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1 Introduction

The Cahn-Hilliard equation

∂tu = κ∆w and w = −ϑ∆u + g′(u) in Ω (1.1)

is central to materials science; it describes important qualitative features of two-phase systems,
namely, the transport of atoms between unit cells. This phenomenon can be observed, e.g.,
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when a binary alloy is cooled down sufficiently. One then observes a partial nucleation (i.e., the
apparition of nucleides in the material) or a total nucleation, the so-called spinodal decompo-
sition: the material quickly becomes inhomogeneous, forming a fine-grained structure in which
each of the two components appears more or less alternatively. In a second stage, which is called
coarsening, occurs at a slower time scale and is less understood, these microstructures coarsen.
We refer the reader to, e.g., [5], [6], [22] and [32]; see also [25] and [26] for qualitative studies of
the spinodal decomposition and [21] for studies on the coarsening. Here, Ω is the domain occu-
pied by the material, u is the order parameter (it corresponds to a density of atoms), w is the
chemical potential and g is a double-well potential whose wells correspond to the phases of the
material; one usually considers polynomial potentials of degree 4, typically, g(s) = 1

4 (s2 − b2)2,
b > 0. Now, such potentials are approximations of the following thermodynamically relevant
potential:

g(s) = −c0s
2 + c1((1 + s) ln(1 + s) + (1− s) ln(1− s)) , s ∈ (−1, 1), c0 > c1 > 0. (1.2)

Furthermore, κ is the mobility (we assume that it is a positive constant; more generally it should
depend on the order parameter) and ϑ > 0 is related to the surface tension at the interface.

Equation (1.1) has been extensively studied and is now essentially well understood as far
as the existence, uniqueness and regularity of solutions and the asymptotic behavior of the
solutions are concerned. We refer the reader, among a vast literature, to, e.g., [1], [4], [7], [8],
[10], [11], [12], [14], [17], [19], [23], [27], [28], [29], [30], [31], [32], [33], [34], [35], [37], and [38].

In most works, the equations are endowed with Neumann boundary conditions for both u
and w (which means that the interface is orthogonal to the boundary and that there is no
mass flux at the boundary) or with periodic boundary conditions. Now, recently, physicists
have introduced the so-called dynamic boundary conditions, in the sense that the kinetics, i.e.,
∂tu, appears explicitly in the boundary conditions, in order to account for the interaction of the
components with the walls for a confined system (see [15] and [16]; see also [20] where numerical
simulations are performed).

From a phenomenological point of view, such boundary conditions can be derived as follows.
Consider, in addition to the usual Ginzburg-Landau free energy

ΨGL(u,∇u) =
∫

Ω

(
ϑ

2
|∇u|2 + g(u)

)
dx, ϑ > 0

(the chemical potential w is defined as a variational derivative of ΨGL with respect to u), the
following boundary free energy:

ΨDC(u,∇Γu) =
∫

Γ

(ν

2
|∇Γu|2 + h(u)

)
dσ, ν > 0

(thus, Ψ = ΨGL+ΨDC is the total free energy of the system), where Γ is the boundary of Ω and
∇Γ is the surface gradient. Then, writing that the density on the boundary Γ relaxes towards
equilibrium with a rate which is proportional to the variational derivative of Ψ with respect
to u (the test function z below being taken in a suitable space),

〈δΨ(u)
δu

, z〉 =
∫

Ω

(
−ϑ∆u + g′(u)

)
z dx +

∫
Γ

(
−ν∆Γu + ϑ(∂nu)|Γ + h′(u)

)
z dσ,

we obtain the dynamic boundary condition

1
d

∂tu = ν∆Γu− ϑ(∂nu)|Γ − h′(u) on Γ, d > 0. (1.3)
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Here, ∆Γ is the Laplace-Beltrami operator and (∂nu)|Γ denotes the outer normal derivative of
u on Γ. However, we can consider a boundary condition like

1
d

∂tu = −ϑ(∂nu)|Γ − h′(u) on Γ (1.4)

as well. This is seen as a particular case of (1.3) if we allow the choice ν = 0 there. Indeed,
the operators ∆Γ and ∇Γ formally disappear in such a case and it is understood that the
corresponding contributions have to be ignored. In particular, this is mandatory in one space
dimension, since the above boundary operators are meaningless in this case.

The Cahn-Hilliard equation (1.1), endowed with the dynamic boundary condition (1.3), has
been studied in [7], [17], [28], [33], [34], and [37]. In particular, one now has the existence and
uniqueness of solutions and results on the asymptotic behavior of the solutions. We should note
however that all these results have been obtained for regular potentials g, only (typically, g is
a polynomial potential of degree 4 as above or is at least of class C2).

In this paper, we are interested in the more general equations

∂tu−∆w = 0 in Ω (1.5)
∂nw = 0 on Γ (1.6)
w = τ ∂tu−∆u + β(u) + π(u)− f in Ω (1.7)
v = u|Γ and ∂tv + (∂nu)|Γ − ν∆Γv + βΓ(v) + πΓ(v) = fΓ on Γ (1.8)
u(0) = u0 in Ω (1.9)

where the potentials have been generalized. Namely, we have split g′ and h′ as g′ = β + π and
h′ = βΓ + πΓ, respectively, where β and βΓ are monotone and possibly non-smooth, while π
and πΓ are more regular perturbations, and we are interested in keeping β and βΓ as general as
possible (especially β). Moreover, we have introduced a nonnegative parameter τ in (1.7) and
kept the coefficient ν in (1.8), by allowing the value ν = 0, while we have normalized the other
positive constants to 1, for simplicity. Furthermore, we have added the forcing terms f and fΓ.
Note that we can thus consider the dynamic boundary condition

∂tv + (∂nu)|Γ + k0(v − uΓ) = 0, k0 > 0 (1.10)

with a given uΓ as a particular case of (1.8) with ν = 0.

We remark that, for τ > 0, we obtain the viscous Cahn-Hilliard equation introduced in [30]
(see also [18] where similar models are derived and, e.g., [2], [13] and [27] for the mathematical
analysis of the viscous Cahn-Hilliard equation with classical boundary conditions and [28] for
dynamic boundary conditions and regular potentials). Furthermore, following [28], we view the
dynamic boundary condition as a separate (parabolic if ν > 0) equation on the boundary.

Compared with the previous results, we consider in this paper less regular nonlinear terms;
in particular, π and πΓ are only Lipschitz continuous, while β and βΓ are subdifferentials of
convex functions (the classical Cahn-Hilliard equation, with such potentials and with classical
boundary conditions, is considered in [19]). In that case, equations (1.7) and (1.8) have to be
read as differential inclusions. We are then able to obtain well-posedness results for problem
(1.5)–(1.9) on any finite time interval (0, T ).

More precisely, we can show uniqueness in a very general framework and global existence
under further assumptions on the nonlinearities, and the most interesting case is the following.



4

Roughly speaking, we allow β and βΓ to be essentially arbitrary (in particular, they could have
a bounded domain like β does in (1.2)), but we assume that β grows faster than βΓ and that
the other boundary contributions satisfy a sign condition. However, we can avoid compatibility
conditions on the nonlinearities, provided that both β and βΓ are everywhere defined and satisfy
some growth conditions that depend on the dimension d of Ω.

2 Main results

In this section, we carefully describe the problem we are going to deal with and state our results.
As in the Introduction, Ω is the body where the evolution is considered and Γ := ∂Ω. Moreover,
∂n still denotes the outward normal derivative on Γ. We assume Ω ⊂ Rd, with 1 ≤ d ≤ 3, to be
bounded, connected, and smooth, and write |Ω| for its Lebesgue measure. Similarly, |Γ| denotes
the (d− 1)-dimensional measure of Γ. As far as the one-dimensional case is concerned, see the
forthcoming Remark 2.1. Given a finite final time T , we set for convenience

Qt := Ω× (0, t) and Σt := Γ× (0, t) for every t ∈ (0, T ] (2.1)
Q := QT , and Σ := ΣT . (2.2)

Now, we describe the main features of the structure of our system. Further assumptions will be
made later on. We are given functions β̂ , β̂Γ, π, πΓ and constants τ , ν satisfying the conditions
listed below.

β̂ , β̂Γ : R → [0,+∞] are convex, proper, and l.s.c., and β̂(0) = β̂Γ(0) = 0 (2.3)
π and πΓ are Lipschitz continuous (2.4)
τ, ν ≥ 0. (2.5)

We define the graphs β and βΓ in R× R by

β := ∂β̂ and βΓ := ∂β̂Γ (2.6)

and note that β and βΓ are maximal monotone. Moreover, β(0) 3 0 and βΓ(0) 3 0. Further-
more, we note that both β and βΓ might have effective domains, denoted by D(β) and D(βΓ),
respectively, which might be different from the whole real line. In the sequel, for any maximal
monotone graph γ : R → 2R, we introduce the notation (see, e.g., [3, p. 28])

γ◦(r) is the element of γ(r) having minimum modulus (2.7)
γY

ε := ε−1
(
I − (I + εγ)−1

)
, the Yosida regularization of γ, for ε > 0 (2.8)

and still use the symbol γ (and, e.g., γY
ε as a particular case) for the maximal monotone operator

induced by γ on any L2-space.

Next, in order to state our concept of solution in a simple way, we set

V := H1(Ω), H := L2(Ω), HΓ := L2(Γ)
VΓ := H1(Γ) if ν > 0 and VΓ := H1/2(Γ) if ν = 0
V := {v ∈ V : v|Γ ∈ VΓ} (2.9)

the latter being endowed with the graph norm. Note that V = V if ν = 0. As H = H0(Ω), we
denote the (standard) norms of H and V by ‖ · ‖k,Ω with k = 0, 1, respectively. More generally,
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we use such a symbol for Hk(Ω) with real k > 0 and the analogous one, namely, ‖ · ‖k,Γ, for
Hk(Γ) with real k > 0. In particular, ‖ · ‖0,Γ is the norm in HΓ. On the contrary, we write
‖ · ‖VΓ for the norm in VΓ since the definition of such a space depends on ν. For the sake of
simplicity, the same notation will be used for both a space and any power of it. We recall the
optimal trace theorem for V , namely, the inequality

‖z|Γ‖1/2,Γ ≤ MΩ‖z‖1,Ω for every z ∈ V (2.10)

where MΩ depends on Ω, only. Finally, the symbol 〈 · , · 〉 stands for the duality pairing between
V ∗ and V . In the sequel, it is understood that H is embedded in V ∗ in the usual way, i.e., so
that 〈u, v〉 = (u, v), the inner product of H, for every u ∈ H and v ∈ V .

Remark 2.1. In the one-dimensional case d = 1, the open set Ω is a bounded interval (x1, x2).
Hence, Γ = {x1, x2} and VΓ = HΓ = R2, since the “surface measure” is the 0-dimensional
Hausdorff measure (i.e., the counting measure) in this case, and the same holds for other
spaces, e.g., L∞(Γ). Moreover, V = V and ∂nv(xi) = (−1)idv(xi)/dx for any smooth v and
i = 1, 2. Finally, we set

ν = 0 if d = 1 (2.11)

since the surface gradient ∇Γ and the related Laplace-Beltrami operator ∆Γ are meaningless
and have to be ignored in that case, as said in the Introduction.

