Weierstrass Institute for

A time discretization for a nonstandard viscous Cahn-Hilliard system

Jürgen Sprekels, Weierstrass Institute for Applied Analysis and Stochastics (WIAS), Berlin, Germany
(joint work with P. Colli, G. Gilardi, P. Podio-Guidugli and P. Krejčí)

Dedication

Dedicated to Gianni!

A modified Cahn-Hilliard system

We consider the modified Cahn-Hilliard system

$$
\begin{align*}
&(\varepsilon+2 g(\rho)) \mu_{t}+\mu g^{\prime}(\rho) \rho_{t}-\Delta \mu=0 \text { in } \quad Q:=\Omega \times(0, T) \tag{1}\\
& \rho_{r}-\Delta \rho+f^{\prime}(\rho)=\mu g^{\prime}(\rho) \text { in } \quad Q \tag{2}\\
& \partial_{\nu} \mu=\partial_{\nu} \rho=0 \text { on } \quad \Sigma:=\partial \Omega \times(0, T) \tag{3}\\
& \mu_{\left.\right|_{t=0}}=\mu^{0}, \quad \rho_{\left.\right|_{t=0}}=\rho^{0} \quad \text { in } \quad \Omega \tag{4}
\end{align*}
$$

A modified Cahn-Hilliard system

We consider the modified Cahn-Hilliard system

$$
\begin{align*}
(\varepsilon+2 g(\rho)) \mu_{t}+\mu g^{\prime}(\rho) \rho_{t}-\Delta \mu=0 & \text { in } \quad Q:=\Omega \times(0, T) \tag{1}\\
\rho_{r}-\Delta \rho+f^{\prime}(\rho)=\mu g^{\prime}(\rho) & \text { in } \quad Q \tag{2}\\
\partial_{\nu} \mu=\partial_{\nu} \rho=0 & \text { on } \quad \Sigma:=\partial \Omega \times(0, T) \tag{3}\\
\mu_{\left.\right|_{t=0}}=\mu^{0}, \quad \rho_{\left.\right|_{t=0}}=\rho^{0} & \text { in } \quad \Omega \tag{4}
\end{align*}
$$

■ Model by P. Podio-Guidugli (2006) for phase segregation through atom rearrangement on a lattice

A modified Cahn-Hilliard system

We consider the modified Cahn-Hilliard system

$$
\begin{align*}
&(\varepsilon+2 g(\rho)) \mu_{t}+\mu g^{\prime}(\rho) \rho_{t}-\Delta \mu=0 \text { in } \quad Q:=\Omega \times(0, T) \tag{1}\\
& \rho_{r}-\Delta \rho+f^{\prime}(\rho)=\mu g^{\prime}(\rho) \text { in } \quad Q \tag{2}\\
& \partial_{\nu} \mu=\partial_{\nu} \rho=0 \text { on } \quad \Sigma:=\partial \Omega \times(0, T) \tag{3}\\
& \mu_{\left.\right|_{t=0}}=\mu^{0}, \quad \rho_{\left.\right|_{t=0}}=\rho^{0} \quad \text { in } \quad \Omega \tag{4}
\end{align*}
$$

- Model by P. Podio-Guidugli (2006) for phase segregation through atom rearrangement on a lattice

■ Studied for the special case $g(\rho)=\rho$ in a series of papers by P. Colli, G. Gilardi, P. Podio-Guidugli and J. S. for the Allen-Cahn version (2010) and the Cahn-Hilliard version (2011 ff.) concerning well-posedness, optimal control and asymptotic behavior as $t \rightarrow \infty$ and $\varepsilon \searrow 0$.

General assumptions

- $\Omega \subset \mathbb{R}^{M}$ is an open and bounded domain with smooth boundary $\partial \Omega$ and outward unit normal field ν.

■ $f=f_{1}+f_{2}$, where $f_{2} \in C^{2}[0,1]$, and where $f_{1} \in C^{2}(0,1)$ is convex and satisfies

$$
\lim _{r \backslash 0} f_{1}^{\prime}(r)=-\infty \text { and } \lim _{r \nearrow 1} f_{1}^{\prime}(r)=+\infty
$$

■ $g \in W^{2, \infty}(0,1)$ and $g(\rho) \geq 0 \quad \forall \rho \in[0,1]$.

■ $\mu^{0} \in V \cap L^{\infty}(\Omega)$, and $\mu^{0} \geq 0 \quad$ a.e. in Ω.
■ $\rho^{0} \in W, \quad 0<\rho^{0}<1 \quad$ in $\bar{\Omega}, \quad$ and $\quad f^{\prime}\left(\rho^{0}\right) \in H$.

Here, we set: $V:=H^{1}(\Omega), H:=L^{2}(\Omega), W:=\left\{v \in H^{2}(\Omega) ; \partial_{\nu} v=0 \quad\right.$ on $\left.\partial \Omega\right\}$.

In the recent CGPS paper
"Global existence and uniqueness for a singular/degenerate Cahn-Hilliard system with viscosity" (submitted, see WIAS preprint No. 1713 (2012))
it was shown that (1)-(4) has a unique solution (μ, ρ) having the following properties:

■ $\mu \in H^{1}(0, T ; H) \cap L^{2}(0, T ; W) \cap L^{\infty}(Q)$
■ $\rho \in W^{1, \infty}(0, T ; H) \cap H^{1}(0, T ; V) \cap L^{\infty}(0, T ; W)$

- $\mu \geq 0 \quad$ a.e. in Q

■ There exist $\rho_{*}, \rho^{*} \in(0,1)$ such that $\rho_{*} \leq \rho \leq \rho^{*}$ a.e. in Q.

