subregions, g 0 is contained in one
of them, which we denote by T 00. One of the boundary components of T 00 is a; we
denote by h the other one. What we must show is that, for any a a a 0, the vertical
ray in T 00 issuing from a meets g 0. We have seen that this is the case if a B B. As-
sume then that a a B. Let I be a small interval centered at a and containing no
other point of B. Draw the vertical segments b1 and b2 connecting the endpoints
of I to points q1 and q2 of h. The portion of T 00 bounded by I , b1, b2, and one of
the two arcs into which q1 and q2 divide h is topologically a disk. We denote by
g 00 the portion of g 0 lying inside this region. Notice that the o 0-length of g 00 equals
the one of I . Moreover, g 00 is made up of at most two pieces of trajectories, meet-

Figure 17
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ing at a point y. The region D bounded by I , g 00 and the two pieces of b1 and b2
connecting them is also a disk, and is bounded by geodesic arcs. Moreover, I and
g 00 meet b1 and b2 at right angles.

We denote by Q and m the interior angle and the order of vanishing of o 0 at y,
and by n the cumulated order of zero of o 0 in the interior of D. We then apply
(13) again to D, and get 2pðnþ 2Þ ¼ 4

#
2p& 2 p

2

$
þ ð2p& ðmþ 2ÞQÞ; that is

2pn ¼ 2p& ðmþ 2ÞQ:

Since Q > 0, this says that o 0 has no zeros in the interior of D. Thus the vertical
geodesic ray based at a and directed towards the interior of D reaches y. In con-
clusion, two cases can occur. Either m ¼ 0 and g 0 is an unbroken trajectory at y,
or y is one of the zeros of o 0 lying on the boundary of the maximal annular do-
main W 0 determined by a 0 and, near y, g 0 consists of two pieces of the boundary
of W 0. The lemma follows by observing that p induces an isomorphism between W
and W 0. r

Given an admissible system of curves ðg1; . . . ; gkÞ on a Riemann surface of fi-
nite type, we will denote by Aðg1; . . . ; gkÞ the set of all systems of annular regions
ðW1; . . . ;WkÞ of type ðg1; . . . ; gkÞ. Given a system of annular regions ðW1; . . . ;WkÞ
of type ðg1; . . . ; gkÞ and positive numbers a1; . . . ; ak, an important invariant is the
quantity

Xk

i¼1

a2i MðWiÞ:ð20Þ

We recall its significance. The quantity a2MðTrÞ is the o-area of the standard
annulus Tr, where o ¼ ða=2piÞ2ðd log zÞ2.

!

!
Figure 18
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Lemma 27. Let ðg1; . . . ; gkÞ be an admissible system of curves. Let a1; . . . ; ak be
positive numbers. Set

N ¼ sup
ðW1;...;WkÞ AAðg1;...; gkÞ

Xk

i¼1

a2i MðWiÞ:

Then there exists ðW1; . . . ;WkÞ a Aðg1; . . . ; gkÞ with

N ¼
Xk

i¼1

a2i MðWiÞ:

Proof. Choose a sequence fðWn
1 ; . . . ;W

n
kÞg such that

lim
n!l

Xk

i¼1

a2i MðWn
i Þ ¼ N:

Recall that MðWn
i ÞaMðgiÞ < þl, by Lemma 8. Possibly passing to a subse-

quence, we may then assume that Mi ¼ lim
n!l

MðWn
i Þ exists for each i. If Mi ¼ 0,

we set Wi ¼ j. Again passing to a subsequence, Lemma 10 tells us that fWn
i g con-

verges to an annular region Wi of type gi wheneverMi > 0, and thatMðWiÞ ¼ Mi.
The annular regions Wi are disjoint because the regions Wn

1 ; . . . ;W
n
k are disjoint

for each n. r

We are now in a position to prove the results which are at the basis of the
uniqueness statement in Strebel’s theorem.

