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Abstract. We consider a doubly nonlinear Volterra equation involving a non-smooth kernel and
two possibly degenerate monotone operators. By exploiting an implicit time-discretization procedure,
we obtain the existence of a global strong solution and extend to the non-local in time situation some
former results by Colli [12].
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1. Introduction. Let V and H be reflexive Banach spaces with V ⊂ H densely
and compactly. The present analysis is concerned with the doubly nonlinear initial
value problem

A(u′) +B(u) + k ∗B(u) 3 f and u(0) = u0. (1.1)

Here, A : H → H∗ (dual) and B : V → V ∗ are maximal monotone (possibly multival-
ued) operators, and the non-smooth kernel k ∈ BV (0, T ), and the data u0 ∈ V and
f : [0, T ] → V ∗ are given.

Existence results for (1.1) with k = 0 as well as some motivation of the applicative
interest of doubly nonlinear relations of the form of (1.1) have been discussed by Colli

& Visintin [15] in Hilbert spaces. Later on, these results have been extended to the
reflexive Banach setting by Colli [12]. In particular, among the various different sets
of assumptions considered in [12], suitable solutions to (1.1) for k = 0 are proved to
exist if either

i) A is non-degenerate and bounded
and B is cyclically monotone and coercive [12, Thm. 1] or

ii) A is cyclically monotone and bounded
and B is Lipschitz continuous and strongly monotone [12, Thm. 2],

(see below for the definitions and details).
The aim of the present paper is to extend the latter existence results to the

more general non-local in time case k 6= 0. In particular, we address situation i) in
Theorem 2.1 and ii) in Theorem 2.3 below. This paper brings, to our knowledge, the
first contribution in the direction of an existence theory for (1.1).

Our existence argument relies on an implicit time-discretization procedure. Let-
ting τ := T/N (N ∈ N) denote the time-step and {ki}

N
i=1 ∈ RN , and {B(ui)}

N
i=1 ∈ V ∗

be approximations of k and B(u), respectively, we replace k ∗B(u) by the quantities

τ

i∑

j=1

ki−j+1B(uj) i = 1, . . . , N.

This choice has been firstly discussed by the second author in [26] and turns out to
be especially well-suited for the aim of studying Volterra equations of convolution
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type (see also [18]). In particular, it entails a useful discrete Young inequality (see
Proposition 3.2 below) and the conditional stability of the time-discretization scheme.
Moreover, the latter discrete convolution converges to its continuous counterpart as
the time-step goes to 0 (Proposition 3.3) and a discrete resolvent theory is available
(Proposition 3.5).

A remarkable fact is that our time-discretization technique allows the treatment
of non-smooth convolution kernels. In particular, we ask k to be of bounded variation
and even allow k ∈ L∞(0, T ) in case i) (see Remark 4.4). We shall mention that
memory kernels are generally assumed to be non-increasing and non-negative. Hence,
the latter turn out to be fairly natural regularity requirements.

We shall mention that existence results for different doubly nonlinear Volterra
equations have already been obtained. Let us remark in particular that equation

(A(u))′ +B(u) + k ∗B(u) 3 f (1.2)

has recently attracted a good deal of attention. Of course the local-in-time case k = 0
has been deeply studied and we shall refer to Grange & Mignot [19], Barbu

[9], DiBenedetto & Showalter [16], Alt & Luckhaus [6], and Bernis [11],
Hokkanen [20, 21, 22], Aizicovici & Hokkanen [4, 5], Maitre & Witomski

[24], and Gajewski & Skrypnik [17], among many others. The non-local case
k 6= 0 and has been considered under various simplifications (linearized operators,
smooth kernels, etc.) by Aizicovici, Colli, & Grasselli [2, 3], Barbu, Colli,

Gilardi, & Grasselli [10], Colli & Grasselli [13, 14], Stefanelli [26, 27, 28],
and Hokkanen [21]. Finally, Gilardi & Stefanelli [18] investigated (1.2) in great
generality by means of the same discretization tools here exploited.

1.1. An integro-partial differential equation. Let us present here an exam-
ple of a nonlinear integro-partial differential problem whose variational formulation
leads to (1.1). To this aim, we consider the initial and boundary value problem

a(∂tu) − div
(
b(∇u) − k ∗ b(∇u)

)
= h in Ω × (0, T ), (1.3)

where Ω ⊂ Rn is a suitably smooth and bounded open set. Here, the maximal
monotone maps a : R → R and b : Rn → Rn and the datum h : Ω × (0, T ) → R are
given.

We complement the latter equation by prescribing initial and mixed Dirichlet-
Neumann boundary conditions (other choices are of course admissible, see below). In
particular, we split ∂Ω into two parts, ΓD and ΓN , and ask for

u(0) = u0 in Ω, u = 0 on ΓD, and b(∇u) · ν = g on ΓN × (0, T ), (1.4)

almost everywhere in the respective domains, where u0 : Ω → R is the initial datum,
ν denotes the outward unit normal to ∂Ω, and g : ∂Ω × (0, T ) → R is the Neumann
datum.

Let now p, q ∈ (1,+∞) be such that p < q∗ (Sobolev exponent, q∗ = +∞ if
q > n) and let

H := Lp(Ω) and V := {v ∈ W 1,q(Ω) : v = 0 on ΓD}. (1.5)

The reader is referred to [1] for definitions and properties of Sobolev spaces.
We shall assume that

|a(r)| ≤ C(1 + |r|p−1) and |b(η)| ≤ C(1 + |η|q−1) ∀r ∈ R, η ∈ Rn, (1.6)
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for some constant C > 0, and that, say, u0 ∈ V , h ∈ L1(0, T ;Lp′

(Ω)), and
g ∈ L1(0, T ;Lq′

(ΓN )) where 1/p + 1/p′ = 1/q + 1/q′ = 1 (these assumptions will
be refined and complemented below). We define the operators A : H → H∗, and
B : V → V ∗, and the datum f : (0, T ) → V ∗ as

A(u)(x) := a(u(x)) for a.e. x ∈ Ω, ∀u ∈ V, (1.7)

〈B(u), v〉 :=

∫

Ω

b(∇u) · ∇v ∀u, v ∈ V, (1.8)

〈f(t), v〉 :=

∫

Ω

h(·, t) v +

∫

ΓN

(g + k ∗ g)(·, t) v ∀v ∈ V, a.e. in (0, T ) (1.9)

where the symbol 〈 · , · 〉 stands for the duality pairing between V ∗ and V (note that
the above growth assumptions on a and b entail that these definitions make sense).
Finally, along with these choices, Problem (1.1) arises as the variational formulation
of Problem (1.3)-(1.4).

1.2. Plan of the paper. We shall collect the assumptions and state our main
results (Theorems 2.1 and 2.3) in Section 2. Both results are obtained from the
convergence of the same time-discrete scheme. Hence, we prepare in Section 3 some
preliminary material on the discrete convolution, present the scheme, and prove its
solvability. Finally, in Sections 4 and 5 we prove Theorems 2.1 and 2.3, respectively.

2. Main Results. As said in the Introduction, we can prove two different results
that are related to different sets of assumptions. However, some common framework
is used. Namely, we assume in the whole paper that the conditions listed below are
fulfilled.

V and H are separable reflexive real Banach spaces (2.1)

V ⊂ H with dense and compact embedding (2.2)

A : H → 2H∗

and B : V → 2V ∗

are maximal monotone (2.3)

k ∈ BV (0, T ) (2.4)

where T ∈ (0,+∞) is a fixed final time.

The reader is referred to [7] for an extensive discussion on functions of bounded
variation. Here, we confine ourselves to note that any v ∈ BV (0, T ) has a unique right-
continuous representative (whose total variation in the elementary sense coincides with
the total variation of v, see [7, Thm. 3.28, p. 136]), so that v(t) has a precise meaning
for any fixed t ∈ [0, T ). Moreover, such a representative has a limit as t ↗ T which
we call v(T ).

We term V ∗ and H∗ the dual spaces of V and H , respectively, and observe that
H∗ ⊂ V ∗ with compact embedding. Moreover, the norms in the four spaces V , V ∗,
H , H∗ are denoted by ‖ · ‖, ‖ · ‖∗, | · |, | · |∗, respectively. Finally, the symbol 〈 · , · 〉
stands for the duality pairing both between V ∗ and V and between H∗ and H . In
view of (2.3), we note that A and B induce maximal monotone operators in Lp-type
spaces by a standard procedure. In the following, we do not distinguish between such
operators and the original ones in the notation.

