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Abstract

A system coupling the heat equation for temperature and the Cahn-Hilliard equation
for the conserved order parameter is studied. The phase dynamic is possibly singular due
to irregular potentials. A well-posedness result is proved for a boundary value problem
involving dynamic boundary conditions for the order parameter.

Sunto

Si considera un sistema di tipo “campo di fase conservativo” nel quale l’equazione del
calore per la temperatura è accoppiata all’equazione di Cahn-Hilliard per il parametro
d’ordine. In quest’ultima si consentono potenziali irregolari. Si dimostra un risultato di
buona positura per un problema ai limiti in cui intervengono condizioni di tipo dinamico
per il parametro d’ordine.
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1 Introduction

In the last decades, several models for two phase systems have been introduced and the literature
contains a number of results. In particular, when phase separation is considered, the Cahn-
Hilliard equation (see [2]) plays a central role and a system like

∂tϑ + λ′(χ) ∂tχ + div q = f (1.1)
∂tχ−∆w = 0 (1.2)
w = −∆χ + W′(χ)− λ′(χ) ϑ (1.3)
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is accepted as a good model. In such equations, ϑ, q, f , χ, λ′(χ), and w denote the temperature,
the heat flux, a source term, the order parameter, the latent heat density (which is generally
allowed to depend on χ), and the chemical potential, respectively, and it is understood that
(1.1)–(1.3) hold in a domain Ω ⊂ R3 and in a given time interval (0, T ). Moreover, W is a double
well potential. Finally, some constants have been normalized to 1, since we are interested in
the mathematical aspects of the system. A typical choice of W is the following

W(r) = (r2 − 1)2 for r ∈ R (1.4)

whose wells are located at r = ±1, and the most part of the literature regards such a potential
or, more generally, everywhere defined smooth potentials. However, the so-called logarithmic
potential, namely

W(r) =
∫ r

0

(
−2cs + ln

1 + s

1− s

)
ds for |r| < 1 (1.5)

is thermodynamically relevant. Note that it actually provides a double well if c > 1. More
generally, one can consider potentials containing constraints on the order parameter, and an
example is the following

W = indicator function of [−1, 1] + smooth function. (1.6)

Note that (1.6) can be seen as a generalized double well potential if its smooth part is concave.

As far as the boundary conditions on Γ := ∂Ω are concerned, there is some freedom in
choosing some of them (namely, those for ϑ and χ that have to be coupled to (1.1) and (1.3)),
while the homogenous Neumann boundary condition ∂nw = 0 is essentially mandatory for (1.2),
since it implies conservation for the total mass of χ. If such a boundary condition holds,
an integration of (1.2) over Ω and the divergence theorem yield indeed

∂t

∫
Ω

χ =
∫

Ω

∂tχ = 0, whence
∫

Ω

χ(t) =
∫

Ω

χ0 for every t ∈ [0, T ]. (1.7)

For that reason, one speaks of a conserved model. Nevertheless, in most works, the Neumann
boundary is considered for χ as well. On the other hand, physicists have recently proposed to
endow (1.3) with the so-called dynamic boundary conditions, namely

∂tχ + (∂nχ)|Γ −∆Γχ + W′
Γ(χ) = fΓ (1.8)

where ∂n is the outer normal derivative and ∆Γ is the Laplace-Beltrami operator. Furthermore,
WΓ is a given boundary potential and fΓ is a forcing term. However, one can consider a
boundary condition like

∂tχ + (∂nχ)|Γ + κΓ(χ− χΓ) = 0 (1.9)

as well, where κΓ is a positive constant and χΓ is a given function on the boundary. This is a
dynamic version of the Robin boundary condition and can be seen as a particular case of (1.8)
if one forgets the Laplace-Beltrami operator there.

Problems involving the Cahn-Hilliard equations endowed with the dynamic boundary con-
dition (1.8) have been studied just in the last years, and generally by taking the choice (1.4)
or assuming a big regularity for the double well potential (see [3], [8], [10], [12], [14]). More-
over, a phase field system of type (1.11)–(1.13) with a smooth W and the dynamic boundary
condition (1.8) is studied in [11]. Very recently, well-posedness results are proved in [5] for the
Cahn-Hilliard equations with constant temperature and dynamic boundary conditions, without
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assuming the potentials to be smooth. We will widely refer to [5], and quote it here for a list
of references on the whole subject.

In [5], the only assumption on W is that it can be written as the sum of a convex, proper,
lower semicontinuous function and a smoother perturbation, essentially (important further
assumptions are compatibility conditions on the structure of (1.8) with respect to W, indeed).
In particular, both potentials (1.5) and (1.6) are included. Furthermore, both (1.8) and (1.9) are
allowed as possible boundary conditions and even the so-called viscous Cahn-Hilliard equation
(obtained by adding ∂tχ to the right-hand side of (1.13), see, e.g., [6] and [9]) is considered.

In this paper, we study the corresponding non-isothermal case. In order to avoid any further
complication, we assume the simplest Fourier law for the heat flux and a Robin boundary
conditions for temperature, namely

q = −∇ϑ and q · n = κ(ϑ− ϑΓ) (1.10)

where n is the outward normal unit vector on Γ and the positive constant κ and the function
ϑΓ are prescribed. Therefore, the system we are interested in is the following

∂t

(
ϑ + λ(χ)

)
−∆ϑ = f in Ω (1.11)

∂tχ−∆w = 0 in Ω (1.12)
w = τ ∂tχ−∆χ + β(χ) + π(χ)− λ′(χ)ϑ in Ω (1.13)
∂nϑ + κ(ϑ− ϑΓ) = 0 and ∂nw = 0 on Γ (1.14)
∂tχ + (∂nχ)|Γ − ν∆Γχ + βΓ(χ) + πΓ(χ) = fΓ on Γ (1.15)
ϑ(0) = ϑ0 and χ(0) = χ0 in Ω. (1.16)

Such a system is related to the former as follows. As in [5], we have split W′ and W′
Γ as

W′ = β + π and W′
Γ = βΓ + πΓ, respectively, where β and βΓ are monotone, possibly non-

smooth and even multi-valued, while π and πΓ are Lipschitz continuous perturbations, and we
are interested in keeping β and βΓ as general as possible (especially β). We note that, if β and
βΓ actually are multi-valued, equations (1.12)–(1.13) have to be read as differential inclusions.
Furthermore, τ and ν are nonnegative parameters. Thus, we obtain the viscous Cahn-Hilliard
equations if τ > 0. On the other hand, the choice ν = 0 corresponds to forget the Laplace-
Beltrami operator in the dynamic boundary condition (1.15). Hence, (1.9) is included as a
particular case. Finally, the initial data ϑ0 and χ0 are given.

The present paper deals with well-posedness for the above problem. We can show uniqueness
in a very general framework and global existence under further assumptions on the nonlinear-
ities. We still allow β and βΓ to be essentially arbitrary, but we assume some compatibility
between them as in [5]. Roughly speaking, we suppose that βΓ(r) does not grow faster than
β(r) as r approaches the boundary of the domain of β (or for large |r| if β is everywhere defined)
and that βΓ dominates the boundary contributions of (1.15) given by πΓ and fΓ.

