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Three equations :

∂u
∂t
−∆u + f (u) = g(x, t)

ε
∂2u
∂t2 +

∂u
∂t
−∆u + f (u) = g(x, t), ε > 0

∂u
∂t

+ ∆2u−∆f (u) = g(x, t)

g ∈ L∞(Ω× (0,T)), ∀T > 0
Ω : bounded and regular domain of Rn, n = 1, 2 or 3



Motivations :

• Caginalp phase-field system :

∂u
∂t −∆u + f (u) = θ
∂θ
∂t −∆θ = −∂u

∂t

u : order parameter
θ : relative temperature

Generalization :

∂u
∂t −∆u + f (u) = ∂α

∂t
∂2α
∂t2 + ∂α

∂t −∆α = −u− ∂u
∂t

α =
∫ t

0 θ ds + α0 : thermal displacement variable

Based on the Maxwell-Cattaneo law



• Hyperbolic relaxation of the Caginalp model :

ε∂
2u
∂t2 + ∂u

∂t −∆u + f (u) = θ, ε > 0
∂θ
∂t −∆θ = −∂u

∂t

Models rapid phase transitions in certain classes of materials (P. Galenko et
al.)

• Cahn-Hilliard equation

Models phase separation processes in binary alloys



In general :

f = F′, F(s) =
1
4

(s2 − 1)2, f (s) = s3 − s

Approximation of logarithmic potentials :

F(s) = −κ0
2 s2 + κ1[(1 + s) ln(1 + s) + (1− s) ln(1− s)]

f (s) = −κ0s + κ1 ln 1+s
1−s

s ∈ (−1, 1), 0 < κ1 < κ0

Logarithmic terms : entropy of mixing

Regular nonlinear terms : the problems are well understood



The first model problem :

∂u
∂t −∆u + f (u) = g(x, t) in Ω
u = 0 on Γ
u|t=0 = u0

Γ : boundary of Ω

Assumptions :

• g, ∂g
∂t ∈ L∞(Ω× (0,T)), ∀T > 0

• f ∈ C1(−1, 1), f (0) = 0, f is odd
• lims→±1 f (s) = ±∞, lims→±1 f ′(s) = +∞
• f ′ ≥ −c0, F ≥ −c1, c0, c1 ≥ 0, F(s) =

∫ s
0 f (τ) dτ

• u0 ∈ H2(Ω) ∩ H1
0(Ω), ‖u0‖L∞(Ω) < 1



Existence of a solution :

Take δ ∈ (0, 1) s.t.

‖u0‖L∞(Ω) ≤ δ, ‖g‖L∞(Ω×(0,T)) − f (δ) ≤ 0

(recall that lims→1 f (s) = +∞)

Set U = u− δ :

∂U
∂t
−∆U + f (u)− f (δ) = g− f (δ)

Multiply the equation by U+ = max(U, 0) (f ′ ≥ −c0) :

d
dt
‖U+‖2

L2(Ω) ≤ c‖U+‖2
L2(Ω)



Gronwall’s lemma (U+(0) = 0) :

u(x, t) ≤ δ, a.e. (x, t) ∈ Ω× (0,T)

f is odd :

‖u(t)‖L∞(Ω) ≤ δ ∈ (0, 1), ∀t ∈ [0,T]

→We essentially have a problem with a regular nonlinear term

Additional regularity : u(t) ∈ H2(Ω), ∀t ∈ [0,T]



Let u1 and u2 be 2 solutions with initial data u0,1 and u0,2 and set u = u1 − u2
and u0 = u0,1 − u0,2 :

∂u
∂t −∆u + f (u1)− f (u2) = 0
u = 0 on Γ
u|t=0 = u0

Multiply the equation by u (f ′ ≥ −c0, c0 ≥ 0) :

‖u1(t)− u2(t)‖L2(Ω) ≤ ect‖u0,1 − u0,2‖L2(Ω)

Consequences :

• Uniqueness



•We can define solutions in

Φ = {v ∈ L∞(Ω), ‖v‖L∞(Ω) ≤ 1}

(we can consider initial data containing the pure states)

