The effect of a thin layer of heterogeneities in an elastic structure.

Giuseppe Geymonat

LMS École Polytechnique

To Gianni Gilardi with best wishes

Joint work with M. Bellieud, S. Hendili, F. Krasucki, P. E. Steltzig, G. Michaille, M. Vidrascu

Examples of thin layers of heterogeneities in a structure (of elastic material)

The heterogeneities can be holes, elastic material, rigid inclusions

Problem peculiarities:

- a thin layer of very small heterogeneities with highly contrasted materials (the materials characteristics of the structure and the heterogeneity can be very different)
- a large number of very small heterogeneities periodically distributed in the layer
- small deformations

Problem peculiarities:

- a thin layer of very small heterogeneities with highly contrasted materials (the materials characteristics of the structure and the heterogeneity can be very different)
- a large number of very small heterogeneities periodically distributed in the layer
- small deformations

Computational difficulties:

- The computational cost increases with the number of heterogeneities
- It can be difficult to obtain a correct mesh

How much can the heterogeneities be important?

How much can the heterogeneities be important?

The influence of the heterogeneities on the deformed shape

How much can the heterogeneities be important?

The influence of the heterogeneities on the deformed shape

The influence of the heterogeneities on the stresses

The methods

i) Matched asymptotic expansions (S. Hendili, F. Krasucki, M. Vidrascu)

ii) Variational convergence (M. Bellieud, F. Krasucki, G. Michalle;

F. Krasucki, P. E. Steltzig)

Goals of the matched asymptotic expansions method

• obtain a precise macroscopic behaviour replacing the layer by a surface (low cost)

Goals of the matched asymptotic expansions method

• obtain a precise macroscopic behaviour replacing the layer by a surface (low cost)

• and still obtain precise informations on the local fields near the heterogeneities (important for the applications)

The problem (the unknown field solution is \mathbf{u}^{ε})

holes, elastic inclusions, rigid inclusions

The problem (the unknown field solution is \mathbf{u}^{ε})

holes, elastic inclusions, rigid inclusions

What happens for $\varepsilon \to 0$?

The problem (the unknown field solution is \mathbf{u}^{ε})

holes, elastic inclusions, rigid inclusions

What happens for $\varepsilon \to 0$?

The problem (the unknown field solution is \mathbf{u}^{ε})

holes, elastic inclusions, rigid inclusions

The problem (the unknown field solution is \mathbf{u}^{ε})

holes, elastic inclusions, rigid inclusions

The problem (the unknown field solution is \mathbf{u}^{ε})

holes, elastic inclusions, rigid inclusions

A two-scale internal boundary layer

The main steps of the matched asymptotic expansions method

The main steps of the matched asymptotic expansions method

- \star Decomposition of the domain and scale separation
- \star Associated asymptotic developments of the solution \mathbf{u}^{ε} .
- ★ Matching conditions

The main steps of the matched asymptotic expansions method

- \star Decomposition of the domain and scale separation
- \star Associated asymptotic developments of the solution \mathbf{u}^{ε} .
- ★ Matching conditions
- \implies Boundary value problems at the different orders
- \implies Construction of the approximate solutions

The main steps of the matched asymptotic expansions method

- \star Decomposition of the domain and scale separation
- \star Associated asymptotic developments of the solution \mathbf{u}^{ε} .
- ★ Matching conditions
- \implies Boundary value problems at the different orders
- \implies Construction of the approximate solutions

Some references

- * Van Dyke (1964).
- * Nguetseng, Sanchez-Palencia (1986).
- * Abdelmoula, Marigo (2000).
- * G., Hendili, Krasucki, Vidrascu (2011).
- * David, Marigo, Pideri (2012).

Domain decomposition

Domain decomposition

Inner domain: $\Omega^{int}(\varepsilon) := \Big\{$	$\mathbf{x} \in \Omega$; $ x_1 < $	$\frac{\eta(\varepsilon)}{2}$
with $\lim_{arepsilon ightarrow 0}\eta(arepsilon)=0$ a	nd $\lim_{\varepsilon \to 0} \frac{\eta(\varepsilon)}{\varepsilon}$	$=\infty$

Domain decomposition

$$\begin{array}{l} \text{Inner domain: } \Omega^{int}(\varepsilon) := \left\{ \mathbf{x} \in \Omega ; \ |\mathbf{x}_1| < \frac{\eta(\varepsilon)}{2} \right\} \\ \text{with } \lim_{\varepsilon \to 0} \eta(\varepsilon) = 0 \text{ and } \lim_{\varepsilon \to 0} \frac{\eta(\varepsilon)}{\varepsilon} = \infty \end{array}$$