Now, we make the meaning of the Cauchy problem (1.1) a little more precise.
Due to the fact that A and B are possibly multivalued, a solution of such a problem



4 G. GILARDI AND U. STEFANELLI

is actually a triple (u, ζ, w) of vector-valued functions on (0, T ) such that

ζ(t) + w(t) + (k ∗ w)(t) = f(t) for a.a. t ∈ (0, T ), (2.5)

ζ(t) ∈ A(u′(t)) and w(t) ∈ B(u(t)) for a.a. t ∈ (0, T ), (2.6)

u(0) = u0. (2.7)

Equation (2.5) has to be understood in V ∗ and some minimal regularity is needed in
order that all the above conditions make sense, e.g., u ∈ L1(0, T ;V ) ∩W 1,1(0, T ;H),
ζ ∈ L1(0, T ;H∗), w ∈ L1(0, T ;V ∗), and f ∈ L1(0, T ;V ∗). Note that this implies
u ∈ C0([0, T ];H), so that the Cauchy condition (2.7) is meaningful. Such a regularity
is surely given by our existence results that we state at once. In both theorems, the
symbols C and α stand for given strictly positive constants.

Theorem 2.1. Assume (2.1)–(2.4) and p, p′ ∈ (1,+∞) with 1
p + 1

p′
= 1. More-

over, assume

|z|p
′

∗ ≤ C(1 + |v|p) and 〈z, v〉 ≥ α|v|p − C for every v ∈ H and z ∈ Av, (2.8)

B = ∂ψ where ψ : V → (−∞,+∞] is convex, proper, and l.s.c., (2.9)

lim
‖u‖→∞

ψ(u)

‖u‖
= +∞. (2.10)

Finally, assume that

f ∈ Lp′

(0, T ;H∗) +W 1,∞(0, T ;V ∗) and u0 ∈ D(ψ). (2.11)

Then, there exists (u, ζ, w) satisfying

u ∈ L∞(0, T ;V ) ∩W 1,p(0, T ;H), ζ ∈ Lp′

(0, T ;H∗), w ∈ Lp′

(0, T ;V ∗) (2.12)

and solving the Cauchy problem (2.5)–(2.7).
Before moving on, let us briefly comment on how Theorem 2.1 can be applied to

the concrete situation of equation (1.3). First of all, we are allowed to generalize the
frame of Subsection 1.1 by letting a and b be possibly multivalued and asking for the
bound (1.6) on a, only. On the other hand, a shall be asked to fulfill a(r)r ≥ α′|r|p−C ′

for all r ∈ R and some α′ > 0, C ′ ≥ 0 (see (2.8)). We let the functional ψ be defined,
for all u ∈ V (where V is defined in (1.5)), as

ψ(u) :=





∫

Ω

j(∇u) if j(∇u) ∈ L1(Ω)

+∞ if j(∇u) 6∈ L1(Ω)
(2.13)

where j : Rn → (−∞,+∞] is convex, proper, l.s.c. and satisfies ∂j = b and
lim j(r)/|r| = +∞ as |r| → +∞. Hence, we formally have Bu = − div(b(∇u))
(with Neumann boundary conditions on ΓN due to the choice of V ) and the simplest
choice ensuing (2.10) for V as in (1.5) is j(·) = (1/q)| · |q . As far as the datum
f is concerned, we simply ask for h ∈ Lp′

(Ω × (0, T )) + W 1,∞(0, T ;L(q∗)′(Ω)) and
g ∈W 1,∞(0, T ;Lq′

(ΓN )) in (1.9), so that (2.11) holds.
Remark 2.2. In fact Theorem 2.1 may be extended to the case of a bounded

kernel k. However, for the sake of simplicity, we will prove our result as it has been
stated, i.e., assuming (2.4), and confine ourselves to give an outline of the proof of its
extension in the forthcoming Remark 4.4.
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Theorem 2.3. Assume (2.1)–(2.4) and

A = ∂ϕ where ϕ : H → R is convex and continuous (2.14)

|z|∗ ≤ C(|v| + 1) for every v ∈ H and z ∈ A(v) (2.15)

B is single-valued and Lipschitz continuous (2.16)

〈w1 − w2, u1 − u2〉 ≥ α‖w1 − w2‖
2

for every wi ∈ V and wi ∈ B(ui), i = 1, 2. (2.17)

Moreover, assume

f ∈ H1(0, T ;V ∗), u0 ∈ V, and f(0) −B(u0) ∈ D(ϕ∗). (2.18)

Then, there exists (u, ζ, w) satisfying

u ∈ H1(0, T ;V ), ζ ∈ L∞(0, T ;H∗) ∩H1(0, T ;V ∗), w ∈ H1(0, T ;V ∗) (2.19)

and solving the Cauchy problem (2.5)–(2.7).
In (2.18), ϕ∗ : H∗ → (−∞,+∞] is the conjugate function of ϕ, of course. As

above, let us now reconsider the situation of Subsection 1.1 from the point of view
of Theorem 2.3. To this end, we shall reinforce the bound on a in (1.6) by asking a
to be linearly bounded. On the other hand, a multivalued graph a is admissible and,
denoting by γ : R → (−∞,+∞] a primitive, i.e. ∂γ = a, we define

ϕ(u) :=

∫

Ω

γ(u) ∀u ∈ H = Lp(Ω).

We impose both strong monotonicity and Lipschitz continuity on the function b and
define B = ∂ψ from (2.13). Finally, in order the first (2.18) to hold, we may ask
for h ∈ H1(0, T ;L(q∗)′(Ω)) and g ∈ H1(0, T ;Lq′

(ΓN )) in (1.9), while the last (2.18)
means that some ζ0 ∈ D(ϕ∗) exists such that

∫

Ω

h(0) v +

∫

ΓN

g(0) v −

∫

Ω

b(∇u0) · ∇v =

∫

Ω

ζ0 v ∀v ∈ V

i.e., that the data and the distribution ζ0 := h(0) + div b(∇u0) satisfy

ζ0 ∈ Lp′

(Ω),

∫

Ω

γ∗(ζ0) < +∞, and b(∇u0) · ν = g(0) on ΓN

where γ∗ is the conjugate of γ. Note that the last condition on ΓN is meaningful in
a generalized sense due to div b(∇u0) = ζ0 − h(0) ∈ Lp′

(Ω) + L(q∗)′(Ω) = L(q∗)′(Ω).
Remark 2.4. We note that assumption (2.15) implies that

ϕ∗(z) ≥ α|z|2∗ − C for any z ∈ H∗ (2.20)

where α and C are some strictly positive constants (as we do not need sharpness,
α could have the same value as in (2.17)).

Remark 2.5. We note that the regularity conditions (2.12) of Theorem 2.1
imply that u is a weakly continuous V -valued function. Moreover, (2.6) yields u(t) ∈
D(B) a.e. Hence, the assumption u0 ∈ D(ψ) (see (2.11)) is quite natural. Moreover,
we note that the regularity of the solution given by Theorem 2.3 is rather high. This
is due, in particular, to (2.18), which looks like a compatibility condition, besides
regularity. Finally, we observe that (2.14)–(2.15) allow (an even strong) degeneracy.
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3. Time-discretization. In order to prove our existence results, we consider a
fully implicit time-discretization of problem (2.5)–(2.7). Such a procedure is based on
a discrete convolution, for which we directly refer to [18], [26], and to the references
quoted there.

Let us start by fixing a uniform partition of the time interval [0, T ] by choosing
a constant time-step τ = T/N , N ∈ N. Then, we consider both N -vectors z ∈ EN

and (N + 1)-vectors z ∈ EN+1, where E is a Banach space and label their elements
by zi, where i = 1, . . . , N and i = 0, . . . , N , respectively. First, we recall the basic
definitions and properties.