We have

‖u(t)‖L∞(Ω) < 1, t > 0

(the phases mix instantaneously)



Remark : End of proof of existence : set

fδ(s) = f (s), |s| ≤ δ
fδ(s) = f (δ) + f ′(δ)(s− δ), s > δ
fδ(s) = f (−δ) + f ′(−δ)(s + δ), s < −δ

δ : as above

We have : f ′δ ≥ −c0, Fδ ≥ −c1

This yields : ‖uδ(t)‖L∞(Ω) ≤ δ ∈ (0, 1), t ∈ [0,T]

Since fδ = f in [−δ, δ], we deduce the existence and uniqueness of the solution



Remark : Dissipative estimates : we take

g = g(x), g ∈ L∞(Ω)

Key step : dissipative L∞(Ω)-estimate

Consider the ODE’s

y′± + f (y±) = h± := ±‖g‖L∞(Ω), y±(0) = ±‖u0‖L∞(Ω)

We have

|y±(t)| ≤ 1− δ(D(u0) + |h±|), t ∈ [0, 1]
|y±(t)| ≤ 1− δ(|h±|), t ≥ 1
D(v) = 1

1−‖v‖L∞(Ω)



Comparison principle :

y−(t) ≤ u(x, t) ≤ y+(t), a.e. (x, t) ∈ Ω× R+

This yields

‖u(t)‖L∞(Ω) ≤ 1− δ, t ≥ 0
‖u(t)‖L∞(Ω) ≤ 1− δ(‖g‖L∞(Ω)), t ≥ 1

→ Dissipative estimate

→ Existence of finite-dimensional attractors

→ Convergence of trajectories to steady states



Remark : Neumann boundary conditions

∂u
∂ν

= 0 on Γ

ν : unit outer normal

Similar results

Remark : Dynamic boundary conditions

Account for the interactions with the walls in confined systems

∂u
∂t
−∆Γu + fΓ(u) +

∂u
∂ν

= 0 on Γ

∆Γ : Laplace-Beltrami operator
fΓ : regular surface nonlinear term



Main feature : nonexistence of classical solutions

Counterexample :

y′′ − f (y) = 0, x ∈ (−1, 1), y′(±1) = K, K > 0

(stationary 1D problem, f ≡ −K, g ≡ 0)

No classical solution for K large : critical value K0 s.t.

• If K < K0 : existence of the unique solution s.t. |y(x)| ≤ δ ∈ (0, 1)

• If K > K0 : no classical solution

The approximate solution yδ converges to the solution to

y′′ − f (y) = 0, y(±1) = ±1

→ The boundary condition is lost



More generally : the approximate solution uδ converges to u s.t.

∂u
∂t −∆u + f (u) = g(x, t) in Ω
∂u
∂t −∆Γu + fΓ(u) + h(u) = 0 on Γ

In general : h(u) 6= ∂u
∂ν

u is the unique solution to a variational inequality

The equality holds when :

• f has a growth of the form u
(1−u2)p , p > 1, close to ±1

• ±fΓ(±1) > 0



Coupled systems : the situation can be more complicated

Caginalp system : similar results

Generalized Caginalp system based on the Maxwell-Cattaneo law :

∂u
∂t −∆u + f (u) = ∂α

∂t
∂2α
∂t2 + ∂α

∂t −∆α = −u− ∂u
∂t

u = α = 0 on Γ

u|t=0 = u0, α|t=0 = α0,
∂α
∂t |t=0 = α1

By approximating f as above : existence of a solution s.t.

|u(x, t)| < 1 a.e. (x, t) ∈ Ω× (0,T), T > 0



The uniqueness is not straightforward : we need to estimate∫
Ω

(f (u1)− f (u2))
∂

∂t
(u1 − u2) dx

Idea : prove the strict separation property

‖u(t)‖L∞(Ω) ≤ δ(T) ∈ (0, 1), t ∈ [0,T], T > 0

One possibility : prove an L∞(Ω)-estimate on ∂α
∂t

The best we can have in general :

