Cahn-Hilliard and Thin film equations with nonlinear mobility as gradient flows in weighted Wasserstein metrics

Giuseppe Savaré
http://www.imati.cnr.it/~savare

Department of Mathematics, University of Pavia, Italy

DIMO2013

Levico Terme, September 11, 2013

Jointly with S. Lisini, D. Matthes, R. McCann
Outline

1 Evolution PDE’s with a gradient flow structure
Outline

1 Evolution PDE’s with a gradient flow structure

2 The dynamical approach to weighted transport distances
Outline

1. Evolution PDE’s with a gradient flow structure

2. The dynamical approach to weighted transport distances

3. Basic tools for metric gradient flows: displacement convexity, variational approximation (JKO and WED schemes), flow interchange.
Outline

1 Evolution PDE’s with a gradient flow structure

2 The dynamical approach to weighted transport distances

3 Basic tools for metric gradient flows: displacement convexity, variational approximation (JKO and WED schemes), flow interchange.
A general class of evolutionary PDE’s

In many applications one is interested in nonnegative integrable solutions to evolution equations of the type

$$\partial_t u - \text{div} \left(m(u) D \frac{\delta \Phi}{\delta u} \right) = 0 \quad \text{in } \Omega \times (0, \infty), \quad \Omega \subset \mathbb{R}^d,$$

with Neumann-variational boundary conditions

$$\mathbf{n} \cdot D u = 0, \quad \mathbf{n} \cdot D \left(m(u) \frac{\delta \Phi}{\delta u} \right) = 0$$

and initial condition \(u_0 \in L^1(\Omega), \ u_0 \geq 0. \)
A general class of evolutionary PDE’s

In many applications one is interested in nonnegative integrable solutions to evolution equations of the type

$$\partial_t u - \text{div} \left(m(u) D \frac{\delta \Phi}{\delta u} \right) = 0 \quad \text{in } \Omega \times (0, \infty), \quad \Omega \subset \mathbb{R}^d,$$

with Neumann-variational boundary conditions

$$n \cdot Du = 0, \quad n \cdot D \left(m(u) \frac{\delta \Phi}{\delta u} \right) = 0$$

and initial condition $$u_0 \in L^1(\Omega), \quad u_0 \geq 0.$$ The equation can be split

$$\begin{cases} \partial_t u + \text{div} w = 0 \\ \text{(Continuity equation)} \end{cases}$$
A general class of evolutionary PDE's

In many applications one is interested in nonnegative integrable solutions to evolution equations of the type

$$\partial_t u - \text{div} \left(m(u) D \frac{\delta \Phi}{\delta u} \right) = 0 \quad \text{in } \Omega \times (0, \infty), \quad \Omega \subset \mathbb{R}^d,$$

with Neumann-variational boundary conditions

$$n \cdot Du = 0, \quad n \cdot D \left(m(u) \frac{\delta \Phi}{\delta u} \right) = 0$$

and initial condition $u_0 \in L^1(\Omega)$, $u_0 \geq 0$. The equation can be split

$$\begin{cases}
\partial_t u + \text{div} w = 0 \\
w = m(u) v = -m(u) D\psi
\end{cases}$$

(Continuity equation)

(Flux structure)

$m : [0, +\infty) \to [0, +\infty)$ is a given mobility function associated to the equation.
A general class of evolutionary PDE’s

In many applications one is interested in nonnegative integrable solutions to evolution equations of the type

\[\partial_t u - \text{div} \left(m(u) D \frac{\delta \Phi}{\delta u} \right) = 0 \quad \text{in } \Omega \times (0, \infty), \quad \Omega \subset \mathbb{R}^d, \]

with Neumann-variational boundary conditions

\[\mathbf{n} \cdot Du = 0, \quad \mathbf{n} \cdot D \left(m(u) \frac{\delta \Phi}{\delta u} \right) = 0 \]

and initial condition \(u_0 \in L^1(\Omega), \ u_0 \geq 0. \)

The equation can be split

\[
\begin{cases}
\partial_t u + \text{div} \ w = 0 & \text{(Continuity equation)} \\
\ w = m(u) \ v = -m(u) \ D\psi & \text{(Flux structure)} \\
\psi = \frac{\delta \Phi}{\delta u} & \text{(Nonlinear variational condition)}
\end{cases}
\]

\(m : [0, +\infty) \rightarrow [0, +\infty) \) is a given mobility function associated to the equation.
Examples: 2nd order equations

Heat equation:

\[\partial_t u = \Delta u \]
Examples: 2nd order equations

Heat equation:

\[\partial_t u = \Delta u = \text{div} \left(u^\alpha D\phi'_\alpha(u) \right), \]
Examples: 2nd order equations

Heat equation:

\[\partial_t u = \Delta u = \text{div} \left(u^\alpha D\phi'_\alpha(u) \right), \]

In this case \(m(u) = u^\alpha \), \(\Phi(u) = \int_{\mathbb{R}^d} \phi_\alpha(u) \, dx = \frac{1}{(2 - \alpha)(1 - \alpha)} \int_{\mathbb{R}^d} u^{2-\alpha} \, dx. \)
Examples: 2nd order equations

Heat equation:

\[\partial_t u = \Delta u = \text{div} \left(u^\alpha D\phi'_\alpha(u) \right), \]

In this case \(m(u) = u^\alpha \), \(\Phi(u) = \int_{\mathbb{R}^d} \phi_\alpha(u) \, dx = \frac{1}{(2 - \alpha)(1 - \alpha)} \int_{\mathbb{R}^d} u^{2-\alpha} \, dx. \)

\[\partial_t u = \Delta u = \text{div} \left(u(1 - u)DF'(u) \right), \]
Examples: 2nd order equations