Definition 3.1. Let a ∈ RN and b ∈ EN . Then, we define a ∗τ b ∈ EN+1 by

(a ∗τ b)0 := 0 and (a ∗τ b)i := τ

i∑

j=1

ai−j+1bj for i = 1, . . . , N . (3.1)

Such a discrete convolution enjoys nice properties. Beside the most elementary
ones, we mention the derivative formula, the discrete Young theorem, and a basic
inequality which is useful when letting τ tend to zero. To this aim, we introduce a
notation. If z ∈ EN+1, we define the piecewise linear interpolant ẑτ and the backward
piecewise constant interpolant zτ of z as follows

ẑτ (0) := z0 and ẑτ (t) := γi(t)zi +
(
1 − γi(t)

)
zi−1 for t ∈ Iτ

i and i = 1, . . . , N

zτ (0) := z0 and zτ (t) := zi for t ∈ Iτ
i and i = 1, . . . , N

where

γi(t) := (t− (i− 1)τ)/τ and Iτ
i := ((i− 1)τ, iτ ].

The definition of zτ is extended to vectors z ∈ EN simply avoiding the definition
of zτ (0). Moreover, we define δz ∈ EN this way

(δz)i :=
zi − zi−1

τ
for i = 1, . . . , N (3.2)

and simply write δzi in place of (δz)i in the sequel. By the way, we notice that

‖ẑτ − zτ‖
r
L∞(0,T ;E) = max

1≤i≤N
‖zi − zi−1‖

r
E ≤

N∑

i=1

‖zi − zi−1‖
r
E = τr−1 · τ

N∑

i=1

‖δzi‖
r

whence

‖ẑτ − zτ‖L∞(0,T ;E) ≤ τ1−(1/r)‖ẑ′τ‖Lr(0,T ;E) for z ∈ EN+1 and 1 ≤ r < +∞. (3.3)

As far as the convolution is concerned, we have

̂(a ∗τ b)τ = aτ ∗ bτ . (3.4)

Moreover, for a ∈ RN+1 and b ∈ EN , the discrete derivative formula holds, namely

δ(a ∗τ b) = a0b+ (δa) ∗τ b (3.5)

which is the discrete counterpart of

(a ∗ b)′ = a(0)b+ a′ ∗ b. (3.6)
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Next, we recall the discrete Young theorem (where 1/∞ = 0) [18, Lemma 3.2] .
Proposition 3.2. Let a ∈ RN , b ∈ EN , and p, q, r ∈ [1,∞] such that 1 + 1

r =
1
p + 1

q . Then

‖(a ∗τ b)τ‖Lr(0,T ;E) ≤ ‖aτ‖Lp(0,T )‖bτ‖Lq(0,T ;E).

Finally, we recall the following useful tools (see [18, Prop. 3.3 and Cor. 3.4]).
Proposition 3.3. Let a ∈ RN+1, b ∈ EN , and r ∈ [1,∞]. Then, we have

‖(a ∗τ b)τ − aτ ∗ bτ‖Lr(0,T ;E) ≤ τ
(
|a0| + vara

)
‖bτ‖Lr(0,T ;E)

where var a :=
∑N

i=1 |ai − ai−1|.
Corollary 3.4. Let E be a real reflexive Banach space, r ∈ [1,∞], and let the

sequence {aτ} be bounded in BV (0, T ). If aτ → a strongly in L1(0, T ) and bτ → b
weakly star (strongly) in Lr(0, T ;E) as τ → 0, then (a ∗τ b)τ → a ∗ b weakly star
(strongly, respectively) in Lr(0, T ;E).

The next step consists in approximating the kernel k and its resolvent ρ. Let us
recall that the resolvent of k is the unique function ρ ∈ L1(0, T ) satisfying ρ+k∗ρ = k.
By (2.4), we think of a right-continuous representative of k and define the discrete
kernel kτ as follows

kτ = (ki)
N
i=0 ∈ RN+1 where ki = k(iτ) for i = 0, . . . , N . (3.7)

Next, we define the discrete resolvent ρτ = (ρi)
N
i=0 ∈ RN+1 by the condition

ρτ + kτ ∗τ ρ
τ = kτ provided that τ‖k‖L∞(0,T ) < 1. (3.8)

Indeed, the discrete resolvent is well defined if τ |k1| < 1, as shown in [18]. Moreover,
for the sake of simplicity, we avoid the superscript τ in the notation when we consider
the interpolants of kτ and ρτ (as we did for the components ki and ρi), i.e., we simply

write, e.g., k̂τ and kτ .
We recall the basic property of the resolvent ρ and of the discrete resolvent ρτ .

At the same time, we summarize the boundedness and convergence properties.
Proposition 3.5. Assume (2.4) and τ‖k‖L∞(0,T ) < 1. Then, for every u, v ∈

L1(0, T ;E) and a, b ∈ EN , we have

u+ k ∗ u = v if and only if u = v − ρ ∗ v (3.9)

a+ kτ ∗τ a = b if and only if a = b− ρτ ∗τ b (3.10)

respectively. The sequences {k̂τ} and {kτ} are bounded in BV (0, T ) and converge to
the given kernel k strongly in L1(0, T ). The sequences {ρ̂τ} and {ρτ} are bounded
in BV (0, T ) and converge to the resolvent ρ of k strongly in L1(0, T ). In particular,
ρ ∈ BV (0, T ).

Remark 3.6. Even though we have defined the discrete resolvent just in the case
k ∈ BV (0, T ), an L∞-type norm of ρτ can be estimated in terms of the L∞-norm
of k. Indeed, assuming τ‖k‖L∞(0,T ) ≤ 1/2, we see that (3.8) implies

1

2
|ρi| ≤ (1 + τk1)|ρi| ≤ ‖k‖L∞(0,T ) + τ‖k‖L∞(0,T )

i−1∑

j=1

|ρj | for i = 1, . . . , N
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and the discrete Gronwall lemma (see (3.23)) yields the (non sharp) estimate

|ρi| ≤ 2‖k‖L∞(0,T )e
2T‖k‖L∞(0,T ) for i = 1, . . . , N.

Similarly, the standard Gronwall lemma yields ρ ∈ L∞(0, T ) whenever k ∈ L∞(0, T )
and that

‖ρ‖L∞(0,T ) ≤ ‖k‖L∞(0,T )e
T‖k‖L∞(0,T ) .

These facts are used in the sequel in order to extend Theorem 2.1 to the case k ∈
L∞(0, T ) (see the forthcoming Remark 4.4).

Now, we are ready to introduce the discrete problem. Let f τ = (fi)
N
i=1 ∈ (V ∗)N

approximate the right hand side f of equation (2.5). A precise choice of f τ will be
made later on.

Definition 3.7. Given u0 ∈ V and fτ ∈ (V ∗)N , a solution to the discrete
problem is a triple (uτ , ζτ , wτ ) satisfying the following conditions

uτ ∈ V N+1 and u0 = u0, ζτ ∈ (H∗)N , wτ ∈ (V ∗)N (3.11)

ζτ + wτ + kτ ∗τ w
τ = fτ (3.12)

ζi ∈ A(δui) and wi ∈ B(ui) for i = 1, . . . , N (3.13)

where ui, ζi, and wi are the components of uτ , ζτ , and wτ , respectively.
Now, we prove an existence result for the discrete problem. The assumption we

need here are weaker than the assumptions of both Theorems 2.1 and 2.3.
Theorem 3.8. Assume (2.1)–(2.4) and τ‖k‖L∞(0,T ) < 1. Moreover, assume that

A is bounded and B is coercive. Then, for any u0 ∈ V and fτ ∈ (V ∗)N , the discrete
problem has a solution.

Proof. Using (3.10), we rewrite (3.12) in the form

ζτ + wτ = f̃
τ

+ ρτ ∗τ ζ
τ where f̃

τ
= (f̃ i)

N
i=1 = fτ − ρτ ∗τ f

τ .

Hence, after setting u0 = u0, we just have to solve inductively the equation

(1 − τρ1)ζi + wi = f̃ i + τ

i−1∑

j=1

ρi−j+1ζj , ζi ∈ A(δui), and wi ∈ B(ui) (3.14)

for i = 1, . . . , N with the convention that the empty sum is 0. At each step, ui−1 and
the right hand side are known. On the other hand, a simple computation shows that
the coefficient of ζi on the left hand side is 1/(1 + τk1) > 1/2 if τ |k1| < 1, and this is
the case if τ‖k‖L∞(0,T ) < 1. Hence, (3.14) has the form

σζi + wi = f∗, ζi ∈ A

(
ui − u∗

τ

)
, and wi ∈ B(ui)

where σ > 0, u∗ ∈ V , and f∗ ∈ V ∗ are given. In other words, we have to solve

σζi + wi = f∗, ζi ∈ A∗(ui), and wi ∈ B(ui), where A∗(u) := A

(
u− u∗

τ

)
.