‖∂α
∂t
‖L∞(0,T;H1

0(Ω)) ≤ c(T), T > 0

Here : u0 ∈ H1
0(Ω)× H3(Ω), α0 ∈ H1

0(Ω)× H3(Ω), α1 ∈ H1
0(Ω)× H2(Ω)



In one space dimension : we can conclude with the continuous injection
H1(Ω) ⊂ L∞(Ω)

We can also prove the strict separation in two space dimensions

We need ans estimate of the form

‖f ′(u)‖Lp(Ω×(0,T)) ≤ c(p,T), p ≥ 1, T > 0

(p = 4 is sufficient)

Lemma : We have∫
Ω×(0,T)

eL|f (u)| dx dt ≤ c(T), L > 0, T > 0.



Multiply the equation by f (u)eL|f (u)|

Use the young’s inequality

ab ≤ φ(a) + ψ(b), a, b ≥ 0

φ(s) = es − s− 1, ψ(s) = (1 + s) ln(1 + s)− s, s ≥ 0

→We obtain ∫
Ω×(0,T) |f (u)|2eL|f (u)| dx dt ≤ c

+2
∫

Ω×(0,T) ec′| ∂α
∂t | dx dt

We conclude by using the Orlicz embedding∫
Ω

ec|v| dx ≤ e
c′(‖v‖2

H1(Ω)
+1)

, v ∈ H1(Ω)



We assume that

|f ′| ≤ ec|f |+c′

(True for the logarithmic nonlinear terms)

→ f ′(u) ∈ Lp(Ω× (0,T)), T > 0, p ≥ 1

This yields, differentiating the equation for u w.r.t. t

∂u
∂t
∈ L∞(0,T; H1

0(Ω))

Inject in the equation for α

→ ∂α
∂t ∈ L∞(0,T; H2(Ω))



In three space dimensions : we need

f ′(u) ∈ L6(Ω× (0,T)), T > 0

We can conclude when |f ′| ≤ c|f |
6
5 + c′

→ Not satisfied by the logarithmic nonlinear terms

Satisfied when f has a growth of the form

c
(1− s2)r , r ≥ 5, c > 0

close to ±1



The second model problem :

ε∂
2u
∂t2 + ∂u

∂t −∆u + f (u) = g, ε > 0
u = 0 on Γ

u|t=0 = u0,
∂u
∂t |t=0 = u1

For simplicity : g = g(x) ∈ L∞(Ω)

Here : u0 ∈ L∞(Ω), ‖u0‖L∞(Ω) < 1



Existence of strong solutions only (when ε > 0 is small and the initial data are
not too large)

We are not able to prove the existence of weak solutions

Main ingredients :

• Perturbation argument : the solutions remain close to those of the limit
parabolic problem

• Dissipativity provided by the equation



Theorem : There exists ε0 > 0 and a monotone decreasing function
R : (0, ε0]→ R+ satisfying

lim
ε→0+

R(ε) = +∞

s.t., for every initial data satisfying

D(u0) + (‖u0‖2
H2(Ω) + ε‖u1‖2

H1(Ω) + ‖u1‖2
L2(Ω))

1
2 ≤ R(ε),

there exists a unique global solution s.t.

D(u(t)) + ‖u(t)‖2
H2(Ω)

+ ε‖∂u
∂t (t)‖2

H1(Ω)
+ ‖∂u

∂t (t)‖2
L2(Ω)

+
∫ t

0 e−α(t−s)‖∂u
∂t (s)‖2

H1(Ω)
ds

≤ Q(D(u0) + (‖u0‖2
H2(Ω)

+ ε‖u1‖2
H1(Ω)

+ ‖u1‖2
L2(Ω)

)
1
2 )e−αt

+Q(‖g‖L∞(Ω)), α > 0,

where α and Q are independent of ε and D(v) = 1
1−‖v‖L∞(Ω)

.