Heat equation:
\[\partial_t u = \Delta u = \text{div} \left(u^\alpha D\phi'_\alpha(u) \right), \]

In this case \(m(u) = u^\alpha \), \(\Phi(u) = \int_{\mathbb{R}^d} \phi_\alpha(u) \, dx = \frac{1}{(2 - \alpha)(1 - \alpha)} \int_{\mathbb{R}^d} u^{2 - \alpha} \, dx. \)

\[\partial_t u = \Delta u = \text{div} \left(u(1 - u)DF'(u) \right), \]

\(m(u) = u(1 - u), \quad \Phi(u) = \int_{\mathbb{R}^d} F(u) \, dx = \int_{\mathbb{R}^d} \left(u \log u + (1 - u) \log(1 - u) \right) \, dx, \)
Examples: 2nd order equations

Heat equation:
\[
\partial_t u = \Delta u = \text{div} \left(u^\alpha D \phi'_\alpha(u) \right),
\]

In this case \(m(u) = u^\alpha \), \(\Phi(u) = \int_{\mathbb{R}^d} \phi_\alpha(u) \, dx = \frac{1}{(2 - \alpha)(1 - \alpha)} \int_{\mathbb{R}^d} u^{2-\alpha} \, dx \).

\[
\partial_t u = \Delta u = \text{div} \left(u(1 - u) D F'(u) \right),
\]

\(m(u) = u(1 - u) \), \(\Phi(u) = \int_{\mathbb{R}^d} F(u) \, dx = \int_{\mathbb{R}^d} \left(u \log u + (1 - u) \log(1 - u) \right) \, dx \).

Drift-diffusion-interaction (\(m(u) = u \)):
\[
\partial_t u = \Delta u + \text{div}(u D V) + \text{div}(u D W * u) = \text{div} \left(u \, D(\log u + V + W * u) \right),
\]
Examples: 2nd order equations

Heat equation:
\[\partial_t u = \Delta u = \text{div} \left(u^\alpha D\phi'_\alpha(u) \right), \]

In this case
\[m(u) = u^\alpha, \quad \Phi(u) = \int_{\mathbb{R}^d} \phi_\alpha(u) \, dx = \frac{1}{(2 - \alpha)(1 - \alpha)} \int_{\mathbb{R}^d} u^{2-\alpha} \, dx. \]

\[\partial_t u = \Delta u = \text{div} \left(u(1 - u) D F'(u) \right), \]

\[m(u) = u(1 - u), \quad \Phi(u) = \int_{\mathbb{R}^d} F(u) \, dx = \int_{\mathbb{R}^d} \left(u \log u + (1 - u) \log(1 - u) \right) \, dx, \]

Drift-diffusion-interaction \((m(u) = u)\):

\[\partial_t u = \Delta u + \text{div}(uDV) + \text{div}(uDW \ast u) = \text{div} \left(u D(\log u + V + W \ast u) \right), \]

\[\Phi(u) = \int_{\mathbb{R}^d} u \log u \, dx + \int_{\mathbb{R}^d} V \, u \, dx + \int \int_{\mathbb{R}^d \times \mathbb{R}^d} W(x - y)u(x)u(y) \, dx \, dy \]
Examples: 2nd order equations

Heat equation:

\[\partial_t u = \Delta u = \text{div} \left(u^\alpha D\phi'_\alpha(u) \right), \]

In this case \[m(u) = u^\alpha, \quad \Phi(u) = \int_{\mathbb{R}^d} \phi_\alpha(u) \, dx = \frac{1}{(2-\alpha)(1-\alpha)} \int_{\mathbb{R}^d} u^{2-\alpha} \, dx. \]

\[\partial_t u = \Delta u = \text{div} \left(u(1-u) D\Phi'(u) \right), \]

\[m(u) = u(1-u), \quad \Phi(u) = \int_{\mathbb{R}^d} F(u) \, dx = \int_{\mathbb{R}^d} \left(u \log u + (1-u) \log(1-u) \right) \, dx, \]

Drift-diffusion-interaction \((m(u) = u)\):

\[\partial_t u = \Delta u + \text{div}(uD V) + \text{div}(uD W * u) = \text{div} \left(u D(\log u + V + W * u) \right), \]

\[\Phi(u) = \int_{\mathbb{R}^d} u \log u \, dx + \int_{\mathbb{R}^d} V \, u \, dx + \int_{\mathbb{R}^d \times \mathbb{R}^d} W(x - y) u(x) u(y) \, dx \, dy \]

Chemotaxis with overcrowding prevention [Hillen-Painter ’01]:

\[\partial_t u = \text{div} \left(Du + m(u) D(W * u) \right) = \text{div} \left(m(u) D(F'(u) + W * u) \right) \]
Examples: 4th order equations

Thin film (typically $m(u) = u^\alpha$):

$$\partial_t u + \text{div} (m(u) D\Delta u) = 0,$$

$

\Phi(u) := \frac{1}{2} \int \mathbb{R} d|Du|^2,

\Phi(u) := \frac{1}{2\beta} \int \mathbb{R} d|Du|^{2\beta},$

Derrida-Lebowitz-Speer-Spohn '91 [Bleher-Lebowitz-Speer, Jüngel, Pinnau, Matthes, Gianazza-Toscani-S.]