As A∗ : H → 2H∗

enjoys the same properties of A, namely, it is maximal monotone
and bounded, and the same holds for σA∗, we avoid all the subscripts and superscripts
and the factor σ, i.e., we look for u ∈ V such that

Au+Bu 3 f (3.15)
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where f ∈ V ∗ is given.
In order to solve (3.15), we introduce an approximating problem depending on

the parameter ε ∈ (0, 1). We term Aε the Yosida regularization of A and briefly recall
its properties. We refer, e.g., to [8, Prop. 1.1, Lem. 1.3, and Thm. 1.3]. As H is
reflexive, we can assume that both | · | and | · |∗ are strictly convex norms. As A is
maximal monotone and bounded, it turns out that

Aε : H → H∗ is single-valued, maximal monotone, and demicontinuous (3.16)

for any bounded subset S ⊂ H , we have

sup{|Aεv|∗ : v ∈ S, ε ∈ (0, 1)} < +∞ (3.17)

uε ⇀ u in H , Aεuε ⇀ ζ in H∗, and 〈Aεuε, uε〉 → 〈ζ, u〉 imply ζ ∈ Au. (3.18)

Then, we first solve the approximating problem of finding uε ∈ V such that

Aεuε +Buε 3 f. (3.19)

As Aε is everywhere defined, monotone, and demicontinuous, the same holds for
Aε|V : V → V ∗. Hence, Aε|V + B : V → 2V ∗

is maximal monotone. Moreover, it
is coercive since B is coercive. Therefore, (3.19) has a solution, namely, there exists
(uε, ζε, wε) ∈ V ×H∗ × V ∗ such that

ζε + wε = f, ζε = Aεuε , and wε ∈ Buε. (3.20)

Now, we perform an priori estimate. Setting ζ0,ε := Aε0 for convenience, we have

〈wε, uε〉 ≤ 〈ζε − ζ0,ε + wε, uε〉 = 〈f − ζ0,ε, uε〉 ≤ ‖f‖∗‖uε‖ + |ζ0,ε|∗|uε| ≤M‖uε‖

for some constant M , since {ζ0,ε} is bounded in H∗ by (3.17) and the embedding
V ⊂ H is continuous. Owing to the coerciveness assumption on B, we derive that
{uε} is bounded in V , whence in H as well. Then, (3.17) implies that {ζε} is bounded
in H∗, and solving (3.20) for wε yields that {wε} is bounded in V ∗. Hence, for a
subsequence, we have

uε ⇀ u in V , ζε ⇀ ζ in H∗, and wε ⇀ w in V ∗.

Clearly, ζ + w = f . Moreover, due to the compact embedding V ⊂ H (see (2.2)),
we derive the strong convergence uε → u in H , whence 〈ζε, uε〉 → 〈ζ, u〉 and ζ ∈ Au
by (3.18). Finally

lim
ε→0

〈wε, uε〉 = lim
ε→0

〈f − ζε, uε〉 = 〈f − ζ, u〉 = 〈w, u〉

and we conclude that w ∈ Bu as well by [8, Lem. 1.3, p. 42].
In the next two sections, we prove our existence results. In each case, we first

make the choice of f τ precise. Then, we perform some a priori estimates. Finally,
we let τ tend to zero owing to compactness and monotonicity arguments. Besides its
discrete version given by Proposition 3.2, we widely use the Young theorem and the
elementary Young inequality

‖a ∗ b‖Lr(0,T ;E) ≤ ‖a‖Lp(0,T )‖b‖Lq(0,T ;E), p, q, r ∈ [1,+∞], 1 +
1

r
=

1

p
+

1

q
(3.21)

xy ≤ σxp + cp,σy
p′

, x, y ≥ 0, σ > 0, p, p′ ∈ (1,+∞),
1

p
+

1

p′
= 1. (3.22)
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In (3.22), cp,σ is some constant that depends on p and σ, only. However, in the
sequel the same symbol c will stand for different constants that depend only on the
functions and quantities related to the assumptions of the theorem we want to prove
(e.g., on the operators and on the norms of the data in the spaces we have specified).
Hence, the meaning of c might change from line to line and even in the same chain
of inequalities. Moreover, a symbol like cσ allows the constant c to depend on the
parameter σ, in addition. Finally, we use the following discrete Gronwall lemma: if
{an} and {bn} are non negative real sequences, c0 ≥ 0, and N ∈ N, then

an ≤ c0 +

n−1∑

i=1

biai for n = 1, . . . , N implies that

an ≤ c0

n−1∏

i=1

(1 + bi) ≤ c0 exp

(
n−1∑

i=1

bi

)
for n = 1, . . . , N. (3.23)

This can be easily proved by induction (see also, e.g., [23, Prop. 2.2.1]).

4. Proof of Theorem 2.1. Using assumption (2.11), we split f as

f = f1 + f2 with f1 ∈ Lp′

(0, T ;H∗) and f2 ∈W 1,∞(0, T ;V ∗) (4.1)

and define fτ by choosing suitable discretizations f τ
1 = (f1,i) and fτ

2 = (f2,i) of f1
and f2, respectively. We set

f1,i :=
1

τ

∫ iτ

(i−1)τ

f1(t) dt, i = 1, . . . , N, and f2,i := f2(iτ), i = 0, . . . , N. (4.2)

Moreover, we introduce the transforms f̃1 and f̃2 and the discrete transforms f̃
τ

1 and

f̃
τ

2 by

f̃ j := fj − ρ ∗ fj and f̃
τ

j := fτ
j − ρτ ∗τ f

τ
j for j = 1, 2 (4.3)

and avoid the superscript τ in the notation for the interpolants of the discretized data
(as we did for their i-th components).

Remark 4.1. Owing to (3.21) and to Propositions 3.2 and 3.5, we note at once
that the following estimates hold

‖f̃1‖Lp′(0,T ;H∗) ≤
(
1 + ‖ρ‖L1(0,T )

)
‖f1‖Lp′(0,T ;H∗) (4.4)

‖f̃2‖L∞(0,T ;V ∗) ≤
(
1 + ‖ρ‖L1(0,T )

)
‖f2‖L∞(0,T ;V ∗) (4.5)

‖f̃
′

2‖L∞(0,T ;V ∗) ≤
(
1 + ‖ρ‖L1(0,T )

)
‖f ′

2‖L∞(0,T ;V ∗) + ‖ρ‖L∞(0,T )‖f2‖L∞(0,T ;V ∗) (4.6)

‖f̃1,τ‖Lp′(0,T ;H∗) ≤
(
1 + ‖ρτ‖L1(0,T )

)
‖f1,τ‖Lp′ (0,T ;H∗) (4.7)

‖f1,τ‖Lp′(0,T ;H∗) ≤ ‖f1‖Lp′(0,T ;H∗). (4.8)

In particular, such quantities are estimated by a known constant. For (4.6), we have

used f̃
′

2 = f ′
2−ρ∗f

′
2−ρ f2(0), owing to the analogous of (3.6) obtained by interchanging

a and b. Moreover, the following convergences hold

f1,τ → f1 and f̃1,τ → f̃1 strongly in Lp′

(0, T ;H∗) (4.9)

f2,τ → f2 and f̃2,τ → f̃2 strongly in L∞(0, T ;V ∗) (4.10)

f̂2,τ → f2 and ̂̃f2,τ → f̃2 strongly in W 1,q(0, T ;V ∗) for every q < +∞. (4.11)
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The discrete problem is now

ζi + wi + (kτ ∗τ w
τ )i = f1,i + f2,i, ζi ∈ A(δui), and wi ∈ B(ui). (4.12)

for i = 1, . . . , N . Note that (3.10) yields an equivalent version of the equation in (4.12),
namely

ζi + wi = f̃1,i + f̃2,i + (ρτ ∗τ ζ
τ )i for i = 1, . . . , N. (4.13)

Now, we test (4.13) by τδui and sum over i = 1, . . . , n with any n ≤ N . We obtain

τ
n∑

i=1

〈ζi, δui〉 + τ
n∑

i=1

〈wi, δui〉

= τ

n∑

i=1

〈f̃1,i, δui〉 + τ

n∑

i=1

〈f̃2,i, δui〉 + τ

n∑

i=1

〈(ρτ ∗τ ζ
τ )i, δui〉 (4.14)

and we now estimate each term of (4.14), separately.
Remark 4.2. Despite of the above-stated notational convention for constants

(see the end of Section 3), we stress that the bounds below are going to depend just
on the L∞ norm of k, rather than on its BV norm, (see, in particular, Remark 3.6),
even though assumption (2.4) is listed in the statement of the theorem and it is
actually used in the proof. That is why we can deal even with the case k ∈ L∞(0, T )
(see Remarks 2.2 and 4.4).