Lemma 28. Let o be an admissible, holomorphic Jenkins-Strebel di¤erential on a
Riemann surface S ¼ Snfp1; . . . ; pmg of finite type. Assume wðSÞ < 0. Let G be the
critical graph of o and let

SnG ¼ W1 A $ $ $AWk

be the decomposition of its complement into annular regions. Let ai be the o-length
of a horizontal trajectory in Wi, for i ¼ 1; . . . ; k. Let ðX1; . . . ;XkÞ be a system of
annular regions with the same homotopy type as ðW1; . . . ;WkÞ. Then

Xk

i¼1

a2i MðXiÞa
Xk

i¼1

a2i MðWiÞ:ð21Þ

Moreover, equality holds in (21) if and only if Xi ¼ Wi for all i.

Proof. For each i, we choose an isomorphisms zi between Xi and a standard
annulus Tri ¼ fz a C : ri < jzj < 1g. We also set X ¼

Sn
i¼1 Xi, and let z be the
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complex-valued function on X which restricts to zi on Xi for each i. On X, we may
then write o ¼ j dz2. For any fixed i ¼ 1; . . . ; k, let r be such that ri < r < 1, and
let Ci

r be the circle jzij ¼ r in Xi. From Lemma 26 it follows that

ai a loðCi
rÞ ¼

Z

C i
r

ffiffiffiffiffiffi
jjj

p
jdzj:ð22Þ

Let a be the function on X whose restriction to Xi is ai. Using the previous in-
equality, and writing x and y for the real and imaginary parts of z, we get

Xk

i¼1

a2i MðXiÞ ¼
Xk

i¼1

1

2p

Z 1

ri

a2i
dr

r
a

Z

X

a

2pjzj
ffiffiffiffiffiffi
jjj

p
dxbdy:

Using the Schwarz inequality we get

!Xk

i¼1

a2i MðXiÞ
"2

a
! Z

X

! a

2pjzj

"2
dxbdy

"
$
! Z

X
jjj dxbdy

"
ð23Þ

a
!Xk

i¼1

a2i MðXiÞ
"
$ AoðSÞ

¼
!Xk

i¼1

a2i MðXiÞ
"
$
!Xk

i¼1

a2i MðWiÞ
"
;

proving the first part of the lemma. If equality holds in (21), then it must hold in
(23), and in (22) for almost all r. But then, by Lemma 26, Ci

r is a trajectory in Wi.
This implies that Xi HWi, so that MðXiÞaMðWiÞ. The equality in (21) now im-
plies that Xi ¼ Wi for all i. r

We now want to study how the basic invariant (20) changes under an ad-
missible di¤eomorphism. Recall that, given a di¤eomorphism F : S ! S, the
Beltrami di¤erential mF is the vector-valued ð0; 1Þ-form locally defined by

mF ¼ Fz

Fz

q

qz
n dz

and that F is said to be admissible if jjmF jj < 1. If m is a Beltrami di¤erential with
local expression n q

qz n dz and o is a quadratic di¤erential with local expression
h dz2, contraction gives a tensor om with local expression hn dz dz. We also let joj
be the o-metric, that is, the tensor with local expression jhj dz dz, and we recall
that the area form dAo associated to the o-metric can be written locally as
jhj dxbdy.
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Lemma 29. Let S be a Riemann surface. Let F : S ! S be an admissible di¤eo-
morphism and let m ¼ mF be the associated Beltrami di¤erential. Let ðg1; . . . ; gkÞ be
an admissible system of curves on S. Let ðW1; . . . ;WkÞ a Aðg1; . . . ; gkÞ. Let o be
the holomorphic di¤erential defined in the region W ¼ W1 A $ $ $AWk and equal to
ðai=2piÞ2ðd log ziÞ2 in Wi. Then

Xk

i¼1

a2i MðWiÞa
! Z

S
Wi

jð1þ om=jojÞj2

1& jmj2
dAo

"
$
!Xk

i¼1

a2i MiðFðWiÞÞ
"
:ð24Þ

Before proving the lemma it is useful to make a few remarks. First of all, we
may notice that the absolute value of m is a Cl function, and so is om=joj. The
second remark is that, when F is biholomorphic, then m ¼ 0 and (24) is an iden-
tity. Finally, as an example, suppose that i ¼ 1, that W ¼ W1 is the image of an
injective holomorphic map f : R ! S, where R is the rectangle R ¼ fz ¼ xþ iy :
0a x < a; 0 < y < 1g, and that f *ðoÞ ¼ dz2. Also suppose that the di¤eomor-
phism F : W ! FðWÞ lifts to the a‰ne map G : R ! GðRÞHC given by GðzÞ ¼
zþ kz with k < 1. Then (24) is nothing but the intuitively clear relation

a ¼ AoðWÞ ¼ a2MðWÞa 1þ k

1& k
a ¼ AoðFðWÞÞ:

