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The increasing role of migration and integration in the so-

cial and economic development of countries, regions and

the whole of the world is becoming more and more ap-

parent, stimulating interest in mathematical modeling of

migration and integration.
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The subject of this presentation is to provide a model for

studying the integration of migration flows with the resident

population.

A key basis for social cohesion in societies is the cultural

and educational level of the affected populations.



5. L. Bevilacqua, A. C. Galeão, F. Pietrobon-Costa, S. L. Monteiro.

Knowledge diffusion paths in a research chain. Mecánica Computa-

cional Vol XXIX, 2061-2069. 2010.

6–M. Gladwell, The Tipping Point. How Little things Can Make a Big

Difference. Little Brown and Company, London.(2000).

7–L.L. Cavalli-Sforza and M. Feldman, Cultural Transmission and Evo-

lution, Princeton: Princeton University Press. 1981.

8–He Jinsheng, Knowledge management and knowledge fermentation,

Science of Science and Management of S.&.T., 25, 23-26, 2004.

9–Z. Li, T. Zhu and W. Lai, A Study on the knowledge diffusion of

communities of practice based on the weighted small-world network.

Journal of Computers, 5, 2010.

10–Z. Shaoying, The model of dynamic spread knowledge based on

organizational learning. Science Research Management, 24, 67-71,

2003.



In our framework, we suppose an analogy between propa-

gation laws of the culture and heat, which are described

respectively by a diffusion equation on the knowledge and

temperature



The integration of two ethnic groups is studied by a dif-

ferential system. This issue is represented by a mathemat-

ical model consisting of the Cahn-Hilliard equation, which

describes the integration or separation law of two ethnic

fluxes, according to a control factor given by the cultural

levels of two populations, whose evolutions are described

by a system of diffusion equations. Moreover, we assume

that the homogenization process occurs when the mean of

two cultural levels exceeds a critical value.
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A mathematical model
of integration

Let us consider, in a bounded domain Ω ⊂ R2, two eth-

nic groups A1 and A2 with different cultures (traditions,

religions, ecc.). Moreover, we fix a time interval [0, T ], in

which there is not any new immigration. So, the total mass

M1 and M2 of two populations will be constants. In the fol-

lowing, we denote by ρ1 and ρ2 the local (relative) densities

of the two groups, while the specific densities of the popu-

lations A1 and A2 are the same, denoted by ρ. Finally, the

concentration c ∈ [−1,1] of the component A1 is given by

c =
2ρ1 − ρ

ρ
(1)

of course the concentration of the component A2 is defined

by (1− c) = 2ρ2−ρ
ρ .

In our framework, we study the evolution of this system of

two ethnic groups, as a mixtures two fluids with the same



specific density ρ.Thus, we are interested to study the mean

velocity v of the mixture, defined by

v =
ρ1v1+ρ2v2

ρ
(2)

where v1 and v2 are the velocity related with the compo-

nents A1 and A2. Thus, we suppose that the evolution of

the mixture may be represented as a motion of a viscous

incompressible fluid by the system

ρv̇ = −∇p+ ρ∇ · (∇c⊗∇c) +∇ · υ(c)∇v + ρb (3)

where p is the pressure, υ(c) is the viscosity coefficient de-

pending on c, the vector b denotes the external body forces.

Moreover, because we suppose ρ(x, t) = const., we have

∇ · v = 0. For this problem is natural to suppose slow mo-

tions, so v̇ =∂v
∂t and the term ∇·(∇c⊗∇c) will be negligible.

The behavior of the components of the mixture will be

described by the Cahn-Hilliard equation, which allows to

study the evolution of the concentration c by

ρċ = ∇ ·M(c)∇µ (4)



where the function M(c) is the mobility such that

M(c) ≥ 0 , M(−1) = M(1) = 0 (5)

while µ is called embedded (supplemented) potential. Which,
in analogy with chemical potential, describes the slope of
the internal energy with respect to variation of composition
of two species, defined by

µ(c, ϕ1, ϕ2) = γ∇2c− ϕ0F
′(c)−

ϕ1 + ϕ2

2
G′(c) (6)

where the potentials F and G are defined by

F (c) =
1

4
(c2 − 1)2 , G(c) =

c2

2
(7)

while ϕ1 > 0 and ϕ2 > 0 represent the knowledge levels
of the two components, while ϕ0 is a critical value, which
denotes the integration-separation phase transition, con-
trolled by the mean value u = ϕ1+ϕ2

2 . Hence, we obtain by
(4) and (6) the equation on the concentration c

ρċ = ∇ ·M(c)∇(γ∇2c− ϕ0F
′(c)−

ϕ1 + ϕ2

2
G′(c)) (8)

The free energy W related with the equation (8) is given
for homogeneous states by

W (ϕ, u) = ϕ0F (c) + uG(c)



Then, we study the evolution of the educational level by a

diffusion equation. So that, it is possible to observe that

the culture show a diffusive behavior similar to the heat

diffusion. (Both are extensive variables. On the other side,

the knowledge and the temperature are intensive variables.)