2 Main results

In this section, we precisely state the problem we are going to deal with and the results we
prove in the subsequent sections. The notation given in the Introduction is still kept as far as
Ω, Γ, ∂n, and T are concerned. More precisely, we assume Ω ⊂ R3 (but the cases Ω ⊂ Rd with
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1 ≤ d ≤ 3 could be considered as well), to be bounded, connected, and smooth, and write |Ω|
for its Lebesgue measure. Similarly, |Γ| denotes the 2-dimensional measure of Γ. We set for
convenience

Qt := Ω× (0, t) and Σt := Γ× (0, t) for every t ∈ (0, T ] (2.1)
Q := QT , and Σ := ΣT . (2.2)

The main features of the structure of our system are described below and further assumptions
will be made later on. We are given functions λ, β̂ , β̂Γ, π, πΓ and constants τ , ν, κ satisfying
the conditions listed below

λ : R → R is of class C2 and λ′ is Lipschitz continuous (2.3)
β̂ , β̂Γ : R → [0,+∞] are convex, proper, and l.s.c. and β̂(0) = β̂Γ(0) = 0 (2.4)
π, πΓ : R → R are Lipschitz continuous (2.5)
τ, ν ≥ 0 and κ > 0. (2.6)

We define the maximal monotone graphs β and βΓ in R× R by

β := ∂β̂ and βΓ := ∂β̂Γ (2.7)

and note that β(0) 3 0 and βΓ(0) 3 0. Furthermore, we observe that both β and βΓ might
have effective domains D(β) and D(βΓ), respectively. In the sequel, for any maximal monotone
graph γ : R → 2R, we use the notation (see, e.g., [1, p. 28])

γ◦(r) is the element of γ(r) having minimum modulus (2.8)
γY

ε is the Yosida regularization of γ at level ε, for ε > 0 (2.9)

and still employ the symbol γ (and, e.g., γY
ε as a particular case) for the maximal monotone

operator induced by γ on any L2-space. Next, we set

V := H1(Ω), H := L2(Ω), HΓ := L2(Γ)
VΓ := H1(Γ) if ν > 0 and VΓ := H1/2(Γ) if ν = 0
V := {v ∈ V : v|Γ ∈ VΓ} (2.10)

the latter being endowed with the graph norm. Note that V = V if ν = 0. Throughout
the whole paper, Hk(Ω) and Hk(Γ) denote the usual Sobolev spaces with real index (see [7,
Chapt. 1] for the general theory and for the notation used here) and the symbols ‖ · ‖k,Ω and
‖ · ‖k,Γ stand for their norms (the standard ones if k is a nonnegative integer). In particular,
‖ · ‖1,Ω, ‖ · ‖0,Ω, and ‖ · ‖0,Γ are the norms in V , H, and HΓ, respectively. On the contrary, we
write ‖ · ‖VΓ for the norm in VΓ since the definition of such a space depends on ν. For the sake
of simplicity, the same notation will be used for both a space and any power of it. We recall
the optimal trace theorem for V , namely, the inequality

‖v|Γ‖1/2,Γ ≤ MΩ‖v‖1,Ω for every v ∈ V (2.11)

where MΩ depends on Ω, only. Finally, the symbol 〈 · , · 〉 stands for the duality pairing between
V ∗ and V . In the sequel, it is understood that H is embedded in V ∗ in the usual way, i.e., in
order that 〈u, v〉 = (u, v), the inner product of H, for every u ∈ H and v ∈ V .

At this point, we can describe our problem, which consists in the variational formulation
of system (1.11)–(1.16), obtained by testing the equations and formally integrating by parts.
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However, as β and βΓ might be multi-valued, we have to consider selections ξ and ξΓ of β(χ)
and of βΓ(χ), in addition. Moreover, we have to give our assumptions on the data. Inspired
by the concrete case of the Introduction and starting from given (suitably smooth) functions f
and ϑΓ, we construct a V ∗-valued function F by the formula

〈F (t), v〉 :=
∫

Ω

f(t) v + κ

∫
Ω

ϑΓ(t) v for a.a. t ∈ (0, T ) and v ∈ V . (2.12)

However, we can consider a more general F and, just to start, we require that

F ∈ L2(0, T ;V ∗), fΓ ∈ L2(0, T ;HΓ), ϑ0 ∈ H, and χ0 ∈ V (2.13)

but we note that the first of (2.13) holds for F defined by (2.12) whenever f ∈ L2(0, T ;H) and
ϑΓ ∈ L2(0, T ;HΓ). At this point, we are ready to state the problem we are going to deal with.
We look for a quintuplet (ϑ, χ,w, ξ, ξΓ) such that

ϑ ∈ L2(0, T ;V ) ∩H1(0, T ;V ∗) (2.14)
χ ∈ L2(0, T ;V ) ∩H1(0, T ;V ∗) (2.15)
∂tλ(χ) ∈ L2(0, T ;V ∗) and τ ∂tχ ∈ L2(0, T ;H) (2.16)
χ|Γ ∈ L2(0, T ;VΓ) ∩H1(0, T ;HΓ) (2.17)
w ∈ L2(0, T ;V ) (2.18)
ξ ∈ L2(0, T ;H) and ξ ∈ β(χ) a.e. in Q (2.19)
ξΓ ∈ L2(0, T ;HΓ) and ξΓ ∈ βΓ(χ|Γ) a.e. on Σ (2.20)
ϑ(0) = ϑ0 and χ(0) = χ0 (2.21)

and satisfying for a.a. t ∈ (0, T )

〈∂t

(
ϑ(t) + λ(χ(t))

)
, v〉+

∫
Ω

∇ϑ(t) · ∇v + κ

∫
Ω

ϑ(t) v = 〈F (t), v〉 (2.22)

〈∂tχ(t), v〉+
∫

Ω

∇w(t) · ∇v = 0 (2.23)∫
Ω

w(t)v =
∫

Ω

τ ∂tχ(t) v +
∫

Γ

∂tχ(t) v +
∫

Ω

∇χ(t) · ∇v +
∫

Γ

ν∇Γχ(t) · ∇Γv

+
∫

Ω

(
ξ(t) + π(χ(t))− λ′(χ(t))ϑ(t)

)
v +

∫
Γ

(
ξΓ(t) + πΓ(χ(t))− fΓ(t)

)
v (2.24)

for every v ∈ V , every v ∈ V , and every v ∈ V, respectively. We note that the term of (2.24)
that invoves λ′ is meaningful. Indeed, all the factors of the product belong to L6(Ω) thanks to
the Sobolev embedding V ⊂ L6(Ω) and to the Lipschitz continuity of λ′ (see (2.3)).

Remark 2.1. Note that, by testing (2.23) by the constant 1/|Ω|, we obtain

∂t(χ(t)Ω) = 0 for a.a. t ∈ (0, T ) and χ(t)Ω = (χ0)Ω for every t ∈ [0, T ] (2.25)

where, more generally, we set

v∗Ω :=
1
|Ω|

〈v∗, 1〉 for v∗ ∈ V ∗. (2.26)

Clearly, (2.26) gives the usual mean value when applied to elements of H.
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Now we recall definitions (2.2) and (2.10) and state our results. The simplest one regards
uniqueness, since no further assumptions on the structure and on the data are needed.

Theorem 2.2. Assume (2.3)–(2.7) and (2.13). Then, any two solutions to problem (2.22)–
(2.24) satisfying the regularity requirements (2.14)–(2.20) and the Cauchy condition (2.21) have
the same first and second components.

Remark 2.3. If β is single-valued, the component ξ is uniquely determined as well. Then, a
comparison in (2.24) with v ∈ H1

0 (Ω) shows that the same happens for the component w. Hence,
by writing (2.24) once more with such an information, we see that even the component ξΓ is
uniquely determined and we have a full uniqueness result. On the contrary, if β is multi-valued,
uniqueness for all the components might fail, and an example in such a direction is given in [5] for
the case of a constant temperature. Thus, the above result is essentially optimal. Furthermore,
we remark that a continuous dependence result holds as well. Namely, with a self-explaining
notation and setting Θi(t) =

∫ t

0
ϑi(s) ds, we have

‖ϑ1 − ϑ2‖2
L2(0,T ;H) + ‖Θ1 −Θ2‖2

L∞(0,T ;V )

+ ‖χ1 − χ2‖2
L∞(0,T ;V ∗)∩L2(0,T ;V) + τ‖χ1 − χ2‖2

L∞(0,T ;H)

≤ c
{
‖ϑ0,1 − ϑ0,2‖2

0,Ω + ‖χ0,1 − χ0,2‖2
∗ + τ‖χ0,1 − χ0,2‖2

0,Ω + ‖χ0,1 − χ0,2‖2
0,Γ

+ ‖F1 − F2‖2
L2(0,T ;V ∗) + ‖fΓ,1 − fΓ,2‖2

L2(0,T ;HΓ)

}
(2.27)

provided that χ0,1 and χ0,2 have the same mean value and that ϑi belong to a fixed ball B of the
space L∞(0, T ;H) for i = 1, 2. Inequality (2.27) can be proved by touching up our uniqueness
proof of Section 3 and the constant c depends on the prescribed ball B. However, we point out
that an estimate of the L∞(0, T ;H)-norm of the component ϑ of the solution can be obtained
in terms of suitable norms of the data if the assumption of our existence result we are going to
state are fulfilled, as the argument of the forthcoming Section 5 clearly shows. Hence, in such a
case, the value of c in (2.27) actually depends on an upper bound for some norms of the data.