Scale separation in the inner domain

$$\begin{split} \boldsymbol{M}(\mathbf{x}^{M}) \ \in \ \Omega^{int}(\varepsilon) &= \ \left\{ \mathbf{x} \in \Omega \ ; \ |x_{1}| < \frac{\eta(\varepsilon)}{2} \right\} \\ \mathbf{x}^{M} &= \mathbf{x}^{I} + \varepsilon \mathbf{y}^{M} \Leftrightarrow \begin{cases} x_{1}^{M} = \varepsilon y_{1}^{M} \\ x_{2}^{M} = x_{2}^{I} + \varepsilon y_{2}^{M} \\ x_{3}^{M} = x_{3}^{I} + \varepsilon y_{3}^{M} \end{cases} \end{split}$$

Consequences when $\varepsilon \to 0$

- $M(\mathbf{\hat{x}}, \mathbf{y}^M)$ with $\mathbf{\hat{x}} = (x_2, x_3)$
- the periodic cell is infinite in the direction *y*₁
- the periodic cell is bounded in the directions y₂ and y₃

• Outer development : far from ω

$$\mathbf{u}^{\varepsilon}(x_1, x_2, x_3) = \sum_{i=0}^{\infty} \varepsilon^i \mathbf{u}^i(x_1, x_2, x_3)$$

• Outer development : far from ω

$$\mathbf{u}^{\varepsilon}(x_1, x_2, x_3) = \sum_{i=0}^{\infty} \varepsilon^i \mathbf{u}^i(x_1, x_2, x_3)$$

• Inner development : near ω

$$\mathbf{u}^{\varepsilon}(x_1, x_2, x_3) = \sum_{i=0}^{\infty} \varepsilon^i \mathbf{v}^i(\mathbf{\hat{x}}, y_1, \mathbf{\hat{y}})$$

$$y_1 = \frac{x_1}{\varepsilon}$$
$$\mathbf{\hat{y}} = (\frac{x_2 - x_2'}{\varepsilon}, \frac{x_3 - x_3'}{\varepsilon})$$
$$\mathbf{v}' \ \mathbf{\hat{y}}\text{-periodic}$$

Matching conditions

Matching conditions

 $\begin{array}{l} \text{Overlapping region:} \\ \frac{\varepsilon}{2} < |x_1| < \frac{\eta(\varepsilon)}{2} \text{ or} \\ \frac{1}{2} < |y_1| = \frac{|x_1|}{\varepsilon} < \frac{\eta(\varepsilon)}{2\varepsilon} \end{array}$

Matching conditions

In the overlapping region both expansions are valid

Overlapping region: $\frac{\varepsilon}{2} < |x_1| < \frac{\eta(\varepsilon)}{2}$ or

 $\frac{1}{2} < |y_1| = \frac{|x_1|}{\varepsilon} < \frac{\eta(\varepsilon)}{2\varepsilon}$

In the overlapping region both expansions are valid

• For every
$$\mathbf{u}^i$$
 one has for $0 < x_1 < \frac{\eta(\varepsilon)}{2\varepsilon}$:
 $\mathbf{u}^i(\mathbf{x}) = \mathbf{u}^i(0+, \hat{\mathbf{x}}) + x_1 \frac{\partial \mathbf{u}^i}{\partial x_1}(0+, \hat{\mathbf{x}}) + \dots$

•	
•	
•	
•	
•	
•	
•	
•	
•	
•	
•	

Overlapping region:

$$\begin{array}{l} \frac{\varepsilon}{2} < |x_1| < \frac{\eta(\varepsilon)}{2} \text{ or} \\ \frac{1}{2} < |y_1| = \frac{|x_1|}{\varepsilon} < \frac{\eta(\varepsilon)}{2\varepsilon} \end{array}$$