Proof of Lemma 29. We set Xi ¼ F ðWiÞ, i ¼ 1; . . . ; n. For each i we fix, once
and for all, isomorphisms zi : Wi ! Tri and wi : Xi ! Tsi where, as usual, Tr de-
notes the standard annulus fz a C : r < jzj < 1g. We also set W ¼

Sn
i¼1 Wi and let

z be the complex-valued function on W which restricts to zi on Wi for each i. We
similarly define X and w. By abuse of notation we indicate by Fz and Fz the
corresponding derivatives of w + F . The restriction of the di¤erential o to Wi is
ðai=2piÞ2ðd log ziÞ2. In more compact notation, we can say that the restriction of
o to W is ða=2piÞ2ðd log zÞ2, where a stands for the function on W which restricts
to the constant ai on Wi for each i. We put on X the hermitian metric

s ¼ a2 dw dw ¼ 1

ð2pjwjÞ2
dw dw:

Notice that, in this metric, the length of any simple, closed, homotopically non-
trivial curve in Xi is at least 1. Thus, if we denote by Ci

r the circle jzij ¼ r in Wi, we
have that

1a lsðF ðCi
r ÞÞ ¼

Z

C i
r

ða + F ÞjFz dzþ Fz dzj:

On the other hand,

om

joj ¼ & z

z

Fz

Fz
:
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Hence

2pMðWiÞ ¼
Z 1

ri

1

r
dra

Z 1

ri

Z

C i
r

ða + FÞjFz dzþ Fz dzj
1

r
dr

¼
Z

Wi

ða + F Þ jFzj
jzj

1þ om

joj

))))

)))) dxbdy:

Recalling that the Jacobian determinant of F is J ¼ jFzj2 & jFzj2, we get

Xk

i¼1

a2i MiðWiÞa
Z

W

a2

2pjzj
ða + F Þ

ffiffiffi
J

p
1þ om

joj

))))

)))) $
jFzjffiffiffi
J

p $ dxbdy:

Using Schwarz’s inequality we then get

!Xk

i¼1

a2i MiðWiÞ
"2

a
! Z

W
a2ða + FÞ2J dxbdy

"

$
! Z

W

! a

2pjzj

"2 jð1þ om=jojÞj2

1& jmj2
dxbdy

"

¼
!Xk

i¼1

a2i MiðXiÞ
"
$
! Z

S
Wi

jð1þ om=jojÞj2

1& jmj2
dAo

"
: r

In the proof of Strebel’s theorem, we will use a corollary of the preceding
lemma. If in addition to the assumptions of the lemma we also assume that F is
homotopically trivial and that ðW1; . . . ;WkÞ and ða1; . . . ; akÞ are as in the state-
ment of Lemma 27, we immediately get the following result.

Corollary 30. Under the assumptions of the preceding lemma and assuming
that

(1) F is isotopic to the identity,
(2) ðW1; . . . ;WkÞ and ða1; . . . ; akÞ are as in the statement of Lemma 27,

then:
Xk

i¼1

a2i MiðWiÞa
Z

S
Wi

jð1þ om=jojÞj2

1& jmj2
dAo:

Proof of Theorem 25. Using Lemma 27, choose a system of annular regions
ðW1; . . . ;WkÞ of type ðg1; . . . ; gkÞ maximizing the quantity

Pk
i¼1 a

2
i MiðWiÞ. If

Wi A j, choose an isomorphism fi from Wi to a standard annulus Tri . Define a
(discontinuous) quadratic di¤erential o 0 on S by setting it equal to

f *
i

!! ai
2pi

"2
ðd log zÞ2

"

147jenkins-strebel differentials



on Wi and to zero on Sn
Sk

i¼1 Wi. If we could show that o 0 coincides almost
everywhere with a holomorphic quadratic di¤erential o, we would conclude
that o ¼ o 0 in