Cahn-Hilliard: ($m(u) = u(1-u)$)

$$\partial_t u + \text{div} (u(1-u) D\Delta u - W'(u)) = 0,$$

$\Phi(u) := \int \mathbb{R} \left(\frac{1}{2} |Du|^2 + W(u) \right) dx.$

[Elliott-Garcke '96]
Examples: 4th order equations

Thin film (typically $m(u) = u^\alpha$):

$$\partial_t u + \text{div} \left(m(u) \nabla \Delta u \right) = 0, \quad \Phi(u) := \frac{1}{2} \int_{\mathbb{R}^d} |\nabla u|^2 \, dx$$
Examples: 4th order equations

Thin film (typically \(m(u) = u^\alpha \)):

\[
\partial_t u + \text{div} \left(m(u) \, D\Delta u \right) = 0, \quad \Phi(u) := \frac{1}{2} \int_{\mathbb{R}^d} |Du|^2 \, dx
\]

[Bernis-Friedman ’90, Bertsch-Dal Passo-Garcke-Gr"un; Becker-Gr"un, Carrillo-Toscani ’02, Carlen-Ulusoy ’07]
Examples: 4th order equations

Thin film (typically $m(u) = u^\alpha$):\[
\partial_t u + \text{div} \left(m(u) \, D\Delta u \right) = 0, \quad \Phi(u) := \frac{1}{2} \int_{\mathbb{R}^d} |Du|^2 \, dx
\]

[Bernis-Friedman ’90, Bertsch-Dal Passo-Garcke-Grün; Becker-Grün, Carrillo-Toscani ’02, Carlen-Ulusoy ’07]

DLSS - Quantum drift-diffusion\[
\partial_t u + \text{div} \left(m(u) \, D(u^{\beta-1} \Delta u^\beta) \right) = 0,
\]
Examples: 4th order equations

Thin film (typically $m(u) = u^\alpha$):

$$\partial_t u + \text{div} \left(m(u) \, D \Delta u \right) = 0, \quad \Phi(u) := \frac{1}{2} \int_{\mathbb{R}^d} |Du|^2 \, dx$$

[Bernis-Friedman '90, Bertsch-Dal Passo-Garcke-Grün; Becker-Grün, Carrillo-Toscani '02, Carlen-Ulusoy '07]

DLSS - Quantum drift-diffusion

$$\partial_t u + \text{div} \left(m(u) \, D \left(u^{\beta-1} \Delta u^\beta \right) \right) = 0, \quad \Phi(u) := \frac{1}{2\beta} \int_{\mathbb{R}^d} |Du^\beta|^2 \, dx$$

[DLSS - Quantum drift-diffusion]
Examples: 4th order equations

Thin film (typically $m(u) = u^\alpha$):

\[
\partial_t u + \text{div} \left(m(u) D \Delta u \right) = 0, \quad \Phi(u) := \frac{1}{2} \int_{\mathbb{R}^d} |Du|^2 \, dx
\]

[Bernis-Friedman '90, Bertsch-Dal Passo-Garcke-Grün; Becker-Grün, Carrillo-Toscani '02, Carlen-Ulusoy '07]

DLSS - Quantum drift-diffusion

\[
\partial_t u + \text{div} \left(m(u) D \left(u^{\beta-1} \Delta u^\beta \right) \right) = 0, \quad \Phi(u) := \frac{1}{2\beta} \int_{\mathbb{R}^d} |Du^\beta|^2 \, dx
\]

Derrida-Lebowitz-Speer-Spohn '91 [Bleher-Lebowitz-Speer, Jüngel, Pinna, Matthes, Gianazza-Toscani-S.]

Examples: 4th order equations

Thin film (typically $m(u) = u^\alpha$):

$$\partial_t u + \text{div} \left(m(u) \, D \Delta u \right) = 0, \quad \Phi(u) := \frac{1}{2} \int_{\mathbb{R}^d} |D u|^2 \, dx$$

[Bernis-Friedman ’90, Bertsch-Dal Passo-Garcke-Grün; Becker-Grün, Carrillo-Toscani ’02, Carlen-Ulusoy ’07]

DLSS - Quantum drift-diffusion

$$\partial_t u + \text{div} \left(m(u) \, D (u^{\beta-1} \Delta u^\beta) \right) = 0, \quad \Phi(u) := \frac{1}{2\beta} \int_{\mathbb{R}^d} |D u^\beta|^2 \, dx$$

Derrida-Lebowitz-Speer-Spohn ’91 [Bleher-Lebowitz-Speer, Jüngel, Pinnaud, Matthes, Gianazza-Toscani-S.]

Cahn-Hilliard: ($m(u) = u(1 - u)$)

$$\partial_t u + \text{div} \left(u(1 - u) \, D (\Delta u - W'(u)) \right) = 0$$
Examples: 4th order equations

Thin film (typically \(m(u) = u^\alpha \)):

\[
\partial_t u + \text{div} \left(m(u) D\Delta u \right) = 0, \quad \Phi(u) := \frac{1}{2} \int_{\mathbb{R}^d} |Du|^2 \, dx
\]

[Bernis-Friedman '90, Bertsch-Dal Passo-Garcke-Grün; Becker-Grün, Carrillo-Toscani '02, Carlen-Ulusoy '07]

DLSS - Quantum drift-diffusion

\[
\partial_t u + \text{div} \left(m(u) D(u^{\beta-1}\Delta u^\beta) \right) = 0, \quad \Phi(u) := \frac{1}{2\beta} \int_{\mathbb{R}^d} |Du^\beta|^2 \, dx
\]

[Derrida-Lebowitz-Speer-Spohn '91 [Bleher-Lebowitz-Speer, Jüngel, Pinnau, Matthes, Gianazza-Toscani-S.]]