Coming back to the treatment of the terms of (4.14), we immediately have

τ

n∑

i=1

〈ζi, δui〉 ≥ ατ

n∑

i=1

|δui|
p − Cnτ ≥ ατ

n∑

i=1

|δui|
p − c (4.15)

due to the second of (2.8). Next, the definition of wi ∈ Bui = ∂ψ(ui) yields

τ
n∑

i=1

〈wi, δui〉 =
n∑

i=1

〈wi, ui − ui−1〉

≥

n∑

i=1

(
ψ(ui) − ψ(ui−1)

)
= ψ(un) − ψ(u0) = ψ(un) − c. (4.16)

Let us consider the right hand side of (4.14). Owing to Remark 4.1, we easily have

τ

n∑

i=1

〈f̃1,i, δui〉 ≤

(
τ

n∑

i=1

|f̃1,i|
p′

∗

)1/p′ (
τ

n∑

i=1

|δui|
p

)1/p

≤
α

4
τ

n∑

i=1

|δui|
p + cτ

n∑

i=1

|f̃1,i|
p′

∗ ≤
α

4
τ

n∑

i=1

|δui|
p + c. (4.17)

The next term is less trivial. We have

τ

n∑

i=1

〈f̃2,i, δui〉 =

n∑

i=1

〈f̃2,i, ui − ui−1〉

=

n∑

i=1

(
〈f̃2,i, ui〉 − 〈f̃2,i−1, ui−1〉 − 〈f̃2,i − f̃2,i−1, ui−1〉

)
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whence

τ
n∑

i=1

〈f̃2,i, δui〉 ≤ 〈f̃2,n, un〉 − c− τ
n∑

i=1

〈δf̃2,i, ui−1〉 (4.18)

and we have to estimate the right hand side. For the first term, we owe to the convexity
assumption on ψ and use its conjugate function ψ∗ : H∗ → (−∞,+∞] this way

〈f̃2,n, un〉 = 〈2f̃2,n,
1
2un + 1

2u
0〉 − 〈f̃2,n, u

0〉 ≤ ψ( 1
2un + 1

2u
0) + ψ∗(2f̃2,n) + c‖f̃2,n‖∗

≤
1

2
ψ(un) +

1

2
ψ(u0) + ψ∗(2f̃2,n) + c‖f̃2,n‖∗ ≤

1

2
ψ(un) + c+ ψ∗(2f̃2,n) + c‖f̃2,n‖∗.

On the other hand, we have ‖f̃2,n‖∗ ≤ ‖f̃2‖L∞(0,T ;V ∗) ≤ c (by (4.5)). Moreover, the
coerciveness assumption (2.10) implies that ψ∗ is bounded on every bounded subset
of V ∗. Therefore, the above inequality becomes

〈f̃2,n, un〉 ≤
1

2
ψ(un) + c. (4.19)

Next, we estimate the last sum of (4.18). We have

−τ

n∑

i=1

〈δf̃2,i, ui−1〉 ≤ τ

n∑

i=1

(
ψ∗(δf̃2,i) + ψ(ui−1)

)

and the first term in the sum is bounded since ‖δf̃2,i‖∗ ≤ ‖f̃
′

2‖L∞(0,T ;V ∗), (4.6) holds,
and ψ∗ is bounded on bounded sets. Hence, we derive that

−τ

n∑

i=1

〈δf̃2,i, ui−1〉 ≤ c+ τ

n∑

i=1

ψ(ui−1) = c+ τ

n−1∑

i=1

ψ(ui). (4.20)

Finally, we deal with the convolution term of (4.14). We have

τ

n∑

i=1

〈(ρτ ∗τ ζ
τ )i, δui〉 ≤

α

4
τ

n∑

i=1

|δui|
p + cτ

n∑

i=1

|(ρτ ∗τ ζ
τ )i|

p′

∗ (4.21)

and we now estimate the last term by using the discrete Young Theorem 3.2 and the
boundedness of A given by (2.8). We have

τ

n∑

i=1

|(ρτ ∗τ ζ
τ )i|

p′

∗ ≤ τ

n∑

i=1

‖(ρτ ∗τ ζτ )τ‖
p′

L∞(0,iτ ;H∗)

≤ τ

n∑

i=1

‖ρτ‖
p′

Lp(0,iτ)‖ζτ‖
p′

Lp′(0,iτ ;H∗)
≤ τ

n∑

i=1

‖ρτ‖
p′

Lp(0,T )‖ζτ‖
p′

Lp′ (0,iτ ;H∗)

≤ cτ

n∑

i=1

τ

i∑

j=1

|ζj |
p′

∗ ≤ cτ

n∑

i=1

τ

i∑

j=1

c (1 + |δuj |
p) ≤ c+ cτ

n∑

i=1

τ

i∑

j=1

|δuj |
p. (4.22)

At this point, we collect the equality (4.14) and all the estimates (4.15)–(4.22) and
rearrange. We deduce

τ

n∑

i=1

|δui|
p + ψ(un) ≤ c+ cτ

n∑

i=1

τ

i∑

j=1

|δuj |
p + cτ

n−1∑

i=1

ψ(ui)

= c+ cτ

n−1∑

i=1

τ

i∑

j=1

|δuj |
p + cτ

n−1∑

i=1

ψ(ui) + cτ2
n∑

j=1

|δuj |
p.
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As the last constant c depends just on the structure of the problem and on the data,
we can choose τ0 having the same dependencies of c such that cτ0 ≤ 1/2. Hence,
assuming τ ≤ τ0, we have cτ2 ≤ τ/2 and we can apply the discrete Gronwall lemma.
We conclude that

τ
n∑

i=1

|δui|
p + ψ(un) ≤ c (4.23)

and using (2.10) and the first of (2.8), we immediately derive that

‖un‖ ≤ c and τ

n∑

i=1

|ζi|
p′

∗ ≤ c. (4.24)

Now, we read both the discrete problem and the above estimates in terms of the
interpolants. Then (4.12) and (4.13) become

ζτ + wτ + (kτ ∗τ wτ )τ = f1,τ + f2,τ or ζτ + wτ = f̃1,τ + f̃2,τ + (ρτ ∗τ ζτ )τ (4.25)

and ζτ ∈ A(û′τ ), and wτ ∈ B(uτ ) (4.26)

while (4.23)–(4.24) yield

‖ûτ‖L∞(0,T ;V ) = ‖uτ‖L∞(0,T ;V ) ≤ c, ‖ûτ‖W 1,p(0,T ;H) + ‖ζτ‖Lp′ (0,T ;H∗) ≤ c. (4.27)

Moreover, (3.3) and (4.23) imply

‖ûτ − uτ‖L∞(0,T ;H) ≤ cτ1/p′

.