Uniqueness : standard (f ′ ≥ −c0, c0 ≥ 0)

Existence : follows the following steps :

Step 1 : Dissipative estimate in H1(Ω)× L2(Ω) :

‖u(t)‖2
H1(Ω)

+ ε‖∂u
∂t (t)‖2

L2(Ω)
+
∫ t

0 e−α(t−s)‖∂u
∂t (s)‖2

H1(Ω)
ds

≤ Q(D(u0) + (‖u0‖2
H1(Ω)

+ ε‖u1‖2
L2(Ω)

)
1
2 )e−αt

+Q(‖g‖L∞(Ω)), α > 0

α and Q independent of ε



Step 2 : Consider the limit parabolic problem (ε = 0) :

∂u0

∂t −∆u0 + f (u0) = g
u0 = 0 on Γ
u0|t=0 = u0

We have :

D(u0(t)) +‖u0(t)‖2
H2(Ω) ≤ Q(D(u0) +‖u0‖2

H2(Ω))e−αt + Q(‖g‖L∞(Ω)), α > 0

Step 3 : Compare the solution to the hyperbolic problem to that to the limit
parabolic problem :

‖u(t)−u0(t)‖2
L2(Ω) ≤ ε(Q(D(u0)+‖u0‖2

H1(Ω)+ε‖u1‖2
L2(Ω))e−αt+Q(‖g‖L∞(Ω)))

α > 0 and Q independent of ε



Step 4 : Multiply the equation by −∆(βu + ∂u
∂t ), β > 0 small enough :

dEu(t)
dt

+ βEu(t) +
β

2
(‖∆u(t)‖2

L2(Ω) + ‖∇∂u
∂t

(t)‖2
L2(Ω)) ≤ c‖f (u(t))‖2

H1(Ω)

where

Eu(t) = ε‖∇∂u
∂t (t)‖2

L2(Ω)
+ β‖∇u(t)‖2

L2(Ω)
+ ‖∆u(t)‖2

L2(Ω)

−2((g,∆u(t)))L2(Ω) + βε((∇u(t),∇∂u
∂t (t)))L2(Ω)

Step 5 : Estimate ‖f (u(t))‖H1(Ω)



We have :

‖f (u(t))− f (u0(t))‖2
H1(Ω)

≤ Mf (
1

1−‖u0(t)‖L∞(Ω)−‖u(t)−u0(t)‖L∞(Ω)
)×

×(1 + ‖u0(t)‖2
H2(Ω)

+ ‖u(t)‖2
H2(Ω)

)‖u(t)− u0(t)‖2
H1(Ω)

Mf : smooth monotone increasing function only depending on f and satisfying

lim
z→+∞

Mf (z) = +∞

u0 : solution to the limit parabolic problem

Consider the interpolation inequalities

‖u(t)− u0(t)‖H1(Ω) ≤ c‖u(t)− u0(t)‖
1
2
L2(Ω)
‖u(t)− u0(t)‖

1
2
H2(Ω)

‖u(t)− u0(t)‖L∞(Ω) ≤ c‖u(t)− u0(t)‖
1
4
L2(Ω)
‖u(t)− u0(t)‖

3
4
H2(Ω)



This yields

‖f (u(t))‖2
H1(Ω)

≤ Q0ε
1
2 (1 + Eu(t))2Mf (

1

(Q+Q0)−1−ε
1
8 (Q+Q0)(1+Eu(t))

)

+Q0e−αt + Q

Q0 = Q0(D(u0) + (‖u0‖2
H2(Ω)

+ ε‖u1‖2
H1(Ω)

+ ‖u1‖2
L2(Ω)

)
1
2 )

Q = Q(‖g‖L∞(Ω))

α > 0, Q0, Q : independent of ε

Finally :

dEu(t)
dt + βEu(t) ≤ Q0ε

1
2 (1 + Eu(t))2Mf (

1

(Q+Q0)−1−ε
1
8 (Q+Q0)(1+Eu(t))

)

+2Q0e−αt + 2Q (β < α)



Step 6 : Assume that

D(u0) + (‖u0‖2
H2(Ω) + ε‖u1‖2

H1(Ω) + ‖u1‖2
L2(Ω))

1
2 ≤ R(ε)

R = R(ε) solves

Q = Q0(R)ε
1
2 (1 + 2(β − α)−1Q0(R) + 3β−1Q)2×

×Mf (
1

(Q+Q0(R))−1−ε
1
8 (Q+Q0(R))(1+2(β−α)−1Q0(R)+3β−1Q)