At this point, we can describe our problem, which consists in the variational formulation
of system (1.5)–(1.9). Namely, we formally multiply the equations by test functions free on Γ,
integrate by parts both in Ω and on Γ, and take the boundary conditions into account. However,
as β and βΓ might be multi-valued, we have to include selections ξ and ξΓ of β(u) and of βΓ(v)
in the definition of solution. Moreover, the regularity of all ingredients has to be made precise.
So, just to start, we give the data f , fΓ, and u0 satisfying (further assumptions will be specified
later on)

f ∈ L2(0, T ;H), fΓ ∈ L2(0, T ;HΓ), and u0 ∈ V (2.12)

and look for a quadruplet (u, w, ξ, ξΓ) such that

u ∈ L∞(0, T ;V ) ∩H1(0, T ;V ∗) and τ ∂tu ∈ L2(0, T ;H) (2.13)
v := u|Γ ∈ L∞(0, T ;VΓ) ∩H1(0, T ;HΓ) (2.14)
w ∈ L2(0, T ;V ) (2.15)
ξ ∈ L2(0, T ;H) and ξ ∈ β(u) a.e. in Q (2.16)
ξΓ ∈ L2(0, T ;HΓ) and ξΓ ∈ βΓ(v) a.e. on Σ (2.17)
u(0) = u0 (2.18)

and satisfying for a.a. t ∈ (0, T )

〈∂tu(t), z〉+
∫

Ω

∇w(t) · ∇z = 0 (2.19)∫
Ω

w(t)z =
∫

Ω

τ ∂tu(t) z +
∫

Γ

∂tv(t) z +
∫

Ω

∇u(t) · ∇z +
∫

Γ

ν∇Γv(t) · ∇Γz

+
∫

Ω

(
ξ(t) + π(u(t))− f(t)

)
z +

∫
Γ

(
ξΓ(t) + πΓ(v(t))− fΓ(t)

)
z (2.20)

for every z ∈ V and every z ∈ V, respectively.
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Remark 2.2. We note that the definition of v given by (2.14) has to be read as v(t) = u(t)|Γ
for a.a. t ∈ (0, T ) and it is understood that the symbol z in the boundary terms of (2.20)
actually means z|Γ. However, in order to simplify the notation, we use the same symbol for
a function and its trace on the boundary, unless some misunderstanding arises. As far as this
point is concerned, we note that ∂t(z|Γ) = (∂tz)|Γ whenever z is a smooth function, while the
right-hand side of such a formula is meaningless in the opposite case. On the contrary, the left-
hand side exists (at least in a generalized sense) whenever z ∈ L2(0, T ;V ). Therefore, the true
meaning of ∂tz on the boundary is the latter. Moreover, we note that an equivalent formulation
of (2.19)–(2.20) is given by∫ T

0

〈∂tu(t), z(t)〉 dt +
∫

Q

∇w · ∇z = 0 (2.21)∫
Q

wz =
∫

Q

τ∂tu z +
∫

Σ

∂tu z +
∫

Q

∇u · ∇z +
∫

Σ

ν∇Γu · ∇Γz

+
∫

Q

(
ξ + π(u)− f

)
z +

∫
Σ

(
ξΓ + πΓ(u)− fΓ

)
z (2.22)

for every z ∈ L2(0, T ;V ) and every z ∈ L2(0, T ;V), respectively, where we have simply written
u instead of v in the boundary terms. Finally, we point out that the regularity requirements
(2.13)–(2.17) are choosen just in order that the variational problem makes sense and a general
uniqueness result holds (Theorem 2.4 below). Indeed, every solution satisfying (2.13)–(2.17) is
automatically smoother and fulfils (1.7) and (1.8) a.e. in Q and a.e. on Σ, respectively, as we
show in the forthcoming Remark 5.4. On the other hand, also some regularity in a different
direction (like some boundedness with respect to time) holds for the solution we construct under
the assumptions of our existence results (Theorems 2.8 and 2.9 below), as the a priori estimates
we establish in the proof given in Section 5 clearly show.

Remark 2.3. Note that, by testing (2.19) by the constant 1/|Ω|, we obtain

∂t(u(t)Ω) = 0 for a.a. t ∈ (0, T ) and u(t)Ω = (u0)Ω for every t ∈ [0, T ] (2.23)

where, more generally, we set

v∗Ω :=
1
|Ω|

〈v∗, 1〉 for v∗ ∈ V ∗. (2.24)

Clearly, (2.24) gives the usual mean value when applied to elements of H.

Now we state our results. The simplest one regards uniqueness. However, our conclusion is
partial even though it holds in a very general case.

Theorem 2.4. Assume (2.3)–(2.6) and (2.12) with the notation (2.1)–(2.2) and (2.9)–(2.11).
Then, any two solutions to problem (2.13)–(2.20) have the same first component.

Remark 2.5. A statement like Theorem 2.4 is typical for problems having some bad multi-
valued nonlinearities and cannot be improved, unless further assumptions are made (see also
the forthcoming Remark 3.1). In particular, if β is single-valued, the component ξ is uniquely
determined as well. Then, a comparison in (2.20) with z ∈ H1

0 (Ω) shows that the same happens
for the component w. Finally, writing (2.20) once more with such an information, we see that
even the component ξΓ is uniquely determined and we have a full uniqueness result.
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While the above uniqueness result is rather general and even continuous dependence can be
proved under the same hypotheses (see the forthcoming Remark 3.2), we can ensure existence
just under further assumptions. We recall that our aim is to keep the maximal monotone
operators as general as we can, mainly, and we can do that under suitable conditions. As far
as the data are concerned, we assume that

f ∈ H1(0, T ;H) and fΓ ∈ H1(0, T ;HΓ) ∩ L∞(Σ) (2.25)
u0 ∈ H2(Ω) and ∂nu0 = 0 (2.26)
ν u0|Γ ∈ H2(Γ) (2.27)
β̂(u0) ∈ L1(Ω), β̂(u0|Γ) ∈ L1(Γ), and β̂Γ(u0|Γ) ∈ L1(Γ) (2.28)
the mean value of u0 belongs to the interior of D(β). (2.29)

Moreover, a further assumption is needed, which is weaker or stronger depending on whether
or not the viscosity constant τ is positive (see (2.8) and (2.7) for notation).

β◦(u0) ∈ H and β◦Γ(u0|Γ) ∈ HΓ (2.30)
−∆u0 + βY

ε (u0)− f(0) remains bounded in V as ε → 0+ if τ = 0. (2.31)

Remark 2.6. If ν > 0 and (2.26) is taken into account, (2.27) is equivalent to u0 ∈ H5/2(Ω),
and to ∆Γu0|Γ ∈ HΓ. Let us comment (2.31), which looks involved. If u0 ∈ H3(Ω) and
f(0) ∈ V , then it regards just boundedness for βY

ε (u0). In such a case, β cannot be too irregular
on the range of u0, and a sufficient condition for (2.31) is the following: the closure of the range
of u0 is included in some open interval where β is one-valued and Lipschitz continuous. For
instance, if β comes from the logarithmic potential (1.2), this simply means that sup |u0| < 1.
Finally, we note that (2.28) and (2.30) are not independent (the latter implies some of the
former, indeed), and we have written all of them just for convenience.

As far as the structure of the system is concerned, we need some compatibility condition on
the main nonlinearities and on the perturbation πΓ on the boundary. Namely, we assume that

D(βΓ) ⊇ D(β) and βΓ(0) = {0} (2.32)

and that real constants α, CΓ, σ, LΓ, MΓ, and r± exist such that

α > 0, CΓ ≥ 0, σ ∈ (0, 1), LΓ > sup |π′Γ|
and MΓ > |πΓ(0)|+ ‖fΓ‖L∞(Γ) (2.33)

r− ≤ 0 ≤ r+ , and r± belong to the interior of D(β) (2.34)
|β◦(r)| ≥ α|β◦Γ(r)| − CΓ for every r ∈ D(β) (2.35)
σ|β◦Γ(r)| ≥ LΓ|r|+ MΓ for every r ∈ D(βΓ) \ (r−, r+). (2.36)

Remark 2.7. The above assumptions merit some comment. The first of (2.32) is quite nat-
ural and the second one is not restrictive in the applications. Assumption (2.35) is the main
compatibility condition. Clearly, it is satisfied whenever β is singular and βΓ is not. Moreover,
if D(βΓ) = D(β) and both β and βΓ are regular, it becomes a growth condition on βΓ with
respect to β, and the same happens if both β and βΓ are singular. Let us come to (2.36) and
to the restrictions on the constants given by (2.33)–(2.34). If D(β) = D(βΓ) = R, then (2.36)
is surely satisfied (with arbitrary LΓ, MΓ and suitably big r±) if βΓ + πΓ is stricly superlinear
at infinity. Indeed, for any decomposition βΓ + πΓ with a Lipschitz continuous πΓ, exactly βΓ
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is superlinear in such a case. Finally, if D(β) is bounded while D(βΓ) is not, (2.36) essentially
requires that the nonlinear boundary term has a decomposition βΓ+πΓ such that the monotone
part is much bigger than the perturbation near the boundary of the body double-well potential.
In particular, in the case the latter is the logarithmic potential (1.2) and the boundary condi-
tion has the form (1.10) for some given uΓ, then (2.36) is fulfilled provided that sup |uΓ| < 1.
Indeed, we can take βΓ(r) = k0r and πΓ(r) = 0 as far as the decomposition is concerned. Then,
it suffices to choose σ,MΓ ∈ (0, 1) sufficiently close to 1 and LΓ small enough.

Here is our main result.

Theorem 2.8. Assume (2.3)–(2.6) and (2.12) with the notation (2.1)–(2.2) and (2.9)–(2.11).
Moreover, assume (2.25)–(2.36). Then, there exists a quadruplet (u, w, ξ, ξΓ) satisfying (2.13)–
(2.18) and solving problem (2.19)–(2.20).

However, as said in the Introduction, we can prove a different existence result that requires
growth conditions on β and βΓ instead of compatibility and sign assumptions. On the contrary,
less is required on the data. As far as the structure of the system is concerned, we ask that

D(β) = D(βΓ) = R (2.37)

in any case, while the details of the further hypotheses depend on the dimension d of Ω and on
whether or not the boundary differential operators actually appear in the equations (i.e., on ν).
If d = 1 that is all. If d = 2, we require that

β◦(r) = O(|r|p) as |r| → +∞, for some p ≥ 1 and
either ν > 0 or β◦Γ(r) = O(|r|q) as |r| → +∞, for some q ≥ 1. (2.38)

If d = 3, we assume that

β◦(r) = O(|r|3) and β◦Γ(r) = O(|r|q) as |r| → +∞, for some q with
q ≥ 1 if ν > 0 and q ∈ [1, 2] if ν = 0. (2.39)

Theorem 2.9. Assume (2.3)–(2.6) and (2.12) with the notation (2.1)–(2.2) and (2.9)–(2.11).
Moreover, assume (2.37) and either i) d = 1, or ii) d = 2 and (2.38), or iii) d = 3 and (2.39).
Finally, assume (2.26), (2.28), and either τ > 0 or f ∈ H1(0, T ;H). Then, there exists a
quadruplet (u, w, ξ, ξΓ) satisfying (2.13)–(2.18) and solving problem (2.19)–(2.20).

Remark 2.10. In connection with the definition of mean value given in Remark 2.3, we recall
some facts. First of all, as Ω is bounded and smooth, the well-known Poincaré inequality holds
true, namely

‖v‖2
1,Ω ≤ MΩ(‖∇v‖2

0,Ω + |vΩ|2) for every v ∈ V (2.40)

where MΩ depends on Ω, only. Next, we define

dom N := {v∗ ∈ V ∗ : v∗Ω = 0} and N : dom N → {v ∈ V : vΩ = 0} (2.41)

by setting for v∗ ∈ dom N

Nv∗ ∈ V, (Nv∗)Ω = 0, and
∫

Ω

∇Nv∗ · ∇z = 〈v∗, z〉 for every z ∈ V (2.42)
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i.e., Nv∗ is the solution v to the generalized Neumann problem for −∆ with datum v∗ that
satisfies vΩ = 0. As Ω is bounded, smooth, and connected, it turns out that (2.42) yields a
well-defined isomorphism, which satisfies

〈u∗,Nv∗〉 = 〈v∗,Nu∗〉 =
∫

Ω

(∇Nu∗) · (∇Nv∗) for u∗, v∗ ∈ dom N. (2.43)

Moreover, if we define ‖ · ‖∗ : V ∗ → [0,+∞) by the formula

‖v∗‖2
∗ := ‖∇N(v∗ − (v∗)Ω)‖2

0,Ω + |(v∗)Ω|2 for v∗ ∈ V ∗ (2.44)

it is straightforward to prove that ‖ · ‖∗ is a norm that makes V ∗ a Hilbert space. Therefore, if
‖ · ‖V ∗ stands for the dual norm to ‖ · ‖1,Ω, the following inequalities hold

1
MΩ

‖v∗‖V ∗ ≤ ‖v∗‖∗ ≤ MΩ‖v∗‖V ∗ for v∗ ∈ V ∗ (2.45)

where MΩ depends on Ω, only. Indeed, as the latter holds thanks to (2.40), the former follows
from the open mapping theorem, provided that we possibly replace MΩ by a bigger constant.
Note that

〈v∗,Nv∗〉 = ‖v∗‖2
∗ for every v∗ ∈ dom N (2.46)

by (2.43)–(2.44). Finally, owing to (2.43) once more, we see that

2〈∂tv
∗(t),Nv∗(t)〉 =

d

dt

∫
Ω

|∇Nv∗(t)|2 =
d

dt
‖v∗(t)‖2

∗ for a.a. t ∈ (0, T ) (2.47)

for every v∗ ∈ H1(0, T ;V ∗) satisfying v∗Ω(t) = 0 for every t ∈ [0, T ].