Existence is ensured just under further assumptions. We recall that our aim is to keep
the maximal monotone operators as general as we can, mainly, and we are able do that under
suitable conditions (see the forthcoming Remark 2.4 for comments). As far as the data are
concerned, we assume that

F ∈ L2(0, T ;H) + H1(0, T ;V ∗) and fΓ ∈ H1(0, T ;HΓ) ∩ L∞(Σ) (2.28)
ϑ0 ∈ V, χ0 ∈ H2(Ω), ∂nχ0 = 0, and ν χ0|Γ ∈ H2(Γ) (2.29)
β̂(χ0) ∈ L1(Ω), β̂(χ0|Γ) ∈ L1(Γ), and β̂Γ(χ0|Γ) ∈ L1(Γ) (2.30)
the mean value of χ0 belongs to the interior of D(β). (2.31)

Moreover, we assume that (see (2.8)–(2.9) for the notation)

β◦(χ0) ∈ H and β◦Γ(χ0|Γ) ∈ HΓ (2.32)
−∆χ0 + βY

ε (χ0)− λ′(χ0) ϑ0 remains bounded in V as ε → 0+ if τ = 0. (2.33)

As far as the structure of the system is concerned, we need some compatibility condition on
the main nonlinearitis and on the perturbation πΓ on the boundary. Namely, we assume that

D(βΓ) ⊇ D(β) and βΓ(0) = {0} (2.34)
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and that real constants α, CΓ, σ, LΓ, MΓ, and r± exist such that

α > 0, CΓ ≥ 0, σ ∈ (0, 1), LΓ > sup |π′Γ|
and MΓ > |πΓ(0)|+ ‖fΓ‖L∞(Γ) (2.35)

r− ≤ 0 ≤ r+ , and r± belong to the interior of D(β) (2.36)
|β◦(r)| ≥ α|β◦Γ(r)| − CΓ for every r ∈ D(β) (2.37)
σ|β◦Γ(r)| ≥ LΓ|r|+ MΓ for every r ∈ D(βΓ) \ (r−, r+). (2.38)

Remark 2.4. We comment some of the above assumptions a little. The first of (2.28) holds
if F is defined by (2.12) provided that f ∈ L2(0, T ;H) and ϑΓ ∈ H1(0, T ;HΓ). In such a case,
formula (2.12) itself suggests how to split F as in (2.28). Assumptions (2.30) and (2.32) are
not independent. The latter implies the first and third of the former, indeed, and we have
written all of them just for convenience. If χ0 ∈ H3(Ω), then (2.33) essentially requires β to be
rather smooth on the range of χ0. For instance, if β comes from the logarithmic potential (1.5)
(or from the singular potential (1.6)), this simply means that sup |χ0| < 1. Assumption (2.37)
is the main compatibility condition and its meaning is rather clear. However, we note that
it is satisfied whenever D(β) is bounded and its clusure is contained in the interior of D(βΓ),
in particular if β is singular like in (1.5) and βΓ is not. As far as (2.38) is concerned, let us
just say that it is satisfied in the following two significant cases. The first one corresponds to
D(β) = D(βΓ) = R and to a βΓ that is stricly superlinear at infinity. In the second one, we
think of a bounded D(β), say D(β) = (−1, 1) as in the case of the logaritmic potential (1.5),
and of a βΓ everywhere defined. Then, (2.38) essentially requires that the nonlinear boundary
term has a decomposition βΓ + πΓ such that |βΓ(r)| is large enough for |r| close to 1. This is
satisfied, in particular, if the dynamic boundary condition has the form (1.9) with sup |χΓ| < 1.

Even though a different existence theorem could be proved as in [5] by requiring just growth
conditions on β and βΓ, we confined ourselves to state the following result.

Theorem 2.5. Assume that (2.3)–(2.7) and (2.28)–(2.38) are fulfilled. Then, there exists a
quintuplet (ϑ, χ,w, ξ, ξΓ) satisfying (2.14)–(2.21) and solving problem (2.22)–(2.24).

Remark 2.6. Actually, the solution we construct in our proof is smoother than required in
(2.14)–(2.20) (see the forthcoming Remark 5.1).

We recall some facts at once (see (2.26) for the notation regarding mean values). First of
all, the Poincaré type inequalities

‖v‖2
1,Ω ≤ MΩ(‖∇v‖2

0,Ω + |vΩ|2) and ‖v‖2
1,Ω ≤ MΩ(‖∇v‖2

0,Ω + ‖v‖2
0,Γ) (2.39)

hold true for every v ∈ V and for some constant MΩ depending on Ω, only. Next, we define the
operator N : dom N ⊂ V ∗ → V and the norm ‖ · ‖∗ on V ∗ as follows. We set

dom N := {v∗ ∈ V ∗ : v∗Ω = 0} (2.40)

and, for v∗ ∈ dom N, we term Nv∗ the unique element of V that satisfies

Nv∗ ∈ V, (Nv∗)Ω = 0, and
∫

Ω

∇Nv∗ · ∇z = 〈v∗, z〉 for every z ∈ V . (2.41)

Moreover, for v∗ ∈ V ∗, we set

‖v∗‖2
∗ := ‖∇N(v∗ − v∗Ω)‖2

0,Ω + |v∗Ω|2. (2.42)
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Then, the identities

〈v∗,Nv∗〉 = ‖v∗‖2
∗ for every v∗ ∈ dom N (2.43)

2〈∂tv
∗,Nv∗〉 =

d

dt
‖v∗‖2

∗ a.e. in (0, T ) for every v∗ ∈ H1(0, T ; dom N) (2.44)

hold true as well as the inequalities

1
MΩ

‖v∗‖V ∗ ≤ ‖v∗‖∗ ≤ MΩ‖v∗‖V ∗ for v∗ ∈ V ∗ (2.45)

where MΩ depends on Ω, only. Moreover, we point out the easy inequalities

ab ≤ δa2 + cδ b2 (2.46)

‖v(t)‖2
0,Ω ≤ ‖v(0)‖2

0,Ω + δ

∫ t

0

‖∂tv(s)‖2
∗ ds + cδ

∫ t

0

‖v(s)‖2
1,Ω ds (2.47)

‖v(t)‖2
0,Γ ≤ ‖v(0)‖2

0,Γ + δ

∫ t

0

‖∂tv(s)‖2
0,Γ ds + cδ

∫ t

0

‖v(s)‖2
0,Γ ds (2.48)

‖v‖2
L4(Ω) ≤ δ‖∇v‖2

0,Ω + cδ‖v‖2
∗ (2.49)

which hold for every a, b ≥ 0, every v ∈ L2(0, T ;V ) ∩ H1(0, T ;V ∗), every v ∈ H1(0, T ;HΓ),
and every v ∈ V , respectively. Moreover, t varies a.e. in (0, T ) in (2.47)–(2.48) and δ > 0 is
arbitrary in all of them, while cδ depends on δ in (2.46) and even on Ω in (2.47)–(2.49).