Thus, from this similarity, we introduce two equations re-

lated with the knowledge, which describe the cultural bal-

ance laws of two ethnic groups

ρϕ̇1 −
1

2
Ġ(c) +

ν

2
∇2v = −∇ · p1 − α(ϕ1 − ϕ2) + ργ1 (9)

ρϕ̇2 −
1

2
Ġ(c) +

ν

2
∇2v = −∇ · p2 − α(ϕ2 − ϕ1) + ργ2 (10)

where α ≥ 0, γ1 and γ2 represent the cultural supplies,

while p1 and p2 denote the cultural fluxes related with the

knowledge ϕ1 and ϕ2 by the constitutive equations

p1 = −δ1∇ϕ1 (11)

p2 = −δ2∇ϕ2 (12)

with two cultural conductivities δ1,δ2 > 0 connected with

the components A1 and A2.



Therefore, the differential system is given by the equations

(3), (8), (9) and (10) with the boundaries conditions

M(c)∇µ · n|∂Ω = 0 , v(t)|∂Ω = 0 , ∇c(t) · n|∂Ω = 0 ,

(13)

∇ϕ1(t) · n|∂Ω = 0 , ∇ϕ2(t) · n|∂Ω = 0

where n is the unit outward normal.and the initial conditions

v(x,0) = v0(x) , c(x,0) = c0(x) , x ∈ Ω

(14)

ϕ1(x,0) = ϕ10(x) , ϕ2(x,0) = ϕ20(x) , x ∈ Ω



Dissipation for a phenotype
system

Now, there is a second important step. In fact, if we con-

sider the differential system of a binary mixture with two

different temperatures, we should impose the laws of ther-

modynamics.

As a research field, the thermodynamics of life systems re-

mains obscure within science and esoteric to the researches.

Anyway, in our framework, we need to consider the natu-

ral restrictions on the constitutive equations. About this

question, we can follow two different ways. The first sup-

poses a complete analogy between heat and culture, tem-

perature and knowledge. So, it is easy to generalize the

thermodynamics to these life systems, as the study of the

restrictions, which we have to associate with any partic-

ular phenotype organism. In the second way, we do not

consider any similarity between heat and culture. So, the



equations on knowledge will be considered as new diffu-

sive equations, without any connection with temperature.

In this framework, the stability conditions need of a Dissi-

pation Principle, which may be defined as the quantitative

study of the energy dissipation, that occurs among living

structures. Similarly, the Thermodynamics of Life Science

studies the restrictions on the set of living processes by a

First and Second Law. These two frameworks, although

similar, involve different restrictions, which lead to different

equations.

Let us begin with the dissipation principle, for which we

need to define for the differential system (3), (8), (9) and

(10) the internal mechanical power Pim, the internal struc-

tural power Pic, the internal cultural power Piϕ defined re-

spectively

Pim = υ(c)(∇v)2 (15)

Pic = ργ
(∇c2)·

2
+ϕ0Ḟ (c)+

1

2
(ϕ1+ϕ2)Ġ(c)+M(c)(∇µ)2 (16)



Piϕ = ρ1ϕ̇1ϕ1 + ρ1ϕ̇2ϕ2 −
1

2
(ϕ1 + ϕ2)Ġ(c) + α(ϕ1 − ϕ2)2

+δ((∇ϕ1)2) + δ((∇ϕ2)2) (17)

Thus, we can put out

Dissipation Principle

On any living process, there exists a state function ψ, called

free energy such that, we have

ρψ̇ ≤ Pim + Pic + Piϕ (18)

Proposition. The differential system (3), (8), (9) and (10)

satisfies the Dissipation Principle (19).