Throughout the whole paper, we widely use the notation and the properties introduced in
the above remark, as well as the elementary inequality

ab ≤ δa2 +
1
4δ

b2 for every a, b ≥ 0 and δ > 0. (2.48)

Moreover, we account for the easy inequalities we derive at once. We have

‖z(t)‖2
0,Ω = ‖z(0)‖2

0,Ω + 2
∫ t

0

〈∂tz(s), z(s)〉 ds

≤ ‖z(0)‖2
0,Ω + δ

∫ t

0

‖∂tz(s)‖2
V ∗ ds +

1
δ

∫ t

0

‖z(s)‖2
1,Ω ds

for every t ∈ [0, T ], z ∈ L2(0, T ;V )∩H1(0, T ;V ∗), and δ > 0. Owing to (2.45), we conclude that

‖z(t)‖2
0,Ω ≤ ‖z(0)‖2

0,Ω + δ

∫ t

0

‖∂tz(s)‖2
∗ ds + cδ

∫ t

0

‖z(s)‖2
1,Ω ds (2.49)

where cδ depends on Ω as well. Using a similar argument for boundary terms, we easily see
that the inequality below also holds true

‖z(t)‖2
0,Γ ≤ ‖z(0)‖2

0,Γ + δ

∫ t

0

‖∂tz(s)‖2
0,Γ ds + cδ

∫ t

0

‖z(s)‖2
0,Γ ds. (2.50)
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Here, we have to assume that z ∈ H1(0, T ;L2(Γ)). Finally, we recall the inequality

‖z‖2
0,Ω ≤ δ‖∇z‖2

0,Ω + cδ‖z‖2
∗ for every z ∈ V (2.51)

which holds for every δ > 0 and some constant cδ depending on Ω as well.

We conclude this section by stating a general rule we use as far as constants are concerned,
in order to avoid a boring notation. Throughout the paper, the symbol c stands for different
constants which depend only on Ω, on the final time T , and on the constants and the norms
of the functions involved in the assumptions of either our statements or our approximation. In
particular, c is independent of the approximation parameter ε we introduce in the next section.
A notation like cδ (see, e.g., (2.51)) allows the constant to depend on the positive parameter δ,
in addition. Hence, the meaning of c and cδ might change from line to line and even in the
same chain of inequalities. On the contrary, we use different symbols (see, e.g., (2.40)) to denote
precise constants which we could refer to. By the way, all the constants we have termed MΩ

could be the same, since sharpness is not needed.

3 Uniqueness

In this section, we prove Theorem 2.4. We take two solutions and label their components with
subscripts 1 and 2. First of all, we observe that u1 and u2 have the same mean value thanks
to (2.23). Hence, we can write (2.19) for both solutions and test the difference by Nu where
u := u1 − u2. More precisely, we write such a difference at time t = s, choose z = Nu(s) in it,
and integrate what we get over (0, t) with respect to s, where t ∈ (0, T ] is arbitrary. At the
same time, we write (2.20) for both solutions, choose z = −u(s) in the difference, and integrate.
Finally, we add the obtained equalities to each other. If we set for convenience w := w1 − w2

and introduce an analogous notation for the other components, we have∫ t

0

〈∂tu(s),Nu(s)〉 ds +
∫

Qt

∇w · ∇Nu−
∫

Qt

wu

+
τ

2

∫
Ω

|u(t)|2 +
1
2

∫
Γ

|u(t)|2 +
∫

Qt

|∇u|2 + ν

∫
Σt

|∇Γu|2 +
∫

Qt

ξu +
∫

Σt

ξΓu

=
∫

Qt

(
π(u2)− π(u1)

)
u +

∫
Σt

(
πΓ(u2)− πΓ(u1)

)
u.

Now, we use (2.47) for the first term on the left-hand side and cancel the next two integrals
accounting for (2.42). Moreover, we observe that the last two integrals on the left-hand side
are nonnegative since β and βΓ are monotone. Finally, we owe to the Lipschitz continutity of π
and πΓ (see (2.4)). Hence, if we forget three nonnegative terms on the left-hand side, we obtain

1
2
‖u(t)‖2

∗ +
1
2
‖u(t)‖2

0,Γ +
∫

Qt

|∇u|2 ≤ c

∫
Qt

|u|2 +
∫

Σt

|u|2.

At this point, we account for (2.51) and get∫
Qt

|u|2 ≤ δ

∫
Qt

|∇u|2 + cδ

∫ t

0

‖u(s)‖2
∗ ds.

Therefore, it suffices to choose δ small enough and apply the Gronwall lemma to obtain u = 0.
Hence u1 = u2, and the proof is complete.
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Remark 3.1. In connection with Remark 2.5, we present a simple example of non-uniqueness
in the case of a multi-valued β. Assume that π, β̂Γ, πΓ, f , and fΓ vanish identically and let
r0 ∈ R be such that β(r0) is not a singleton. Now, pick any smooth w depending on time, only,
such that w(t) ∈ β(r0) for every t and choose u = r0, ξ = w, and ξΓ = 0. Then, (u, w, ξ, ξΓ)
solves problem (2.13)–(2.20) with u0 = r0. Hence, there is a big family of solutions to the same
problem.

Remark 3.2. The argument used in the above proof can be applied to obtain a continuous
dependence result. Indeed, just the terms involving the data appear, in addition. If we consider
the solutions corresponding to two sets of data, we have with a self-explaining notation

‖u1 − u2‖2
L∞(0,T ;V ∗) + τ‖u1 − u2‖2

L∞(0,T ;H) + ‖u1 − u2‖2
L∞(0,T ;HΓ)

+ ‖∇(u1 − u2)‖2
L2(Q) + ν‖∇Γ(u1 − u2)‖2

L2(Σ)

≤ c
{
‖u0,1 − u0,2‖2

∗ + τ‖u0,1 − u0,2‖2
0,Ω + ‖u0,1 − u0,2‖2

0,Γ

+ ‖f1 − f2‖2
L2(0,T ;H) + ‖fΓ,1 − fΓ,2‖2

L2(0,T ;HΓ)

}
provided that u0,1 and u0,2 have the same mean value.

4 Approximating problems

This section contains a preliminary work in the direction of proving Theorems 2.8 and 2.9.
We consider an approximating problem, depending on the parameter ε ∈ (0, 1), obtained by
smoothing the worst nonlinearities β and βΓ of problem (2.19)–(2.20). Moreover, we replace
the coefficient τ (which might vanish) by a positive value in order to make the solution more
regular. So, we define the real number τε and the functions βε, βΓ,ε : R → R by the formulas

τε := max{τ, ε} (4.1)
βε(r) := βY

ε (r) for r ∈ R (4.2)
βΓ,ε(r) := βY

Γ,αε(r − εCΓ) if r ≤ −εCΓ

:= βY
Γ,αε(r + εCΓ) if r ≥ εCΓ

:=
r

εCΓ
βY

Γ,αε(−2εCΓ) if −εCΓ < r < 0

:=
r

εCΓ
βY

Γ,αε(2εCΓ) if 0 ≤ r < εCΓ (4.3)

where α and CΓ are the same as in (2.35) and notation (2.8) for Yosida regularizations is used.

Remark 4.1. As far as the proof of Theorem 2.9 is concerned, we can simply take

βΓ,ε := βY
Γ,ε . (4.4)

The above complicated definition of βΓ,ε is justified by the forthcoming Lemma 5.1, which is
needed just in the proof of Theorem 2.8.

Moreover, we define for convenience β̂ε, β̂Γ,ε : R → R by the formulas

β̂ε(r) :=
∫ r

0

βε(s) ds and β̂Γ,ε(r) :=
∫ r

0

βΓ,ε(s) ds for r ∈ R. (4.5)
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As the Yosida regularization of a maximal monotone operator is monotone and Lipschitz con-
tinuous, such a property holds for both βε and βΓ,ε. Moreover, such functions vanish at 0. It
follows that β̂ε and β̂Γ,ε are nonnegative convex functions with (at most) a quadratic growth.

Then, the approximating problem consists in finding a pair (uε, wε) satisfing the regularity
properties and the Cauchy condition given below

uε ∈ L∞(0, T ;V ) ∩H1(0, T ;H) (4.6)
uε|Γ ∈ L∞(0, T ;VΓ) ∩H1(0, T ;HΓ) (4.7)
wε ∈ L2(0, T ;V ) (4.8)
uε(0) = u0 (4.9)

and solving, for a.a. t ∈ (0, T ), the variational equations∫
Ω

∂tuε(t) z +
∫

Ω

∇wε(t) · ∇z = 0 (4.10)∫
Ω

wε(t)z = τε

∫
Ω

∂tuε(t) z +
∫

Γ

∂tuε(t) z +
∫

Ω

∇uε(t) · ∇z + ν

∫
Γ

∇Γuε(t) · ∇Γz

+
∫

Ω

(
βε(uε(t)) + π(uε(t))− f(t)

)
z +

∫
Γ

(
βΓ,ε(uε(t)) + πΓ(uε(t))− fΓ(t)

)
z (4.11)

for every z ∈ V and for every z ∈ V, respectively. An equivalent formulation of (4.10)–(4.11) is
the following ∫

Q

∂tuε z +
∫

Q

∇wε · ∇z = 0 (4.12)∫
Q

wεz = τε

∫
Q

∂tuε z +
∫

Σ

∂tuε z +
∫

Q

∇uε · ∇z + ν

∫
Σ

∇Γuε · ∇Γz

+
∫

Q

(
βε(uε) + π(uε)− f

)
z +

∫
Σ

(
βΓ,ε(uε) + πΓ(uε)− fΓ

)
z (4.13)

for every z ∈ L2(0, T ;V ) and every z ∈ L2(0, T ;V), respectively. Note that, as for (2.19)–(2.20),
we have

∂t(uε(t)Ω) = 0 for a.a. t ∈ (0, T ) and uε(t)Ω = (u0)Ω for every t ∈ [0, T ]. (4.14)

We can prove a well-posedness result for the above problem as a particular case of the theorem
stated below. Indeed, its proof does not require that the operators involved in the problem are
exactly the previous ones. Just some more smoothness in addition to the regularity conditions
required for β and βΓ is needed, indeed.

Theorem 4.2. Assume that βε, βΓ,ε : R → R are monotone and Lipschitz continuous and that
they vanish at 0. Moreover, assume τε > 0 and (2.4). Finally, assume (2.12) and (2.26). Then,
there exists a unique pair (uε, wε) satisfying (4.6)–(4.9) and solving (4.10)–(4.11).

The uniquess part follows as a particular case of Theorem 2.4. Hence, the rest of the section
is devoted to the proof of existence. For convenience, we refer to the precise notation introduced
for the approximating problem, but it is clear from the proof we give that just the assumptions
of the statement are used. Our argument relies on a Galerkin scheme and a compactness method
based on suitable a priori estimates performed on the discrete solution.
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The discretized problem. We consider the problem

λ ∈ R, e ∈ V \ {0}, and
∫

Ω

∇e · ∇z = λ

∫
Ω

ez for every z ∈ V (4.15)

which is the variational formulation of the eigenvalue problem −∆e = λe with homogeneous
Neumann boundary conditions. It is well known that (4.15) has infinitely many eigenvalues.
More precisely, there exist two sequences {λn}n=1,2,... and {en}n=1,2,... such that, for every
n ≥ 1, λn is an eigenvalue and en is a corresponding eigenfunction, the sequence {λn} is
nondecreasing, and the sequence {en} is orthonormal and complete in L2(Ω). We observe that∫

Ω

∇ej · ∇ei = 0 for i 6= j and
∫

Ω

|∇ei|2 = λi > 0 for i > 1. (4.16)

Indeed, (4.15) clearly implies both equalities. Moreover the second one holds true for every i
and implies that λi ≥ 0 for every i. In order to verify that λi > 0 for i > 1, we notice that
λ = 0 is an eigenvalue, whence λ1 = 0, and that any non-zero constant is an eigenfunction.
Furthermore, every eigenfunction is a constant since Ω is connected by assumption. We deduce
that, for every i > 1, ei cannot be a constant, whence λi > 0. Moreover, as e1 is a constant
and {en} is orthonormal in H, from (4.15) and (2.41)–(2.42) we easily deduce that

ei ∈ dom N and Nei =
1
λi

ei for every i > 1. (4.17)

Now, we can introduce the discretized problem. We set

Vn := span{ei : i = 1, . . . , n} for every n ≥ 1 (4.18)
un

0 is the L2(Ω)-projection of u0 on Vn (4.19)

and note that Vn ⊂ V since ei ∈ H2(Ω) for every i. Then, we look for a pair (un
ε , wn

ε ) satisfying

un
ε ∈ H1(0, T ;Vn) and wn

ε ∈ L2(0, T ;Vn) (4.20)

solving the following variational equations∫
Ω

∂tu
n
ε (t) z +

∫
Ω

∇wn
ε (t) · ∇z = 0 (4.21)∫

Ω

wn
ε (t)z = τε

∫
Ω

∂tu
n
ε (t) z +

∫
Γ

∂tu
n
ε (t) z

+
∫

Ω

∇un
ε (t) · ∇z + ν

∫
Γ

∇Γun
ε (t) · ∇Γz

+
∫

Ω

(
βε(un

ε (t)) + π(un
ε (t))− f(t)

)
z

+
∫

Γ

(
βΓ,ε(un

ε (t)) + πΓ(un
ε (t))− fΓ(t)

)
z (4.22)

for a.a. t ∈ (0, T ) and every z ∈ Vn, and fulfilling the Cauchy condition

un
ε (0) = un

0 . (4.23)
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Before studying the discretized problem, we make a remark. As e1 ∈ Vn for every n, we can
choose z = e1 in (4.21). On the other hand, e1 is a constant. Hence, we deduce that

∂t(un
ε (t))Ω =

1
|Ω|

∫
Ω

∂tu
n
ε (t) = 0 for a.a. t ∈ (0, T ) (4.24)

i.e., we have the same property as in the continous case (see Remark 2.3 and (4.14)).