On the other hand, f1,τ is bounded in Lp(0, T ;H∗) due to (4.8), and the same holds

for (ρτ ∗τ ζτ )τ thanks to the above estimate for ζτ , the Young theorem (see (3.21)),

and Proposition 3.3. Finally, f̃2,τ is bounded in L∞(0, T ;V ∗) due to (4.5). Hence,
taking the second of (4.25) into account, we infer that

‖wτ − f̃2,τ‖Lp′(0,T ;H∗) ≤ c and ‖wτ‖Lp′(0,T ;V ∗) ≤ c. (4.28)

Therefore, we are ready to use well-known weak and weak star compactness tools.
Owing to the strong compactness result [25, Sect. 8, Cor. 4] as well, we have for a
subsequence

ûτ → u weakly star in L∞(0, T ;V ),

weakly in W 1,p(0, T ;H),

and strongly in C0([0, T ];H) (4.29)

uτ → u weakly star in L∞(0, T ;V )

and strongly in L∞(0, T ;H) (4.30)

ζτ → ζ weakly in Lp′

(0, T ;H∗) (4.31)

wτ → u weakly in Lp′

(0, T ;V ∗) (4.32)

(wτ − f̃2,τ ) → (w − f̃2) weakly in Lp′

(0, T ;H∗). (4.33)

Note that (u, ζ, w) fulfills the regularity conditions (2.12) of Theorem 2.1 and the
Cauchy condition u(0) = u0. Moreover

ζ + w = f̃1 + f̃2 + ρ ∗ ζ and ζ + w + k ∗ w = f1 + f2 (4.34)
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and it just remains to prove that ζ ∈ A(u′) and that w ∈ B(u). The latter is easily
obtained. We have indeed

lim
τ→0

∫ T

0

〈wτ , uτ 〉 = lim
τ→0

∫ T

0

〈wτ − f̃2,τ , uτ 〉 + lim
τ→0

∫ T

0

〈f̃2,τ , uτ 〉

=

∫ T

0

〈w − f̃2, u〉 +

∫ T

0

〈f̃2, u〉 =

∫ T

0

〈w, u〉

whence w ∈ B(u) by [8, Lemma 1.3, p. 42]. We aim to use the same result in order
to prove that ζ ∈ A(u′), i.e., we shall check that

lim sup
τ→0

∫ T

0

〈ζτ , û
′
τ 〉 ≤

∫ T

0

〈ζ, u′〉. (4.35)

To this end, we prepare a lemma.
Lemma 4.3. Let {kδ}, {uδ}, and {gδ} be three sequences such that

kδ → k strongly in L1(0, T )

uδ → u weakly in W 1,p(0, T ;H) and strongly in C0([0, T ];H)

gδ → g weakly in Lp′

(0, T ;H∗)

as δ tends to zero. Then, we have

lim
δ→0

∫ T

0

〈kδ ∗ gδ, u
′
δ〉 =

∫ T

0

〈k ∗ g, u′〉.

Proof. We fix ε > 0 and look for δε > 0 such that
∣∣∣∣∣

∫ T

0

〈kδ ∗ gδ, u
′
δ〉 −

∫ T

0

〈k ∗ g, u′〉

∣∣∣∣∣ ≤ ε for 0 < δ ≤ δε. (4.36)

We fix δ0 > 0 and M such that

‖gδ‖Lp′(0,T ;H∗) ≤M and ‖uδ‖W 1,p(0,T ;H) ≤M for 0 < δ ≤ δ0

and assume δ ≤ δ0 in the sequel. Then, we choose akernel kε ∈ C1[0, T ] such that

‖kε − k‖L1(0,T ) ≤ ε and term k̂ε
δ the piece-wise linear interpolant of kε with step δ.

Then, we have
∣∣∣∣∣

∫ T

0

〈kδ ∗ gδ, u
′
δ〉 −

∫ T

0

〈k ∗ g, u′〉

∣∣∣∣∣

≤

∫ T

0

|〈(kε − k) ∗ g, u′〉| +

∫ T

0

|〈(kδ − k̂ε
δ) ∗ gδ, u

′
δ〉|

+

∣∣∣∣∣

∫ T

0

(
〈k̂ε

δ ∗ gδ, u
′
δ〉 −

∫ T

0

〈kε ∗ g, u′〉
)
∣∣∣∣∣ (4.37)

and we now treat each term of the right hand side of (4.37), separately. The first one
is easily estimated owing to the Young theorem (see (3.21)). We have indeed

∫ T

0

|〈(kε − k) ∗ g, u′〉| ≤ ‖kε − k‖L1(0,T )‖g‖Lp′(0,T ;H∗)‖u
′‖Lp(0,T ;H) ≤M2ε.
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We have similarly

∫ T

0

|〈(kδ − k̂ε
δ) ∗ gδ, u

′
δ〉| ≤ ‖kδ − k̂ε

δ‖L1(0,T )‖gδ‖Lp′(0,T ;H∗)‖u
′
δ‖Lp(0,T ;H)

≤M2‖kδ − k̂ε
δ‖L1(0,T ).

On the other hand, we have

‖kδ − k̂ε
δ‖L1(0,T ) ≤ ‖kδ − k‖L1(0,T ) + ‖k − kε‖L1(0,T ) + ‖kε − k̂ε

δ‖L1(0,T )

≤ ‖kδ − k‖L1(0,T ) + ε+ 2δ‖(kε)′‖L1(0,T )

since

|kε(t) − k̂ε
δ(t)| ≤ |kε(t) − kε((i− 1)δ)| + |k̂ε

δ(t) − kε((i− 1)δ)| ≤ 2

∫ iδ

(i−1)δ

|(kε)′(s)| ds

for (i−1)δ < t ≤ iδ. Moreover, {kδ} converges to k strongly in L1(0, T ) by assumption.
Hence

∫ T

0

|〈(kδ − k̂ε
δ) ∗ gδ, u

′
δ〉| ≤ 3M2ε whenever δ ≤ δ∗ε

for some δ∗ε > 0. Therefore, in order to conclude, it is sufficient to prove that

lim
δ→0

∫ T

0

〈k̂ε
δ ∗ gδ, u

′
δ〉 =

∫ T

0

〈kε ∗ g, u′〉. (4.38)

Indeed, this will yield (4.36) with some δε and, say, (4M2 + 1)ε instead of ε. As kε is
smooth, we can integrate by parts as follows

∫ T

0

〈k̂ε
δ ∗ gδ, u

′
δ〉 = 〈(k̂ε

δ ∗ gδ)(T ), uδ(T )〉 −

∫ T

0

〈(k̂ε
δ ∗ gδ)

′, uδ〉

= 〈(k̂ε
δ ∗ gδ)(T ), uδ(T )〉 − k̂ε

δ(0)

∫ T

0

〈gδ , uδ〉 −

∫ T

0

〈(k̂ε
δ)

′ ∗ gδ, uδ〉 (4.39)

and an analogous formula holds for the right hand side of (4.38). Hence, we show that
each term of (4.39) converges to the corresponding term of such a formula. We have

|〈(k̂ε
δ ∗ gδ)(T ), uδ(T )〉 − 〈(kε ∗ g)(T ), u(T )〉|

≤ |((k̂ε
δ − kε) ∗ gδ)(T )|∗|uδ(T )| + |〈(kε ∗ gδ)(T ), uδ(T )〉 − 〈(kε ∗ g)(T ), u(T )〉|

≤M2‖k̂ε
δ − kε‖Lp(0,T ) + |〈(kε ∗ gδ)(T ), uδ(T )〉 − 〈(kε ∗ g)(T ), u(T )〉|.

So, as {k̂ε
δ} converges to kε strongly in Lp(0, T ) (even much better) as δ → 0 and

{uδ(T )} converges to u(T ) strongly inH , it suffices to prove that (kε∗gδ)(T ) converges
to (kε ∗ g)(T ) weakly in H∗. This means that

lim
δ→0

∫ T

0

〈gδ(s), k
ε(T − s)v〉 ds =

∫ T

0

〈g(s), kε(T − s)v〉 ds for every v ∈ H

and it is true, since gδ → g weakly in Lp′

(0, T ;H∗). Thus, we have shown that the first
term on the right hand side of (4.39) converges to the desired limit. The second term
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is trivial to deal with, and the last one properly converges. Indeed, uδ → u strongly
in C0([0, T ];H) and (k̂ε

δ)
′ ∗gδ → (kε)′ ∗g weakly in Lp′

(0, T ;H∗), since gδ → g weakly

in Lp′

(0, T ;H∗) and (k̂ε
δ)

′ → (kε)′ strongly in L1(0, T ) (even uniformly) as δ → 0, as
kε is C1.

Let us come back to the proof of Theorem 2.1. As we said before, it remains to
check (4.35). We set gτ := f̃

τ

2 −wτ and g := f̃2 −w for convenience. By (3.9)–(3.10)
we have

f2 = f̃2 + k ∗ f̃2 and fτ
2 = f̃

τ

2 + kτ ∗τ f̃
τ

2

whence, we can write

ζ = f1 − w + f̃2 + k ∗ g and ζτ = f1,τ − wτ + f̃2,τ + (kτ ∗τ gτ )τ .