A similar result can also be obtained under weaker conditions (see the above paper).

Aim of talk

In this talk, we make the first step towards the numerical approximation of (1)-(4). We choose $N \in \mathbb{N}$, put $h=\frac{T}{N}$, and consider for $0 \leq n \leq N-1$ the time-discretized problem (where we put $\varepsilon=1$)

$$
\begin{array}{cc}
\left(1+2 g\left(\rho_{n}\right)\right) \frac{\mu_{n+1}-\mu_{n}}{h}+\frac{g\left(\rho_{n+1}\right)-g\left(\rho_{n}\right)}{h} \mu_{n+1}-\Delta \mu_{n+1}=0 & \text { in } \Omega \\
\frac{\rho_{n+1}-\rho_{n}}{h}-\Delta \rho_{n+1}+f^{\prime}\left(\rho_{n+1}\right)=\mu_{n} g^{\prime}\left(\rho_{n}\right) & \text { in } \Omega \\
\partial_{\nu} \mu_{n+1}=\partial_{\nu} \rho_{n+1}=0 & \text { on } \partial ؛ \\
\mu_{0}=\mu^{0}, \quad \rho_{0}=\rho^{0} & \text { in } \Omega \tag{8}
\end{array}
$$

AIM: Well-posedness of the scheme, convergence of discrete solutions to (μ, ρ) as $N \rightarrow \infty$, error estimates

Existence of the discrete solution I

We argue by induction for $n \in \mathbb{N}$. Suppose that for some $0 \leq n<N-1$ we have found $\left(\mu_{n}, \rho_{n}\right) \in W \times W$ such that $\mu_{n} \geq 0$ a.e. in $\Omega, f^{\prime}\left(\rho_{n}\right) \in H$ and $0<\rho_{n}<1$ in $\bar{\Omega}$. We rewrite (5), (6) in the form

$$
\begin{array}{cc}
\left(1+g\left(\rho_{n}\right)+g\left(\rho_{n+1}\right)\right) \mu_{n+1}-h \Delta \mu_{n+1}=\left(1+2 g\left(\rho_{n}\right)\right) \mu_{n} & \text { in } \Omega \\
\rho_{n+1}-h \Delta \rho_{n+1}+h f^{\prime}\left(\rho_{n+1}\right)=\rho_{n}+h \mu_{n} g^{\prime}\left(\rho_{n}\right) & \text { in } \Omega \tag{10}
\end{array}
$$

Now let $\tilde{f}=\tilde{f}_{1}+\tilde{f}_{2}$, where

- \tilde{f}_{2} is any smooth extension of f_{2} to \mathbb{R},
- \tilde{f}_{1} is the unique convex and I.s.c. extension of f_{1} to \mathbb{R} that satisfies $\tilde{f}(r)=+\infty$ if $r \notin(0,1)$.

Then the function $r \longmapsto \frac{1}{2} r^{2}+h \tilde{f}(r)$ is strictly convex provided that

$$
\begin{equation*}
h \max _{0 \leq r \leq 1}\left|f_{2}^{\prime \prime}(r)\right|<1 \tag{11}
\end{equation*}
$$

We will always assume this in the following.

For $h>0$ satisfying (11), it follows from standard arguments that the strictly convex, coercive and I.s.c. functional $J: V \rightarrow(-\infty,+\infty]$,

$$
\begin{aligned}
& J(v)= \\
& \begin{cases}\frac{h}{2} \int_{\Omega}|\nabla v|^{2} d x+\int_{\Omega}\left(\frac{v^{2}}{2}+h \tilde{f}(v)\right) d x-\int_{\Omega}\left(\rho_{n}+h \mu_{n} g^{\prime}\left(\rho_{n}\right)\right) v d x, & \text { if } \tilde{f}(v) \in L^{1}(\Omega) \\
+\infty, & \text { otherwise }\end{cases}
\end{aligned}
$$

has a unique minimizer ρ_{n+1} on V. Standard arguments (maximal monotonicity, EulerLagrange, elliptic regularity) then show that actually $\rho_{n+1} \in W$ solves (10) and that $0<\rho_{n+1}<1$ in $\bar{\Omega}$.

But then also $g\left(\rho_{n+1}\right) \geq 0$ in Ω, and the elliptic boundary value problem (9), $\partial_{\nu} \mu_{n+1}=0$ on $\partial \Omega$, has a unique solution $\mu_{n+1} \in W$. Testing (9) by $-\mu_{n+1}^{-} \leq 0$ yields immediately that $\mu_{n+1} \geq 0$ a.e. in Ω.