Theorem 4.3. The discretized problem (4.21)–(4.23) has a unique solution satisfying (4.20).

Proof. Clearly, an equivalent formulation is obtained just taking z = ei, i = 1, . . . , n, in equa-
tions (4.21)–(4.23), and this leads to a system of ordinary differential equations. Precisely,
(the dependence on ε and n is not stressed to simplify the notation, here and later on) let u(t)
and w(t) be the vectors of the coordinates of un

ε (t) and wn
ε (t) with respect to the base of Vn

we have chosen, i.e., the (column) n-vectors u(t) := (uj(t)) and w(t) := (wj(t)) satisfying

un
ε (t) =

n∑
j=1

uj(t)ej and wn
ε (t) =

n∑
j=1

wj(t)ej

and consider the n× n matrices A := (aij), B := (bij), AΓ := (aΓ
ij), and BΓ := (bΓ

ij) defined by

aij :=
∫

Ω

ejei , bij :=
∫

Ω

∇ej · ∇ei , aΓ
ij :=

∫
Γ

ejei , and bΓ
ij := ν

∫
Γ

∇Γej · ∇Γei .

Then, equalities (4.21)–(4.22) take the form

Au′(t) + Bw(t) = 0
Aw(t) = τεAu′(t) + AΓu′(t) + Bu(t) + BΓu(t) + F(u(t))− f(t) + G(u(t))− g(t)

where the components of the functions F,G : Rn → Rn and f ,g : (0, T ) → Rn are given by

Fi(y) :=
∫

Ω

(βε + π)
( n∑

j=1

yjej

)
ei for y = (y1, . . . , yn) ∈ Rn

Gi(y) :=
∫

Γ

(βΓ,ε + πΓ)
( n∑

j=1

yjej

)
ei for y = (y1, . . . , yn) ∈ Rn

fi(t) :=
∫

Ω

f(t) ei and gi(t) :=
∫

Γ

fΓ(t) ei for a.a. t ∈ (0, T )

for i = 1, . . . , n. Moreover, (4.23) becomes

u(0) = (u0,1, . . . , u0,n) where u0,i :=
∫

Ω

u0ei for i = 1, . . . , n. (4.25)

As A = In, the identity matrix, we can rewrite the above system as

(In + τεB + BAΓ)u′(t)
= −B

(
Bu(t) + BΓu(t) + F(u(t))− f(t) + G(u(t))− g(t)

)
(4.26)

w(t) = τεu′(t) + AΓu′(t) + Bu(t) + BΓu(t) + F(u(t))− f(t) + G(u(t))− g(t) (4.27)
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and we have to look for a pair (u,w) satisfying u ∈ H1(0, T ; Rn), w ∈ L2(0, T ; Rn), equations
(4.26)–(4.27), and the Cauchy condition (4.25). To discuss the latter version of the system,
we recall that βε, βΓ,ε, π, and πΓ are Lipschitz continuous, whence F and G enjoy the same
property. Furthermore, from (2.12), we infer that f ,g ∈ L2(0, T ; Rn). Therefore, the proof is
complete once we show that we can solve (4.26).

To this end, we note that bij = 0 if either i = 1 or j = 1 by (4.16). Hence, the first scalar
equation of (4.26) becomes u′1(t) = 0, so that u1(t) is a known constant (see (4.25) with i = 1).
Hence, by assuming n > 1, we eliminate u1 from (4.26) and just look for the components uj

of the solution with j > 1. If we set v := (u2, . . . , un) and remember that the first row and
column of B vanish, we see that the remaining part of (4.26) is the (n− 1)-dimensional system(

In−1 + τεC + CD
)
v′(t) = h(t)−H(v(t)). (4.28)

In (4.28), the matrices C and D are obtained by deleting both the first row and the first column
of B and AΓ, respectively, and the symbols In−1, h, and H have an obvious meaning. We just
note that h ∈ L2(0, T ; Rn−1) and that H : Rn−1 → Rn−1 is Lipschitz continuous. Now, C is
positive definite by (4.16). Therefore, (4.28) is equivalent to(

C−1 + τεIn−1 + D
)
v′(t) = C−1

(
h(t)−H(v(t))

)
and the matrix in front of v′(t) is positive definite. Indeed, τε > 0 and D is at least positive
semidefinite, since such a property holds for AΓ, as one immediately sees just by owing to the
definition. Hence, the above system can be solved for v′(t), thus for v(t) by the standard theory,
and the proof is complete.

Once we know that the discretized problem (4.21)–(4.23) has a solution, we would like to
let n tend to infinity and conclude the proof of Theorem 4.2. However, before doing that, we
prepare some preliminary density results. We note at once that the first part of the next lemma
applies with z = u0, due to (2.26). The last sentence holds for u0 if ν > 0 and (2.27) is assumed
as well (see also the first part of Remark 2.6).

Lemma 4.4. Assume z ∈ H2(Ω) and ∂nz|Γ = 0 and set

zn is the L2(Ω)-projection of z on Vn. (4.29)

Then, we have that
zn → z strongly in V. (4.30)

Moreover, the sequence {zn} is bounded in H5/2(Ω) whenever z ∈ H5/2(Ω).

Proof. We represent z and zn by means of their Fourier coefficients with respect to the system
{ei} and apply (4.29). Thus, we have

z =
∞∑

i=1

aiei and zn =
n∑

i=1

aiei , whence z − zn =
∞∑

i=n+1

aiei ,

for some real sequence {ai} ∈ `2. Now, we observe that our assumptions on z imply that

−∆z =
∞∑

i=1

λiaiei , −∆zn =
n∑

i=1

λiaiei , and {λiai} ∈ `2. (4.31)
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Therefore, using the trace theorem for H2(Ω), the regularity theory for the Neumann problem,
and the Parseval identity, we obtain (in both cases ν > 0 and ν = 0)

‖z − zn‖2
V = ‖z − zn‖2

1,Ω + ‖z − zn‖2
VΓ
≤ c‖z − zn‖2

H2(Ω)

≤ c
(
‖z − zn‖2

L2(Ω) + ‖−∆(z − zn)‖2
L2(Ω)

)
= c

∞∑
i=n+1

(
a2

i + λ2
i a

2
i

)
and (4.30) follows. Finally we observe that the norms

‖z‖5/2,Ω and
( ∞∑

i=1

(
a2

i + λ
5/2
i a2

i

))1/2

are equivalent on the space {z ∈ H5/2(Ω) : ∂nz|Γ = 0}. Therefore, the last sentence follows
with the same argument as above.

Lemma 4.5. The set of functions z ∈ H2(Ω) such that ∂nz|Γ = 0 is dense in V.

Proof. Let V0 be the set of functions z ∈ H2(Ω) such that ∂nz|Γ = 0. We assume u ∈ V to be
orthogonal to V0 in V and prove that u = 0. We recall that V is endowed with the graph norm.
However, we can use the inner product defined by

(u, z)V :=
∫

Ω

∇u · ∇z +
∫

Γ

(
uz + ν∇Γu · ∇Γz

)
since it induces an equivalent norm. Therefore, our assumption means that∫

Ω

∇u · ∇z +
∫

Γ

(
uz + ν∇Γu · ∇Γz

)
= 0 for every z ∈ V0. (4.32)

By taking first z ∈ C∞(Ω) with compact support, we infer that −∆u = 0 in Ω in the sense
of distributions (i.e., ∇u is divergence free), whence also (see [9, Thm 1, Ch. IX A, p. 240] for
such a trace theorem and [24] for the general theory of Sobolev spaces with real index and for
the notation used in the present paper)

∂nu|Γ ∈ H−1/2(Γ) and
∫

Ω

∇u · ∇z = 〈∂nu|Γ, z|Γ〉Γ for every z ∈ V (4.33)

where 〈 · , · 〉Γ stands for the duality pairing between H−1/2(Γ) and H1/2(Γ). It follows that

〈∂nu|Γ, z|Γ〉Γ +
∫

Γ

(
uz + ν∇Γu · ∇Γz

)
= 0 for every z ∈ V0.

On the other hand, the map z 7→ (z|Γ, ∂nz|Γ) maps H2(Ω) onto H3/2(Γ) ×H1/2(Γ) (see, e.g.,
[24, Thm. 8.3, p. 44]). In particular, every element of H3/2(Γ) is the trace of some z ∈ V0.
Hence, the above conclusion becomes

〈∂nu|Γ, zΓ〉Γ +
∫

Γ

(
uzΓ + ν∇Γu · ∇ΓzΓ

)
= 0 for every zΓ ∈ H3/2(Γ).

Now, we observe that H3/2(Γ) is dense in both H1(Γ) and H1/2(Γ) (thus in VΓ), as is well
known, and that the left-hand side of the above equality defines a functional (zΓ being the
variable) which is linear and continuous with respect to the norm of H1/2(Γ), i.e., an element of
the dual space V ′

Γ, in both cases ν > 0 and ν = 0. We conclude that such an equality actually
holds for every zΓ ∈ VΓ. By combining with (4.33), we deduce that (4.32) holds for every z ∈ V,
in particular with z = u, and immediately derive that u = 0.
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By combining the first part of Lemma 4.4 and Lemma 4.5, it is straightforward to deduce
the corollary stated below.

Corollary 4.6. Let V∞ be the union of the family {Vn : n ≥ 1}. Then, the set of V∞-valued
step functions is dense in L2(0, T ;V).

Now, we perform a priori estimates on the discrete solution (un
ε , wn

ε ) in order to solve the
approximating problem by letting n tend to infinity. In the sequel, δ is a positive parameter.

First a priori estimate. By (4.24), we have ∂tu
n
ε (t) ∈ dom N for a.a. t ∈ (0, T ). Moreover,

(4.17) implies that N∂tu
n
ε (t) ∈ Vn for a.a. t ∈ (0, T ). Hence, we can test (4.21) by N∂tu

n
ε and

integrate over (0, t), where t ∈ (0, T ] is arbitrary. More precisely, we write (4.21) at time t = s
and choose z = N∂tu

n
ε (s). Then we integrate over (0, t) with respect to s. At the same time, we

note that ∂tu
n
ε (t) ∈ Vn for a.a. t ∈ (0, T ) and test (4.22) by −∂tu

n
ε . Then, we add the equalities

we have got to each other and add the same quantity to both sides for convenience. Accounting
for (2.46), we obtain∫ t

0

‖∂tu
n
ε (s)‖2

∗ ds +
∫

Qt

∇wn
ε · ∇N∂tu

n
ε −

∫
Qt

wn
ε ∂tu

n
ε + τε

∫
Qt

|∂tu
n
ε |2 +

∫
Σt

|∂tu
n
ε |2

+
1
2

∫
Ω

|∇un
ε (t)|2 +

ν

2

∫
Γ

|∇Γun
ε (t)|2 +

∫
Ω

β̂ε(un
ε (t)) +

∫
Γ

β̂Γ,ε(un
ε (t))

+ ‖un
ε (t)‖2

0,Ω + ‖un
ε (t)‖2

0,Γ

= −
∫

Ω

π̂(un
ε (t))−

∫
Γ

π̂Γ(un
ε (t)) +

∫
Qt

f ∂tu
n
ε +

∫
Σt

fΓ ∂tu
n
ε

+
1
2

∫
Ω

|∇un
0 |2 +

ν

2

∫
Γ

|∇Γun
0 |2

+
∫

Ω

β̂ε(un
0 ) +

∫
Γ

β̂Γ,ε(un
0 ) +

∫
Ω

π̂(un
0 ) +

∫
Γ

π̂Γ(un
0 )

+ ‖un
ε (t)‖2

0,Ω + ‖un
ε (t)‖2

0,Γ (4.34)

where we have set for convenience

π̂(r) :=
∫ r

0

π(s) ds and π̂Γ(r) :=
∫ r

0

πΓ(s) ds for r ∈ R. (4.35)

The second term on the left-hand side and the third one cancel out, due to the definition
(2.42) of N. As all the other integrals are nonnegative, we consider the right-hand side. Owing
to (2.12) and recalling (4.1), we immediately have∫

Qt

f ∂tu
n
ε +

∫
Σt

fΓ ∂tu
n
ε ≤

τε

2

∫
Qt

|∂tu
n
ε |2 +

1
2

∫
Σt

|∂tu
n
ε |2 + cε.