Cahn-Hilliard: (\(m(u) = u(1-u) \))

\[
\partial_t u + \text{div} \left(u(1-u) D(\Delta u - W'(u)) \right) = 0 \quad \Phi(u) := \int_{\mathbb{R}^d} \left(\frac{1}{2} |Du|^2 + W(u) \right) \, dx.
\]

[Elliott-Garcke '96]
Examples: 4th order equations

Thin film (typically $m(u) = u^\alpha$):

$$\partial_t u + \text{div} \left(m(u) \Delta u \right) = 0, \quad \Phi(u) := \frac{1}{2} \int_{\mathbb{R}^d} |Du|^2 \, dx$$

[Bernis-Friedman '90, Bertsch-Dal Passo-Garcke-Grün; Becker-Grün, Carrillo-Toscani '02, Carlen-Ulusoy '07]

DLSS - Quantum drift-diffusion

$$\partial_t u + \text{div} \left(m(u) D(u^{\beta-1} \Delta u^\beta) \right) = 0, \quad \Phi(u) := \frac{1}{2\beta} \int_{\mathbb{R}^d} |Du^\beta|^2 \, dx$$

[Derrida-Lebowitz-Speer-Spohn '91 [Bleher-Lebowitz-Speer, Jüngel, Pinnau, Matthes, Gianazza-Toscani-S.]]

Cahn-Hilliard: ($m(u) = u(1 - u)$)

$$\partial_t u + \text{div} \left(u(1 - u) \Delta u - W'(u) \right) = 0 \quad \Phi(u) := \int_{\mathbb{R}^d} \left(\frac{1}{2}|Du|^2 + W(u) \right) \, dx.$$

[Elliott-Garcke ‘96]
The gradient flow structure: a formal motivation

\[\partial_t u + \text{div} \ w = 0, \]

\[\psi = \frac{\delta \Phi}{\delta u} \]

\[\frac{d}{dt} \Phi(u_t) = \int_{\mathbb{R}^d} \partial_t u \frac{\delta \Phi}{\delta u} \ dx = -\int_{\mathbb{R}^d} (\text{div} \ w) \psi \ dx = \int_{\mathbb{R}^d} w \cdot D\psi \ dx \]
The gradient flow structure: a formal motivation

$$\partial_t u + \text{div} \ w = 0, \quad \ w = m(u)v \quad \psi = \frac{\delta \Phi}{\delta u}$$

$$\frac{d}{dt} \Phi(u_t) = \int_{\mathbb{R}^d} \partial_t u \frac{\delta \Phi}{\delta u} \ dx = -\int_{\mathbb{R}^d} (\text{div} \ w) \psi \ dx = \int_{\mathbb{R}^d} \ w \cdot \nabla \psi \ dx$$

$$= \int_{\mathbb{R}^d} \nu \cdot \nabla \psi \ m(u) \ dx \geq -\left(\int_{\mathbb{R}^d} |\nabla \psi|^2 \ m(u) \ dx \right)^{1/2} \left(\int_{\mathbb{R}^d} |\nu|^2 \ m(u) \ dx \right)^{1/2}$$
The gradient flow structure: a formal motivation

\[\partial_t u + \text{div } w = 0, \quad w = m(u)v \quad \psi = \frac{\delta \Phi}{\delta u} \]

\[
\frac{d}{dt} \Phi(u_t) = \int_{\mathbb{R}^d} \partial_t u \frac{\delta \Phi}{\delta u} \, dx = -\int_{\mathbb{R}^d} (\text{div } w) \psi \, dx = \int_{\mathbb{R}^d} w \cdot D\psi \, dx
\]

\[
= \int_{\mathbb{R}^d} v \cdot D\psi \, m(u) \, dx \geq -\left(\int_{\mathbb{R}^d} |D\psi|^2 \, m(u) \, dx \right)^{1/2} \left(\int_{\mathbb{R}^d} |v|^2 \, m(u) \, dx \right)^{1/2}
\]

\textbf{Ansatz:} interpret

\[
\left(\int_{\mathbb{R}^d} |v|^2 \, m(u) \, dx \right)^{1/2}
\]

as the “velocity” of the moving family \(u \).
The gradient flow structure: a formal motivation

\[
\partial_t u + \text{div } w = 0, \quad w = m(u)v = -m(u)D\psi, \quad \psi = \frac{\delta \Phi}{\delta u}
\]

\[
\frac{d}{dt} \Phi(u_t) = \int_{\mathbb{R}^d} \partial_t u \frac{\delta \Phi}{\delta u} \, dx = -\int_{\mathbb{R}^d} (\text{div } w) \psi \, dx = \int_{\mathbb{R}^d} w \cdot D\psi \, dx
\]

\[
= \int_{\mathbb{R}^d} v \cdot D\psi m(u) \, dx \geq -\left(\int_{\mathbb{R}^d} |D\psi|^2 m(u) \, dx \right)^{1/2} \left(\int_{\mathbb{R}^d} |v|^2 m(u) \, dx \right)^{1/2}
\]

Ansatz: interpret

\[
\left(\int_{\mathbb{R}^d} |v|^2 m(u) \, dx \right)^{1/2}
\]

as the “velocity” of the moving family \(u \).