A priori estimates

Step 1: Test (5) by $h \mu_{n+1} \Longrightarrow$

$$
\begin{aligned}
& \frac{1}{2}\left\|\mu_{n+1}\right\|_{H}^{2}+\frac{1}{2}\left\|\mu_{n+1}-\mu_{n}\right\|_{H}^{2}-\frac{1}{2}\left\|\mu_{n}\right\|_{H}^{2}+h \int_{\Omega}\left|\nabla \mu_{n+1}\right|^{2} d x \\
& \quad+\int_{\Omega}\left[g\left(\rho_{n+1}\right) \mu_{n+1}^{2}-g\left(\rho_{n}\right) \mu_{n}^{2}+g\left(\rho_{n}\right)\left(\mu_{n+1}-\mu_{n}\right)^{2}\right] d x=0
\end{aligned}
$$

Summation \qquad

A priori estimates

Step 1: Test (5) by $h \mu_{n+1} \Longrightarrow$

$$
\begin{aligned}
& \frac{1}{2}\left\|\mu_{n+1}\right\|_{H}^{2}+\frac{1}{2}\left\|\mu_{n+1}-\mu_{n}\right\|_{H}^{2}-\frac{1}{2}\left\|\mu_{n}\right\|_{H}^{2}+h \int_{\Omega}\left|\nabla \mu_{n+1}\right|^{2} d x \\
& \quad+\int_{\Omega}\left[g\left(\rho_{n+1}\right) \mu_{n+1}^{2}-g\left(\rho_{n}\right) \mu_{n}^{2}+g\left(\rho_{n}\right)\left(\mu_{n+1}-\mu_{n}\right)^{2}\right] d x=0
\end{aligned}
$$

Summation

$$
\begin{align*}
& \int_{\Omega}\left(\frac{1}{2}+g\left(\rho_{n}\right)\right) \mu_{m}^{2} d x+\sum_{n=0}^{m-1} \int_{\Omega}\left(\frac{1}{2}+g\left(\rho_{n}\right)\right)\left|\mu_{n+1}-\mu_{n}\right|^{2} d x \\
& \quad+h \sum_{n=0}^{m-1} \int_{\Omega}\left|\nabla \mu_{n+1}\right|^{2} d x \leq C, \quad 1 \leq m \leq N \tag{12}
\end{align*}
$$

A priori estimates II

Step 2: Test (6) by $\rho_{n+1}-\rho_{n} \Longrightarrow$

$$
\begin{aligned}
& h\left\|\frac{\rho_{n+1}-\rho_{n}}{h}\right\|_{H}^{2}+\frac{1}{2}\left(\left\|\nabla \rho_{n+1}\right\|_{H}^{2}-\left\|\nabla \rho_{n}\right\|_{H}^{2}+\left\|\nabla\left(\rho_{n+1}-\rho_{n}\right)\right\|_{H}^{2}\right) \\
& \quad+\int_{\Omega}\left(f_{1}\left(\rho_{n+1}\right)-f_{1}\left(\rho_{n}\right)\right) d x \leq \int_{\Omega} C h\left(1+\left|\mu_{n}\right|\right) \frac{\rho_{n+1}-\rho_{n}}{h} d x
\end{aligned}
$$

using the boundedness of g^{\prime} and f_{2}^{\prime}. Young's inequality and summation over n yield

A priori estimates II

Step 2: Test (6) by $\rho_{n+1}-\rho_{n} \Longrightarrow$

$$
\begin{aligned}
& h\left\|\frac{\rho_{n+1}-\rho_{n}}{h}\right\|_{H}^{2}+\frac{1}{2}\left(\left\|\nabla \rho_{n+1}\right\|_{H}^{2}-\left\|\nabla \rho_{n}\right\|_{H}^{2}+\left\|\nabla\left(\rho_{n+1}-\rho_{n}\right)\right\|_{H}^{2}\right) \\
& \quad+\int_{\Omega}\left(f_{1}\left(\rho_{n+1}\right)-f_{1}\left(\rho_{n}\right)\right) d x \leq \int_{\Omega} C h\left(1+\left|\mu_{n}\right|\right) \frac{\rho_{n+1}-\rho_{n}}{h} d x
\end{aligned}
$$

using the boundedness of g^{\prime} and f_{2}^{\prime}. Young's inequality and summation over n yield

$$
\begin{equation*}
\sum_{n=0}^{m-1} h\left\|\frac{\rho_{n+1}-\rho_{n}}{h}\right\|_{H}^{2}+\left\|\nabla \rho_{m}\right\|_{H}^{2}+\sum_{n=0}^{m-1}\left\|\nabla\left(\rho_{n+1}-\rho_{n}\right)\right\|_{H}^{2}+\int_{\Omega} f_{1}\left(\rho_{m}\right) d x \leq C \tag{13}
\end{equation*}
$$

A priori estimates II

Step 2: Test (6) by $\rho_{n+1}-\rho_{n} \Longrightarrow$

$$
\begin{aligned}
& h\left\|\frac{\rho_{n+1}-\rho_{n}}{h}\right\|_{H}^{2}+\frac{1}{2}\left(\left\|\nabla \rho_{n+1}\right\|_{H}^{2}-\left\|\nabla \rho_{n}\right\|_{H}^{2}+\left\|\nabla\left(\rho_{n+1}-\rho_{n}\right)\right\|_{H}^{2}\right) \\
& \quad+\int_{\Omega}\left(f_{1}\left(\rho_{n+1}\right)-f_{1}\left(\rho_{n}\right)\right) d x \leq \int_{\Omega} C h\left(1+\left|\mu_{n}\right|\right) \frac{\rho_{n+1}-\rho_{n}}{h} d x
\end{aligned}
$$

using the boundedness of g^{\prime} and f_{2}^{\prime}. Young's inequality and summation over n yield

$$
\begin{equation*}
\sum_{n=0}^{m-1} h\left\|\frac{\rho_{n+1}-\rho_{n}}{h}\right\|_{H}^{2}+\left\|\nabla \rho_{m}\right\|_{H}^{2}+\sum_{n=0}^{m-1}\left\|\nabla\left(\rho_{n+1}-\rho_{n}\right)\right\|_{H}^{2}+\int_{\Omega} f_{1}\left(\rho_{m}\right) d x \leq C \tag{13}
\end{equation*}
$$