Sk
i¼1 Wi and that Sn

Sk
i¼1 Wi has measure zero. From Proposition

17 it would then follow that the trajectories of o are either closed or critical, and
the theorem would be proved. The almost everywhere holomorphicity of o 0 is a
local question. Let U be an arbitrary coordinate neighborhood in S and write
o 0 ¼ f dz2 in U , with f a L1ðUÞ. We shall prove that fz ¼ 0 in the sense of dis-
tributions. Weyl’s lemma, which asserts that a harmonic distribution is neces-
sarily Cl, then shows that f coincides almost everywhere with a holomorphic
function. We must prove that

Z

U

hz f dxbdy ¼ 0ð25Þ

for every Cl function h with compact support in U . For any such function, we
define an admissible homotopically trivial di¤eomorphism F : S ! S in the fol-
lowing way. Fix a small real number e, set F ðzÞ ¼ zþ ehðzÞ for z a U , and extend
F to all of S by setting it equal to the identity on SnU . For su‰ciently small e, F
is an admissible di¤eomorphism. The Beltrami di¤erential associated to F has
compact support contained in U , and is given by

m ¼ ehz
1þ ehz

q

qz
n dz:

A straightforward computation yields

j1þ om=joj j2

1& jmj2
dAo ¼ ðj f jþ 2Reðehz f Þ þOðe2ÞÞ dxbdy;

where, as usual, dAo stands for the area form associated to the o-metric. From
Corollary 30 it follows that

Xk

i¼1

a2i MðWiÞa
Z

U

dAo þ
Z

U

ðReðehz f Þ þOðe2ÞÞ dxbdy

a
Xk

i¼1

a2i MðWiÞ þ
Z

U

Reðehz f Þ dxbdyþOðe2Þ:

We conclude that

Re
! Z

U

ehz f dxbdy
"
b 0;

for every e and every h with compact support in U , proving (25) and the existence
part of the theorem.

The uniqueness of o is a direct consequence of Lemma 28. Suppose in fact
that ~oo is another holomorphic Jenkins-Strebel di¤erential satisfying i) and ii),
let ~GG be its critical graph, and Sn~GG ¼ ~WW1 A $ $ $A ~WWk the decomposition of its com-
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plement in annular regions. Lemma 28 implies that ~WWi ¼ Wi for every i. Thus o
and ~oo have the same critical graph, and hence in particular the same zeroes. It
follows that o and ~oo are proportional and, since they have the same critical tra-
jectories, that the constant of proportionality is a positive real number. But then
o and ~oo must be equal, since they have the same trajectories, and the o-length of
any one of these is equal to the ~oo-length, by assumption. r

5. Jenkins-Strebel differentials with double poles

In this section we are going to prove the theorem we announced in the introduc-
tion. We must first introduce the notion of admissible meromorphic quadratic dif-
ferential on a Riemann surface of finite type S ¼ Snfy1; . . . ; ymg. Let us fix a
meromorphic quadratic di¤erential o on S. The first requirement for o to be
admissible is that it should extend to a meromorphic quadratic di¤erential on S
having at worst simple poles at the points pi. The second is that the only poles of
o on S should be second order poles with negative quadratic residues. To explain
this terminology, let p be a pole of order two for o and let z be a local coordinate
centered at p. A local expression for o is ðh dz=zÞ2, where h is holomorphic and
c ¼ hð0Þ is not zero. Write h ¼ cð1þ zh1Þ, and let k be a primitive of h1. We then
have

h
dz

z
¼ cðd log zþ h1 dzÞ ¼ c dðlog zþ kÞ ¼ c d logðzekÞ:

Thus, in terms of the local coordinate z ¼ zek, a local expression for o is

c2ðd log zÞ2:

We shall say that z a distinguished parameter at p; it is unique up to multiplica-
tion by non-zero constants. Notice that the constant c2 is intrinsically attached to
o and does not depend on the choice of coordinate. We will call it the quadratic
residue of o at p; in fact, c is nothing but the residue of

ffiffiffiffi
o

p
at this point.

Definition 31. Let S ¼ Snfy1; . . . ; ymg be a Riemann surface of finite type. A
meromorphic quadratic di¤erential o on S is said to be admissible if it satisfies
the following conditions:

(1) o extends to a meromorphic quadratic di¤erentials to S having at worst sim-
ple poles at the points yi;

(2) the only poles of o in S are double poles with negative residue.