If we want to decrease \(\Phi \) as fast as possible, we have to choose

\[
v = -D\psi
\]
Outline

1. Evolution PDE’s with a gradient flow structure

2. The dynamical approach to weighted transport distances

3. Basic tools for metric gradient flows: displacement convexity, variational approximation (JKO and WED schemes), flow interchange.
Weighted transport distances: the dynamical approach

[Benamou-Brenier ’00]
We interpret \(u \) as the density of a (probability) measure \(\rho = u \, dx \) and we consider a time dependent family \(u_t, \ t \in [0, T] \), of densities satisfying the nonlinear continuity equation

\[
\partial_t u + \text{div} \left(m(u) \, v \right) = 0
\]
Weighted transport distances: the dynamical approach

[Benamou-Brenier ’00]

We interpret u as the density of a (probability) measure $\rho = u \, dx$ and we consider a time dependent family u_t, $t \in [0, T]$, of densities satisfying the nonlinear continuity equation

$$\partial_t u + \text{div} \left(m(u) \, v \right) = 0$$

The scalar velocity at time t is given by

$$\mathcal{V}_t[u_t] := \| v_t \|_{L^2(m(u_t); \mathbb{R}^d)} = \left(\int_{\mathbb{R}^d} |v_t(x)|^2 \, m(u_t) \, dx \right)^{1/2}.$$
Weighted transport distances: the dynamical approach

[Benamou-Brenier ’00]
We interpret u as the density of a (probability) measure $\rho = u \, dx$ and we consider a time dependent family u_t, $t \in [0, T]$, of densities satisfying the nonlinear continuity equation

$$\partial_t u + \text{div} \left(m(u) \, v \right) = 0$$

The scalar velocity at time t is given by

$$\mathcal{V}_t[u_t] := \|v_t\|_{L^2(m(u_t); \mathbb{R}^d)} = \left(\int_{\mathbb{R}^d} |v_t(x)|^2 \, m(u_t) \, dx \right)^{1/2}.$$

The length of the curve u between t_0 and t_1

$$\mathcal{L}^{t_1}_{t_0}[u] := \int_{t_0}^{t_1} \mathcal{V}_t[u] \, dt = \int_{t_0}^{t_1} \left(\int_{\mathbb{R}^d} |v_t(x)|^2 \, m(u_t) \, dx \right)^{1/2} \, dt$$
Weighted transport distances: the dynamical approach

[Benamou-Brenier ’00]

We interpret u as the density of a (probability) measure $\rho = u \, dx$ and we consider a time dependent family u_t, $t \in [0, T]$, of densities satisfying the **nonlinear continuity equation**

$$
\partial_t u + \text{div} \left(m(u) \, v \right) = 0
$$

The **scalar velocity** at time t is given by

$$
\mathcal{V}_t[u_t] := \| v_t \|_{L^2(m(u_t); \mathbb{R}^d)} = \left(\int_{\mathbb{R}^d} |v_t(x)|^2 \, m(u_t) \, dx \right)^{1/2}.
$$

The length of the curve u between t_0 and t_1

$$
\mathcal{L}_{t_0}^{t_1}[u] := \int_{t_0}^{t_1} \mathcal{V}_t[u] \, dt = \int_{t_0}^{t_1} \left(\int_{\mathbb{R}^d} |v_t(x)|^2 \, m(u_t) \, dx \right)^{1/2} \, dt
$$

Weighted transport distance W_m between u_0 and u_1:

$$
W_m(u_0, u_1) := \min \left\{ \mathcal{L}_{t=0}^{1}[u] : u|_{t=0} = u_0, \ u|_{t=1} = u_1 \right\}.
$$
Limiting cases

\[m(r) \equiv 1 \quad \leftrightarrow \quad \text{Homogeneous dual } W^{-1,2}(\mathbb{R}^d) \text{ distance.} \]

\[
W_m(u_0, u_1) = \sup \left\{ \int_{\mathbb{R}^d} (u_0 - u_1) \varphi \, dx : \int_{\mathbb{R}^d} |D\varphi|^2 \, dx \leq 1 \right\}
\]
Limiting cases

\(m(r) \equiv 1 \iff \text{Homogeneous dual } W^{-1,2}(\mathbb{R}^d) \text{ distance.} \)

\[
W_m(u_0, u_1) = \sup \left\{ \int_{\mathbb{R}^d} (u_0 - u_1) \varphi \, dx : \int_{\mathbb{R}^d} |D\varphi|^2 \, dx \leq 1 \right\}
\]

\(v = w, \quad \partial_t u + \text{div } w = 0. \quad W_m^2(u_0, u_1) = \min \left\{ \int |w|^2 : \text{div } w = u_1 - u_2 \right\} \)
Limiting cases

\[m(r) \equiv 1 \iff \text{Homogeneous dual } W^{-1,2}(\mathbb{R}^d) \text{ distance.} \]

\[W_m(u_0, u_1) = \sup \left\{ \int_{\mathbb{R}^d} (u_0 - u_1)\varphi \, dx : \int_{\mathbb{R}^d} |D\varphi|^2 \, dx \leq 1 \right\} \]

\[v = w, \quad \partial_t u + \text{div } w = 0. \quad W_m^2(u_0, u_1) = \min \left\{ \int |w|^2 : \text{div } w = u_1 - u_2 \right\} \]

Hilbert Theory [Benilan, Brezis, Crandall, Pazy, . . . ∼’70]
Limiting cases

\[m(r) \equiv 1 \iff \text{Homogeneous dual } W^{-1,2}(\mathbb{R}^d) \text{ distance.} \]

\[W_m(u_0, u_1) = \sup \left\{ \int_{\mathbb{R}^d} (u_0 - u_1) \varphi \, dx : \int_{\mathbb{R}^d} |D\varphi|^2 \, dx \leq 1 \right\} \]

\[v = w, \quad \partial_t u + \text{div } w = 0. \quad W^2_m(u_0, u_1) = \min \left\{ \int |w|^2 : \text{div } w = u_1 - u_2 \right\} \]