Step 3: Test (6) by $-h \Delta \rho_{n+1}$ and by $h f_{1}^{\prime}\left(\rho_{n+1}\right) \Longrightarrow$

$$
\begin{equation*}
\sum_{n=0}^{m-1} h\left\|\rho_{n}\right\|_{W}^{2}+\sum_{n=0}^{m-1} h\left\|f_{1}^{\prime}\left(\rho_{m}\right)\right\|_{H}^{2} \leq C \tag{14}
\end{equation*}
$$

A priori estimates III

Step 4: Take the difference of (6), written for $n+1$ and n, and test by $h^{-1}\left(\rho_{n+2}-\rho_{n+1}\right)$. We obtain

$$
\begin{aligned}
& \frac{1}{2}\left[\left\|\frac{\rho_{n+2}-\rho_{n+1}}{h}\right\|_{H}^{2}-\left\|\frac{\rho_{n+1}-\rho_{n}}{h}\right\|_{H}^{2}+\left\|\frac{\rho_{n+2}-\rho_{n+1}}{h}-\frac{\rho_{n+1}-\rho_{n}}{h}\right\|_{H}^{2}\right] \\
& \quad+h \int_{\Omega}\left|\nabla \frac{\rho_{n+2}-\rho_{n+1}}{h}\right|^{2} d x+\frac{1}{h} \int_{\Omega}\left(f_{1}^{\prime}\left(\rho_{n+2}\right)-f_{1}^{\prime}\left(\rho_{n+1}\right)\right)\left(\rho_{n+2}-\rho_{n+1}\right) d x \\
& \leq C h\left\|\frac{\rho_{n+2}-\rho_{n+1}}{h}\right\|_{H}^{2}+C h \int_{\Omega} \mu_{n+1}\left|\frac{\rho_{n+2}-\rho_{n+1}}{h} \| \frac{\rho_{n+1}-\rho_{n}}{h}\right| d x \\
& \quad+\int_{\Omega}\left(\mu_{n+1}-\mu_{n}\right) g^{\prime}\left(\rho_{n}\right) \frac{\rho_{n+2}-\rho_{n+1}}{h} d x
\end{aligned}
$$

One now substitutes for $\mu_{n+1}-\mu_{n}$ from (5). Young, Hölder, the embedding $V \hookrightarrow L^{4}(\Omega)$ and the discrete Gronwall lemma imply the estimate

A priori estimates IV

$$
\begin{equation*}
\left\|\frac{\rho_{m+1}-\rho_{m}}{h}\right\|_{H}^{2}+\sum_{n=0}^{m-1}\left\|\frac{\rho_{n+2}-\rho_{n+1}}{h}-\frac{\rho_{n+1}-\rho_{n}}{h}\right\|_{H}^{2}+\sum_{n=0}^{m-1} h\left\|\nabla \frac{\rho_{n+2}-\rho_{n+1}}{h}\right\|_{H}^{2} \leq C . \tag{15}
\end{equation*}
$$

Step 5: Write (5) in the form

$$
\left(1+g\left(\rho_{n}\right)+g\left(\rho_{n+1}\right)\right) \frac{\mu_{n+1}-\mu_{n}}{h}+\frac{g\left(\rho_{n+1}\right)-g\left(\rho_{n}\right)}{h} \mu_{n}-\Delta \mu_{n+1}=0
$$

and test by $h^{-1}\left(\mu_{n+1}-\mu_{n}\right)$. Hölder, Young, embeddings, discrete Gronwall

$$
\begin{equation*}
\sum_{n=0}^{m-1} h\left\|\frac{\mu_{n+1}-\mu_{m}}{h}\right\|_{H}^{2}+\left\|\nabla \mu_{m}\right\|_{H}^{2}+\sum_{n=0}^{m-1}\left\|\nabla\left(\mu_{n+1}-\mu_{n}\right)\right\|_{H}^{2} \leq C \tag{16}
\end{equation*}
$$

From this, we can deduce further estimates by comparison.

Discrete approximations

Let $t_{n}=n h, 0 \leq n \leq N$. We define for $t_{n-1}<t \leq t_{n}, 1 \leq n \leq N$:
$\mu^{h}(t)=\mu_{n}, \quad \bar{\mu}^{h}=\mu_{n-1}, \quad \rho^{h}(t)=\rho_{n}, \quad \bar{\rho}^{h}(t)=\rho_{n-1}, \quad \xi^{h}(t)=f_{1}^{\prime}\left(\rho_{n}\right)$,
$\tilde{\mu}^{h}(t)=\mu_{n-1}+\frac{1}{h}\left(t-t_{n-1}\right)\left(\mu_{n}-\mu_{n-1}\right), \tilde{\rho}^{h}(t)=\rho_{n-1}+\frac{1}{h}\left(t-t_{n-1}\right)\left(\rho_{n}-\rho_{n-1}\right)$,
$\tilde{\eta}^{h}(t)=g\left(\rho_{n-1}\right)+\frac{1}{h}\left(t-t_{n-1}\right)\left(g\left(\rho_{n}\right)-g\left(\rho_{n-1}\right)\right)$.