By the way, in the sequel, we avoid specifying the precise values of the constants and use
the general symbol cδ for a situation like the latter. More generally, throughout the paper, the
symbol c stands for different constants which depend only on Ω, on the final time T , and on
the constants and the norms of the functions involved in the assumptions of our statements,
and a notation like cδ allows the constant to depend on δ, in addition. The values of c and cδ

might change from line to line and even in the same chain of inequalities. We notice that δ will
always denote a positive parameter whose value is choosen when it is convenient to do it.

3 Uniqueness

In this section, we prove Theorem 2.2. We take two solutions, label their components with sub-
scripts 1 and 2, set ϑ := ϑ1−ϑ2, and introduce an analogous notation for the other components
for convenience. Moreover, we set Θ(t) =

∫ t

0
ϑ(s) ds for t ∈ [0, T ]. Therefore, if we write (2.22)

for both solutions, take the difference, and integrate with respect to time, we obtain∫
Ω

ϑ(t) v +
∫

Ω

∇Θ(t) · ∇v + κ

∫
Γ

Θ(t) v = −
∫

Ω

(
λ(χ1(t))− λ(χ2(t))

)
v (3.1)

for every t ∈ [0, T ] and every v ∈ V . At this point, we test (3.1) by ϑ = ∂tΘ. At the same time,
we write (2.23) and (2.24) for both solutions and test the differences by Nχ and −χ, respectively,
by observing that χ has zero mean value thanks to (2.25) applied to both solutions. Finally,
we add the obtained equalities to each other, integrate over (0, t) where t ∈ (0, T ] is arbitrary,
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and rearrange a little. Then, we have∫
Qt

|ϑ|2 +
1
2

∫
Ω

|∇Θ(t)|2 +
κ

2

∫
Γ

|Θ(t)|2

+
∫ t

0

〈∂tχ(s),Nχ(s)〉 ds +
∫

Qt

∇w · ∇Nχ−
∫

Qt

wχ

+
τ

2

∫
Ω

|χ(t)|2 +
1
2

∫
Γ

|χ(t)|2 +
∫

Qt

|∇χ|2 + ν

∫
Σt

|∇Γχ|2 +
∫

Qt

ξχ +
∫

Σt

ξΓχ

=
∫

Qt

(
π(χ2)− π(χ1)

)
χ +

∫
Σt

(
πΓ(χ2)− πΓ(χ1)

)
χ

+
∫

Qt

{(
λ′(χ1) ϑ1 − λ′(χ2) ϑ2

)
χ−

(
λ(χ1)− λ(χ2)

)
ϑ
}

. (3.2)

Now, we use (2.44) for the fourth term on the left-hand side and cancel the subsequent two
integrals accounting for (2.41). Moreover, we observe that the last two integrals on the left-hand
side are nonnegative since β and βΓ are monotone. Furthermore, we rewrite the integrand of
the last term of (3.2) by using the Taylor formula this way(

λ′(χ1) ϑ1 − λ′(χ2) ϑ2

)
χ−

(
λ(χ1)− λ(χ2)

)
ϑ

= ϑ1

{
λ(χ2)− λ(χ1)− λ′(χ1)(χ2 − χ1)

}
+ ϑ2

{
λ(χ1)− λ(χ2)− λ′(χ2)(χ1 − χ2)

}
= ϑ1

λ′′(ζ1)
2

|χ|2 + ϑ2
λ′′(ζ2)

2
|χ|2

for some functions ζ1, ζ2 between χ1 and χ2. On the other hand, λ′′ is bounded (cf. (2.3))
and (2.14) applied to both solutions yields ϑ1, ϑ2 ∈ L∞(0, T ;H). Hence, by owing to the
Hölder inequality as well, we deduce that∫

Qt

{(
λ′(χ1) ϑ1 − λ′(χ2) ϑ2

)
χ−

(
λ(χ1)− λ(χ2)

)
ϑ
}

≤ c

∫
Qt

(
|ϑ1|+ |ϑ2|

)
|χ|2 ≤ c

∫ t

0

(
‖ϑ1(s)‖0,Ω + ‖ϑ2(s)‖0,Ω

)
‖χ(s)‖2

L4(Ω) ds

≤ c

∫ t

0

‖χ(s)‖2
L4(Ω) ds.

Here and in the subsequent inequalities, the value of c also depends on the solutions we have
picked at the beginning, of course. Therefore, if we also account for the Lipschitz continuity of
π and πΓ (see (2.5)) and forget some nonnegative terms on the left-hand side of (3.2), we obtain∫

Qt

|ϑ|2 +
1
2
‖χ(t)‖2

∗ +
1
2
‖χ(t)‖2

0,Γ +
∫

Qt

|∇χ|2 + ν

∫
Σt

|∇Γχ|2

≤ c

∫
Qt

|χ|2 + c

∫
Σt

|χ|2 + c

∫ t

0

‖χ(s)‖2
L4(Ω) ds ≤ c

∫ t

0

‖χ(s)‖2
L4(Ω) ds + c

∫
Σt

|χ|2.

Furthermore, we use (2.49) and get∫ t

0

‖χ(s)‖2
L4(Ω) ds ≤ δ

∫
Qt

|∇χ|2 + cδ

∫ t

0

‖χ(s)‖2
∗ ds.

At this point, it suffices to choose δ small enough and apply the Gronwall lemma to obtain
ϑ = 0 and χ = 0, that is, ϑ1 = ϑ2 and χ1 = χ2, and the proof is complete.
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4 Approximating problems

We approximate problem (2.22)–(2.24) by a smoother one, which depends on the parameter
ε ∈ (0, 1) and is obtained by smoothing the worst nonlinearities β and βΓ. Moreover, it is more
convenient to have a viscous Cahn-Hilliard equations in the approximation and to modify λ as
well. As far as the latter is concerned, we introduce a family {λε} satisfying

λε is a Lipschitz C2-function and |λε(0)|+ |λ′ε(0)|+ sup
r∈R

|λ′′ε (r)| ≤ Cλ (4.1)

for every ε ∈ (0, 1) and some constant Cλ and converging to λ in the following sense

λε(r) → λ(r) and λ′ε(r) → λ′(r) as ε → 0, for every r ∈ R. (4.2)

Moreover, following [5], we define the real number τε and the functions βε, βΓ,ε : R → R by
the formulas

τε := max{τ, ε} (4.3)
βε(r) := βY

ε (r) for r ∈ R (4.4)
βΓ,ε(r) := βY

Γ,αε(r − εCΓ) if r ≤ −εCΓ

:= βY
Γ,αε(r + εCΓ) if r ≥ εCΓ

:=
r

εCΓ
βY

Γ,αε(−2εCΓ) if −εCΓ < r < 0

:=
r

εCΓ
βY

Γ,αε(2εCΓ) if 0 ≤ r < εCΓ (4.5)

where α and CΓ are the same as in (2.37) and notation (2.9) for Yosida regularizations is used.
Furthermore, we define for convenience β̂ε, β̂Γ,ε : R → R by the formulas

β̂ε(r) :=
∫ r

0

βε(s) ds and β̂Γ,ε(r) :=
∫ r

0

βΓ,ε(s) ds for r ∈ R. (4.6)

As the Yosida regularization of a maximal monotone operator is monotone and Lipschitz con-
tinous, such a property holds for both βε and βΓ,ε. Moreover, such functions vanish at 0. It
follows that β̂ε and β̂Γ,ε are nonnegative convex functions with a quadratic growth.