Proof. By (15)-(17), the inequality (18) assumes the form

ρψ̇ ≤ υ(c)(∇v)2 + ργ
(∇c2)·

2
+ ϕ0Ḟ (c) +M(c)(∇µ)2 + ρ1ϕ̇1ϕ1

+ρ2ϕ̇2ϕ2 + α(ϕ1 − ϕ2)2 + δ((∇ϕ1)2) + δ((∇ϕ2)2)



hence, the free energy is given by

ρψ = ργ
(∇c2)

2
+ ϕ0F (c) +

1

2
(ρ1ϕ

2
1 + ρ2ϕ

2
2)) (19)

Thus, we obtain by (18) the inequality

υ(c)(∇v)2+M(c)(∇µ)2+α(ϕ1−ϕ2)2+δ((∇ϕ1)2)+δ((∇ϕ2)2 ≥ 0

so, the coefficients υ(c), M(c), δ and α must be non-negative.



Thermodynamics in life science

Here, the evolution of two ethnic populations can be de-

scribed by a different view point, where the cultural power

is fully assimilated to heat power (extensive variables) and

the analogy between the knowledge and the temperature

is more apparent (intensive variables). Moreover, for our

mixture, which have two knowledge, the analogy is with a

mixture of two fluids with two different temperatures. So,

it is evident to use the Laws of Thermodynamics for de-

scribing the restrictions and the property of this particular

phenotype system.

First Law. On any life process, there exits a state function

e, called internal energy, such that

ρė = Pim + Pic + P̃iϕ (20)

where the power P̃iϕ is the new representation of the internal

cultural power related with this new life system, defined by



P̃iϕ = P̃iϕ1
+ P̃iϕ2

where P̃iϕ1
and P̃iϕ2

have to satisfy the cultural balance laws

P̃iϕ1
= ∇ · p1 + ρs1 (21)

P̃iϕ2
= ∇ · p2 + ρs2 (22)

For this model, P̃iϕ will be defined by the First Law by the

equation

P̃iϕ = ρė− Pim − Pic = (23)

ρė−υ(c)(∇v)2−ργ
(∇c2)·

2
−ϕ0Ḟ (c)+

1

2
(ϕ1+ϕ2)Ġ(c)+M(c)(∇µ)2

Thus, we suppose

ρe(c,∇c, ϕ1, ϕ2) = ρ1ẽ1(ϕ1) + ρ2ẽ2(ϕ2) + ϕ0F (c) + γ
(∇c)2

2
(24)



So, we can define

P̃iϕ1
= ρ1ẽ1ϕ1

(ϕ1)ϕ̇1 −
υ(c)

2
(∇v)2 −

M(c)

2
(∇µ)2 −

ρ

2
ϕ1Ġ(c)

(25)

P̃iϕ2
= ρ2 ẽ2ϕ2

(ϕ2)ϕ̇2 −
υ(c)

2
(∇v)2 −

M(c)

2
(∇µ)2 −

ρ

2
ϕ2Ġ(c)

(26)

Finally, by (22), (23) and (26), (27) the equations on

ϕ1 and ϕ2 assume the new forms

ρ1 ẽ1ϕ1
ϕ̇1−

υ(c)

2
(∇v)2−

M(c)

2
(∇µ)2−

ϕ1

2
Ġ(c) = k1∇2ϕ1+ρ1s1

(27)

ρ2 ẽ2ϕ2
ϕ̇2−

υ(c)

2
(∇v)2−

M(c)

2
(∇µ)2−

ϕ2

2
Ġ(c) = k2∇2ϕ2+ρ2s2

(28)

Thus, the system (3), (8) is integrated with the equations

(28) and (29).



Second law. On any life process, there exits a state func-
tion η, called entropy, such that

ρη̇ ≥
P̃iϕ1

ϕ1
+
P̃iϕ2

ϕ2
+ p1 · ∇ϕ1 + p2 · ∇ϕ2 (29)

Proposition. The differential system (3), (8), (28) and
(29) satisfies the First and Second Law.

Proof. By the definition of P̃iϕ1
and P̃iϕ2

, we have from the
inequality (30)

ρη̇ ≥ ρ1
ẽ1ϕ1

(ϕ1)

ϕ1
ϕ̇1 −

υ(c)

2ϕ1
(∇v)2 − (30)

M(c)

2ϕ1
(∇µ)2 −

ρ

2
Ġ(c) + p1 · ∇ϕ1 +

ρ2
ẽ2ϕ2

(ϕ2)

ϕ2
ϕ̇2 −

υ(c)

2ϕ2
(∇v)2 − (31)

M(c)