Discrete approximations

Let $t_{n}=n h, 0 \leq n \leq N$. We define for $t_{n-1}<t \leq t_{n}, 1 \leq n \leq N$:
$\mu^{h}(t)=\mu_{n}, \quad \bar{\mu}^{h}=\mu_{n-1}, \quad \rho^{h}(t)=\rho_{n}, \quad \bar{\rho}^{h}(t)=\rho_{n-1}, \quad \xi^{h}(t)=f_{1}^{\prime}\left(\rho_{n}\right)$,
$\tilde{\mu}^{h}(t)=\mu_{n-1}+\frac{1}{h}\left(t-t_{n-1}\right)\left(\mu_{n}-\mu_{n-1}\right), \tilde{\rho}^{h}(t)=\rho_{n-1}+\frac{1}{h}\left(t-t_{n-1}\right)\left(\rho_{n}-\rho_{n-1}\right)$,
$\tilde{\eta}^{h}(t)=g\left(\rho_{n-1}\right)+\frac{1}{h}\left(t-t_{n-1}\right)\left(g\left(\rho_{n}\right)-g\left(\rho_{n-1}\right)\right)$.
Obviously, for $t_{n-1}<t \leq t_{n}, 1 \leq n \leq N$, we have

$$
\begin{equation*}
\tilde{\mu}_{t}^{h}(t)=\frac{\mu_{n}-\mu_{n-1}}{h}, \quad \tilde{\rho}_{t}^{h}=\frac{\rho_{n}-\rho_{n-1}}{h}, \quad \tilde{\eta}_{t}^{h}=\frac{g\left(\rho_{n}\right)-g\left(\rho_{n-1}\right)}{h} \tag{17}
\end{equation*}
$$

Discrete approximations

Let $t_{n}=n h, 0 \leq n \leq N$. We define for $t_{n-1}<t \leq t_{n}, 1 \leq n \leq N$:
$\mu^{h}(t)=\mu_{n}, \quad \bar{\mu}^{h}=\mu_{n-1}, \quad \rho^{h}(t)=\rho_{n}, \quad \bar{\rho}^{h}(t)=\rho_{n-1}, \quad \xi^{h}(t)=f_{1}^{\prime}\left(\rho_{n}\right)$,
$\tilde{\mu}^{h}(t)=\mu_{n-1}+\frac{1}{h}\left(t-t_{n-1}\right)\left(\mu_{n}-\mu_{n-1}\right), \tilde{\rho}^{h}(t)=\rho_{n-1}+\frac{1}{h}\left(t-t_{n-1}\right)\left(\rho_{n}-\rho_{n-1}\right)$,
$\tilde{\eta}^{h}(t)=g\left(\rho_{n-1}\right)+\frac{1}{h}\left(t-t_{n-1}\right)\left(g\left(\rho_{n}\right)-g\left(\rho_{n-1}\right)\right)$.
Obviously, for $t_{n-1}<t \leq t_{n}, 1 \leq n \leq N$, we have

$$
\begin{equation*}
\tilde{\mu}_{t}^{h}(t)=\frac{\mu_{n}-\mu_{n-1}}{h}, \quad \tilde{\rho}_{t}^{h}=\frac{\rho_{n}-\rho_{n-1}}{h}, \quad \tilde{\eta}_{t}^{h}=\frac{g\left(\rho_{n}\right)-g\left(\rho_{n-1}\right)}{h} \tag{17}
\end{equation*}
$$

Notice that we have

$$
\begin{equation*}
\left\|\tilde{\mu}^{h}-\bar{\mu}^{h}\right\|_{L^{2}(Q)}^{2}=\sum_{n=1}^{N} h^{-2}\left\|\mu_{n}-\mu_{n-1}\right\|_{H}^{2} \int_{t_{n-1}}^{t_{n}}\left(t-t_{n-1}\right)^{2} d t=\frac{h}{3} \sum_{n=1}^{N}\left\|\mu_{n}-\mu_{n-1}\right\|_{H}^{2} \leq C h \tag{18}
\end{equation*}
$$

Due to regularity of the time derivative of $\tilde{\mu}^{h}$, we even have

$$
\begin{equation*}
\left\|\tilde{\mu}^{h}-\bar{\mu}^{h}\right\|_{L^{2}(Q)}^{2}=\frac{h^{2}}{3} \sum_{n=1}^{N} h\left\|\frac{\mu_{n}-\mu_{n-1}}{h}\right\|_{H}^{2}=\frac{h^{2}}{3}\left\|\tilde{\mu}_{t}^{h}\right\|_{L^{2}(Q)}^{2} \leq C h^{2} \tag{19}
\end{equation*}
$$

Convergence I

Similar estimates can be proved for

$$
\left\|\tilde{\mu}^{h}-\mu^{h}\right\|_{L^{2}(Q)}^{2}, \quad\left\|\mu^{h}-\bar{\mu}^{h}\right\|_{L^{2}(Q)}^{2}, \quad\left\|\tilde{\rho}^{h}-\rho^{h}\right\|_{L^{2}(Q)}^{2}, \quad\left\|\rho^{h}-\bar{\rho}^{h}\right\|_{L^{2}(Q)}^{2}
$$ and even for stronger norms.