In the overlapping region both expansions are valid

• For every \mathbf{u}^i one has for $0 < x_1 < \frac{\eta(\varepsilon)}{2\varepsilon}$: $\mathbf{u}^i(\mathbf{x}) = \mathbf{u}^i(0+, \hat{\mathbf{x}}) + x_1 \frac{\partial u^i}{\partial x_1}(0+, \hat{\mathbf{x}}) + \dots$

hence since x₁ = εy₁:

$$\begin{split} \mathbf{u}^{\varepsilon}(\mathbf{x}_{1},\hat{\mathbf{x}}) &= \mathbf{u}^{0}(0+,\hat{\mathbf{x}}) + \varepsilon \left(\mathbf{u}^{1}(0+,\hat{\mathbf{x}}) + y_{1}\frac{\partial u^{0}}{\partial x_{1}}(0+,\hat{\mathbf{x}})\right) + \dots \\ &= \mathbf{v}^{0}(\hat{\mathbf{x}},y_{1},\hat{\mathbf{y}}) + \varepsilon \mathbf{v}^{1}(\hat{\mathbf{x}},y_{1},\hat{\mathbf{y}}) + \dots . \end{split}$$

Overlapping region:

$$\begin{array}{l} \frac{\varepsilon}{2} < |x_1| < \frac{\eta(\varepsilon)}{2} \text{ or} \\ \frac{1}{2} < |y_1| = \frac{|x_1|}{\varepsilon} < \frac{\eta(\varepsilon)}{2\varepsilon} \end{array}$$

In the overlapping region both expansions are valid

• For every \mathbf{u}^i one has for $0 < x_1 < \frac{\eta(\varepsilon)}{2\varepsilon}$: $\mathbf{u}^i(\mathbf{x}) = \mathbf{u}^i(0+, \hat{\mathbf{x}}) + x_1 \frac{\partial u^i}{\partial x_1}(0+, \hat{\mathbf{x}}) + \dots$

hence since x₁ = εy₁:

$$\begin{split} \mathbf{u}^{\varepsilon}(\mathbf{x}_{1},\hat{\mathbf{x}}) &= \mathbf{u}^{0}(\mathbf{0}+,\hat{\mathbf{x}}) + \varepsilon \left(\mathbf{u}^{1}(\mathbf{0}+,\hat{\mathbf{x}}) + y_{1}\frac{\partial u^{0}}{\partial x_{1}}(\mathbf{0}+,\hat{\mathbf{x}})\right) + \dots \\ &= \mathbf{v}^{0}(\hat{\mathbf{x}},y_{1},\hat{\mathbf{y}}) + \varepsilon \mathbf{v}^{1}(\hat{\mathbf{x}},y_{1},\hat{\mathbf{y}}) + \dots \end{split}$$

$$\begin{array}{l} \text{Overlapping region:} \\ \frac{\varepsilon}{2} < |x_1| < \frac{\eta(\varepsilon)}{2} \text{ or} \\ \frac{1}{2} < |y_1| = \frac{|x_1|}{\varepsilon} < \frac{\eta(\varepsilon)}{2\varepsilon} \end{array}$$

■ take the limit for ε → 0 with fixed x₁:

$$\begin{split} &\lim_{y_1 \to \pm \infty} \left(\mathbf{v}^0(\hat{\mathbf{x}}, y_1, \hat{\mathbf{y}}) - \mathbf{u}^0(0\pm, \hat{\mathbf{x}}) \right) = \mathbf{0} \\ &\lim_{y_1 \to \pm \infty} \left(\mathbf{v}^1(\hat{\mathbf{x}}, y_1, \hat{\mathbf{y}}) - \left(\mathbf{u}^1(0\pm, \hat{\mathbf{x}}) + y_1 \frac{\partial \mathbf{u}^0}{\partial x_1}(0\pm, \hat{\mathbf{x}}) \right) \right) = \mathbf{0} \end{split}$$

In the overlapping region both expansions are valid

• For every \mathbf{u}^i one has for $0 < x_1 < \frac{\eta(\varepsilon)}{2\varepsilon}$: $\mathbf{u}^i(\mathbf{x}) = \mathbf{u}^i(0+, \hat{\mathbf{x}}) + x_1 \frac{\partial u^i}{\partial x_1}(0+, \hat{\mathbf{x}}) + \dots$

hence since x₁ = εy₁:

$$\begin{split} \mathbf{u}^{\varepsilon}(\mathbf{x}_{1},\hat{\mathbf{x}}) &= \mathbf{u}^{0}(\mathbf{0}+,\hat{\mathbf{x}}) + \varepsilon \left(\mathbf{u}^{1}(\mathbf{0}+,\hat{\mathbf{x}}) + y_{1}\frac{\partial u^{0}}{\partial x_{1}}(\mathbf{0}+,\hat{\mathbf{x}})\right) + \dots \\ &= \mathbf{v}^{0}(\hat{\mathbf{x}},y_{1},\hat{\mathbf{y}}) + \varepsilon \mathbf{v}^{1}(\hat{\mathbf{x}},y_{1},\hat{\mathbf{y}}) + \dots \end{split}$$