So, we have to compare each term coming from the above right hand sides after
testing by u′ and by û′τ , respectively. The integral involving f 1,τ converges properly,

due to (4.9) and (4.29). The same holds for the one regarding f̃2,τ , thanks to (4.10)
and (4.30). Next, we observe that (4.29) implies that ûτ (T ) converges to u(T ) weakly
in V . Hence, using the definition of subdifferential and the l.s.c. of ψ, we have

lim sup
τ→0

∫ T

0

〈−wτ , û
′
τ 〉 = − lim inf

τ→0
τ

N∑

i=1

〈wi, δui〉 = − lim inf
τ→0

N∑

i=1

〈wi, ui − ui−1〉

≤ − lim inf
τ→0

N∑

i=1

(
ψ(ui) − ψ(ui−1)

)
= ψ(u0) − lim inf

τ→0
ψ(ûτ (T ))

≤ ψ(u0) − ψ(u(T )) = −

∫ T

0

〈w, u′〉.

Finally, we deal with the last term. We split it this way
∫ T

0

〈(kτ ∗τ gτ )τ , û
′
τ 〉 =

∫ T

0

〈(kτ ∗τ gτ )τ − kτ ∗ gτ , û
′
τ 〉 +

∫ T

0

〈kτ ∗ gτ , û
′
τ 〉

and observe that the first integral on the right hand side tends to zero. We have
indeed

∣∣∣∣∣

∫ T

0

〈(kτ ∗τ gτ )τ − kτ ∗ gτ , û
′
τ 〉

∣∣∣∣∣ ≤ cτ‖gτ‖Lp′(0,T ;H∗)‖û
′
τ‖Lp(0,T ;H)

by Proposition 3.3. On the other hand, we can apply Lemma 4.3 with δ = τ , kτ = kτ ,
uτ = ûτ , and gτ = gτ , owing to Proposition 3.5 and to the convergences (4.29)
and (4.33). This yields

lim
τ→0

∫ T

0

〈kτ ∗ gτ , û
′
τ 〉 =

∫ T

0

〈k ∗ g, u′〉.

Therefore, (4.35) is actually true and the whole proof of Theorem 2.1 is complete.
Remark 4.4. As said in Remark 2.2, the existence result given by Theorem 2.1

can be extended to the case k ∈ L∞(0, T ). Here is the outline of the proof. Given
k ∈ L∞(0, T ), we approximate it with a family {kδ}δ∈(0,1) of smooth kernels such that

kδ → k strongly in L1(0, T ) as δ → 0

‖kδ‖L∞(0,T ) ≤ ‖k‖L∞(0,T ) for any δ ∈ (0, 1).



DOUBLY NONLINEAR VOLTERRA EQUATION 17

Then, we consider the problem (Pδ) obtained by replacing k with kδ in (2.5)–(2.7),
namely (with a concise notation for convenience)

ζδ + wδ + kδ ∗ wδ 3 f, ζδ ∈ A(u′δ), wδ ∈ B(uδ), and uδ(0) = u0 (4.40)

and solve it with the procedure we used in the above proof. Thus, we find a solution
(uδ, ζδ , wδ) to (4.40) that is a limit point of solutions to the corresponding discrete
problems. As we stressed in Remark 4.2, the values of the constants c we have found
in the a priori estimates depend on (a bound of) the L∞ norm of the kernel (here kδ)
rather than on the BV norm of it. Therefore, such a priori estimates are uniform
with respect to δ. Moreover, they are conserved in the limit as τ → 0, i.e., they
hold for (uδ, ζδ , wδ) as well, and we can find convergences analogous to (4.29)–(4.33)
for (uδ, ζδ , wδ) to some (u, ζ, w) (for a subsequence). Clearly, the regularity condi-
tions (2.12), equation (2.5), and the Cauchy condition (2.7) are satisfied. Moreover,
we have w ∈ B(u) since

lim
δ→0

∫ T

0

〈wδ , uδ〉 = lim
δ→0

∫ T

0

〈wδ − f̃2, uδ〉 + lim
δ→0

∫ T

0

〈f̃2, uδ〉

=

∫ T

0

〈w − f̃2, u〉 +

∫ T

0

〈f̃2, u〉 =

∫ T

0

〈w, u〉

as before. Finally, we have ζ ∈ A(u′), as we sketch. We use [8, Lemma 1.3, p. 42]
once more as follows. We have

ζδ = f̃1 − wδ + f̃2 + kδ ∗ (f̃2 − wδ) and ζ = f̃2 − w + f̃2 + k ∗ (f̃2 − w)

and we test such equations by u′δ and by u′, respectively, and integrate over (0, T ).
Then, we compare the corresponding terms, separately. The first one clearly converges
to the desired limit. For the second term we have

lim sup
δ→0

∫ T

0

〈−wδ, u
′
δ〉 = − lim inf

δ→0
ψ(uδ(T )) + ψ(u0)

≤ −ψ(u(T )) + ψ(u0) =

∫ T

0

〈−w, u′〉.

The next integral is easily treated with an integration by parts, namely

lim
δ→0

∫ T

0

〈f̃2, u
′
δ〉 = lim

δ→0
〈f̃2(T ), uδ(T )〉 − 〈f̃2(0), u0〉 − lim

δ→0

∫ T

0

〈f̃
′

2, uδ〉

= 〈f̃2(T ), u(T )〉 − 〈f̃2(0), u0〉 −

∫ T

0

〈f̃
′

2, u〉 =

∫ T

0

〈f̃2, u
′〉

since {uδ(t)} converges to u(t) weakly in V for every t ∈ [0, T ]. Finally, Lemma 4.3
applied with gδ := f̃2 − wδ yields

lim
δ→0

∫ T

0

〈kδ ∗ (f̃2 − wδ), u
′
δ〉 =

∫ T

0

〈k ∗ (f̃2 − w), u′〉.

Therefore, we can conclude that

lim sup
δ→0

∫ T

0

〈ζδ , u
′
δ〉 ≤

∫ T

0

〈ζ, u′〉

and derive that ζ ∈ A(u′).
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5. Proof of Theorem 2.3. As in the previous proof, we first make a proper
choice of the datum of the discrete problem and then start estimating. As f is smooth
(see (2.18)), we behave as we did before for f2, i.e., we define f τ = (fi) ∈ (V ∗)N+1 by

fi := f(iτ) for i = 0, . . . , N. (5.1)

Hence, we have bounds and convergences similar to those of Remark 4.1. We shall
use just the following ones

‖f̂
′

τ ‖L2(0,T ;V ∗) = τ
N∑

i=1

‖δfi‖
2
∗ ≤ ‖f ′‖2

L2(0,T ;V ∗) (5.2)

f̃τ → f̃ strongly in C0([0, T ];V ∗). (5.3)

Moreover, taking the compatibility condition contained in (2.18) into account, we set
w0 := B(u0) and recall that

ζ0 := f0 − w0 ∈ D(ϕ∗). (5.4)

As u0 = u0 and (kτ ∗τ w
τ )0 = 0, we have

ζi + wi + (kτ ∗τ w
τ )i = fi and wi ∈ B(ui) for i = 0, . . . , N (5.5)

ζ0 ∈ D(ϕ∗) and ζi ∈ A(δui) for i = 1, . . . , N. (5.6)

¿From (5.5), we derive that

δζi + δwi + δ(kτ ∗τ w
τ )i = δfi for i = 1, . . . , N (5.7)

and we test it by ui − ui−1. Then, we sum over 1 ≤ i ≤ n for an arbitrary n ≤ N .
Hence, we have

n∑

i=1

〈δζi, ui − ui−1〉 +

n∑

i=1

〈δwi, ui − ui−1〉

=
n∑

i=1

〈δfi, ui − ui−1〉 −
n∑

i=1

〈δ(kτ ∗τ w
τ )i, ui − ui−1〉 (5.8)

and we now estimate each term of (5.8), separately. As far as the symbols c and cσ

for constants are concerned, we still follow the general notation explained at the end
of Sect. 3. In the sequel, σ is a positive parameter, whose value will be chosen later.