)

Then :

Eu(t) ≤ E0(t)

where

E0(t) = 2(β − α)−1Q0(D(u0) + (‖u0‖2
H2(Ω)

+ ε‖u1‖2
H1(Ω)

+ ‖u1‖2
L2(Ω)

)
1
2 )×

×e−αt + 3β−1Q



Consequence of the comparison principle :

E0 satisfies

dE0(t)
dt + βE0(t) ≥ Q0ε

1
2 (1 + E0(t))2Mf (

1

(Q+Q0)−1−ε
1
8 (Q+Q0)(1+E0(t))

)

+2Q0e−αt + 2Q

We can take

Eu(0) ≤ E0(0)

We conclude by noting that

lim
ε→0+

R(ε) = +∞



Further results :

Additional regularity

Existence of finite-dimensional attractors

Extension : hyperbolic relaxation of the Caginalp phase-field system

More difficult : hyperbolic relaxation of the generalized Caginalp phase-field
system



The third model problem :

∂u
∂t + ∆2u−∆f (u) = g
u = ∆u = 0 on Γ
u|t=0 = u0

g = g(x, t) ∈ L∞(Ω× (0,T))

Approximation of f : existence and uniqueness of the solution s.t.

|u(x, t)| < 1 a.e. (x, t) (‖u0‖L∞(Ω) < 1)



Strict separation :

• In one space dimension :

‖u(t)‖L∞(Ω) ≤ δ ∈ (0, 1), t ∈ (0,T), T > 0

(continuous embedding H1(Ω) ⊂ L∞(Ω))

• In two space dimensions : Orlicz embedding

• In three space dimensions : growth assumption on f : f grows like

c
(1− s2)r , r >

3
7

close to ±1

→ Not satisfied by the logarithmic nonlinear terms



Remark : Viscous Cahn-Hilliard equation :

∂u
∂t
− ε∆∂u

∂t
+ ∆2u−∆f (u) = g, ε ≥ 0

ε = 0 : Cahn-Hilliard equation

ε > 0 : strict separation (even in three space dimensions)

Remark : Neumann boundary conditions (g ≡ 0) :

∂u
∂t + ∆2u−∆f (u) = 0
∂u
∂ν = ∂∆u

∂ν = 0 on Γ
u|t=0 = u0

Main feature : mass conservation

< u(t) >=< u0 >, t ≥ 0, < · >=
1

Vol(Ω)

∫
Ω
· dx



Same results as in the case of Dirichlet boundary conditions

Key step : H−1(Ω)-estimate

→We rewrite the equation as

(−∆)−1∂u
∂t
−∆u + f (u) =< f (u) >

(−∆)−1 : acts on functions with null average

We need to deal with the nonlocal term

< f (u) >=
1

Vol(Ω)

∫
Ω

f (u) dx

→ Additional mathematical difficulties



Remark : Dynamic boundary conditions :

∂
∂ν (−∆u + f (u)) = 0 on Γ
∂u
∂t −∆Γu + fΓ(u) + ∂u

∂ν = 0 on Γ

fΓ : affine

The situation is similar to what was said in the first model problem :

Nonexistence of classical solutions

Existence of classical solutions if f satisfies growth assumptions or fΓ satisfies
sign assumptions

The sequence uδ converges to the solution to the Cahn-Hilliard equation with

∂
∂ν (−∆u + f (u)) = 0 on Γ
∂u
∂t −∆Γu + fΓ(u) + h(u) = 0 on Γ

In general : h(u) 6= ∂u
∂ν



Existence of finite-dimensional attractors :

Neumann boundary conditions :

Main difficulty : no strict separation in three space dimensions

We can define the continuous (in H−1(Ω)) semigroup

S(t) : Φm → Φm, u0 7→ u(t), t ≥ 0, m ∈ (−1, 1)

S(0) = Id, S(t + s) = S(t) ◦ S(s), t, s ≥ 0

Φm = {v ∈ L∞(Ω), ∂v
∂ν = 0 on Γ,

‖v‖L∞(Ω) ≤ 1, < v >= m}



Definition : Let Φ be a Banach space and S(t) be a semigroup acting on Φ. A
set A ⊂ Φ is called the global attractor for S(t) if

(i) A is compact in Φ.