Hilbert Theory [Benilan, Brezis, Crandall, Pazy, ... \sim ’70]

\[m(r) = r \iff \text{Wasserstein distance, } W_m = W; \]
characterization in terms of optimal transport, linear transport equation

\[\partial_t u + \text{div } u \, v = 0 \]
Limiting cases

$m(r) \equiv 1 \iff \text{Homogeneous dual } \mathcal{W}^{-1,2}(\mathbb{R}^d) \text{ distance.}$

\[
\mathcal{W}_m(u_0, u_1) = \sup \left\{ \int_{\mathbb{R}^d} (u_0 - u_1) \varphi \, dx : \int_{\mathbb{R}^d} |D\varphi|^2 \, dx \leq 1 \right\}
\]

$v = w, \quad \partial_t u + \text{div} \, w = 0. \quad \mathcal{W}_m(u_0, u_1) = \min \left\{ \int |w|^2 : \text{div} \, w = u_1 - u_2 \right\}$

Hilbert Theory [Benilan, Brezis, Crandall, Pazy, ...~’70]

$m(r) = r \iff \text{Wasserstein distance, } \mathcal{W}_m = \mathcal{W};$

characterization in terms of optimal transport, linear transport equation

\[
\partial_t u + \text{div} \, u \, v = 0
\]

[JORDAN-KINDERLEHRER-OTTO ’98, OTTO ’01]

Applications: optimal transport, existence and asymptotic behaviour of solutions, contraction properties, Logarithmic Sobolev Inequalities, approximation algorithms, curvature and metric measure spaces, stability,...

[AMBROSIO-GIGLI-S., AGUEH, BRENIER, CARRILLO, CARLEN, MCCANN, GANGBO, GIACOMELLI, GIANAZZA-TOSCANI-S., LISINI, OTTO, SLEPCEV, STURM, VILLANI, WESTDICKENBERG, ...]
The interest of the method and the main problems

ADVANTAGES

- **Non-negativity** is for free.
- A general approximation scheme, which is a variational formulation of the backward Euler method, is always available.
- **Decay of the generating functional** Φ along the (discrete/continuous) flow.
The interest of the method and the main problems

ADVANTAGES

- Non-negativity is for free.
- A general approximation scheme, which is a variational formulation of the backward Euler method, is always available.
- Decay of the generating functional Φ along the (discrete/continuous) flow.

DRAWBACKS

- It is not so simple as in the Hilbertian framework
- You lose the linear structure of the underlying space.
- The distance is not flat and the space behaves like the an infinitely dimensional, non-smooth, positively curved Riemannian manifold.
The interest of the method and the main problems

ADVANTAGES

- Non-negativity is for free.
- A general approximation scheme, which is a variational formulation of the backward Euler method, is always available.
- Decay of the generating functional Φ along the (discrete/continuous) flow.

DRAWBACKS

- It is not so simple as in the Hilbertian framework
- You lose the linear structure of the underlying space.
- The distance is not flat and the space behaves like an infinitely dimensional, non-smooth, positively curved Riemannian manifold.

PROBLEMS

- How can we make rigorous this approach and when it is well posed, so that it defines a distance?
The interest of the method and the main problems

ADVANTAGES

▶ Non-negativity is for free.
▶ A general approximation scheme, which is a variational formulation of the backward Euler method, is always available.
▶ Decay of the generating functional Φ along the (discrete/continuous) flow.

DRAWBACKS

▶ It is not so simple as in the Hilbertian framework
▶ You lose the linear structure of the underlying space.
▶ The distance is not flat and the space behaves like the an infinitely dimensional, non-smooth, positively curved Riemannian manifold.

PROBLEMS

▶ How can we make rigorous this approach and when it is well posed, so that it defines a distance?
▶ Does the distance enjoys similar/different properties to the Sobolev/Wasserstein one?
The interest of the method and the main problems

ADVANTAGES

▷ Non-negativity is for free.
▷ A general approximation scheme, which is a variational formulation of the backward Euler method, is always available.
▷ Decay of the generating functional Φ along the (discrete/continuous) flow.

DRAWBACKS

▷ It is not so simple as in the Hilbertian framework
▷ You lose the linear structure of the underlying space.
▷ The distance is not flat and the space behaves like the an infinitely dimensional, non-smooth, positively curved Riemannian manifold.

PROBLEMS

▷ How can we make rigorous this approach and when it is well posed, so that it defines a distance?
▷ Does the distance enjoys similar/different properties to the Sobolev/Wasserstein one?
▷ Could it be useful to study evolution equations and to get new geometric insights?
The interest of the method and the main problems

ADVANTAGES

▶ Non-negativity is for free.
▶ A general approximation scheme, which is a variational formulation of the backward Euler method, is always available.
▶ Decay of the generating functional Φ along the (discrete/continuous) flow.

DRAWBACKS

▶ It is not so simple as in the Hilbertian framework
▶ You lose the linear structure of the underlying space.
▶ The distance is not flat and the space behaves like the an infinitely dimensional, non-smooth, positively curved Riemannian manifold.