The geometrical implication of the negativity of the residue is the following.
The local expression of an admissible meromorphic quadratic di¤erential o
near any one of its double poles must be of the form (17), where z is a suitable
local coordinate and a is a positive real number. The geodesics of o near a pole
p are particularly easy to describe. Consider the neighborhood U of p given by
fjzj < eg, and set _UU ¼ Unfpg. The universal covering of _UU can be identified with
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the half-plane H ¼ fw a C : ImðwÞ > &ða=2pÞ log eg, and the universal covering
map h with

w 7! eð2pi=aÞw ¼ z:

One checks immediately that h*ðoÞ ¼ dw2. Thus h is a local isometry between H,
endowed with the euclidean metric, and _UU , endowed with the o-metric. In fact,
_UU is biholomorphic and isometric to the half-infinite cylinder which one obtains
by taking the quotient of H modulo translations by multiples of a. This has sev-
eral interesting consequences. The first is that p lies at infinite distance from all
other points of S; in particular, no geodesic reaches it. The o-geodesics in U are
the images of pieces of straight line in H. The horizontal geodesics are the
images of the horizontal lines, and hence are just the circles jzj ¼ constant. A
consequence is that any trajectory of o is contained in a compact subset of
Snfpoles of og. The vertical geodesics in U are the radii argðzÞ ¼ constant, while
the remaining geodesics are the logarithmic spirals in U wrapping around p.

Definition 32. Let S be a Riemann surface of finite type. An admissible mer-
omorphic quadratic di¤erential on S is said to be a meromorphic Jenkins-Strebel
di¤erential if its non-critical trajectories are closed.

We are now in a position to state and prove the result we announced in the
introduction.

Theorem 33. Let S ¼ Snfy1; . . . ; ymg be a Riemann surface of finite type and of
genus g. Let x1; . . . ; xn a S. Assume that wðSnfx1; . . . ; xngÞ < 0. Let a1; . . . an be
positive real numbers. Then there exists a unique meromorphic Jenkins-Strebel qua-
dratic di¤erential o on S having the following properties.

i) o is holomorphic on Snfx1; . . . ; xng and has poles of order two at the points xi,
with residues ðai=2piÞ2, i ¼ 1; . . . ; n.

ii) If G is the critical graph of o, then SnG is the union of n disjoint disks
D1; . . . ;Dn, with xi a Di, i ¼ 1; . . . ; n.

Given a meromorphic Jenkins-Strebel di¤erential o, the vertices of its critical graph
G are its critical points. These are the zeros and the simple poles of o in S. More-
over, a vertex p of G has valency nðb 1Þ if and only if n ¼ ordp o& 2. Finally
ordpi ob 1, for i ¼ 1; . . . ;m and the only vertices of valencya 2 are among the
points y1; . . . ; ym.

Figure 19
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Before proving this theorem we need to recall the construction of the double
of a Riemann surface with boundary. A Riemann surface with boundary is a
connected, 2-dimensional manifold R with boundary qR, together with a struc-
ture of Riemann surface on the open set RnqR and a family F of homeomor-
phisms j : U ! V , where U is an open subset of R whose intersection with qR
is non-empty and V is an open subset of the closed upper half plane
fz a C : ImðzÞb 0g, with the following properties.

i) jðU B qRÞ ¼ jðUÞBR for any j : U ! V in F.
ii) The domains of the homeomorphisms in F cover qR.
iii) If j is any element of F, then the restriction of j to UnðU B qRÞ is holo-

morphic.
iv) The family F is maximal with respect to the above properties.

It should be remarked that property i) is actually redundant, since it is a conse-
quence of the invariance of domain theorem. It is also helpful to notice that, if j
and j 0 are two charts in F, then the composition j 0 + j&1 is the restriction of a
holomorphic function on an open subset of C, and hence is real analytic on the
real axis; this will follow from the construction of the double below.

The conjugate ðR*; qR*Þ of ðR; qRÞ is the surface whose underlying topologi-
cal space is the same as the one of ðR; qRÞ, whose charts in R*nqR* are the com-
plex conjugates of the charts of RnqR, and whose charts at boundary points are
of the form &j, where j varies in F. The identity gives an antiholomorphic map
s : ðR; qRÞ !ð R*; qR*Þ.