2ϕ2
(∇µ)2 −

ρ

2
Ġ(c) + p2 · ∇ϕ2

from which the entropy is defined by

ρη(c, ϕ1, ϕ2) = ρG(c)+
∫ ρ1ẽ1ϕ1

(ϕ1)

ϕ1
dϕ1+

∫ ρ2ẽ1ϕ1
(ϕ1)

ϕ1
dϕ1



while from (31), we have

(
1

ϕ1
+

1

ϕ2
)
υ(c)

2
(∇v)2+ (32)

(
1

ϕ1
+

1

ϕ2
)
M(c)

2
(∇µ)2 − p1 · ∇ϕ1 − p2 · ∇ϕ2 ≥ 0

Hence, for the arbitrariness of the processes ∇v,∇µ,∇ϕ1,∇ϕ2,

we obtain the restrictions

υ(c) ≥ 0 , M(c) ≥ 0 , p1 · ∇ϕ1 ≤ 0 , p2 · ∇ϕ2 ≤ 0 (33)

Maximum principle

If we like that the Cahn–Hilliard equation describes a natural

physical problem, we have to prove a maximum theorem,

namely we have to show that the evolution equations imply

that the concentration c is always defined into the interval

[−1,1].



To this aim, remembering that the chemical potential is
given by

µ = −
γ

ρ
∇ · (ρ∇c) + ϕ0Fc(c) +

[
ϕ1 + ϕ2

2

]
Gc(c), (34)

we recall the definition of F and G by letting

F (c) =
1

4
(c2 − 1)2 , c ∈ R (35)

G(c) =
1

2

 c2 −1 ≤ c ≤ 1

1 c < −1 or c > 1
(36)

Hence F ≥ 0 and F vanishes only at c = −1,1. Moreover,
by (36)–(37) we have

Fc(c) = 4c(c2 − 1) , c ∈ R (37)

Gc(c) =

 c −1 < c < 1

0 c < −1 or c > 1
(38)

We denote by W the c−dependent part of the free energy,
that is

W (c) = ϕ0F (c) + uG(c), u =
ϕ1 + ϕ2

2
.



The function W has a unique minimum when u ≥ 4ϕ0,
while for u < 4ϕ0 it has two minima in c±, with |c±| <
1. It is known that the unique minimum in the potential
corresponds to the situation without a miscibility gap, while
in the regime with two minima there is a miscibility gap.

Finally, the mobility can be chosen as a positive function
depending on c. The dependence of mobility on the con-
centration is not new in literature: it appeared for the first
time in the original derivation of the Cahn-Hilliard equation
and later other authors considered different expressions for
M(c) . Here the mobility M(c) is taken in the form

M(c) = M0(c2 − 1)2 , M0 > 0,

which implies that both M and ∇M vanish at c = −1,1.
Furthermore, the mass density is such that

ρ(c) = ρ20 , c < −1 , ρ(c) = ρ10 , c > −1 .

In such a way ρ is extended to R.

Now we consider the initial value problem

ρ(c)ċ = ∇·[M(c)∇µ(c)] c(x,0) = c0(x) x ∈ Ω (39)



Theorem. Let c0(x) ∈ [−1,1] for any x ∈ Ω, then the
solution c(x, t) of equation (40) takes value in [−1,1] a.e
x ∈ Ω and for each t ∈ R+.

Proof. We introduce

c− =

 −1, c ≥ −1

c, c < −1 .

Accordingly,

c−(x,0) = −1, F (c−(x,0)) = 0 ∀x ∈ Ω;

moreover
∂c

∂t
Gc(c) = 0 , c /∈ (−1,1)

hence
∂c

∂t
µ (c−) = θ0

∂c

∂t
Fc (c−)−

∂c

∂t

γ

ρ
∇ · [ρ∇ c−] , c /∈ (−1,1) .

(40)

Multiply the differential equation in (40) by µ(c−). Then,
after an integration on Ω and by the divergence theorem
we obtain∫

Ω
ρ
∂c

∂t
µ (c−) dv = −

∫
Ω
M(c)∇µ (c) · ∇µ (c−) dv (41)



Looking at the left–hand side of (42) and applying (41) we

obtain ∫
Ω
ρ
∂c

∂t
µ (c−) dv

= θ0

∫
Ω
ρ
∂c

∂t
Fc (c−) dv − γ

∫
Ω

∂c

∂t
∇ · [ρ∇ c−] dv

Since ∇c− · n = 0 at ∂Ω, the divergence theorem gives∫
Ω

∂c

∂t
∇ · [ρ∇ c−] dv = −

∫
Ω
ρ∇

[
∂c

∂t

]
∇ c−dv

Because

∇
[
∂c

∂t
− (c−).