PROBLEMS

▶ How can we make rigorous this approach and when it is well posed, so that it defines a distance?
▶ Does the distance enjoys similar/different properties to the Sobolev/Wasserstein one?
▶ Could it be useful to study evolution equations and to get new geometric insights?
▶ Are there interesting convexity properties of the integral functionals and related functional inequalities?
The variational problem

Problem

Given nonnegative densities $u_0, u_1 \in L^1_{\text{loc}}(\mathbb{R}^d)$ *find a minimizer of the action functional*

$$
\int_0^1 \int_{\mathbb{R}^d} |v_t|^2 m(u_t) \, dx \, dt \quad \text{s.t.} \quad \partial_t u + \text{div}(m(u_t)v_t) = 0, \quad u|_{t=0,1} = u_{0,1}.
$$
The variational problem

Problem

Given nonnegative densities \(u_0, u_1 \in L^1_{\text{loc}}(\mathbb{R}^d) \) find a minimizer of the action functional

\[
\int_0^1 \int_{\mathbb{R}^d} |v_t|^2 m(u_t) \, dx \, dt \quad \text{s.t.} \quad \partial_t u + \text{div}(m(u_t)v_t) = 0, \quad u\big|_{t=0,1} = u_{0,1}.
\]

Direct method of the calculus of variations: fix the densities \(u_0, u_1 \) and take a minimizing sequence \((u^n_t, w^n_t, v^n_t)\) with \(w^n_t = m(u^n_t)v^n_t \), such that

\[
\partial_t u^n_t + \text{div}(m(u^n_t)v^n_t) = 0, \quad u^n\big|_{t=0,1} = u_{0,1}, \quad \int_0^1 \int_{\mathbb{R}^d} |v^n_t|^2 m(u^n_t) \, dx \, dt \to \inf
\]
The variational problem

Problem

Given nonnegative densities \(u_0, u_1 \in L^1_{\text{loc}}(\mathbb{R}^d) \)* find a minimizer of the action functional

\[
\int_0^1 \int_{\mathbb{R}^d} |v_t|^2 m(u_t) \, dx \, dt \quad \text{s.t.} \quad \partial_t u + \text{div}(m(u_t)v_t) = 0, \quad u|_{t=0,1} = u_{0,1}.
\]

Direct method of the calculus of variations: fix the densities \(u_0, u_1 \) and take a minimizing sequence \((u^n_t, w^n_t, v^n_t)\) with \(w^n_t = m(u^n_t)v^n_t \), such that

\[
\partial_t u^n_t + \text{div}(m(u^n_t)v^n_t) = 0, \quad u^n|_{t=0,1} = u_{0,1}, \quad \int_0^1 \int_{\mathbb{R}^d} |v^n_t|^2 m(u^n_t) \, dx \, dt \to \inf
\]

Problem: sublevels of the minimizing functional are only *weakly*\(^*\) relatively compact: we get *weak*\(^*\) convergence of a suitable subsequence but the equation \(\partial_t u_t + \text{div}(m(u)v) = 0 \) is nonlinear in the couple \((u, v)\).
The variational problem

Given nonnegative densities $u_0, u_1 \in L^1_{\text{loc}}(\mathbb{R}^d)$ find a minimizer of the action functional

$$\int_0^1 \int_{\mathbb{R}^d} |v_t|^2 m(u_t) \, dx \, dt \quad \text{s.t.} \quad \partial_t u + \text{div}(m(u_t)v_t) = 0, \quad u|_{t=0,1} = u_{0,1}. $$

Direct method of the calculus of variations: fix the densities u_0, u_1 and take a minimizing sequence (u^n_t, w^n_t, v^n_t) with $w^n_t = m(u^n_t)v^n_t$, such that

$$\partial_t u^n_t + \text{div}(m(u^n_t)v^n_t) = 0, \quad u^n|_{t=0,1} = u_{0,1}, \quad \int_0^1 \int_{\mathbb{R}^d} |v^n_t|^2 m(u^n_t) \, dx \, dt \to \inf$$

Problem: sublevels of the minimizing functional are only weakly* relatively compact: we get weak* convergence of a suitable subsequence but the equation $\partial_t u_t + \text{div}(m(u)v) = 0$ is nonlinear in the couple (u, v).

Basic idea: write everything in terms of $(u, w)!$ Since $w = m(u)v$ we minimize

$$A(u, w) := \int_0^1 \int_{\mathbb{R}^d} A(u_t, w_t) \, dx \, dt \quad \text{s.t.} \quad \partial_t u + \text{div} w_t = 0, \quad u|_{t=0,1} = u_{0,1}. $$

where

$$A(u, w) := \frac{|w|^2}{m(u)}$$
Convexity (and l.s.c.) of the action requires a concave mobility

Lemma

The function

\[A : (u, w) \in (0, +\infty) \times \mathbb{R}^d \to \frac{|w|^2}{m(u)} \in [0, +\infty] \]

is convex iff \(m : [0, +\infty) \to [0, \infty) \) is concave.
Convexity (and l.s.c.) of the action requires a concave mobility

Lemma

The function

\[A : (u, w) \in (0, +\infty) \times \mathbb{R}^d \to \frac{|w|^2}{m(u)} \in [0, +\infty] \]

is convex iff \(m : [0, +\infty) \to [0, \infty) \) is concave.

Two cases:

A) \(m : [0, +\infty) \to [0, +\infty) \) is concave and nondecreasing.

Model example: \(m(u) = u^\alpha, \) \(0 \leq \alpha \leq 1. \) In this case \(A(\lambda u, \lambda w) \) is superlinear as \(\lambda \uparrow +\infty, \) except when \(w = 0. \)
Convexity (and l.s.c.) of the action requires a concave mobility

Lemma

The function

\[A : (u, w) \in (0, +\infty) \times \mathbb{R}^d \rightarrow \frac{|w|^2}{m(u)} \in [0, +\infty] \]

is **convex** iff \(m : [0, +\infty) \rightarrow [0, \infty) \) is **concave**.