Then, the approximating problem consists in finding a triplet (ϑε, χε, wε) satisfing the reg-
ularity properties and the Cauchy conditions given below

ϑε ∈ L2(0, T ;V ) ∩H1(0, T ;H) (4.7)
χε ∈ L∞(0, T ;V ) ∩H1(0, T ;H) (4.8)
χε|Γ ∈ L∞(0, T ;VΓ) ∩H1(0, T ;HΓ) (4.9)
wε ∈ L2(0, T ;V ) (4.10)
ϑε(0) = ϑ0 and χε(0) = χ0 (4.11)
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and solving, for a.a. t ∈ (0, T ), the variational equations∫
Ω

∂t

(
ϑε(t) + λε(χε(t))

)
v +

∫
Ω

∇ϑε(t) · ∇v + κ

∫
Ω

ϑε(t) v = 〈F (t) v〉 (4.12)∫
Ω

∂tχε(t) v +
∫

Ω

∇wε(t) · ∇v = 0 (4.13)∫
Ω

wε(t) v = τε

∫
Ω

∂tχε(t) v +
∫

Γ

∂tχε(t) v +
∫

Ω

∇χε(t) · ∇v + ν

∫
Γ

∇Γχε(t) · ∇Γv

+
∫

Ω

(
βε(χε(t)) + π(χε(t))− λ′ε(χε) ϑε

)
v

+
∫

Γ

(
βΓ,ε(χε(t)) + πΓ(χε(t))− fΓ(t)

)
v (4.14)

for every v ∈ V , every v ∈ V , and every v ∈ V, respectively.

The first step regards well-posedness for the above problem. More generally, there holds the
result stated below which does not require that the operators involved in the problem are exactly
the previous ones. Here, uniqueness is not stressed. However, the same proof of Theorem 2.2
works in the present case.

Theorem 4.1. In addition to the assumptions of Theorem 2.5, suppose that λε, βε, and βΓ,ε

are Lipschitz continuous and that τε > 0. Then, there exists a triplet (ϑε, χε, wε) satisfying
(4.7)–(4.11) and solving (4.12)–(4.14).

Proof. We just give a sketch. Following [5], we use a Galerkin scheme and solve a discrete prob-
lem. We consider the eigenvalue problems for the Laplace operator with homogeneous Robin
boundary conditions and homogeneous Neumann boundary conditions, respectively. More pre-
cisely, we look for µ′, µ′′ ∈ R and η, e ∈ V \ {0} such that∫

Ω

∇η · ∇v + κ

∫
Γ

ηv = µ′
∫

Ω

ηv and
∫

Ω

∇e · ∇v = µ′′
∫

Ω

ev for every v ∈ V .

We label (µ′i, ηi) and (µ′′i , ei) the pairs of eigenvalues and eigenfunctions of the above problems,
where i runs over the positive integers, being understood that the sequences of the eigenvalues
are nondecreasing and that the sequences of the eigenfunctions are orthonormal anc complete
in H. Then, we set

V ′
n := span{ηi : i = 1, . . . , n} and V ′′

n := span{ei : i = 1, . . . , n} for every n ≥ 1

and look for a triplet (ϑn
ε , χn

ε , wn
ε ) satisfying

ϑn
ε ∈ H1(0, T ;V ′

n), χn
ε ∈ H1(0, T ;V ′′

n ), and wn
ε ∈ L2(0, T ;V ′′

n )
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and solving, for every t ∈ [0, T ], the following variational equations∫
Ω

∂t

(
ϑn

ε (t) + λε(χn
ε (t))

)
v +

∫
Ω

∇ϑn
ε (t) · ∇v + κ

∫
Ω

ϑn
ε (t) v = 〈F (t) v〉 (4.15)∫

Ω

∂tχ
n
ε (t) v +

∫
Ω

∇wn
ε (t) · ∇v = 0 (4.16)∫

Ω

wn
ε (t) v = τε

∫
Ω

∂tχ
n
ε (t) v +

∫
Γ

∂tχ
n
ε (t) v +

∫
Ω

∇χn
ε (t) · ∇v + ν

∫
Γ

∇Γχn
ε (t) · ∇Γv

+
∫

Ω

(
βε(χn

ε (t)) + π(χn
ε (t))− λ′ε(χ

n
ε ) ϑn

ε

)
v

+
∫

Γ

(
βΓ,ε(χn

ε (t)) + πΓ(χn
ε (t))− fΓ(t)

)
v (4.17)

for every v ∈ V ′
n, every v ∈ V ′′

n , and every v ∈ V ′′
n , respectively, and suitable Cauchy conditions.

Namely, as initial values ϑn
0 and χn

0 for ϑn
ε and χn

ε , we can take the L2-projections of ϑ0 and
χ0 on V ′

n and on V ′′
n , respectively. We obtain a Cauchy problem for a system of ordinary

differential equations and the main trouble comes from the part of it that is related to the
second and third of the above variational equations. Hence, the situation is essentially similar
to the one discussed in [5, Sect. 4] with full detail and a well-posedness result can be established.

The next step consists in a priori estimates that allow us to apply well-known compactness
results and to let n tend to infinity. In performing them, some bounds and convergence for the
initial values are needed. Namely, we have

‖ϑn
0‖1,Ω + ‖χn

0‖1,Ω ≤ c, ϑn
0 → ϑ0 strongly in V , and χn

0 → χ0 strongly in V (4.18)

whenever conditions (2.29) hold. Indeed, the latter is proved in [5, Lemma 4.4] and the former
can be easily checked by a similar argument. The first a priori estimate is obtained by testing
equations (4.15)–(4.17) by ϑn

ε , N∂tχ
n
ε , and −∂tχ

n
ε , respectively, taking the sum, and integrating

over (0, t). As the terms involving λε cancel, we obtain

‖ϑn
ε ‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖χn

ε ‖L∞(0,T ;V )∩H1(0,T ;H) + ‖χn
ε |Γ‖L∞(0,T ;VΓ)∩H1(0,T ;HΓ) ≤ cε (4.19)

by simply proceeding as in the analogous estimate of [5, Sect. 4]. Next, we derive a bound for
∂tϑ

n
ε in L2(0, T ;H). For the sake of simplicity, we split F as F1 + F2 with F1 ∈ L2(0, T ;H)

and F2 ∈ H1(0, T ;V ∗) at once and allow the value of cε to depend on both F1 and F2 rather
than on their sum F . We test (4.15) by ∂tϑ

n
ε and integrate over (0, t). We obtain∫

Qt

|∂tϑ
n
ε |2 +

1
2

∫
Ω

|∇ϑn
ε (t)|2 +

κ

2

∫
Γ

|ϑn
ε (t)|2

=
∫ t

0

〈F1(s) + F2(s)− λ′ε(χ
n
ε (s)) ∂tχ

n
ε (s), ∂tϑ

n
ε (s)〉 ds +

1
2

∫
Ω

|∇ϑn
0 |2 +

κ

2

∫
Γ

|ϑn
0 |2.

The terms involving F1 and λε can be dealt with in a trivial way and those concerning the initial
values are bounded by (4.18). Regarding the F2-term, by owing to (4.18) as well, we have∫ t

0

〈F2(s), ∂tϑ
n
ε (s)〉 ds = 〈F2(t), ϑn

ε (t)〉 − 〈F2(0), ϑn
ε (0)〉 −

∫ t

0

〈F ′
2(s), ϑ

n
ε (s)〉 ds

≤ δ‖ϑn
ε (t)‖2

1,Ω +
∫ t

0

‖ϑn
ε (s)‖2

1,Ω ds + cδ .
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Hence, the F2-term can be controlled by the Gronwall lemma for small δ in view of the second
of (2.39). We conclude that

‖∂tϑ
n
ε ‖L2(0,T ;H) + ‖ϑn

ε ‖L∞(0,T ;V ) ≤ cε . (4.20)

At this point, we get a limit triplet (ϑε, χε, wε) (for a subsequence) by using standard com-
pactness results and there is no difficulty in proving that (ϑε, χε, wε) solves the approximating
problem (4.12)–(4.14). Indeed, we have strong compactness in L2(Q) for both ϑn

ε and χn
ε and

all the nonlinearities are Lipschitz continuous.