Overlapping region:

 $\begin{array}{l} \frac{\varepsilon}{2} < |x_1| < \frac{\eta(\varepsilon)}{2} \text{ or } \\ \frac{1}{2} < |y_1| = \frac{|x_1|}{\varepsilon} < \frac{\eta(\varepsilon)}{2\varepsilon} \end{array}$

take the limit for ε → 0 with fixed x₁:

$$\begin{split} &\lim_{y_1 \to \pm \infty} \left(\mathbf{v}^0(\hat{\mathbf{x}}, y_1, \hat{\mathbf{y}}) - \mathbf{u}^0(0\pm, \hat{\mathbf{x}}) \right) = \mathbf{0} \\ &\lim_{y_1 \to \pm \infty} \left(\mathbf{v}^1(\hat{\mathbf{x}}, y_1, \hat{\mathbf{y}}) - \left(\mathbf{u}^1(0\pm, \hat{\mathbf{x}}) + y_1 \frac{\partial \mathbf{u}^0}{\partial x_1}(0\pm, \hat{\mathbf{x}}) \right) \right) = \mathbf{0} \end{split}$$

Analogous matching conditions hold for the stresses.

•
•
•
•
•
•
•
•
•
•
•

Order i = 0

• Outer approximation:

$$\begin{cases} \mathbf{div}\boldsymbol{\sigma}^0 = \mathbf{0} & \text{in } \Omega \\ \boldsymbol{\sigma}^0 = \mathbf{A}\boldsymbol{\gamma}(\mathbf{u}^0) & \text{in } \Omega \\ \boldsymbol{\sigma}^0 \mathbf{n} = \mathbf{F} & \text{on } \Gamma_F \\ \mathbf{u}^0 = \mathbf{0} & \text{on } \Gamma_0 \end{cases}$$

• Inner approximation

$$\mathbf{v}^{0}\left(\mathbf{\hat{x}}
ight)=\mathbf{u}^{0}\left(0,\mathbf{\hat{x}}
ight)$$

Order i = 0

• Outer approximation:

$$\begin{cases} \mathbf{div}\boldsymbol{\sigma}^0 = \mathbf{0} & \text{in } \Omega \\ \boldsymbol{\sigma}^0 = \mathbf{A}\boldsymbol{\gamma}(\mathbf{u}^0) & \text{in } \Omega \\ \boldsymbol{\sigma}^0 \mathbf{n} = \mathbf{F} & \text{on } \Gamma_F \\ \mathbf{u}^0 = \mathbf{0} & \text{on } \Gamma_0 \end{cases}$$

• Inner approximation

$$\mathbf{v}^{0}\left(\mathbf{\hat{x}}\right) = \mathbf{u}^{0}\left(0,\mathbf{\hat{x}}\right)$$

• The heterogeneities disappear at the order 0

Order i = 0

• Outer approximation:

$$\begin{cases} \mathbf{div}\boldsymbol{\sigma}^0 = \mathbf{0} & \text{in } \Omega \\ \boldsymbol{\sigma}^0 = \mathbf{A}\boldsymbol{\gamma}(\mathbf{u}^0) & \text{in } \Omega \\ \boldsymbol{\sigma}^0 \mathbf{n} = \mathbf{F} & \text{on } \Gamma_F \\ \mathbf{u}^0 = \mathbf{0} & \text{on } \Gamma_0 \end{cases}$$

• Inner approximation

$$\mathbf{v}^{0}\left(\mathbf{\hat{x}}
ight)=\mathbf{u}^{0}\left(0,\mathbf{\hat{x}}
ight)$$

- The heterogeneities disappear at the order 0
- This result does not depend on the type of heterogeneity

Order i = 1

$$\begin{cases} \mathbf{div}\boldsymbol{\sigma}^{1} = \mathbf{0} & \text{in } \Omega \backslash \omega \\ \boldsymbol{\sigma}^{1} = \mathbf{A}\boldsymbol{\gamma}(\mathbf{u}^{1}) & \text{in } \Omega \backslash \omega \\ \boldsymbol{\sigma}^{1}\mathbf{n} = \mathbf{0} & \text{on } \Gamma_{F} \\ \mathbf{u}^{1} = \mathbf{0} & \text{on } \Gamma_{0} \end{cases}$$