Convergence I

Similar estimates can be proved for

$$
\left\|\tilde{\mu}^{h}-\mu^{h}\right\|_{L^{2}(Q)}^{2}, \quad\left\|\mu^{h}-\bar{\mu}^{h}\right\|_{L^{2}(Q)}^{2}, \quad\left\|\tilde{\rho}^{h}-\rho^{h}\right\|_{L^{2}(Q)}^{2}, \quad\left\|\rho^{h}-\bar{\rho}^{h}\right\|_{L^{2}(Q)}^{2}
$$

and even for stronger norms.
Owing to the a priori estimates, we have for $h \searrow 0$ (i.e., for $N \rightarrow \infty$):

$$
\begin{array}{rlr}
\tilde{\mu}^{h} \rightarrow \mu & \text { weakly star in } H^{1}(0, T ; H) \cap L^{\infty}(0, T ; V) \\
\mu^{h} \rightarrow \mu & \text { weakly in } L^{2}(0, T ; W) \\
\tilde{\mu}^{h}, \bar{\mu}^{h}, \mu^{h} \rightarrow \mu & \text { strongly in } L^{\infty}(0, T ; H) \quad \text { (by compactness) } \tag{22}
\end{array}
$$

Convergence I

Similar estimates can be proved for

$$
\left\|\tilde{\mu}^{h}-\mu^{h}\right\|_{L^{2}(Q)}^{2}, \quad\left\|\mu^{h}-\bar{\mu}^{h}\right\|_{L^{2}(Q)}^{2}, \quad\left\|\tilde{\rho}^{h}-\rho^{h}\right\|_{L^{2}(Q)}^{2}, \quad\left\|\rho^{h}-\bar{\rho}^{h}\right\|_{L^{2}(Q)}^{2}
$$

and even for stronger norms.
Owing to the a priori estimates, we have for $h \searrow 0$ (i.e., for $N \rightarrow \infty$):

$$
\begin{align*}
& \tilde{\mu}^{h} \rightarrow \mu \tag{20}\\
\mu^{h} \rightarrow \mu & \text { weakly star in } H^{1}(0, T ; H) \cap L^{\infty}(0, T ; V) \tag{21}\\
& \text { weakly in } L^{2}(0, T ; W) \tag{22}\\
\tilde{\mu}^{h}, & \bar{\mu}^{h}, \mu^{h} \rightarrow \mu \\
& \text { strongly in } L^{\infty}(0, T ; H) \quad(\text { by compactness }) \tag{23}\\
\tilde{\rho}^{h} \rightarrow \rho & \text { weakly star in } W^{1, \infty}(0, T ; H) \cap H^{1}(0, T ; V) \cap L^{\infty}(0, T ; W) \\
& \text { and strongly in } C^{0}\left([0, T] ; H^{2-\varepsilon}(\Omega)\right) \hookrightarrow C^{0}(\bar{Q}) \tag{24}\\
\rho^{h}, \bar{\rho}^{h} \rightarrow \rho & \text { weakly star in } L^{\infty}(0, T ; W) \\
& \text { and strongly in } L^{\infty}(0, T ; V) \quad \text { (by compactness) }
\end{align*}
$$

Convergence I

Similar estimates can be proved for

$$
\left\|\tilde{\mu}^{h}-\mu^{h}\right\|_{L^{2}(Q)}^{2}, \quad\left\|\mu^{h}-\bar{\mu}^{h}\right\|_{L^{2}(Q)}^{2}, \quad\left\|\tilde{\rho}^{h}-\rho^{h}\right\|_{L^{2}(Q)}^{2}, \quad\left\|\rho^{h}-\bar{\rho}^{h}\right\|_{L^{2}(Q)}^{2}
$$

and even for stronger norms.
Owing to the a priori estimates, we have for $h \searrow 0$ (i.e., for $N \rightarrow \infty$):

$$
\begin{align*}
\tilde{\mu}^{h} \rightarrow \mu & \text { weakly star in } H^{1}(0, T ; H) \cap L^{\infty}(0, T ; V) \tag{20}\\
& \text { weakly in } L^{2}(0, T ; W) \tag{21}\\
\mu^{h} \rightarrow \mu & \bar{\mu}^{h}, \bar{\mu}^{h} \rightarrow \mu \tag{22}\\
& \text { strongly in } L^{\infty}(0, T ; H) \quad \text { (by compactness) } \\
\tilde{\rho}^{h} \rightarrow \rho & \text { weakly star in } W^{1, \infty}(0, T ; H) \cap H^{1}(0, T ; V) \cap L^{\infty}(0, T ; W) \tag{23}\\
& \text { and strongly in } C^{0}\left([0, T] ; H^{2-\varepsilon}(\Omega)\right) \hookrightarrow C^{0}(\bar{Q}) \\
\rho^{h}, \bar{\rho}^{h} \rightarrow \rho & \text { weakly star in } L^{\infty}(0, T ; W) \tag{24}\\
& \text { and strongly in } L^{\infty}(0, T ; V) \quad \text { (by compactness) } \tag{25}\\
\xi^{h} \rightarrow \xi & \text { weakly star in } L^{\infty}(0, T ; H) \\
\tilde{\eta}^{h} \rightarrow \eta & \text { weakly star in } W^{1, \infty}(0, T ; H) \cap H^{1}(0, T ; V) \tag{26}\\
& \text { and strongly in } C^{0}([0, T] ; H)
\end{align*}
$$