Now, we recall that all the nonlinearities have a quadratic growth. Hence, collecting the first
two terms on the right-hand side of (4.34) and the last six ones, their sum is estimated by

c

∫
Ω

|un
ε (t)|2 + c

∫
Γ

|un
ε (t)|2 + cε

∫
Ω

|un
0 |2 + cε

∫
Γ

|un
0 |2 + cε . (4.36)
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On the other hand, owing to (2.49)–(2.50), we see that the sum of the first two integrals of
(4.36) is bounded by the quantity

c

∫
Ω

|un
0 |2 + c

∫
Γ

|un
0 |2 + δ

∫ t

0

(
‖∂tu

n
ε (s)‖2

∗ + ‖∂tu
n
ε (s)‖2

0,Γ

)
ds

+ cδ

∫ t

0

(
‖un

ε (s)‖2
0,Ω + ‖∇un

ε (s)‖2
0,Ω + ‖un

ε (s)‖2
0,Γ

)
ds.

Finally, we have to consider all the terms involving un
0 that either come from the above estimates

or have not yet been considered. To this aim, it suffices to apply Lemma 4.4. Therefore, we
can choose δ small enough and apply the Gronwall lemma. We conclude that

‖un
ε ‖L∞(0,T ;V )∩H1(0,T ;H) + ‖un

ε |Γ‖L∞(0,T ;VΓ)∩H1(0,T ;HΓ) ≤ cε (4.37)

just forgetting some positive integrals.

Second a priori estimate. If we test (4.21) by wn
ε and integrate with respect to time, owing

to (4.37), we easily obtain∫ T

0

‖∇wn
ε (t)‖2

0,Ω dt = −
∫ T

0

〈∂tu
n
ε (t), wn

ε (t)〉 dt ≤ δ

∫ T

0

‖wn
ε (t)‖2

1,Ω dt + cδ . (4.38)

On the other hand, by testing (4.22) by 1/|Ω|, recalling that all the nonlinearities are Lipschitz,
squaring, integrating in time, and owing to (4.37) once more, we get∫ T

0

|(wn
ε (t))Ω|2 dt ≤ c‖∂tu

n
ε ‖2

L2(0,T ;H) + c‖∂tu
n
ε ‖2

L2(0,T ;HΓ)

+ c‖f‖2
L2(0,T ;H) + c‖fΓ‖2

L2(0,T ;HΓ)

+ cε

(
1 + ‖un

ε ‖2
L2(0,T ;H) + ‖un

ε ‖2
L2(0,T ;HΓ)

)
≤ cε . (4.39)

Adding (4.38) and (4.39) to each other and using the Poincaré inequality (2.40), we get∫ T

0

‖wn
ε (t)‖2

1,Ω dt ≤ MΩ

∫ T

0

(
‖∇wn

ε (t)‖2
0,Ω + |(wn

ε (t))Ω|2
)

dt

≤ δMΩ

∫ T

0

‖wn
ε (t)‖2

1,Ω dt + cδ + cε

whence immediately
‖wn

ε ‖L2(0,T ;V ) ≤ cε (4.40)

by choosing δ small enough.

Conclusion. By well-known weak and weak star compactness results, we see that (uε, wε)
exists such that

un
ε → uε weakly star in L∞(0, T ;V ) ∩H1(0, T ;H) (4.41)

un
ε |Γ → uε|Γ weakly star in L∞(0, T ;VΓ) ∩H1(0, T ;HΓ) (4.42)
wn

ε → wε weakly in L2(0, T ;V ) (4.43)
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as n tends to infinity, at least for a subsequence. Moreover, owing to the compact embeddings
V ⊂ H and VΓ ⊂ HΓ, we can apply [36, Sect. 8, Cor. 4] and derive the strong convergence

un
ε → uε strongly in C0([0, T ];H) and un

ε |Γ → uε|Γ strongly in C0([0, T ];HΓ).

In particular, we have that uε(0) = u0 by (4.23) and (4.30) applied to u0, and that

βε(un
ε ) → βε(uε) and π(un

ε ) → π(uε) strongly in C0([0, T ];H)
βΓ,ε(un

ε ) → βΓ,ε(uε) and πΓ(un
ε ) → πΓ(uε) strongly in C0([0, T ];HΓ)

just by Lipschitz continuity. Now, we fix m ≥ 1 and note that Vm ⊂ Vn for every n ≥ m.
Therefore, (4.21)–(4.22) imply that∫

Q

∂tu
n
ε z +

∫
Q

∇wn
ε · ∇z = 0∫

Q

wn
ε z = τε

∫
Q

∂tu
n
ε z +

∫
Σ

∂tu
n
ε z +

∫
Q

∇un
ε · ∇z + ν

∫
Σ

∇Γun
ε · ∇Γz

+
∫

Q

(
βε(un

ε ) + π(un
ε )− f

)
z +

∫
Σ

(
βΓ,ε(un

ε ) + πΓ(un
ε )− fΓ

)
z

for every n ≥ m and every Vm-valued step function z. By applying the above convergence, we
see that the variational equations (4.12)–(4.13) are satisfied for the above test functions. As m
is arbitrary, the same holds for every z ∈ L2(0, T ;V) by Corollary 4.6. As (4.12)–(4.13) and
(4.10)–(4.11) are equivalent to each other, the proof of Theorem 4.2 is complete.

Remark 4.7. In the a priori estimates of the above proof we have used the generic notation cε

for brevity. However, it is clear that, for fixed ε (whence τε is fixed too), if we let βε, βΓ,ε,
π, πΓ, and the data u0, f , fΓ vary in some families (e.g., depending on some parameter ε′ in
addition) such that the assumptions of Theorem 4.2 are fulfilled and the inequalities

supβ′ε + supβ′Γ,ε + sup |π′|+ sup |π′Γ|+ |π(0)|+ |πΓ(0)|
+ ‖u0‖2,Ω + ‖f‖H1(0,T ;H) + ‖fΓ‖L2(0,T ;HΓ) ≤ M = Mε (4.44)

hold true for some constant M and all the functions and the data of such families, then the
corresponding solutions (uε, wε) satisfy

‖uε‖L∞(0,T ;V )∩H1(0,T ;H) + ‖uε‖L∞(0,T ;VΓ)∩H1(0,T ;HΓ) + ‖wε‖L2(0,T ;V ) ≤ M ′ = M ′
ε (4.45)

where the constant M ′ depends on ε and M , only. In particular, if we fix ε but perturb
the given functions π, πΓ, the approximating monotone functions βε and βΓ,ε given by (4.2)
and (4.3), and the data by replacing them with smoother functions and data, depending on some
parameter ε′, and a bound like (4.44) holds uniformly with respect to ε′, then the corresponding
solutions satisfy the analogue of (4.45) uniformly with respect to ε′.

If the functions entering the structure of the system and the data are smoother, further
regularity of the solution can be proved. We confine ourselves to show the result stated below,
even though it is not sharp. However, it will be sufficient for our purpose in the sequel. It is
understood that all previous assumptions (e.g., (2.26)–(2.27)) are satisfied.

Proposition 4.8. Assume f ∈ C1([0, T ];H), fΓ ∈ C1([0, T ];HΓ), and let β, βΓ, π, πΓ be
C2-functions with bounded second derivatives. Then, we have

∂tuε ∈ L∞(0, T ;V ) ∩H1(0, T ;H) and ∂tuε|Γ ∈ L∞(0, T ;VΓ) ∩H1(0, T ;HΓ). (4.46)
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Proof. From the above argument, it is clear that (4.46) follows whenever we can perform the
corresponding a priori estimate on the solution of the discretized problem. To this aim, we
observe that the first component un

ε of such a discrete solution actually has a second time
derivative since the nonlinear functions involved in the structure of the system of ordinary
differential equations are of class C1 under the above further assumption. Hence, we can
differentiate (4.21) and (4.22) with respect to time and test the equalities we get by N∂2

t un
ε

and −∂2
t un

ε , repectively. By doing that, summing, integrating over (0, t), and adding the same
integrals to both sides for convenience, we obtain∫ t

0

‖∂2
t un

ε (s)‖2
∗ ds + τε

∫
Qt

|∂2
t un

ε |2 +
∫

Σt

|∂2
t un

ε |2

+
1
2
‖∂tu

n
ε (t)‖2

1,Ω +
ν

2

∫
Γ

|∇Γ∂tu
n
ε (t)|2 +

ν

2

∫
Γ

|∂tu
n
ε (t)|2

= −1
2

∫
Qt

(βε + π)′(un
ε ) ∂t

(
|∂tu

n
ε |2

)
− 1

2

∫
Σt

(βΓ,ε + πΓ)′(un
ε ) ∂t

(
|∂tu

n
ε |2

)
+

∫
Qt

∂tf ∂2
t un

ε +
∫

Σt

∂tfΓ ∂2
t un

ε +
1
2

∫
Ω

|∇∂tu
n
ε (0)|2 +

ν

2

∫
Γ

|∇Γ∂tu
n
ε (0)|2

+
1
2

∫
Ω

|∂tu
n
ε (t)|2 +

ν

2

∫
Γ

|∂tu
n
ε (t)|2. (4.47)

We deal with each term on the right-hand side, separately. We integrate the first term by parts
and owe to boundedness of both β′ε and (βε + π)′′. We obtain

−1
2

∫
Qt

(βε + π)′(un
ε ) ∂t

(
|∂tu

n
ε |2

)
≤ cε

∫
Ω

|∂tu
n
ε (t)|2 + cε

∫
Ω

|∂tu
n
ε (0)|2 + cε

∫
Qt

|∂tu
n
ε |3.

A term like the first one on the right-hand side is already present on the right-hand side of (4.47)
and the last one can be treated owing to the Hölder inequality and to the continuous embedding
V ⊂ L4(Ω) as follows∫

Qt

|∂tu
n
ε |3 ≤

∫ t

0

‖∂tu
n
ε (s)‖L2(Ω)‖∂tu

n
ε (s)‖2

L4(Ω) ds ≤ c

∫ t

0

‖∂tu
n
ε (s)‖L2(Ω)‖∂tu

n
ε (s)‖2

1,Ω ds.

We observe at once that the first factor in the last integral has already been estimated in L2(0, T )
by (4.37) (whence we are allowed to apply the Gronwall lemma below). We argue similarly for
the second term of the right-hand side of (4.47) and just modify the last inequalities this way∫

Σt

|∂tu
n
ε |3 ≤

∫ t

0

‖∂tu
n
ε (s)‖L2(Γ)‖∂tu

n
ε (s)‖2

L4(Γ) ds

≤ c

∫ t

0

‖∂tu
n
ε (s)‖L2(Γ)‖∂tu

n
ε (s)‖2

1/2,Γ ds ≤ c

∫ t

0

‖∂tu
n
ε (s)‖L2(Γ)‖∂tu

n
ε (s)‖2

1,Ω ds

by owing to the continuous embedding H1/2(Γ) ⊂ L4(Γ) and the optimal trace inequality (2.10).
Also in this case, we note that the first factor in the last integral has already been estimated in
L2(0, T ) by (4.37). As the subsequent two terms of (4.47) can be easily treated, let us come to
the last two integrals. As the second one is similar if ν > 0 and vanishes if ν = 0, we consider
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the first one, only. We have∫
Ω

|∂tu
n
ε (t)|2 =

∫
Ω

|∂tu
n
ε (0)|2 + 2

∫
Qt

∂tu
n
ε ∂2

t un
ε

≤
∫

Ω

|∂tu
n
ε (0)|2 + δ

∫
Qt

|∂2
t un

ε |2 + cδ

∫
Qt

|∂tu
n
ε |2 ≤

∫
Ω

|∂tu
n
ε (0)|2 + δ

∫
Qt

|∂2
t un

ε |2 + cδcε

by (4.37). So, it remains to find a bound for all the integrals involving ∂tu
n
ε (0). To this aim, we

recall that ∂tu
n
ε is a continuous Vn-valued function. In particular, both equations (4.21)–(4.22)

and (4.24) hold for every t ∈ [0, T ]. Therefore, we can write the equations at t = 0 and test
them by N∂tu

n
ε (0) and −∂tu

n
ε (0), respectively, and take the sum. By recalling (2.26)–(2.27),

integrating by parts in space, and applying Lemma 4.4, we get

‖∂tu
n
ε (0)‖2

∗ + τε‖∂tu
n
ε (0)‖2

0,Ω + ‖∂tu
n
ε (0)‖2

0,Γ

=
∫

Ω

(
f(0) + ∆un

ε (0)− (βε + π)(un
ε (0))

)
∂tu

n
ε (0)

+
∫

Γ

(
fΓ(0) + ν∆Γun

ε (0)− (βΓ,ε + πΓ)(un
ε (0))

)
∂tu

n
ε (0)

≤ τε

2
‖∂tu

n
ε (0)‖2

0,Ω +
1
2
‖∂tu

n
ε (0)‖2

0,Γ + cε

whence a bound for the initial values. Therefore, by collecting the previous inequalities, choosing
δ small enough, and applying the Gronwall lemma, we obtain the desired estimate

‖∂tu
n
ε ‖L∞(0,T ;V ) + ‖∂tu

n
ε ‖L∞(0,T ;VΓ) + ‖∂2

t un
ε ‖L2(0,T ;H) + ‖∂2

t un
ε ‖L2(0,T ;HΓ) ≤ cε

uniformly with respect to n. Hence, (4.46) is proved.