Order i = 1

$$\begin{cases} \mathbf{div}\boldsymbol{\sigma}^{1} = \mathbf{0} & \text{ in } \Omega \backslash \omega \\ \boldsymbol{\sigma}^{1} = \mathbf{A}\boldsymbol{\gamma}(\mathbf{u}^{1}) & \text{ in } \Omega \backslash \omega \\ \boldsymbol{\sigma}^{1}\mathbf{n} = \mathbf{0} & \text{ on } \Gamma_{F} \\ \mathbf{u}^{1} = \mathbf{0} & \text{ on } \Gamma_{0} \end{cases}$$

 \bullet Transmission conditions on ω :

$$\begin{cases} \begin{bmatrix} \mathbf{u}^1 \end{bmatrix} (\hat{\mathbf{x}}) = u_{i,j}^0(0, \hat{\mathbf{x}}) a_{i,j} \\ \begin{bmatrix} \boldsymbol{\sigma}^1 \mathbf{e}_1 \end{bmatrix} (\hat{\mathbf{x}}) = |Y| \operatorname{div}_x \left(\mathbf{A} \left(\frac{\partial \mathbf{u}^0}{\partial x_2} (0, \hat{\mathbf{x}}) \otimes_S \mathbf{e}_2 + \frac{\partial \mathbf{u}^0}{\partial x_3} (0, \hat{\mathbf{x}}) \otimes_S \mathbf{e}_3 \right) \right) \\ -\operatorname{div}_x \left(\frac{\partial u_i^0}{\partial x_j} (0, \hat{\mathbf{x}}) b_{i,j} \right) \end{cases}$$

$$\bullet \ \mathbf{v}^1 = u_{i,j}^0(0, \hat{\mathbf{x}}) c_{i,j}$$

Order i = 1

$$\begin{cases} \operatorname{div} \sigma^{1} = \mathbf{0} & \text{in } \Omega \backslash \omega \\ \sigma^{1} = \mathbf{A} \gamma(\mathbf{u}^{1}) & \text{in } \Omega \backslash \omega \\ \sigma^{1} \mathbf{n} = \mathbf{0} & \text{on } \Gamma_{F} \\ \mathbf{u}^{1} = \mathbf{0} & \text{on } \Gamma_{0} \end{cases}$$

• Transmission conditions on ω :

$$\begin{cases} \begin{bmatrix} \mathbf{u}^{1} \end{bmatrix} (\hat{\mathbf{x}}) = u_{i,j}^{0}(0, \hat{\mathbf{x}}) a_{i,j} \\ \begin{bmatrix} \boldsymbol{\sigma}^{1} \mathbf{e}_{1} \end{bmatrix} (\hat{\mathbf{x}}) = |Y| \mathsf{div}_{x} \left(\mathbf{A} \left(\frac{\partial \mathbf{u}^{0}}{\partial x_{2}}(0, \hat{\mathbf{x}}) \otimes_{S} \mathbf{e}_{2} + \frac{\partial \mathbf{u}^{0}}{\partial x_{3}}(0, \hat{\mathbf{x}}) \otimes_{S} \mathbf{e}_{3} \right) \right) \\ - \mathsf{div}_{x} \left(\frac{\partial u_{i}^{0}}{\partial x_{j}}(0, \hat{\mathbf{x}}) b_{i,j} \right) \end{cases}$$

•
$$\mathbf{v}^1 = u^0_{i,j}(0, \mathbf{\hat{x}})c_{i,j}$$

- |Y| is the volume of the heterogeneity
- the coefficients $(a_{i,j}, b_{i,j}, c_{i,j})$ are obtained from the solutions of some elementary problems that only depend on the heterogeneity (as in homogenization).

Conclusion

- $\bullet\,$ The layer of heterogeneities is replaced by the internal surface $\omega\,$
- \implies the macroscopic behaviour is computed on a domain without heterogeneities
- The coefficients $(a_{i,j}, b_{i,j}, c_{i,j})$ are computed only once
- The microscopic behaviour is computed for only one heterogeneity Y

Conclusion

- $\bullet\,$ The layer of heterogeneities is replaced by the internal surface $\omega\,$
- \implies the macroscopic behaviour is computed on a domain without heterogeneities
- The coefficients $(a_{i,j}, b_{i,j}, c_{i,j})$ are computed only once
- The microscopic behaviour is computed for only one heterogeneity Y

Drawbacks

- Only a formal method
- The transmission conditions on the exterior problem of order *i* = 1 are non usual
- The microscopic scale for the interior domain leads to an unbounded domain.