Remark 4.2. We point out some facts. First of all, if we let λε, βε, βΓ,ε, π, πΓ, and the data
F , fΓ, ϑ0, χ0 vary in some families (depending on some parameter ε′ in addition) such that the
assumptions of Theorem 4.1 are fulfilled and the inequalities

|λε(0)|+ sup |λ′ε|+ sup |λ′′ε |+ supβ′ε + supβ′Γ,ε

+ |π(0)|+ sup |π′|+ |πΓ(0)|+ sup |π′Γ|
+ ‖ϑ0‖0,Ω + ‖χ0‖2,Ω + ‖F‖L2(0,T ;H)+H1(0,T ;V ∗) + ‖fΓ‖L2(0,T ;HΓ) ≤ M = Mε (4.21)

are satisfied for some constant M and all the functions and the data of such families, then the
corresponding solutions (ϑε, χε, wε) satisfy

‖ϑε‖L2(0,T ;V )∩H1(0,T ;V ∗) + ‖χε‖L∞(0,T ;V )∩H1(0,T ;H)

+ ‖χε‖L∞(0,T ;VΓ)∩H1(0,T ;HΓ) + ‖wε‖L2(0,T ;V ) ≤ M ′ = M ′
ε (4.22)

where the constant M ′ depends on ε and M , only. In particular, if we fix ε but perturb
the functions λε, π, πΓ, the approximating monotone functions βε and βΓ,ε given by (4.4)
and (4.5), and the data by replacing them with smoother functions and data, depending on ε′,
and a bound like (4.21) holds uniformly with respect to ε′, then the corresponding solutions
satisfy the analogue of (4.22) uniformly with respect to ε′. Furthermore, it is clear that we
actually can perturb both the structure and the data and obtain a much smoother problem,
depending on the parameter ε′ in addition, whose structure and data satisfy an estimate like
(4.21) uniformly with respect to ε′. On the other hand, the solution to the perturbed problem
is smoother. So, whenever one would like to use some procedure that is not permitted just
because of a lack of smoothness of (ϑε, χε, wε), one can think of working first on the doubly
approximating problem. Once the correponding a priori estimate is performed, one lets ε′

tend to 0 and obtains the desired estimate on the solution (ϑε, χε, wε). Indeed, (4.22) implies
strong L2-compactness for ϑε, χε, and χε|Γ with respect to ε′ for fixed ε, whence no trouble
arises in taking the limit in the nonlinearities. Therefore, just the correct further regularity
corresponding to some more smoothness for both structure and data should be checked here,
and this could be done acting on the discrete solution. The latter is automatically smooth in
such a case, indeed. However, we just discuss a technical point regarding the regularity

ϑε ∈ L∞(0, T ;V ) ∩H1(0, T ;H), ∂tχε ∈ L∞(0, T ;V ) ∩H1(0, T ;H),
and ∂tχε|Γ ∈ L∞(0, T ;VΓ) ∩H1(0, T ;HΓ) (4.23)

which actually holds without further assumptions on the data. Such a regularity is formally
obtained by differentiating equations (4.13)–(4.14) and then suitably testing the obtained equal-
ities. Therefore, we have to check that all the derivatives we need actually exist at least for
the further regularized problem. To this aim, we work on the discrete solution and behave
exaclty as in [5]. We differentiate equations (4.16) and (4.17) and test the equalities we get
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by N∂2
t
χn

ε and −∂2
t
χn

ε , repectively. Finally, we take the sum, integrate over (0, t), and add the
same integrals to both sides for convenience. We obtain∫ t

0

‖∂2
t
χn

ε (s)‖2
∗ ds + τε

∫
Qt

|∂2
t
χn

ε |2 +
∫

Σt

|∂2
t
χn

ε |2

+
1
2
‖∂tχ

n
ε (t)‖2

1,Ω +
ν

2

∫
Γ

|∇Γ∂tχ
n
ε (t)|2 +

ν

2

∫
Γ

|∂tχ
n
ε (t)|2

= −1
2

∫
Qt

(βε + π)′(χn
ε ) ∂t

(
|∂tχ

n
ε |2

)
− 1

2

∫
Σt

(βΓ,ε + πΓ)′(χn
ε ) ∂t

(
|∂tχ

n
ε |2

)
+

∫
Qt

λ′ε(χ
n
ε ) ∂tϑ

n
ε ∂2

t
χn

ε +
∫

Qt

λ′′ε (χε) ∂tχ
n
ε ϑn

ε ∂2
t
χn

ε

+
∫

Σt

∂tfΓ ∂2
t
χn

ε +
1
2

∫
Ω

|∇∂tχ
n
ε (0)|2 +

ν

2

∫
Γ

|∇Γ∂tχ
n
ε (0)|2

+
1
2

∫
Ω

|∂tχ
n
ε (t)|2 +

ν

2

∫
Γ

|∂tχ
n
ε (t)|2. (4.24)

Hence, the only significant difference with respect to [5, formula (4.47)] are the terms involv-
ing λε. So, we deal with such terms, only. The first one is treated in a trivial way by owing
to (4.20). As far as the second one is concerned, by using the Hölder inequality, the continuous
embedding V ⊂ L4(Ω), and (4.20) once more, we have∫

Qt

λ′′ε (χε) ∂tχ
n
ε ϑn

ε ∂2
t
χn

ε ≤ δ

∫
Qt

|∂2
t
χn

ε |2 + cδcε

∫
Qt

|∂tχ
n
ε |2 |ϑn

ε |2

≤ δ

∫
Qt

|∂2
t
χn

ε |2 + cδcε

∫ t

0

‖ϑn
ε (s)‖2

L4(Ω) ‖∂tχ
n
ε (s)‖2

L4(Ω) ds

≤ δ

∫
Qt

|∂2
t
χn

ε |2 + cδcε

∫ t

0

‖ϑn
ε (s)‖2

1,Ω ‖∂tχ
n
ε (s)‖2

1,Ω ds

≤ δ

∫
Qt

|∂2
t
χn

ε |2 + cδcε

∫ t

0

‖∂tχ
n
ε (s)‖2

1,Ω ds

so that we can control the above term by the Gronwall lemma for small δ.

Remark 4.3. We conclude this section by remarking that

∂t(χε(t)Ω) = 0 for a.a. t ∈ (0, T ) and χε(t)Ω = (χ0)Ω for every t ∈ [0, T ] (4.25)

as for problem (2.22)–(2.24).

5 Existence

In this section, we prove Theorem 2.5 and the starting point is a solution (ϑε, χε, wε) to the
approximating problem (4.11)–(4.14). Our method relies on a priori estimates and compactness
arguments. As far as the former are concerned, by accounting for Remark 4.2, we proceed
formally in the sequel, e.g., by differentiating the equations and using some non-admissible test
functions. However, before starting estimating, we collect some auxiliary material without any
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proof. We quote, e.g., [1] for the classical theory and [5, Sect. 5] for the specific results related
to the problem we are dealing with.

By recalling (2.8)–(2.9), we note that the Yosida regularization γε of every maximal mono-
tone operator γ : R → 2R is monotone and Lipschitz continuous with constant 1/ε. Moreover,
we have γε(0) = 0 whenever γ(0) 3 0 and the inequality |γε(r)| ≤ |γ◦(r)| holds true for every
r ∈ D(γ) and ε > 0. As far as our case is concerned, we have

|βε(r)| ≤ |β◦(r)| and |βΓ,ε(r)| ≤ |β◦Γ(r)|+ 2CΓ

α

|β̂ε(r)| ≤ |β̂(r)| and |β̂Γ,ε(r)| ≤ |β̂Γ(r)|+ 2CΓ

α
|r| (5.1)

for r ∈ D(β) or r ∈ D(βΓ), accordingly. Moreover, the following inequalities hold

|βε(r)| ≥ α|βΓ,ε(r)| − 2CΓ for every r ∈ R. (5.2)
σ|βΓ,ε(r)| ≥ (sup |π′Γ|) |r|+ |πΓ(0)|+ ‖fΓ‖L∞(Γ) (5.3)
βε(r) (r −m0) ≥ δ0|βε(r)| − c and βΓ,ε(r) (r −m0) ≥ δ0|βΓ,ε(r)| − c. (5.4)

Precisely, (5.2) and (5.4) hold for every r ∈ R, the latter with a suitable δ0 > 0 and the notation
m0 := (χ0)Ω, while (5.3) is true for every r ∈ R \ (r∗−, r∗+) and ε small enough, for suitable
r∗± ∈ D(β). Finally, we have

‖∂tχε(0)‖2
∗ + τε‖∂tχε(0)‖2

0,Ω + ‖∂tχε(0)‖2
0,Γ ≤ c. (5.5)

At this point, we can start estimating.