The double of R is the surface (without boundary) R̂R obtained from the dis-
joint union of R and R* by identifying qR and qR* via s. There is a natural struc-
ture of Riemann surface on R̂R which agrees with the given ones on RnqR and
R*nqR*. One can construct charts for this structure at points p a qR ¼ qR* as
follows. Let j : U ! V be an element of F such that p a U . Then, writing V *

for the image of V under complex conjugation, a chart for R̂R at p is the homeo-
morphism ĵj : U A sðUÞ ! V AV * which agrees with j on U and with j on
sðUÞ. The only thing that has to be shown is that, if j 0 : U 0 ! V 0 is another
chart such that p a U 0, then ĵj 0 + ĵj&1 is holomorphic. This is obvious everywhere,
except along the real axis. We may then appeal to the following well-known fact.
Let f be a continuous complex-valued function defined on an open subset A of
the complex plane; if f is holomorphic on AnðABRÞ, then it is holomorphic on
all of A. This can be proved, for instance, by checking that Cauchy’s theorem
holds for f .

The map s extends to an involutive antiholomorphic automorphism t of R̂R
whose fixed point set is qR ¼ qR*.

Proof of Theorem 33. For each i ¼ 1; . . . ; n, let gi be a small simple loop
around xi, and let vi be a non-zero tangent vector in TxiðSÞ. We denote by
_AAðg1; . . . ; gnÞ the set of n-tuples _WW1; . . . ; _WWn of disjoint punctured disks of type

ðg1; . . . ; gnÞ in Snfx1; . . . ; xng. Set
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N ¼ sup
ð _WW1;...; _WWkÞ A _AAðg1;...; gnÞ

!Xn

i¼1

a2i
_MMvið _WWiÞ

"

Since 2g& 2þ n > 0, the n-pointed surface ðS; x1 . . . ; xnÞ is not the twice punc-
tured sphere, and hence N < þl. It is also evident that NA&l. Using Lemma
12, and proceeding exactly as in the proof of Lemma 27, we find ð _WW1; . . . ; _WWnÞ a
_AAðg1; . . . ; gnÞ such that

Xn

i¼1

a2i
_MMvið _WWiÞ ¼ N:

In particular, the _WWi are all non-empty. We denote by Wi the disk _WWi A fxig, and
pick an isomorphism fi : Wi ! Dri with fiðxiÞ ¼ 0 and jvið fiÞj ¼ 1, so that the re-
duced modulus of _WWi is log ri=2p. As in the proof of Theorem 25, we will be done
if we can show that the complement of

Sn
i¼1

_WWi has measure zero, and that there
is a holomorphic quadratic di¤erential on Snfx1; . . . ; xng which agrees with

oi ¼ f *
i

!! ai
2pi

"2
ðd log zÞ2

"
ð26Þ

on _WWi, for i ¼ 1; . . . ; n. We may assume that, for each i, the cycle gi H _WWi is the
preimage under fi of a circle of radius r < minfr1; . . . ; rng centered at the origin
of Dri , and we let Bi HWi denote the preimage, under fi, of the open disk of
radius r in Dri , so that qBi ¼ gi. Set B ¼

Sn
i¼1 Bi, g ¼

Sn
i¼1 gi, and denote by R̂R

the double of the Riemann surface with boundary R ¼ SnB. Then, with a slight
abuse of notation, we can write R̂R ¼ R1 A gAR2, where R1 and R2 are the inte-
riors of R and R*, respectively, and qR1 ¼ qR2 ¼ g (see Figure 20). The anti-
holomorphic involution t interchanges R1 and R2, and leaves g fixed. We can
view WinBi as a subset of R, and we define the annular region ŴWi H R̂R by setting

ŴWi ¼ ðWinBiÞA tðWinBiÞ; i ¼ 1; . . . ; n:

Clearly, ðŴW1; . . . ; ŴWnÞ is a system of annular regions in R̂R of type ðg1; . . . ; gnÞ.
Since R̂R is a compact Riemann surface of genus 2gþ n& 1 > 1, Theorem 25