]
· ∇ c− = 0

so, we have

∫
Ω

∂c

∂t
∇ · [ρ∇ c−] dv = −

1

2

d

dt

∫
Ω
ρ |∇ c−|2 dv (42)

Moreover, since Fc(−1) = 0 then

[
∂c

∂t
−
∂(c−)

∂t
]Fc(c−) = 0;



so we have ∫
Ω
ρ
∂c

∂t
Fc (c−) dv =

d

dt

∫
Ω
ρF (c−) dv (43)

Finally, we have from (43) and (44)

d

dt

∫
Ω
ρ (c)

[
θ0F (c−) +

γ

2
|∇ c−|2

]
dv =

−
∫

Ω
M(c−)∇µ (c−) · ∇µ (c−) dv ≤ 0

After a time integration on [0, T ] and by the initial condi-

tions we obtain∫
Ω
ρ

[
θ0F (c−) +

γ

2
|∇ c−|2

]
|t=T dv ≤ 0 T ∈ R+ .

This implies F (c−(x, T )) = 0, ∇c−(x, T ) = 0. Since, for any

T > 0 we have

c−(x, T ) = −1 c(x, T ) ≥ −1 .

By a very similar proof we can show that c(x, T ) ≤ 1.



The differential system for the
separation-integration model

In the framework of the Section 3, the differential system

is given in the 2-dimensional domain Ω× (0, T ) by

ρv̇ = −∇p+ρ∇·(∇c⊗∇c)+∇·υ(c)∇v+ρb, ∇·v = 0 (44)

ρċ = ∇ ·M(c)∇(γ∇2c− ϕ0F
′(c)−

ϕ1 + ϕ2

2
G′(c)) (45)

ρ1 ẽ1ϕ1
ϕ̇1−

υ(c)

2
(∇v)2−

M(c)

2
(∇µ)2−

ϕ1

2
Ġ(c) = k1∇2ϕ1+ρ1s1

(46)

ρ2 ẽ2ϕ2
ϕ̇2−

υ(c)

2
(∇v)2−

M(c)

2
(∇µ)2−

ϕ2

2
Ġ(c) = k2∇2ϕ2+ρ2s2

(47)

with the boundary conditions (13). While the initial condi-

tions are given in (14).



There are meaningful problems for which is correct to ne-

glect the mean velocity v of the mixture. Then, in a such

a case, we obtain the new system

ρ
∂c

∂t
= ∇ ·M(c)∇(γ∇2c− ϕ0F

′(c)−
ϕ1 + ϕ2

2
G′(c)) (48)

ρ1 ẽ1ϕ1
(ϕ1)

∂ϕ1

∂t
−
M(c)

2
(∇µ)2 −

ϕ1

2
Ġ(c) = k1∇2ϕ1 + ρ1s1

(49)

ρ2 ẽ2ϕ2
(ϕ2)

∂ϕ2

∂t
−
M(c)

2
(∇µ)2 −

ϕ2

2
Ġ(c) = k2∇2ϕ2 + ρ2s2

(50)

For this new system, the boundary conditions are given on

∂Ω

M(c)∇µ · n = 0 ∇c(x, t) · n(x)|∂Ω = 0 ,

(51)

∇ϕ1(x, t) · n(x)|∂Ω = 0 , ∇ϕ2(x, t) · n(x)|∂Ω = 0



Finally, we assign the initial conditions

v(x,0) = v0(x) , c(x,0) = c0(x) , x ∈ Ω

(52)

ϕ1(x,0) = ϕ10(x) , ϕ2(x,0) = ϕ20(x) , x ∈ Ω

In order to describe the integration-separation process, it

is crucial for this system to study the numerical simulation

of Cahn-Hilliard equation (49). For this purpose, we will

consider only the Cahn-Hilliard equation, where (ϕ1 +ϕ2) is

a parameter, which represents the mean knowledge level of

two populations. In the Fig. 1, 2, 3, 4, we have represented

the evolution of the integration-separation phase fields, with

different values of the control u = ϕ1+ϕ2
2 , such that u1 <

u2 < u3 < u4 < ϕ0 .



Fig.1 Fig.2

Fig.3 Fig.4



Finally, when u ≥ ϕ0 we obtain the complete homogeniza-

tion represented in the Fig. 5.

Fig.5