First a priori estimate. We test (4.12) by ϑε. At the same time, we test (4.13) by N∂tχε

and (4.14) by −∂tχε, noting that ∂tχε has zero mean value by (4.25). Then, the terms involving
λε and wε cancel, the former obviously, the latter by (2.41). Hence, by integrating over (0, t),
owing to (2.43), and adding the same quantity for convenience, we obtain

1
2

∫
Ω

|ϑε(t)|2 +
∫

Qt

|∇ϑε|2 + κ

∫
Σt

|ϑε|2

+
∫ t

0

‖∂tχε(s)‖2
∗ ds + τε

∫
Qt

|∂tχε|2 +
∫

Σt

|∂tχε|2

+
1
2

∫
Ω

|∇χε(t)|2 +
ν

2

∫
Γ

|∇Γχε(t)|2 +
∫

Ω

β̂ε(χε(t)) +
∫

Γ

β̂Γ,ε(χε(t))

+ ‖χε(t)‖2
0,Ω + ‖χε(t)‖2

0,Γ

=
∫ t

0

〈F (s), ϑε(s)〉 ds−
∫

Ω

π̂(χε(t))−
∫

Γ

π̂Γ(χε(t)) +
∫

Σt

fΓ ∂tχε

+
1
2

∫
Ω

|ϑ0|2 +
1
2

∫
Ω

|∇χ0|2 +
ν

2

∫
Γ

|∇Γχ0|2

+
∫

Ω

β̂ε(χ0) +
∫

Γ

β̂Γ,ε(χ0) +
∫

Ω

π̂(χ0) +
∫

Γ

π̂Γ(χ0)

+ ‖χε(t)‖2
0,Ω + ‖χε(t)‖2

0,Γ (5.6)

where we have set (see also (4.6))

π̂(r) :=
∫ r

0

π(s) ds and π̂Γ(r) :=
∫ r

0

πΓ(s) ds for r ∈ R. (5.7)
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We treat the first term on the right-hand side this way∫ t

0

〈F (s), ϑε(s)〉 ds ≤ δ

∫ t

0

‖ϑε(s)‖2
1,Ω ds + cδ

∫ t

0

‖F (s)‖2
∗ ds

and notice that the first of such contributions can be controlled by the left-hand side of (5.6)
for small δ due to the second of (2.39). Next, the integral containing fΓ can be estimated in a
trivial way and no trouble arises from all the terms involving the initial values but those related
to β̂ε and β̂Γ,ε. However, for such terms, we can apply (5.1) and (2.30) and derive that∫

Ω

β̂ε(χ0) +
∫

Γ

β̂Γ,ε(χ0) ≤
∫

Ω

β̂(χ0) +
∫

Γ

(
β̂Γ(χ0) + (2CΓ/α)|χ0|

)
= c.

Finally, as the functions π̂ and π̂Γ have at most a quadratic growth since π and πΓ are Lipschitz
continuous by (2.5), we just need to estimate the two last norms of (5.6). To this aim, we apply
(2.47)–(2.48) and have

‖χε(t)‖2
0,Ω + ‖χε(t)‖2

0,Γ

≤ ‖χ0‖2
0,Ω + δ

∫ t

0

‖∂tχε(s)‖2
∗ ds + cδ

∫ t

0

‖χε(s)‖2
1,Ω ds

+ ‖χ0‖2
0,Γ + δ

∫ t

0

‖∂tχε(s)‖2
0,Γ ds + cδ

∫ t

0

‖χε(s)‖2
0,Γ ds.

At this point, we can easily conclude that

‖ϑε‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖χε‖L∞(0,T ;V )∩H1(0,T ;V ∗) + ‖χε‖L∞(0,T ;VΓ)∩H1(0,T ;HΓ)

+ τ1/2
ε ‖∂tχε‖L2(0,T ;H) + ‖β̂ε(χε)‖L∞(0,T ;L1(Ω)) + ‖β̂Γ,ε(χε)‖L∞(0,T ;L1(Γ)) ≤ c (5.8)

just by choosing δ small enough and applying the Gronwall lemma.

Second a priori estimate. We want both to estimate ∂tϑε in L2(0, T ;H) and to im-
prove (5.8). To this aim, we split F as F1 + F2 with F1 ∈ L2(0, T ;H) and F2 ∈ H1(0, T ;V ∗)
(and let the values of c below to depend on such a decomposition, for simplicity). Next, we test
(2.22) by ∂tϑε. At the same time, we differentiate equations (4.13) and (4.14) with respect to
time and test the equalities we obtain by N∂tχε and −∂tχε, respectively. Finally, we integrate
over (0, t) and take the sum. As before, we use the properties of N. We get∫

Qt

|∂tϑε|2 +
1
2

∫
Ω

|∇ϑε(t)|2 +
κ

2

∫
Γ

|ϑε(t)|2

+
1
2
‖∂tχε(t)‖2

∗ +
τε

2

∫
Ω

|∂tχε(t)|2 +
1
2

∫
Γ

|∂tχε(t)|2

+
∫

Qt

|∂t∇χε|2 + ν

∫
Σt

|∂t∇Γχε|2 +
∫

Qt

β′ε(χε) |∂tχε|2 +
∫

Σt

β′Γ,ε(χε) |∂tχε|2

=
∫

Qt

(
F1 − λ′ε(χε) ∂tχε

)
∂tϑε +

∫ t

0

〈F2(s), ∂tϑε(s)〉 ds +
1
2

∫
Ω

|∇ϑ0|2 +
κ

2

∫
Γ

|ϑ0|2

+
1
2
‖∂tχε(0)‖2

∗ +
τε

2

∫
Ω

|∂tχε(0)|2 +
1
2

∫
Γ

|∂tχε(0)|2

−
∫

Qt

π′(χε(t)) |∂tχε|2 −
∫

Σt

π′Γ(χε(t)) |∂tχε|2

+
∫

Qt

(
λ′′ε (χε) ∂tχε ϑε + λ′ε(χε) ∂tϑε

)
∂tχε +

∫
Σt

∂tfΓ ∂tχε . (5.9)
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All the terms on the left-hand side are nonnegative. More precisely, the left-hand side controls
‖ϑε(t)‖2

1,Ω thanks to the second of (2.39). As far as those on right-hand side are concerned, we
note that the terms involving λ′ε(χε) cancel. Moreover, the integral related to F1 can be dealt
with in a trivial way. Next, an integration by parts yields∫ t

0

〈F2(s), ∂tϑε(s)〉 ds = 〈F2(t), ϑε(t)〉 − 〈F2(0), ϑ0〉 −
∫ t

0

〈∂tF2(s), ϑε(s)〉 ds

≤ δ‖ϑε(t)‖2
1,Ω + cδ‖F2(t)‖2

∗ + c +
∫ t

0

‖ϑε(s)‖2
1,Ω ds.

The terms related to the initial values are estimated by (5.5) and the integrals involving π, πΓ,
and fΓ are estimated by (5.8) since π′ and π′Γ are bounded and ∂tfΓ ∈ L2(0, T ;H). Finally, we
deal with the only non-trivial term. We owe to (4.1) and to the Hölder inequality and use the
continuous embedding V ⊂ L4(Ω) and inequality (2.49). Moreover, we take (5.8) into account
and term C1 the value of its right-hand side. Then, we have∫

Qt

λ′′ε (χε) |∂tχε|2 ϑε ≤ Cλ

∫ t

0

‖∂tχε(s)‖2
L4(Ω)‖ϑε(s)‖L2(Ω) ds

≤ CλC1

∫ t

0

‖∂tχε(s)‖2
L4(Ω) ds ≤ CλC1

∫ t

0

(
δ‖∂t∇χε(s)‖2

0,Ω + cδ‖∂tχε(s)‖2
∗

)
ds

≤ δCλC1

∫
Qt

|∂t∇χε|2 + cδCλC3
1 = δCλC1

∫
Qt

|∂t∇χε|2 + cδ .