Figure 20
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applies; we denote by j the holomorphic Jenkins-Strebel di¤erential associated to
the admissible system ðg1; . . . ; gnÞ and to the constants ða1; . . . ; anÞ. The trajectory
structure of j defines a system of annular regions ðX1; . . . ;XnÞ of type ðg1; . . . ; gnÞ
such that

R̂Rnfcritical graph of jg ¼
[n

i¼1

Xi:

Moreover, ðX1; . . . ;XnÞ maximizes the quantity
P

a2i MðWiÞ among all
ðW1; . . . ;WkÞ a Aðg1; . . . ; gnÞ. In particular,

Xn

i¼1

a2i MðXiÞb
Xn

i¼1

a2i MðŴWiÞ:ð27Þ

Observe that, since tðgiÞ ¼ gi, the uniqueness part of Theorem 25 implies that
j ¼ t*ðjÞ. In particular we must have tðXiÞ ¼ Xi for i ¼ 1; . . . ; n. We claim that
gi is contained in Xi. To prove this, we look at the annular covering h : R̂Rgi ! R̂R.
Lemma 6 and Corollary 7 say that gi has a unique closed lifting ~ggi, that there is
a unique annular region ~XXi in R̂Rgi which is mapped isomorphically to Xi by h,
and that ~XXi has the same homotopy type as ~ggi.

Since t leaves gi pointwise fixed, it lifts to an involutory antiholomorphic auto-
morphism ~tt : R̂Rgi ! R̂Rgi carrying

~XXi to itself. The surface R̂Rgi is an annulus, and ~ggi
cuts it into two sub-annuli R1

gi
and R2

gi
which are interchanged by ~tt. If a boundary

component of ~XXi intersects ~ggi, it is carried to itself by ~tt, since the points of inter-
section are fixed by ~tt. If instead a boundary component of ~XXi does not intersect
~ggi, the two boundary components are interchanged by ~tt. Hence one of them lies
in R1

gi
and the other in R2

gi
, so ~XXi contains ~ggi. In conclusion, it su‰ces to exclude

the case when each boundary components of ~XXi is carried to itself by ~tt, and cuts
~ggi. Suppose this case occurs, and let a be one of the boundary components. Then
the portion of a lying between two successive points of intersection with ~ggi, which
we call a, and one of the two arcs of ~ggi bounded by these two points, which we
call b, bound a region D homeomorphic to a disk (see Figure 21). Since b is left

Figure 21
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pointwise fixed by ~tt, DA ~ttðDÞ is a disk bounded by a and ~ttðaÞ. It follows that a is
equal to the union of a and ~ttðaÞ and is homotopically trivial. But this contradicts
the fact that a is homotopic to ~ggi.

We have seen that gi is contained in Xi. Furthermore, we can find an isomor-
phism between Xi and a standard annulus under which the quadratic di¤erential
j corresponds to ðai=2piÞ2ðd log zÞ2. We need the following lemma.

Lemma 34. Let T ¼ Ts HC be a standard annulus. Let gHT be a homotopi-
cally non-trivial, simple closed curve. Let t : T ! T be an antiholomorphic involu-
tion which is the identity on g, and assume that t*ðd log zÞ2 ¼ ðd log zÞ2. Then
tðzÞ ¼ s=z, and g is the circle of radius

ffiffi
s

p
centered at the origin. Thus, if T 1 and

T 2 are the connected components of Tng, then MðT 1Þ ¼ MðT 2Þ and MðTÞ ¼
MðT 1Þ þMðT 2Þ.

Proof. The condition that t carries ðd log zÞ2 to its conjugate translates into

q log t

qz
¼e

q log z

qz
:

Thus tðzÞ equals either cz or c=z, where c is a constant. The condition that
t ¼ t&1 implies that jcj ¼ 1 in the first case, and that c is real in the second. In
the first case, however, the set of fixed points is contained in the line 2 argðzÞ ¼
argðcÞ, and hence cannot contain g. On the other hand, in the second case, c
must equales if t is to carry T to itself. Moreover, if c were equal to &s, t would
have no fixed points. The conclusion is that tðzÞ ¼ s=z and that g is the circle of
radius