Conclusion

- $\bullet\,$ The layer of heterogeneities is replaced by the internal surface $\omega\,$
- \implies the macroscopic behaviour is computed on a domain without heterogeneities
- The coefficients $(a_{i,j}, b_{i,j}, c_{i,j})$ are computed only once
- The microscopic behaviour is computed for only one heterogeneity Y

Drawbacks

- Only a formal method
- The transmission conditions on the exterior problem of order *i* = 1 are non usual
- The microscopic scale for the interior domain leads to an unbounded domain.

A last (?) comment

The method has been developed in a particular situation (the geometry of the heterogeneity is of the type εY); however it might be adapted for other situations

Goals of the variational convergence

- To give a rigorous mathematical proof of the convergence of the solution ${\bm u}^\varepsilon$ to ${\bm u}^0$
- To characterize the problem whose solution is \mathbf{u}^0 .
- To obtain error estimates and/or a first corrector

A joint work with M. Bellieud, F. Krasucki, G. Michaille

A joint work with M. Bellieud, F. Krasucki, G. Michaille

A joint work with M. Bellieud, F. Krasucki, G. Michaille

 $\Omega := \left(\text{-L,L} \right)^3$

Notations

$$\begin{split} \boldsymbol{\Sigma} &:= \boldsymbol{\Omega} \cap \{ x_1 = \mathbf{0} \}, \ \boldsymbol{T} \subset \mathbf{R}^2 \text{ bdd, Lipschitz} \\ \boldsymbol{F}_{\varepsilon} &= \bigcup_{i \in I_{\varepsilon}} \varepsilon i \mathbf{e}_2 + \varepsilon \boldsymbol{T} \times (\mathbf{0}, \boldsymbol{L}) \\ \boldsymbol{I}_{\varepsilon} &:= \{ i \in \mathbf{Z}, \ \varepsilon i \mathbf{e}_2 + \varepsilon \boldsymbol{T} \times (-\boldsymbol{L}, \boldsymbol{L}) \subset \boldsymbol{\Omega} \} \end{split}$$

$$\begin{cases} \operatorname{div} \boldsymbol{\sigma}^{\varepsilon} = \mathbf{f} & \text{in } \Omega \\ \boldsymbol{\sigma}^{\varepsilon} = \lambda_{\varepsilon} tr(\boldsymbol{\gamma}(\mathbf{u}^{\varepsilon})) \mathbf{I}_{3} + 2\mu_{\varepsilon} \boldsymbol{\gamma}(\mathbf{u}^{\varepsilon})) & \text{in } \Omega \\ \mathbf{u}^{\varepsilon} = \mathbf{0} & \text{on } \Gamma \end{cases}$$

$$\begin{split} \mu_{\varepsilon} &= \mu_0 \mathbf{1}_{\Omega \setminus F_{\varepsilon}} + k_{\varepsilon} \mu_1 \mathbf{1}_{F_{\varepsilon}} \\ \lambda_{\varepsilon} &= \lambda_0 \mathbf{1}_{\Omega \setminus F_{\varepsilon}} + k_{\varepsilon} \lambda_1 \mathbf{1}_{F_{\varepsilon}}. \\ 3\lambda_0 + 2\mu_0 > 0, \ \mu_0 > 0, \\ 3\lambda_1 + 2\mu_1 > 0, \ \mu_1 > 0 \end{split}$$

 $k_{\varepsilon} = rac{1}{arepsilon^p}$ with p > 0

$$\inf_{\mathbf{u}\in H_0^1(\Omega;\mathbf{R}^3)}\Phi_{\varepsilon}(\mathbf{u})$$

where

$$\Phi_{\varepsilon}(\mathbf{u}) := \{\frac{1}{2} \int_{\Omega} \{\lambda_{\varepsilon}(tr\gamma(\mathbf{u}))^2 + \mu_{\varepsilon}\gamma(\mathbf{u}) : \gamma(\mathbf{u})\} dx - \int_{\Omega} \mathbf{f} \mathbf{u} dx \}$$

$$\inf_{\mathbf{u}\in H_0^1(\Omega;\mathbf{R}^3)}\Phi_{\varepsilon}(\mathbf{u})$$

where

$$\Phi_{\varepsilon}(\mathbf{u}) := \{\frac{1}{2} \int_{\Omega} \{\lambda_{\varepsilon}(tr\gamma(\mathbf{u}))^2 + \mu_{\varepsilon}\gamma(\mathbf{u}) : \gamma(\mathbf{u})\} dx - \int_{\Omega} \mathbf{f} \mathbf{u} dx \}$$