A time discretization
Cortona, September 2012 • Page 14 (22)

Convergence II

Identification of the limits:

- Since f_{1}^{\prime} is maximal monotone, we easily deduce that $\xi=f_{1}^{\prime}(\rho)$

Convergence II

Identification of the limits:

- Since f_{1}^{\prime} is maximal monotone, we easily deduce that $\xi=f_{1}^{\prime}(\rho)$

■ Using $V \hookrightarrow L^{6}(\Omega)$ and the Lipschitz continuity of $g, g^{\prime}, f_{2}^{\prime}$, we find

$$
\begin{align*}
& g\left(\bar{\rho}^{h}\right) \rightarrow g(\rho), g^{\prime}\left(\bar{\rho}^{h}\right) \rightarrow g^{\prime}(\rho), f_{2}^{\prime}\left(\rho^{h}\right) \rightarrow f_{2}^{\prime}(\rho), \\
& \text { all strongly in } L^{\infty}\left(0, T ; L^{6}(\Omega)\right) . \tag{27}
\end{align*}
$$

Convergence II

Identification of the limits:

- Since f_{1}^{\prime} is maximal monotone, we easily deduce that $\xi=f_{1}^{\prime}(\rho)$
- Using $V \hookrightarrow L^{6}(\Omega)$ and the Lipschitz continuity of $g, g^{\prime}, f_{2}^{\prime}$, we find

$$
\begin{align*}
& g\left(\bar{\rho}^{h}\right) \rightarrow g(\rho), g^{\prime}\left(\bar{\rho}^{h}\right) \rightarrow g^{\prime}(\rho), f_{2}^{\prime}\left(\rho^{h}\right) \rightarrow f_{2}^{\prime}(\rho), \\
& \text { all strongly in } L^{\infty}\left(0, T ; L^{6}(\Omega)\right) . \tag{27}
\end{align*}
$$

- Similarly, we find

$$
\begin{array}{ll}
\eta^{h}, \bar{\eta}^{h} \rightarrow g(\rho) & \text { strongly in } L^{\infty}\left(0, T ; L^{6}(\Omega) \Longrightarrow\right. \\
\tilde{\eta}^{h} \rightarrow \eta \equiv g(\rho) & \text { strongly in } L^{\infty}\left(0, T ; L^{6}(\Omega)\right) \tag{28}
\end{array}
$$

Convergence II

Identification of the limits:

- Since f_{1}^{\prime} is maximal monotone, we easily deduce that $\xi=f_{1}^{\prime}(\rho)$
- Using $V \hookrightarrow L^{6}(\Omega)$ and the Lipschitz continuity of $g, g^{\prime}, f_{2}^{\prime}$, we find

$$
\begin{align*}
& g\left(\bar{\rho}^{h}\right) \rightarrow g(\rho), g^{\prime}\left(\bar{\rho}^{h}\right) \rightarrow g^{\prime}(\rho), f_{2}^{\prime}\left(\rho^{h}\right) \rightarrow f_{2}^{\prime}(\rho), \\
& \text { all strongly in } L^{\infty}\left(0, T ; L^{6}(\Omega)\right) . \tag{27}
\end{align*}
$$

- Similarly, we find

$$
\begin{array}{ll}
\eta^{h}, \bar{\eta}^{h} \rightarrow g(\rho) & \text { strongly in } L^{\infty}\left(0, T ; L^{6}(\Omega) \Longrightarrow\right. \\
\tilde{\eta}^{h} \rightarrow \eta \equiv g(\rho) & \text { strongly in } L^{\infty}\left(0, T ; L^{6}(\Omega)\right) \tag{28}
\end{array}
$$

- Moreover,

$$
\begin{array}{cl}
\bar{\mu}^{h} g^{\prime}\left(\bar{\rho}^{h}\right) \rightarrow \mu g^{\prime}(\rho) & \text { strongly in } L^{\infty}\left(0, T ; L^{3 / 2}(\Omega)\right) \\
g\left(\bar{\rho}^{h}\right) \tilde{\mu}_{t}^{h} \rightarrow g(\rho) \mu_{t} & \text { weakly in } L^{2}\left(0, T ; L^{3 / 2}(\Omega)\right) \\
\tilde{\eta}_{t}^{h} \mu^{h} \rightarrow(g(\rho))_{t} \mu & \text { weakly in } L^{2}\left(0, T ; L^{3 / 2}(\Omega)\right) \tag{31}
\end{array}
$$

Now observe that the discrete equations can be written as

$$
\begin{array}{cc}
\left(1+2 g\left(\bar{\rho}^{h}\right)\right) \tilde{\mu}_{t}^{h}+\left(\tilde{\eta}_{t}^{h}\right) \mu^{h}-\Delta \mu^{h}=0 & \text { in } Q \\
\tilde{\rho}_{t}^{h}-\Delta \rho^{h}+\xi^{h}=\bar{\mu}^{h} g^{\prime}\left(\bar{\rho}^{h}\right)-f_{2}^{\prime}\left(\rho^{h}\right) & \text { in } Q \\
\partial_{\nu} \mu^{h}=\partial_{\nu} \rho^{h}=0 & \text { on } \Sigma \\
\tilde{\mu}^{h}(0)=\mu^{0}, \quad \tilde{\rho}^{h}(0)=\rho^{0}, & \text { in } \Omega \tag{35}
\end{array}
$$

It thus follows that the limit (μ, ρ) is the (unique) solution to (1)-(4) !