Therefore, we conclude that

‖∂tϑε‖L2(0,T ;H) + ‖ϑε‖L∞(0,T ;V ) + ‖∂tχε‖L∞(0,T ;V ∗)∩L2(0,T ;V )

+ ‖∂tχε‖L∞(0,T ;HΓ)∩L2(0,T ;VΓ) + τ1/2
ε ‖∂tχε‖L∞(0,T ;H) ≤ c (5.10)

by choosing δ small enough and applying the Gronwall lemma.

Consequences. We observe that (4.1) implies that |λε(r)| ≤ c(1+r2) for all r ∈ R. Therefore,
by owing to the Hölder inequality and to the continuous embedding V ⊂ L6(Ω), we have

‖λε(χε)‖L∞(0,T ;L3(Ω)) ≤ c
(
1 + ‖χε‖2

L∞(0,T ;L6(Ω))

)
≤ c

(
1 + ‖χε‖2

L∞(0,T ;V )

)
≤ c (5.11)

thanks to (5.8). By using (5.10) as well, we can prove that

‖∂tλε(χε)‖L2(0,T ;L3(Ω)) ≤ c and ‖λ′ε(χε)ϑε‖L∞(0,T ;L3(Ω)) ≤ c (5.12)

since ∂tλε(χε) = λ′ε(χε) ∂tχε and |λ′ε(r)| ≤ c(1 + |r|) for all r ∈ R.

Further estimates. At this point, no significant changes have to be made to the argument of
[5, Sect. 5] in order to obtain the estimates that are needed to conclude. Indeed, in the quoted
paper, the appoximating problem differs from ours just in two points. Namely, equation (4.12)
does not appear and there is a given function f in place of λ′ε(χε) ϑε in equation (4.14). On
the other hand, just the assumption f ∈ L∞(0, T ;H) is necessary from now on, and estimate
(5.12) has already been established. Furthermore, all the assumptions that are used in [5] to
solve the technical issues are listed in our Theorem 2.5 as well. Therefore, we can conclude that

‖ξε‖L2(0,T ;H) + ‖ξΓ,ε‖L2(0,T ;HΓ) + ‖wε‖L∞(0,T ;V ) ≤ c (5.13)
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just by arguing exactly as in [5].

Conclusion. By collecting all the above estimates, we can easily infer existence for problem
(2.22)–(2.24). Even though the argument is very similar to the one of [5], we prefer to proceed
with some detail. By using standard compactness results, we see that limit functions exist such
that the following convergence

ϑε → ϑ weakly star in L∞(0, T ;V ) ∩H1(0, T ;H) (5.14)
χε → χ weakly star in H1(0, T ;V ) ∩W 1,∞(0, T ;V ∗) (5.15)

∂tλε(χε) → ζ weakly in L2(0, T ;L3(Ω)) (5.16)
χε|Γ → χ|Γ weakly star in H1(0, T ;VΓ) ∩W 1,∞(0, T ;HΓ) (5.17)

τε∂tχε → τ∂tχ weakly star in L∞(0, T ;H) (5.18)
wε → w weakly star in L∞(0, T ;V ) (5.19)

βε(χε) → ξ weakly in L2(0, T ;H) (5.20)
βΓ,ε(χε|Γ) → ξΓ weakly in L2(0, T ;HΓ) (5.21)

holds at least for a subsequence, and now we prove that (ϑ, χ,w, ξ, ξΓ) is a solution to our prob-
lem. First of all, the regularity requirements contained in (2.14)–(2.20) are fulfilled. Moreover,
as the embedding V ⊂ H and VΓ ⊂ HΓ are compact, we can apply [13, Sect. 8, Cor. 4] and
derive the strong convergence

ϑε → ϑ and χε → χ in C0([0, T ];H) and χε|Γ → χ|Γ in C0([0, T ];HΓ) (5.22)

and the corresponding convergence almost everywhere. In particular, the initial conditions
(2.21) are fulfilled as well. Furthermore, we deduce that π(χε) and πΓ(χε|Γ) converge to π(χ)
and to πΓ(χ|Γ) strongly in C0([0, T ];H) and in C0([0, T ];HΓ), respectively, just by Lipschitz
continuity, and that λε(χε) and λ′ε(χε) ϑε converge to λ(χ) and to λ′(χ) ϑ, respectively, at least
weakly star in L∞(0, T ;L3(Ω)) if we account for (5.11)–(5.12) as well. In particular, ζ = ∂tλ(χ).
Finally, we have ξ ∈ β(χ) a.e. in Q and ξΓ ∈ βΓ(χ|Γ) a.e. on Σ with the same proof as in [5].
Therefore, we see that (ϑ, χ,w, ξ, ξΓ) satisfies an integrated version of (2.22)–(2.24) which is
equivalent to (2.22)–(2.24) itself. Hence, the proof of Theorem 2.5 is complete.

Remark 5.1. The solution constructed in the above proof is more regular than required in
(2.14)–(2.20), as (5.14)–(5.21) clearly show. Moreover, if the functional F is given by (2.12) with
f ∈ L2(0, T ;H) and ϑΓ ∈ L2(0, T ;HΓ), the solution (ϑ, χ,w, ξ, ξΓ) satisfies all equation and
boundary condition (1.11)–(1.15) (where we have to read ξ and ξΓ in place of β(χ) and βΓ(χ),
respectively), besides the variational formulation (2.22)–(2.24). Namely, all the ingredients of
such equalities are functions (rather than functionals) and the equations and the boundary
conditions hold a.e. in Q and a.e. on Σ, respectively. Let us start from the equation for
temperature. By writing (1.11) in the sense of distributions and accounting for the regularity
implied by (5.16), we derive that ∆ϑ belongs at least to L2(0, T ;H). Hence, we are allowed to
perform integration by parts in space and can conclude that (1.11) and the Robin boundary
condition are satisfied a.e. in Q and a.e. on Σ, respectively. The same we can do for equation
(1.12) and the Neumann boundary condition ∂nw = 0, since we have at least ∂tχ ∈ L2(0, T ;H)
(see (5.15)), whence also ∆w ∈ L2(0, T ;H). Finally, as far as equation (1.13) and the dynamic
boundary condition (1.15) are concerned, we can simply quote [5, Rem. 5.4], where the analogue
is proved for the case of a constant temperature just as consequence of the minimal regularity
requirements and of the variational equations (2.23) and (2.24), where the term λ′(χ)ϑ is
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replaced by a given function. As just the regularity L2(0, T ;H) of the latter is used in that
remark, the result applies to the present case, since λ′(χ) ϑ ∈ L2(0, T ;L3(Ω)), as we have
observed in concluding the above proof.
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Dunod, Paris, 1968.

[8] A. Miranville and S. Zelik, Exponential attractors for the Cahn-Hilliard equation with
dynamic boundary conditions, Math. Methods Appl. Sci. 28 (2005) 709-735.

[9] A. Novick-Cohen, Energy methods for the Cahn-Hilliard equation, Quart. Appl. Math. 46
(1988) 681-690.

[10] J. Prüss, R. Racke, and S. Zheng, Maximal regularity and asymptotic behavior of solutions
for the Cahn-Hilliard equation with dynamic boundary conditions, Ann. Mat. Pura Appl.
(4) 185 (2006) 627-648.

[11] J. Prüss, M. Wilke, Maximal Lp-regularity and long-time behaviour of the non-isothermal
Cahn-Hilliard equation with dynamic boundary conditions. Partial differential equations
and functional analysis, 209-236, Oper. Theory Adv. Appl., 168, Birkhäuser, Basel, 2006.
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