5 Existence

In this section, we prove Theorems 2.8 and 2.9 at the same time. In principle, our argument
is similar to the one used to prove Theorem 4.2. Here, the starting point is a solution (uε, wε)
to the approximating problem (4.9)–(4.11). However, as the nonlinearities β and βΓ are not
Lipschitz continuous, much more care is needed. Estimates for βε(uε) and for βΓ,ε(uε) are
crucial, indeed, and this is a difficulty. Moreover, as the solution to the approximating problem
is less regular than the discrete one, some trouble might arise in justifying an analogous choice
of the test functions. For instance, we would test (4.10) by N∂tuε and (4.11) by −∂tuε, and we
are not allowed to do it. Indeed, while N∂tuε is well-defined and belongs to L2(0, T ;V ), there
is no reason for ∂tuε to belong to L2(0, T ;V) if ν > 0, so that the desired choice of the test
functions might not be admissible. Therefore, a more sophisticated procedure is needed, and we
sketch a possibility here in connection with Remark 4.7 and Proposition 4.8. If we perturb the
structure and the data according to the former remark (thus obtaining new nonlinearities and
data depending, say, on some small parameter ε′ in addition) so that the latter can be applied,
then the desired choice of the above test functions is admissible and this produces an estimate.
If such an estimate is uniform with respect to ε′, it is conserved in the limit as ε′ → 0. On the
other hand, it is easy to see that the solution (uε,ε′ , wε,ε′) to the regularized problem converges
to (uε, wε) as ε′ → 0 in the appropriate topology (cf. (4.45)). Indeed, the argument we used at
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the end of Section 4 perfectly works. Hence, the estimate we conserve in the limit actually is
an estimate for the approximated solution (uε, wε).

Therefore, in order not to make the paper too heavy, we proceed formally in the sequel, e.g.,
by differentiating the equations and using some non-admissible test functions. For the same
reason, we always owe to the assumptions of Theorem 2.8 and often do not take any advantage
of possible positivity for τ . However, by going through the argument we present, it is clear that
some assumptions are not used in the proof of Theorem 2.9 and that minor changes could be
made. For instance, if τ > 0, it suffices to suppose that f ∈ L2(0, T ;H) in the next estimate,
provided that we treat the f -term in the same way as the fΓ-term.

Finally, in order to give unified proofs, we think of βΓ,ε defined by (4.3), in principle.
However, when we conclude the proof of Theorem 2.9, we use (4.4), as said in Remark 4.1.
Indeed, nothing more has to be proved regarding such a βΓ,ε, since its properties are formally
the same as those of βε.

However, before starting estimating, it is convenient to prepare some auxiliary material
(needed for Theorem 2.8, mainly). By recalling (2.7)–(2.8), we note that the Yosida regu-
larization γε of every maximal monotone operator γ : R → 2R is monotone and Lipschitz
continuous with constant 1/ε. Moreover, we have γε(0) = 0 whenever γ(0) 3 0 and the inequal-
ity |γε(r)| ≤ |γ◦(r)| holds true for every r ∈ D(γ) and ε > 0 (see, e.g., [3, Prop. 2.6, p. 28]).
By recalling (2.3) and (4.2), we see that the above inequality holds for βε and we derive the
analogous one for βΓ,ε. If r ∈ D(βΓ) and r ≥ εCΓ, we have

0 ≤ βΓ,ε(r) = βY
Γ,αε(r + εCΓ) ≤ βY

Γ,αε(r) +
CΓ

α
≤ β◦Γ(r) +

CΓ

α
.

Assume now 0 ≤ r < εCΓ. Then

0 ≤ βΓ,ε(r) ≤ βY
Γ,αε(2εCΓ) ≤ 2CΓ

α
.

By arguing analogously for r < 0, we obtain a similar inequality. By recalling (4.3) as well, we
summarize the properties of the approximating nonlinearities as follows

|βε(r)| ≤ |β◦(r)| and |βΓ,ε(r)| ≤ |β◦Γ(r)|+ 2CΓ

α

|β̂ε(r)| ≤ |β̂(r)| and |β̂Γ,ε(r)| ≤ |β̂Γ(r)|+ 2CΓ

α
|r| (5.1)

for r ∈ D(β) or r ∈ D(βΓ), accordingly.

Lemma 5.1. There holds

|βε(r)| ≥ α|βΓ,ε(r)| − 2CΓ for every r ∈ R. (5.2)

Proof. Let us observe that (2.3) and the first of (2.32) imply that r, β◦(r), and β◦Γ(r) have the
same sign for every r ∈ D(β). Therefore, by starting from (2.35), we derive that(

I + ε(β + CΓ)◦
)
(r) ≥

(
I + αεβ◦Γ

)
(r) for every nonnegative r ∈ D(β)

whence easily (even, e.g., in the case of a bounded domain D(β))(
I + ε(β + CΓ)

)−1(r) ≤
(
I + αεβΓ

)−1(r) for every r ≥ εCΓ.



23

This means that

βY
ε (r − εCΓ) + CΓ = (β + CΓ)Y

ε (r) ≥ αβY
Γ,αε(r) for every r ≥ εCΓ

and we deduce that βY
ε (r) + CΓ ≥ αβY

Γ,αε(r + εCΓ) for every r ≥ 0, whence in particular

βε(r) ≥ αβΓ,ε(r)− CΓ ≥ αβΓ,ε(r)− 2CΓ for every r ≥ εCΓ.

Assume now 0 ≤ r < εCΓ. Then, we have

βε(r)− αβΓ,ε(r) ≥ −αβΓ,ε(r) ≥ −αβY
Γ,αε(2εCΓ) ≥ −α · 2εCΓ

1
αε

= −2CΓ.

By arguing similarly for r ≤ 0, we deduce (5.2).

Lemma 5.2. There exist ε0 > 0 and points r∗± ∈ D(β) such that

σ|βΓ,ε(r)| ≥ (sup |π′Γ|) |r|+ |πΓ(0)|+ ‖fΓ‖L∞(Γ) (5.3)

for every r ∈ R \ (r∗−, r∗+) and ε ∈ (0, ε0).

Proof. We just consider the construction of r∗+ since the other one is similar. We set for
convenience

γ(r) := αβΓ(r)− CΓ and λ(r) :=
αLΓ

σ
r +

αMΓ

σ
− CΓ for r ∈ R

so that (2.36) becomes

γ◦(r) ≥ λ(r) for every r ∈ D(β) satisfying r ≥ r+.

As in the previous proof, we derive the corresponding inequality for the Yosida regularizations,
namely

γY
ε (r) ≥ λY

ε (r) for every r ≥ rε
+ , where rε

+ := (I + εγ)−1(r+).

By computation, we see that the above inequality reads

αβY
Γ,αε(r + εCΓ)− CΓ ≥

1
1 + (αεLΓ/σ)

(αLΓ

σ
r +

αMΓ

σ
− CΓ

)
for every r ≥ rε

+.

By recalling (4.3), we deduce that

αβΓ,ε(r)− CΓ ≥
1

1 + (αεLΓ/σ)

(αLΓ

σ
r +

αMΓ

σ
− CΓ

)
for every r ≥ max{rε

+, εCΓ}.

As r+ belongs to the interior of D(β) by (2.34), we can fix r∗+ ∈ D(β) with r∗+ > r+. On the
other hand, the point rε

+ converges to r+ as ε → 0. Therefore, we can choose ε1 ∈ (0, 1) such
that max{rε

+, εCΓ} ≤ r∗+ for ε ∈ (0, ε1) and deduce that the above inequality holds for every
r ≥ r∗+. By rearranging, we obtain for r ≥ r∗+

σβΓ,ε(r) ≥
1

1 + (αεLΓ/σ)

(
LΓ r + MΓ −

σCΓ

α

)
+

σCΓ

α
=

LΓ

1 + (αεLΓ/σ)
r +

MΓ + εCΓLΓ

1 + (αεLΓ/σ)
.

On the other hand, the last two fractions converge to LΓ and MΓ, respectively, as ε → 0 and
the inequalities (2.33) hold. Therefore, (5.3) holds true as well with some ε0 ∈ (0, ε1).
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Lemma 5.3. There holds ‖∂tuε(0)‖2
∗ + τε‖∂tuε(0)‖2

0,Ω + ‖∂tuε(0)‖2
0,Γ ≤ c.

Proof. We write equations (4.10)–(4.11) at t = 0 and test them by N∂tuε(0) and −∂tuε(0),
respectively, owing to (4.14). Then, we sum the equalities we get to each other and use the
properties of N in order to cancel two terms, as usual. Accounting for the regularity of u0

(see (2.26)–(2.27)) and rearranging, we obtain

‖∂tuε(0)‖2
∗ + τε‖∂tuε(0)‖2

0,Ω + ‖∂tuε(0)‖2
0,Γ

= −
∫

Ω

(
−∆u0 + βε(u0) + π(u0)− f(0)

)
∂tuε(0)

−
∫

Γ

(
−ν∆Γu0 + βΓ,ε(u0) + πΓ(u0)− fΓ(0)

)
∂tuε(0). (5.4)

Now, we estimate the last term owing to (5.1) and (2.30) as follows

−
∫

Γ

(
−ν∆Γu0 + βΓ,ε(u0) + πΓ(u0)− fΓ(0)

)
∂tuε(0)

≤ 1
2
‖∂tuε(0)‖2

0,Γ +
1
2
‖−ν∆Γu0 + βΓ,ε(u0) + πΓ(u0)− fΓ(0)‖2

0,Γ .

≤ 1
2
‖∂tuε(0)‖2

0,Γ + c
(
‖ν∆Γu0|Γ‖2

0,Γ + ‖β◦Γ(u0)‖2
0,Γ + ‖u0‖2

0,Γ + ‖fΓ(0)‖2
0,Γ

)
≤ 1

2
‖∂tuε(0)‖2

0,Γ + c.

As far as the second to last term of (5.4) is concerned, we distinguish the cases τ > 0 and τ = 0.
In the first one, we behave as for the above boundary term and easily obtain

−
∫

Ω

(
−∆u0 + βε(u0) + π(u0)− f(0)

)
∂tuε(0)

≤ τε

2
‖∂tuε(0)‖2

0,Ω +
1
2τ

‖−∆u0 + βε(u0) + π(u0)− f(0)‖2
0,Ω ≤ τε

2
‖∂tuε(0)‖2

0,Ω + c.

If instead τ = 0, we account for (2.31) and estimate the same term this way

−
∫

Ω

(
−∆u0 + βε(u0) + π(u0)− f(0)

)
∂tuε(0)

≤ 1
2
‖∂tuε(0)‖2

∗ + c ‖−∆u0 + βε(u0) + π(u0)− f(0)‖2
1,Ω

≤ 1
2
‖∂tuε(0)‖2

∗ + c ‖−∆u0 + βε(u0)− f(0)‖2
1,Ω + c ≤ 1

2
‖∂tuε(0)‖2

∗ + c.

Therefore, the desired inequality obviously follows in any case.

At this point, we can start estimating. We assume ε ∈ (0, 1), in principle, but we remark
that some of the properties below may require ε < ε0 for some ε0 ∈ (0, 1) (e.g., according to
Lemma 5.2). Moreover, δ is a positive parameter, as in the previous section.