ffiffi
s

p
centered at the origin. The remaining assertions of the lemma follow at

once. r

Set X1
i ¼ Xi BR1. Lemma 34 and formula (27) imply that

Xn

i¼1

a2i MðX1
i Þ ¼

1

2

Xn

i¼1

a2i MðXiÞb
1

2

Xn

i¼1

a2i MðŴWiÞ ¼
Xn

i¼1

a2i MðWinBiÞ:ð28Þ

Now let _XXi be the punctured disk X1
i A ðBinfxigÞ in S. From Lemma 5 we get

_MMvið _XXiÞbMðX1
i Þ þ

log r

2p
;

while

_MMvið _WWiÞ ¼ MðWinBiÞ þ
log r

2p
;

hence (28) gives

Xn

i¼1

a2i
_MMvið _XXiÞb

Xn

i¼1

a2i
_MMvið _WWiÞ:
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By the very choice of ð _WW1; . . . ; _WWnÞ, this must be an equality, and therefore (28)
and (27) must also be equalities. If follows that Xi ¼ ŴWi for all i, by Lemma 28.
But then the complement of

Sn
i¼1

_WWi in Snfx1; . . . ; xng is equal to the complement
of

Sn
i¼1 Xi BR1 in R1 ¼ Sn

Sn
i¼1 Bi, and hence has measure zero. The restrictions

to X1
i ¼ WinBi of j and of the di¤erential oi defined by (26) are both of the form

ðai=2piÞ2ðd log zÞ2 and hence, in the light of Remark 21, are equal. The di¤eren-
tial o whose existence is asserted by the theorem can thus be constructed by set-
ting it equal to j on R1 ¼ SnB and to oi on Wi, for i ¼ 1; . . . ; n.

The existence part of the theorem is now proved. As for uniqueness, recall that
in the proof of Theorem 25 this followed directly from Lemma 28. In the case at
hand, the same argument applies, provided we replace Lemma 28 with the fol-
lowing analogue.

Lemma 35. Let ðS; x1; . . . ; xnÞ be an n-pointed Riemann surface of finite type
with wðSnfx1; . . . ; xngÞ < 0. Let vi a TxiðSÞ, i ¼ 1; . . . ; n, be non-zero tangent vec-
tors. Let o be a meromorphic Jenkins-Strebel di¤erential on S, holomorphic on
Snfx1; . . . ; xng and with double poles at the xi. Let G be the critical graph of o,
and assume that its complement is the disjoint union of n disks W1; . . . ;Wn, with
xi a Wi for every i. Set _WWi ¼ Winfxig, and let ai be the o-length of a horizontal tra-
jectory in Wi , for i ¼ 1; . . . ; n. Let X1; . . . ;Xn be disjoint disks in S such that xi a Xi

for every i, and set _XXi ¼ Xinfxig. Then

Xn

i¼1

a2i
_MMvið _XXiÞa

Xn

i¼1

a2i
_MMvið _WWiÞ:ð29Þ

Moreover, equality holds in (29) if and only if Xi ¼ Wi for all i.

We leave to the reader the simple proof of this lemma, which can be de-
duced from Lemma 28, again considering the double of a suitable Riemann
surface. r

One way to rephrase Theorem 33 is the following.

Theorem 36. Let S be a compact Riemann surface. Let P be a finite set and
x : P ! S an injective map. Assume that wðSnxðPÞÞ < 0. Let h : P ! Rb0 be
a non-zero function. Write h&1ð0Þ ¼ fp1; . . . ; pmg and Pnh&1ð0Þ ¼ fq1; . . . ; qng.
Set Y ¼ fxðp1Þ; . . . ; xðpmÞg and Xl ¼ fxðq1Þ; . . . ; xðqnÞg. Then there exists a
unique meromorphic Jenkins-Strebel di¤erential o on SnY which is holomorphic
in SnxðPÞ and has a double pole at xðqiÞ with quadratic residue equal to &

#hðqiÞ
p

$2
,

for each i ¼ 1; . . . ; n. In particular, o is meromorphic in S and has at worst simple
poles at the points of Y. Finally, let G be the critical graph of o. The vertices of
G of valency nb 3 are the zeros of o of order n& 2. The bivalent and univalent
vertices of G are among the points of Y. A univalent vertex corresponds to a simple
pole of o. A bivalent vertex is a point of Y which is regular for o and where o does
not vanish. The points of Xl are in one-to-one correspondence with the boundary
components of G.
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