• a priori estimate + Korn'inequality \implies existence and uniqueness of the solution \mathbf{u}^{ε} with:

$$\int_{\Omega} \mathbf{u}^{\varepsilon} : \mathbf{u}^{\varepsilon} dx + \int_{\Omega \setminus F_{\varepsilon}} \gamma(\mathbf{u}^{\varepsilon}) : \gamma(\mathbf{u}^{\varepsilon}) dx + k_{\varepsilon} \int_{F_{\varepsilon}} \gamma(\mathbf{u}^{\varepsilon}) : \gamma(\mathbf{u}^{\varepsilon}) dx \leq C$$

$$\inf_{\mathbf{u}\in H_0^1(\Omega;\mathbf{R}^3)}\Phi_{\varepsilon}(\mathbf{u})$$

where

$$\Phi_{\varepsilon}(\mathbf{u}) := \{\frac{1}{2} \int_{\Omega} \{\lambda_{\varepsilon}(tr\gamma(\mathbf{u}))^2 + \mu_{\varepsilon}\gamma(\mathbf{u}) : \gamma(\mathbf{u})\} dx - \int_{\Omega} \mathbf{f} \mathbf{u} dx \}$$

• a priori estimate + Korn'inequality \implies existence and uniqueness of the solution \mathbf{u}^{ε} with:

$$\int_{\Omega} \mathbf{u}^{\varepsilon} : \mathbf{u}^{\varepsilon} dx + \int_{\Omega \setminus F_{\varepsilon}} \gamma(\mathbf{u}^{\varepsilon}) : \gamma(\mathbf{u}^{\varepsilon}) dx + k_{\varepsilon} \int_{F_{\varepsilon}} \gamma(\mathbf{u}^{\varepsilon}) : \gamma(\mathbf{u}^{\varepsilon}) dx \leq C$$

• \mathbf{u}^{ε} converges weakly in $H_0^1(\Omega; \mathbf{R}^3)$ to \mathbf{u}^0

$$\inf_{\mathbf{u}\in H_0^1(\Omega;\mathbf{R}^3)}\Phi_{\varepsilon}(\mathbf{u})$$

where

$$\Phi_{\varepsilon}(\mathbf{u}) := \{\frac{1}{2} \int_{\Omega} \{\lambda_{\varepsilon}(tr\gamma(\mathbf{u}))^2 + \mu_{\varepsilon}\gamma(\mathbf{u}) : \gamma(\mathbf{u})\} dx - \int_{\Omega} \mathbf{f} \mathbf{u} dx \}$$

• a priori estimate + Korn'inequality \implies existence and uniqueness of the solution \mathbf{u}^{ε} with:

$$\int_{\Omega} \mathbf{u}^{\varepsilon} : \mathbf{u}^{\varepsilon} dx + \int_{\Omega \setminus F_{\varepsilon}} \gamma(\mathbf{u}^{\varepsilon}) : \gamma(\mathbf{u}^{\varepsilon}) dx + k_{\varepsilon} \int_{F_{\varepsilon}} \gamma(\mathbf{u}^{\varepsilon}) : \gamma(\mathbf{u}^{\varepsilon}) dx \leq C$$

•
$$\mathbf{u}^{\varepsilon}$$
 converges weakly in $H_0^1(\Omega; \mathbf{R}^3)$ to \mathbf{u}^0

Goal

Find the problem whose solution is \boldsymbol{u}^0 , i.e. the $\Gamma\text{-limit}$ of $\Phi_{\boldsymbol{\varepsilon}}$

Answer

The $\Gamma\text{-limit}$ of Φ_{ε} is:

$$\Phi_0(\mathbf{u}) := \frac{1}{2} \int_{\Omega} \{\lambda_0(tr\gamma(\mathbf{u}))^2 + \mu_0\gamma(\mathbf{u}) : \gamma(\mathbf{u})\} dx - \int_{\Omega} \mathbf{f} \mathbf{u} dx + \Psi_F(\mathbf{u}) \} dx$$

Answer

The Γ -limit of Φ_{ε} is:

$$\Phi_0(\mathbf{u}) := \frac{1}{2} \int_{\Omega} \{\lambda_0(tr\gamma(\mathbf{u}))^2 + \mu_0\gamma(\mathbf{u}) : \gamma(\mathbf{u})\} dx - \int_{\Omega} \mathbf{f} \mathbf{u} dx + \Psi_F(\mathbf{u})$$