First a priori estimate. Noting that ∂tuε has zero mean value by (4.14), we test (4.10) by
N∂tuε and (4.11) by −∂tuε. By doing that, we account for (2.42) in order to cancel two terms
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in the sum at once. Then, by integrating over (0, t), owing to (2.46), and adding the same
quantity for convenience, we obtain (see also (4.35))∫ t

0

‖∂tuε(s)‖2
∗ ds + τε

∫
Qt

|∂tuε|2 +
∫

Σt

|∂tuε|2

+
1
2

∫
Ω

|∇uε(t)|2 +
ν

2

∫
Γ

|∇Γuε(t)|2 +
∫

Ω

β̂ε(uε(t)) +
∫

Γ

β̂Γ,ε(uε(t))

+ ‖uε(t)‖2
0,Ω + ‖uε(t)‖2

0,Γ

= −
∫

Ω

π̂(uε(t))−
∫

Γ

π̂Γ(uε(t)) +
∫

Qt

f ∂tuε +
∫

Σt

fΓ ∂tuε

+
ν

2

∫
Ω

|∇u0|2 +
1
2

∫
Γ

|∇Γu0|2

+
∫

Ω

β̂ε(u0) +
∫

Γ

β̂Γ,ε(u0) +
∫

Ω

π̂(u0) +
∫

Γ

π̂Γ(u0)

+ ‖uε(t)‖2
0,Ω + ‖uε(t)‖2

0,Γ. (5.5)

We can deal with the terms involving π, πΓ, and fΓ as we did in the previous section in order to
estimate the corresponding ones by (4.36). On the contrary, we have to use a different argument
for the integral containing f , since τε = ε if τ = 0. Accounting for (2.25), we integrate by parts
and proceed as follows ∫

Qt

f ∂tuε =
∫

Ω

f(t)uε(t)−
∫

Ω

f(0)u0 −
∫

Qt

∂tf uε

≤
∫

Ω

|uε(t)|2 +
∫

Qt

|uε|2 + c. (5.6)

For the same reason, no trouble arises from all the integrals involving u0 but the ones related
to β̂ε and β̂Γ,ε. However, for such terms, we can apply (5.1) and (2.28) and derive that∫

Ω

β̂ε(u0) +
∫

Γ

β̂Γ,ε(u0) ≤
∫

Ω

β̂(u0) +
∫

Γ

(
β̂Γ(u0) + (2CΓ/α)|u0|

)
= c.

Finally, noting that the last integral of (5.6) will be controlled by the second to last term on
the left-hand side of (5.5) via Gronwall’s lemma, we just need to estimate the two last norms
of (5.5). To this aim, we apply (2.49)–(2.50) and have

‖uε(t)‖2
0,Ω + ‖uε(t)‖2

0,Γ

≤ ‖u0‖2
0,Ω + δ

∫ t

0

‖∂tuε(s)‖2
∗ ds + cδ

∫ t

0

‖uε(s)‖2
1,Ω ds

+ ‖u0‖2
0,Γ + δ

∫ t

0

‖∂tuε(s)‖2
0,Γ ds + cδ

∫ t

0

‖uε(s)‖2
0,Γ ds.

At this point, we choose δ small enough, apply the Gronwall lemma, and conclude that

‖uε‖L∞(0,T ;V )∩H1(0,T ;V ∗) + ‖uε‖L∞(0,T ;VΓ)∩H1(0,T ;HΓ) + τ1/2
ε ‖∂tuε‖L2(0,T ;H)

+ ‖β̂ε(uε)‖L∞(0,T ;L1(Ω)) + ‖β̂Γ,ε(uε)‖L∞(0,T ;L1(Γ)) ≤ c. (5.7)
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Second a priori estimate (partial). We have to find a bound for wε in L2(0, T ;V ). We
set wε,Ω := (wε)Ω and test (4.10) by wε(t)− wε,Ω(t). We obtain

‖∇(wε(t)− wε,Ω(t))‖2
0,Ω = −〈∂tuε(t), wε(t)− wε,Ω(t)〉

≤ δ‖wε(t)− wε,Ω(t)‖2
1,Ω + cδ ‖∂tuε(t)‖∗ for a.a. t ∈ (0, T ).

Therefore, accounting for the Poincaré inequality (2.40) and choosing δ small enough, we con-
clude that

‖wε(t)− wε,Ω(t)‖1,Ω ≤ c‖∂tuε(t)‖∗ for a.a. t ∈ (0, T ) (5.8)

and deduce that
‖wε − wε,Ω‖L2(0,T ;V ) ≤ c (5.9)

by accounting for (5.7). As our aim is to get rid of wε,Ω, we prepare a relationship (to be used
later on) between some mean values. We set for convenience

ξε := βε(uε), ξΓ,ε := βΓ,ε(uε), ξε,Ω := (ξε)Ω, and ξΓ,ε,Γ := (ξΓ,ε)Γ (5.10)

where the notation zΓ := |Γ|−1
∫
Γ

z is used. We test (4.11) by the constant 1/|Ω| and recall
that (∂tuε)Ω = 0. Hence, we obtain

wε,Ω(t) = ξε,Ω(t) +
|Γ|
|Ω|

ξΓ,ε,Γ(t) + Fε(t) for a.a. t ∈ (0, T ) (5.11)

where we have set

Fε(t) =
1
|Ω|

∫
Ω

(
π(uε(t))− f(t)

)
+

1
|Ω|

∫
Γ

(
∂tuε(t) + πΓ(uε(t))− fΓ(t)

)
. (5.12)

Consequences under the assumptions of Theorem 2.9. First of all, it is trivial to
deduce estimates for π(uε) and πΓ(uε) from (5.7), just by Lipschitz continuity. Moreover,
from the growth conditions of the assumptions, we easily derive estimates even for the main
nonlinearities. Here, we think of βΓ,ε defined by (4.4) (see Remark 4.1). If d = 1, then uε

is bounded in L∞(Q) by some constant M since V ⊂ L∞(Ω) and (5.7) holds. By (2.37), we
derive that

|βε(uε)| ≤ |β◦(uε)| ≤ sup
|r|≤M

|β◦(r)| = c.

Moreover, a (trivial) similar argument holds for βΓ,ε(uε). As far as the case d > 1 is concerned,
note that both (2.38) and (2.39) imply corresponding global inequalities since β◦ and β◦Γ are
monotone functions. Now, if d = 2, then V ⊂ Lp(Ω) for every p < +∞, the embedding being
continuous. Moreover, VΓ is continuously embedded either in L∞(Γ) or in Lq(Γ) for every
q < +∞ according to whether ν > 0 or ν = 0. Therefore, (2.38) and (5.7) imply that

‖βε(uε)‖L∞(0,T ;H) + ‖βΓ,ε(uε)‖L∞(0,T ;HΓ) ≤ c. (5.13)

Finally, if d = 3, V is continuously embedded in L6(Ω) and VΓ is continuously embedded either
in Lq(Γ) for every q < +∞ or in L4(Γ) according to whether ν > 0 or ν = 0. Thus, (5.13) holds
also in this case, by (2.39). Next, we observe that (5.13) obviously implies that the mean values
ξε,Ω and ξΓ,ε,Γ are bounded in L∞(0, T ). As the function Fε defined by (5.12) is bounded in
L2(0, T ) thanks to (5.7), we deduce that the same holds for wε,Ω in view of (5.11). Therefore,
we conclude that

‖wε‖L2(0,T ;V ) ≤ c (5.14)
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by accounting for (5.9).

Conclusion for Theorem 2.9. We still assume βΓ,ε to be defined by (4.4), so that both
βε(uε) and βΓ,ε(uε) actually are estimated by (5.13). However, in order to infer existence for
problem (2.19)–(2.20), estimates in L2(0, T ;H) and in L2(0, T ;HΓ), respectively, are sufficient,
and we just owe to such a weaker information. By using standard compactness results, we see
that limit functions exist such that

uε → u weakly star in L∞(0, T ;V ) ∩H1(0, T ;V ∗) (5.15)
uε|Γ → u|Γ weakly star in L∞(0, T ;VΓ) ∩H1(0, T ;HΓ) (5.16)

τε∂tuε → τ∂tu weakly in L2(0, T ;H) (5.17)
wε → w weakly in L2(0, T ;V ) (5.18)

βε(uε) → ξ weakly in L2(0, T ;H) (5.19)
βΓ,ε(uε) → ξΓ weakly in L2(0, T ;HΓ) (5.20)

π(uε) → ζ weakly star in L∞(0, T ;H) (5.21)
πΓ(uε|Γ) → ζΓ weakly star in L∞(0, T ;HΓ) (5.22)

at least for a subsequence. Now, we prove that (u, w, ξ, ξΓ) is a solution to our problem. By
(5.15)–(5.20), we see that the regularity requirements contained in (2.13)–(2.17) are fulfilled
and that the following variational equations∫ T

0

〈∂tu(t), z(t)〉 dt +
∫

Q

∇w · ∇z = 0∫
Q

wz =
∫

Q

τ∂tu z +
∫

Σ

∂tu z +
∫

Q

∇u · ∇z +
∫

Σ

∇Γu · ∇Γz

+
∫

Q

(
ξ + ζ − f

)
z +

∫
Σ

(
ξΓ + ζΓ − fΓ

)
z

hold for every z ∈ L2(0, T ;V ) and every z ∈ L2(0, T ;V), respectively. Moreover, we recall that
the embeddings V ⊂ H and VΓ ⊂ HΓ are compact. Hence, we can apply [36, Sect. 8, Cor. 4]
and derive that

uε → u strongly in C0([0, T ];H) and uε|Γ → u|Γ strongly in C0([0, T ];HΓ) (5.23)

In particular, (2.18) holds as well and π(uε) and πΓ(uε|Γ) converge to π(u) and to πΓ(u|Γ)
strongly in C0([0, T ];H) and in C0([0, T ];HΓ), respectively, just by Lipschitz continuity, whence
ζ = π(u) and ζΓ = πΓ(u|Γ). Finally, the convergence (5.19)–(5.20) and (5.23) and the maximal
monotonicity of β and βΓ allow us to conclude that ξ ∈ β(u) a.e. in Q and that ξΓ ∈ βΓ(u|Γ) a.e.
on Σ (see, e.g., [3, Prop. 2.5, p. 27] for a similar result). Therefore, we see that (u, w, ξ, ξΓ) satis-
fies both the remaining conditions (2.16)–(2.17) and (2.21)–(2.22). As the latter are equivalent
to (2.19)–(2.20), the proof is complete.

So, we continue the proof of Theorem 2.8.

Improvement of the first a priori estimate. Recalling Proposition 4.8, we can differenti-
ate equations (4.10) and (4.11) with respect to time and test the equalities we obtain by N∂tuε

and −∂tuε, respectively. Then, we integrate over (0, t) and take the sum. As before, we use the
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properties of N. We get

1
2
‖∂tuε(t)‖2

∗ +
τε

2

∫
Ω

|∂tuε(t)|2 +
1
2

∫
Γ

|∂tuε(t)|2

+
∫

Qt

|∂t∇uε|2 + ν

∫
Σt

|∂t∇Γuε|2 +
∫

Qt

β′ε(uε) |∂tuε|2 +
∫

Σt

β′Γ,ε(uε) |∂tuε|2

=
1
2
‖∂tuε(0)‖2

∗ +
τε

2

∫
Ω

|∂tuε(0)|2 +
1
2

∫
Γ

|∂tuε(0)|2

−
∫

Qt

π′(uε) |∂tuε|2 −
∫

Σt

π′Γ(uε) |∂tuε|2 +
∫

Qt

∂tf ∂tuε +
∫

Σt

∂tfΓ ∂tuε .

All the terms on the left-hand side are nonnegative. As far as those on the right-hand side are
concerned, the terms involving ∂tuε(0) are estimated by Lemma 5.3 and the integrals over Σt

are estimated by (5.7) since π′Γ is bounded and ∂tfΓ ∈ L2(0, T ;HΓ). Hence, we just have to
deal with the integrals over Qt. We estimate the first one by recalling that π′ is bounded and
applying inequality (2.51) as follows

−
∫

Qt

π′(uε) |∂tuε|2 ≤ δ

∫
Qt

|∂t∇uε|2 + cδ

∫ t

0

‖∂tuε(s)‖2
∗ ds.

Finally, we treat the second one by recalling that (∂tuε)Ω = 0 and thus using the Poincaré
inequality (2.40) this way∫

Qt

∂tf ∂tuε ≤ δ

∫
Qt

|∂tuε|2 + cδ ≤ δMΩ

∫
Qt

|∂t∇uε|2 + cδ.