General strategy:

- Subtract (1) from (32) and test the difference by $\left(\tilde{\rho}^{h}-\rho\right)_{t}$.
- Subtract (2) from (33) and test the difference by $\tilde{\mu}^{h}-\mu$.
- Add the results.

■ Estimate!

This strategy works in principle but requires lengthy estimates using similar techniques as in the derivation of the a priori estimates. However, one needs two preparatory results:

Further estimates I

Preparation 1: We have for $0<\varepsilon<1$, by interpolation,

$$
\left\|\left(\rho^{h}-\rho\right)(t)\right\|_{H^{2-\varepsilon}(\Omega)} \leq C\left\|\left(\rho^{h}-\rho\right)(t)\right\|_{V}^{\alpha}\left\|\left(\rho^{h}-\rho\right)(t)\right\|_{W}^{1-\alpha}
$$

for some $\alpha \in(0,1)$ depending on ε, and thus (23), (24) imply

$$
\begin{equation*}
\rho^{h} \rightarrow \rho \text { strongly in } L^{\infty}\left(0, T ; H^{2-\varepsilon}(\Omega)\right) \tag{36}
\end{equation*}
$$

We infer that there are $\bar{N} \in \mathbb{N}$ and \bar{r}, \hat{r} such that for any $N \geq \bar{N}$ it holds (where $h=h_{N}=\frac{T}{N}$)

$$
\begin{equation*}
0<\bar{r} \leq \rho, \rho^{h}, \bar{\rho}^{h}, \tilde{\rho}^{h} \leq \hat{r}<1 \tag{37}
\end{equation*}
$$

Assuming $N \geq \bar{N}$ in the following, we can claim henceforth that f_{1}^{\prime} and $f^{\prime}=f_{1}^{\prime}+f_{2}^{\prime}$ are Lipschitz in the range of relevant arguments.

Further estimates II

Preparation 2:

Under the further assumption $-\Delta \rho_{0}+f^{\prime}\left(\rho_{0}\right)-\mu_{0} g^{\prime}\left(\rho_{0}\right) \in V$, which is satisfied if $\rho_{0} \in H^{3}(\Omega)$, we can show that

$$
\begin{equation*}
\left\|\tilde{\rho}_{t}^{h}\right\|_{L^{\infty}(0, T ; V) \cap L^{2}(0, T ; W)} \leq C \tag{38}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\Delta\left(\tilde{\rho}^{h}-\rho^{h}\right)\right\|_{L^{2}(0, T ; H)} \leq C h^{2} \tag{39}
\end{equation*}
$$

We then obtain the following error estimate:

Error estimates III

Theorem:

Let the general assumptions hold, and let $\rho_{0} \in H^{3}$. Suppose that $N \in \mathbb{N}$ is so large that for $h=\frac{T}{N}$ we have:

- $\max _{0 \leq r \leq 1}\left|f_{2}^{\prime \prime}(r)\right|<\frac{1}{h}$.

■ $0<\bar{r} \leq \rho, \rho^{h}, \bar{\rho}^{h}, \tilde{\rho}^{h} \leq \hat{r}<1$.
Then it holds

$$
\begin{equation*}
\left\|\tilde{\rho}^{h}-\rho\right\|_{H^{1}(0, T ; H) \cap L^{\infty}(0, T ; V)}+\left\|\tilde{\mu}^{h}-\mu\right\|_{L^{\infty}(0, T ; H) \cap L^{2}(0, T ; V)} \leq C h^{1 / 2} \tag{40}
\end{equation*}
$$

where $C>0$ depends only on the data.

Remark: One obtains h in place of $h^{1 / 2}$ provided one can show that

$$
\left\|\nabla \tilde{\mu}_{t}^{h}\right\|_{L^{2}(Q)} \leq C . \quad \text { (Ongoing work; requires } \mu_{0} \in W \text {) }
$$

- CGPS: "Existence and uniqueness of a global-in-time solution to a phase segregation problem of the Allen-Cahn type". M ${ }^{3}$ AS 20 (2010)
- —: "A temperature-dependent phase segregation problem of the Allen-Cahn type". Adv. Math. Sci. Appl. 20 (2010)

■ ——: "Well-posedness and long-time behavior for a nonstandard Cahn-Hilliard system with viscosity". SIAM J. Appl. Math. 71 (2011)

■ -: "An asymptotic analysis for a nonstandard viscous Cahn-Hilliard system". To appear in: Discrete Contin. Dyn. Syst. Ser. S

- ——: "Distributed optimal control of a nonstandard system of phase field equations". Contin. Mech. Thermodyn. (Online first, 2012)
■ ——: "Global existence for a strongly coupled Cahn-Hilliard system with viscosity". To appear in: Boll. Unione Ital. (9)
■ -_: "Global existence and uniqueness for a singular/degenerate Cahn-Hilliard system with viscosity". Submitted, WIAS Preprint No. 1713, 2012
- CGS: "Analysis and optimal boundary control of a nonstandard system of phase field equations". Milan J. Math. (Online first, 2012)

Ad multos annos, Gianni !