In view of (2.14) and of the relation between A and ϕ∗, we have δui ∈ ∂ϕ∗(ζi).
Moreover, we recall (2.20) (see Remark 2.4). Hence, we have

n∑

i=1

〈δζi, ui − ui−1〉 =

n∑

i=1

〈ζi − ζi−1, δui〉

≥

n∑

i=1

(
ϕ∗(ζi) − ϕ∗(ζi−1)

)
= ϕ∗(ζn) − ϕ∗(ζ0) ≥ α|ζn|

2
∗ − c. (5.9)

Next, owing to the strong monotonicity assumption (2.17), we have

n∑

i=1

〈δwi, ui − ui−1〉 =
1

τ

n∑

i=1

〈wi − wi−1, ui − ui−1〉

≥
α

τ

n∑

i=1

‖ui − ui−1‖
2 = ατ

n∑

i=1

‖δui‖
2. (5.10)
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Concerning the first term on the right hand side, we take (5.2) into account and have

n∑

i=1

〈δfi, ui − ui−1〉 = τ

n∑

i=1

〈δfi, δui〉

≤ στ
n∑

i=1

‖δui‖
2 + cστ

n∑

i=1

‖δfi‖
2
∗ ≤ στ

n∑

i=1

‖δui‖
2 + cσ . (5.11)

Finally, we treat the convolution term using the discrete derivative formula (3.5)
this way

−

n∑

i=1

〈δ(kτ ∗τ w
τ )i, ui − ui−1〉 = −τ

n∑

i=1

〈k0wi + (δkτ ∗τ w
τ )i, δui〉

≤ στ
n∑

i=1

‖δui‖
2 + cστ

n∑

i=1

‖wi‖
2
∗ + cστ

n∑

i=1

‖(δkτ ∗τ w
τ )i‖

2
∗. (5.12)

Now, the discrete Young theorem (see Proposition 3.2) gives

τ

n∑

i=1

‖(δkτ ∗τ w
τ )i‖

2
∗ = ‖(δkτ ∗τ wτ )τ‖

2
L2(0,nτ ;V ∗)

≤ ‖(δkτ )τ‖
2
L1(0,T )‖wτ‖

2
L2(0,nτ ;V ∗) =

n∑

i=1

|ki − ki−1| · τ

n∑

i=1

‖wi‖
2
∗ ≤ cτ

n∑

i=1

‖wi‖
2
∗.

On the other hand, it is clear that wi = w0 + τ
∑i

j=1 δwj . Hence, using the Lipschitz
continuity assumption (2.16), we easily obtain

‖wi‖
2
∗ ≤ 2‖w0‖

2
∗ + 2

(
τ

i∑

j=1

‖δwj‖∗

)2

≤ 2‖w0‖
2
∗ + 2nτ2

i∑

j=1

‖δwj‖
2
∗ ≤ c+ cτ

i∑

j=1

‖δuj‖
2.

Therefore, we estimate the sum of such contributions as follows

τ
n∑

i=1

‖wi‖
2
∗ ≤ c+ cτ2

n∑

i=1

i∑

j=1

‖δuj‖
2 = c+ cτ2

n∑

j=1

‖δuj‖
2 + cτ

n−1∑

i=1

τ
i∑

j=1

‖δuj‖
2

and (5.12) becomes

−

n∑

i=1

〈δ(kτ ∗τ w
τ )i, ui − ui−1〉

≤ στ

n∑

i=1

‖δui‖
2 + cσ + cστ

2
n∑

j=1

‖δuj‖
2 + cστ

n−1∑

i=1

τ

i∑

j=1

‖δuj‖
2. (5.13)

At this point, we collect (5.8)–(5.11) and (5.13). Next, we choose first σ and then τ0
small enough and conclude that

|ζn|
2
∗ + τ

n∑

i=1

‖δui‖
2 ≤ c+ cτ

n−1∑

i=1

τ

i∑

j=1

‖δuj‖
2 provided that τ ≤ τ0.
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Finally, we apply the discrete Gronwall lemma (see (3.23)) and obtain the desired
estimate

|ζn|
2
∗ + τ

n∑

i=1

‖δui‖
2 ≤ c for n = 1, . . . , N. (5.14)

We easily derive further estimates from (5.14). We proceed as follows. Taking
firstly the Lipschitz continuity assumption (2.16) into account and then applying the
derivative formula and the discrete Young theorem once more, we infer that

τ

N∑

i=1

‖δwi‖
2
∗ + τ

N∑

i=1

‖δ(kτ ∗τ w
τ )i‖

2
∗ ≤ c. (5.15)

Next, owing now to (5.2) for the forcing term of equation (5.7), we conclude by
comparison that

τ

N∑

i=1

‖δζi‖
2
∗ ≤ c. (5.16)

Now, as in the previous section, we read the above estimates in terms of the
interpolants and find weakly, weakly star, and strongly convergent subsequences. In
fact, (5.14)–(5.16) mean

‖ζτ‖L∞(0,T ;H∗) = ‖ζ̂τ‖L∞(0,T ;H∗) ≤ c, ‖û′τ‖L2(0,T ;V ) ≤ c,

‖ŵ′
τ‖L2(0,T ;V ∗) ≤ c, and ‖ζ̂

′

τ ‖L2(0,T ;V ∗) ≤ c

whence we immediately deduce

‖uτ‖L∞(0,T ;V ) = ‖ûτ‖L∞(0,T ;V ) ≤ c and ‖wτ‖L∞(0,T ;V ∗) = ‖ŵτ‖L∞(0,T ;V ∗) ≤ c.

Hence, owing to the compactness results already used and to (3.3), we have

ûτ → u weakly in H1(0, T ;V ) and strongly in C0([0, T ];H) (5.17)

uτ → u weakly star in L∞(0, T ;V ) and strongly in L∞(0, T ;H) (5.18)

ζ̂τ → ζ weakly in H1(0, T ;V ∗) and strongly in C0([0, T ];V ∗) (5.19)

ζτ → ζ weakly star in L∞(0, T ;H∗) and strongly in L∞(0, T ;V ∗) (5.20)

ŵτ → w weakly in H1(0, T ;V ∗) (5.21)

wτ → w weakly star in L∞(0, T ;V ∗). (5.22)

Moreover, the discrete scheme reads

ζτ + wτ + (kτ ∗τ wτ )τ = fτ , ζτ ∈ A(û′τ ), and wτ ∈ B(uτ ) (5.23)

so that the above convergences and Proposition 3.3 imply that equation (2.5) and the
Cauchy condition (2.7) are satisfied. Thus, it remains to identify the limits of the
nonlinear terms, i.e., to check relations (2.6). The weak convergence (5.17) and the
strong convergence (5.20) immediately imply that

lim
τ→0

∫ T

0

〈ζτ , û
′
τ 〉 =

∫ T

0

〈ζ, u′〉.
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As ζτ ∈ A(û′τ ) for every τ , we deduce that ζ ∈ A(u′) by [8, Lemma 1.3, p. 42]. In
order to prove that w ∈ B(u), we use the transformed equations

ζτ + wτ = f̃τ + (ρτ ∗τ ζτ )τ and ζ + w = f̃ + ρ ∗ ζ

and observe that (5.20), Proposition 3.5, and Corollary 3.4 imply that

(wτ − f̃τ ) → (w − f̃) weakly in L2(0, T ;H∗).

Therefore, using (5.3), and both convergences (5.18), we obtain

lim
τ→0

∫ T

0

〈wτ , uτ 〉 = lim
τ→0

∫ T

0

〈wτ − f̃τ , uτ 〉 + lim
τ→0

∫ T

0

〈f̃τ , uτ 〉

=

∫ T

0

〈w − f̃ , u〉 +

∫ T

0

〈f̃ , u〉 =

∫ T

0

〈w, u〉

and conclude that w ∈ B(u) as well. This completes the proof.
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non linéaires, J. Functional Analysis, 11 (1972), 77–92.

[20] V.-M. Hokkanen, An implicit nonlinear time dependent equation has a solution, J. Math.
Anal. Appl., 161 (1991), 1:117–141.

[21] , Existence for nonlinear time dependent Volterra equations in Hilbert spaces, An. Ştiinţ.
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