Therefore, by choosing δ small enough and applying the Gronwall lemma, we conclude that

‖∂tuε‖L∞(0,T ;V ∗)∩L2(0,T ;V ) + ‖∂tuε‖L∞(0,T ;HΓ)∩L2(0,T ;VΓ) + τ1/2
ε ‖∂tuε‖L∞(0,T ;H) ≤ c (5.24)

where the trace inequality (2.10) is used in the case ν = 0.

Third a priori estimate. We owe to an argument devised in [27, Appendix, Prop. A.1] and
based on the easy inequalities

βε(r) (r −m0) ≥ δ0|βε(r)| − c and βΓ,ε(r) (r −m0) ≥ δ0|βΓ,ε(r)| − c (5.25)

where m0 := (u0)Ω and δ0 and c > 0 are some positive constants. Inequalities (5.25) hold for
every r ∈ R and ε > 0, and we prove them by accounting for (2.3) and (2.29). We choose
m± ∈ D(β) such that m− ≤ 0 ≤ m+ and m− < m0 < m+ and define the positive number
δ0 := min{m0−m−,m+−m0}. Assume now r ≥ m+. Then, we have βε(r) ≥ 0 and r−m0 ≥ δ0,
whence βε(r) (r −m0) ≥ δ0βε(r) and the first of (5.25) follows with any c ≥ 0. The argument
for r ≤ m− is similar. Next, by assuming m− ≤ r ≤ m+, we obtain

δ0|βε(r)| − βε(r) (r −m0) ≤ (δ0 + m+ −m−)|βε(r)| ≤ c sup
m−≤s≤m+

|β◦(s)| = c

thanks to the first of (5.1). The second of (5.25) can be verified in the same way owing to
the second of (5.1). Once (5.25) are established, we prove a bound for the mean values ξε,Ω

and ξΓ,ε,Γ (see (5.10)). We recall that (uε)Ω = m0 for all times. Therefore, we can test (4.10)
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and (4.11) by N(uε(t)−m0) and −(uε(t)−m0), respectively. After summing the equalities we
get to each other, we obtain∫

Ω

|∇uε(t)|2 + ν

∫
Γ

|∇Γuε(t)|2 +
∫

Ω

ξε(t)
(
uε(t)−m0

)
+

∫
Γ

ξΓ,ε(t)
(
uε(t)−m0

)
=

∫
Ω

(
f(t)− π(uε(t))

)(
uε(t)−m0)

)
+

∫
Γ

(
fΓ(t)− πΓ(uε(t))

)(
uε(t)−m0)

)
− 〈∂tuε(t),N(uε(t)−m0)〉 − τε

∫
Ω

∂tuε(t)
(
uε(t)−m0

)
−

∫
Σt

∂tuε(t)
(
uε(t)−m0

)
.

The term involving ξε is estimated from below by using (5.25) as follows∫
Ω

ξε(t)
(
uε(t)−m0

)
≥ δ0

∫
Ω

|ξε(t)| − c

and the next one is treated in the same way. Finally, the whole right-hand side is bounded by
a constant, due to (5.7) and (5.24). In particular, we deduce that

‖ξε‖L∞(0,T ;L1(Ω)) + ‖ξΓ,ε‖L∞(0,T ;L1(Γ)) ≤ c

whence immediately
‖ξε,Ω‖L∞(0,T ) + ‖ξΓ,ε,Γ‖L∞(0,T ) ≤ c. (5.26)

Improvement of the second a priori estimate. We just recall the inequality (5.8), the
relationship (5.11), and the definition (5.12) of Fε, and observe that (5.24) implies that

‖wε − wε,Ω‖L∞(0,T ;V ) ≤ c and ‖Fε‖L∞(0,T ) ≤ c. (5.27)

On the other hand, (5.26) has been established. We deduce that wε,Ω is bounded in L∞(0, T )
as well. Therefore, we see that the first (5.27) implies that

‖wε‖L∞(0,T ;V ) ≤ c (5.28)

which improves (5.14).

Fourth a priori estimate. We simply test (4.11) by ξε and integrate over (0, T ). Note that
we are allowed to do that since uε ∈ L2(0, T ;V) and βε is Lipschitz continuous, whence βε(uε) ∈
L2(0, T ;V). After adding the same integral to both sides for convenience and rearranging,
we obtain

τε

∫
Ω

β̂ε(uε(T )) +
∫

Γ

β̂ε(uε(T )) +
∫

Q

β′ε(uε)|∇uε|2 + ν

∫
Σ

βε
′(uε)|∇Γuε|2

+
∫

Q

|ξε|2 + δ

∫
Σ

|ξΓ,ε|2

= τε

∫
Ω

β̂ε(u0) +
∫

Γ

β̂ε(u0) +
∫

Q

(
f − π(uε) + wε

)
ξε

+
∫

Σ

(
δ |ξΓ,ε|2 + (σ − 1)ξε ξΓ,ε

)
+

∫
Σ

(
−σ ξΓ,ε − πΓ(uε) + fΓ

)
ξε .

All the integrals on the left-hand side are nonnegative and the first three terms on the right-hand
side are easily treated owing to (5.1), (2.28), and the previous estimates. Now, we show that
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the second to last integral is uniformly bounded by using Lemma 5.1 provided that δ is small
enough. By recalling that uε, ξε, and ξΓ,ε have the same sign and that σ < 1, we easily have

δ |ξΓ,ε|2 + (σ − 1)ξε ξΓ,ε = δ |ξΓ,ε|2 − (1− σ)|ξε||ξΓ,ε|
≤

(
δ − α(1− σ)

)
|ξΓ,ε|2 + 2CΓ(1− σ)|ξΓ,ε|

≤
(
δ − (α/2)(1− σ)

)
|ξΓ,ε|2 + 2(1− σ) C2

Γ/α ≤ 2(1− σ) C2
Γ/α a.e. on Σ

whenever δ < (α/2)(1 − σ). Finally, the last integral is bounded too, as we show at once by
accounting for Lemma 5.2 and the obvious inequality

|πΓ(uε)− fΓ| ≤ (sup |π′Γ|) |uε|+ |πΓ(0)|+ ‖fΓ‖L∞(Γ) a.e. on Σ.

Consider first the subset σ+
ε of Σ where uε ≥ r∗+. Then, ξε ≥ 0 and ξΓ,ε ≥ 0 there. Moreover,

(5.3) holds, whence −σ ξΓ,ε+πΓ(uε)−fΓ ≤ 0 a.e. on Σ+
ε . Hence, the corresponding contribution

to the integral is nonpositive. Analogously, the same holds for the subset where uε ≤ r∗−.
Therefore, if Σ∗

ε denotes the subset where r∗− ≤ uε ≤ r∗+, we have∫
Σ

(
−σ ξΓ,ε + πΓ(uε)− fΓ

)
ξε ≤

∫
Σ∗ε

|−σ ξΓ,ε + πΓ(uε)− fΓ| |ξε|

≤
(

sup
r∗−≤r≤r∗+

|βΓ,ε(r)|+ c
)

sup
r∗−≤r≤r∗+

|βε(r)| ≤ c

by (5.1), since r∗± ∈ D(β) ⊆ D(βΓ). Therefore, we deduce the basic estimate

‖ξε‖L2(0,T ;H) + ‖ξΓ,ε‖L2(0,T ;HΓ) ≤ c. (5.29)

Conclusion for Theorem 2.8. Thanks to the estimates we have proved, we can easily infer
existence for problem (2.19)–(2.20) also in this case. Indeed, using standard compactness results,
we see that limit functions exist such that (5.15)–(5.22) hold at least for a subsequence. Actually,
some convergence is related to some stronger topology. In order to prove that (u, w, ξ, ξΓ) is a
solution, it suffices to argue as in the conclusion of the proof of Theorem 2.9, the only difference
being the identification of ξΓ, since βΓ,ε differs from the Yosida regularization of βΓ in the
present case. It is clear that we can conclude provided that we find u∗ε ∈ L2(0, T ;V ) such that
the following convergence holds

u∗ε|Γ → u|Γ strongly in L2(0, T ;HΓ) (5.30)
ξ∗Γ,ε := βY

Γ,αε(u
∗
ε|Γ) → ξΓ weakly in L2(0, T ;HΓ). (5.31)

To this aim, we define
u∗ε := uε + min{εCΓ,max{uε,−εCΓ}}.

Then, (5.30)–(5.31) immediately follow if we prove that

u∗ε − uε → 0 and ξ∗Γ,ε − ξΓ,ε → 0 uniformly in Q and on Σ, respectively (5.32)

since (5.20) and (5.23) hold also in the present case. Now, we have |u∗ε−uε| ≤ εCΓ in Q, whence
the first of (5.32), trivially. On the other hand, the difference ξ∗Γ,ε − ξΓ,ε vanishes at points of
Σ where |uε| > εCΓ, by definition of βΓ,ε (see (4.3)), since u∗ε = uε + εCΓ signuε there. Next,
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assume uε to be evaluated at points of Σ where 0 ≤ uε ≤ εCΓ. Then, both ξ∗Γ,ε and ξΓ,ε are
nonnegative and satisfy

ξ∗Γ,ε ≤ βY
Γ,αε(2εCΓ) ≤ β◦Γ(2εCΓ) and ξΓ,ε ≤ βΓ,ε(2εCΓ) ≤ βY

Γ,αε(3εCΓ) ≤ β◦Γ(3εCΓ).

Hence, by arguing similarly at points where −εCΓ ≤ uε ≤ 0, we conclude that

sup
Σ
|ξ∗Γ,ε − ξΓ,ε| ≤ 2 max{β◦Γ(3εCΓ), |β◦Γ(−3εCΓ)|}.

Therefore, the second of (5.32) follows from the second of (2.32), which implies continuity for
β◦Γ at 0 indeed, and the proof of Theorem 2.8 is complete.

Remark 5.4. Of course, the above proof shows more regularity for the solution, according
to the estimates we have derived. For instance, under the assumptions of Theorem 2.8, we
have u ∈ W 1,∞(0, T ;V ∗) ∩ H1(0, T ;V ) in the non-viscous case and something better in the
viscous one by (5.24). Moreover, something more than required in (2.13)–(2.17) also holds
under the assumptions of Theorem 2.9. Here, we point out that u automatically enjoys further
regularity properties that follow directly from (2.13)–(2.17) and the variational formulation of
problem (2.19)–(2.20). From (2.22) we derive both (1.7) and (1.8). Precisely, such equalities
hold a.e. in Q and a.e. on Σ, respectively (i.e., all of their terms are functions rather than
functionals). First of all, (1.7) clearly holds in the sense of distributions and a comparison in it
immediately yields that ∆u ∈ L2(Q). In particular, (1.7) holds a.e. in Q. Moreover, by using
u ∈ L2(0, T ;V ) as well, we deduce that (∂nu)|Γ makes sense and belongs to L2(0, T ;H−1/2(Γ))
and that (1.8) holds in a generalized sense (see (4.33) for a similar situation). Therefore, if
ν = 0, just by comparison in (1.8), we infer that (∂nu)|Γ ∈ L2(Σ) and that (1.8) itself holds
a.e. on Σ. Assume now ν > 0 (whence d = 2, 3). We read both (1.7) and (1.8) as nice elliptic
equations, namely, −∆u = g and −∆Γu|Γ + u|Γ = gΓ (with an obvious choice of g and gΓ,
where t is just seen as a parameter), and use a bootstrap argument. First of all, we have
u|Γ ∈ L2(0, T ;H1(Γ)) and ∆u ∈ L2(Q). Thus, we deduce that u ∈ L2(0, T ;H3/2(Ω)) (by the
elliptic theory in Ω) and that (∂nu)|Γ belongs to L2(0, T ;H−1/4(Γ)) (actually, to L2(0, T ;Hs(Γ))
for every s < 0). Hence, u|Γ is the variational solution to the above equation on Γ with
gΓ ∈ L2(0, T ;H−1/4(Γ)). By applying the boundary version of [24, Thm. 7.5, p. 204], we derive
that u|Γ ∈ L2(0, T ;H2−1/4(Γ)) ⊂ L2(0, T ;H3/2(Γ)), whence also u ∈ L2(0, T ;H2(Ω)) by the
elliptic theory in Ω once more. In particular, u ∈ L2(0, T ;L∞(Ω)) since d ≤ 3. Furthermore, we
deduce that (∂nu)|Γ ∈ L2(0, T ;H1/2(Γ)) ⊂ L2(Σ). Therefore, we have that gΓ ∈ L2(Σ) as well,
whence ∆Γu|Γ ∈ L2(Σ) by comparison, and conclude that (1.8) holds a.e. on Σ.
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