A similar situation has been studied by A.L. Bessoud, F. Krasucki, G. Michaille (2009) when F_{ε} is the full layer $L_{\varepsilon} := (-\frac{\varepsilon}{2}, \frac{\varepsilon}{2}) \times \Sigma$. They found

$$\Phi_0(\mathbf{u}) := \frac{1}{2} \int_{\Omega} \{\lambda_0(tr\gamma(\mathbf{u}))^2 + \mu_0\gamma(\mathbf{u}) : \gamma(\mathbf{u})\} dx - \int_{\Omega} \mathbf{f} \mathbf{u} dx + \Psi_L(\mathbf{u})$$

with two significant cases: p = 1 and p = 3.

The case
$$p = 1$$

full layer L_{ε}

$$\Psi_{L}(\mathbf{u}) = \int_{\Sigma} \{ \frac{2\lambda_{1}mu_{1}}{\lambda_{1} + 2mu_{1}} (tr\hat{\gamma}(\mathbf{u}))^{2} + 2\mu_{1}\hat{\gamma}(\mathbf{u}) : \hat{\gamma}(\mathbf{u}) \} d\Sigma$$

Remark: plate membrane energy

The case
$$p = 1$$

full layer L_{ε}

$$\Psi_{L}(\mathbf{u}) = \int_{\Sigma} \{ \frac{2\lambda_{1}mu_{1}}{\lambda_{1} + 2mu_{1}} (tr\hat{\gamma}(\mathbf{u}))^{2} + 2\mu_{1}\hat{\gamma}(\mathbf{u}) : \hat{\gamma}(\mathbf{u}) \} d\Sigma$$

Remark: plate membrane energy

present situation

$$\Psi_{\mathsf{F}}(\mathbf{u}) = k^2 \mu_1 \frac{3\lambda_1 + 2\mu_1}{2(\lambda_1 + \mu_1)} \int_{\Sigma} |\frac{\partial u_3}{\partial x_3}|^2 d\Sigma$$

Remark: extensional strain energy of the fibers

The case
$$p = 3$$

full layer L_{ε}

$$\Psi_{L}(\mathbf{u}) = \frac{1}{3} \int_{\Sigma} \{ \frac{2\lambda_{1} m u_{1}}{\lambda_{1} + 2m u_{1}} (\hat{\Delta} u_{1})^{2} + 2\mu_{1} \frac{\partial^{2} u_{1}}{\partial x_{\alpha} \partial x_{\beta}} \frac{\partial^{2} u_{1}}{\partial x_{\alpha} \partial x_{\beta}} \} d\Sigma$$

Remark: plate bending energy

The case
$$p = 3$$

full layer L_{ε}

$$\Psi_{L}(\mathbf{u}) = \frac{1}{3} \int_{\Sigma} \{ \frac{2\lambda_{1} m u_{1}}{\lambda_{1} + 2m u_{1}} (\hat{\Delta} u_{1})^{2} + 2\mu_{1} \frac{\partial^{2} u_{1}}{\partial x_{\alpha} \partial x_{\beta}} \frac{\partial^{2} u_{1}}{\partial x_{\alpha} \partial x_{\beta}} \} d\Sigma$$

Remark: plate bending energy

present situation

$$\Psi_{F}(\mathbf{u}) = \sum_{\alpha,\beta=1}^{2} \mu_{1} \frac{3\lambda_{1} + 2\mu_{1}}{2(\lambda_{1} + \mu_{1})} k_{\alpha\beta} \int_{\Sigma} \frac{\partial^{2} u_{\alpha}}{\partial x_{3}^{2}} \frac{\partial^{2} u_{\beta}}{\partial x_{3}^{2}} d\Sigma$$

Remark: bending energy of the fibers

Proofs:

- a priori estimates
- choice of the good spaces : subspaces of $H_0^1(\Omega; \mathbf{R}^3)$ where $\Psi_F(\mathbf{u})$ has a meaning for p = 1, resp. p = 3

•

Thank you !

tanti auguri Gianni!!

 $\mathcal{T}_h(\Omega^{ext}(\varepsilon))$

 $\mathcal{T}_h(\Omega_0^{ext})$

 $\mathcal{T}_h(\Omega^{int}(\varepsilon))$

.

Figure: Holes $\varepsilon = \frac{1}{20}$ and $\varepsilon = \frac{1}{80}$

Figure: Holes