(ii) S(t)A = A, t ≥ 0.

(iii) ∀ε > 0, ∀B ⊂ Φ bounded, ∃t0 = t0(B, ε) ≥ 0 s.t. t ≥ t0 implies
S(t)B ⊂ Uε, where Uε is the ε-neighborhood of A.

The global attractor is unique

It is the smallest closed set satisfying (iii)

Dimension : fractal (entropy) dimension

First proof of existence of the global attractor : A. Debussche-L. Dettori



Finite-dimensionality : based on the differentiability of the semigroup

→ The strict separation from ±1 was necessary

→ Could be proved only for small domains

Theorem : For every m ∈ (0, 1), ∃Am ⊂ H2(Ω) s.t.

(i) Am is compact in L∞(Ω) and H−1(Ω).

(ii) Am has finite fractal dimension in L∞(Ω) and H−1(Ω).

(iii) Am attracts Φm in H−1(Ω).

→ No restriction on the size of Ω



Existence of the global attractor : follows from classical results

Finite-dimensionality : construction of an exponential attractor

Exponential attractor : compact and positively invariant
(S(t)Mm ⊂Mm, t ≥ 0) set which contains the global attractor, has finite
fractal dimension and attracts exponentially fast the trajectories

Main tool : find a proper set C s.t.

‖S(t)u1 − S(t)u2‖L2(Ω) ≤ c(t)‖u1 − u2‖H−1(Ω)

for some t > 0, ∀u1, u2 ∈ C



Am is trivial if m is large : ∃M ∈ (0, 1) s.t.

Am = {m} if |m| ≥ M

Set S(t)(±1) = ±1

Then

S(t)Φ = Φ, Φ = ∪|m|≤1Φm = BL∞(Ω)(0, 1)

Set A±1 = {±1}

Theorem : The semigroup S(t) possesses the finite-dimensional global
attractor

A = ∪|m|≤1Am

on Φ.



Dynamic boundary conditions :

Main difficulty : the order parameter can reach the pure states on a set with
nonzero measure on the boundary

We can define the continuous (in H−1(Ω)× L2(Ω)) semigroup S(t) acting on

Φm = {(u, u|Γ) ∈ Φ, < u >= m}, m ∈ (−1, 1)

Here :

Φ = {(v, v|Γ) ∈ L∞(Ω)× L∞(Γ), ‖v‖L∞(Ω) ≤ 1, ‖v|Γ‖L∞(Γ) ≤ 1}

S(t) is associated with the solutions obtained via the regularization of f

Theorem : For every m ∈ (−1, 1), the semigroup S(t) possesses the
finite-dimensional global attractor Am which is bounded in Cα(Ω)× Cα(Γ),
0 < α < 1

4 .



Existence of the global attractor : follows from classical results

Finite-dimensionality : construction of an exponential attractor

We need some (asymptotically) compact smoothing property on the
difference of 2 solutions

We have

‖u1(t)− u2(t)‖2
Φw ≤ ce−βt‖u1(0)− u2(0)‖2

Φw+

c′
∫ t

0 ‖θ(u1(s)− u2(s))‖2
L2(Ω)

ds

β > 0, θ : smooth cut-off function

Φw = H−1(Ω)× L2(Γ)



→ Contraction, up to ‖θ(u1 − u2)‖L2(0,t;L2(Ω))

Compactness : we work on spaces of trajectories and use the compactness of

L2(0, t; H1(Ω)) ∩ H1(0, t; H−3(Ω)) ⊂
L2(0, t; L2(Ω))

We have

‖ ∂∂t [θ(u1 − u2)]‖2
L2(0,t;H−3(Ω))

+

‖θ(u1 − u2)‖2
L2(0,t;H1(Ω))

≤
cec′t‖u1(0)− u2(0)‖2

H−1(Ω)∩L2(Γ)

u1(0), u2(0) ∈ BH−1(Ω)∩L2(Γ)(u0, ε), ε > 0 small