Two cases:

A) \(m : [0, +\infty) \rightarrow [0, +\infty) \) is concave and nondecreasing.

Model example: \(m(u) = u^\alpha \), \(0 \leq \alpha \leq 1 \). In this case \(A(\lambda u, \lambda w) \) is superlinear as \(\lambda \uparrow +\infty \), except when \(w = 0 \).

B) \(m : [0, M] \rightarrow [0, +\infty) \) is concave with \(m(0) = m(M) = 0 \).

Model example: \(m(u) = u(M - u) \). In this case \(A(u, w) = +\infty \) if \(u > M \) and all the densities \(u \) are uniformly bounded.
A rigorous definition through convex functional of measures

To get weak* lower semicontinuity of A, we extend it to couples (ρ, ν) where $\rho \in \mathcal{M}_{1\text{oc}}(\mathbb{R}^d)$ is a nonnegative Radon measure and $\nu \in \mathcal{M}_{1\text{oc}}(\mathbb{R}^d; \mathbb{R}^d)$ is a Radon vector measure.
A rigorous definition through convex functional of measures

To get weak* lower semicontinuity of A, we extend it to couples (ρ, ν) where $\rho \in M_{\text{loc}}(\mathbb{R}^d)$ is a nonnegative Radon measure and $\nu \in M_{\text{loc}}(\mathbb{R}^d; \mathbb{R}^d)$ is a Radon vector measure.

Moreover, the function A is no more 1–homogeneous in the couple (ρ, ν), so that the definition of A also depends from a reference measure $\gamma \in M_{\text{loc}}(\mathbb{R}^d)$ (usually the Lebesgue measure, but not necessarily).
A rigorous definition through convex functional of measures

To get weak* lower semicontinuity of A, we extend it to

couples (ρ, ν) where $\rho \in M_{\text{loc}}(\mathbb{R}^d)$ is a nonnegative Radon measure and $\nu \in M_{\text{loc}}(\mathbb{R}^d; \mathbb{R}^d)$ is a Radon vector measure.

Moreover, the function A is no more 1–homogeneous in the couple (ρ, ν), so that the definition of A also depends from a reference measure $\gamma \in M_{\text{loc}}(\mathbb{R}^d)$ (usually the Lebesgue measure, but not necessarily).

Definition (The case of a sublinear mobility)

If $\rho \in M_{\text{loc}}(\mathbb{R}^d), \nu \in M_{\text{loc}}(\mathbb{R}^d; \mathbb{R}^d)$ we set

$$A(\rho, \nu | \gamma) := \int_{\mathbb{R}^d} A\left(\frac{d\rho}{d\gamma}, \frac{d\nu}{d\gamma}\right) d\gamma$$

Given ρ_0, ρ_1 we have

$$W_{m, \gamma}^2(\rho_0, \rho_1) := \inf \left\{ \int_0^1 A(\rho_t, \nu_t) dt \mid \partial_t \rho + \text{div} \nu = 0, \quad \rho|_{t=0,1} = \rho_{0,1} \right\}$$

We call $M_{m, \gamma}[\sigma]$ the collection of all measures at finite distance from σ.

[Dolbeault-Nazaret-S. '09, Lisini-Marigonda '10]
The role of γ and simple properties of $W_{m,\gamma}$

1. Typically $\gamma = \mathcal{L}^d$ (omitted in W_m).
The role of γ and simple properties of $W_{m,\gamma}$

1. Typically $\gamma = L^d$ (omitted in W_m).
2. $\gamma = L^d|_{\Omega}$, Ω open, bounded, and convex subset of \mathbb{R}^d: equations in bounded domains with Neumann boundary condition.
The role of γ and simple properties of $W_{m,\gamma}$

1. Typically $\gamma = \mathcal{L}^d$ (omitted in W_m).
2. $\gamma = \mathcal{L}^d|_{\Omega}$, Ω open, bounded, and convex subset of \mathbb{R}^d: equations in bounded domains with Neumann boundary condition.
3. $\gamma := e^{-V}\mathcal{L}^d$ is a log-concave measure: Fokker-Planck equations (Beckner/convex Sobolev inequalities)
The role of γ and simple properties of $W_{m,\gamma}$

1. Typically $\gamma = L^d$ (omitted in W_m).
2. $\gamma = L^d|_{\Omega}$, Ω open, bounded, and convex subset of \mathbb{R}^d: equations in bounded domains with Neumann boundary condition.
3. $\gamma := e^{-v}L^d$ is a log-concave measure: Fokker-Planck equations (Beckner/convex Sobolev inequalities)
4. $\gamma := \mathcal{H}^k|_M$, M is k-dimensional Riemannian manifold embedded in \mathbb{R}^d: evolutions in Riemannian manifolds.
The role of γ and simple properties of $W_{m,\gamma}$

1. Typically $\gamma = L^d$ (omitted in W_m).
2. $\gamma = L^d|_{\Omega}$, Ω open, bounded, and convex subset of \mathbb{R}^d: equations in bounded domains with Neumann boundary condition.
3. $\gamma := e^{-V}L^d$ is a log-concave measure: Fokker-Planck equations (Beckner/convex Sobolev inequalities)
4. $\gamma := H^k|_M$, M is k-dimensional Riemannian manifold embedded in \mathbb{R}^d: evolutions in Riemannian manifolds.

$W_{m,\gamma}$ enjoys nice properties:

completeness, lower semicontinuity, convexity, subadditivity, convolution, rescaling, existence of geodesic.
The role of γ and simple properties of $W_{m,\gamma}$

1. Typically $\gamma = \mathcal{L}^d$ (omitted in W_m).
2. $\gamma = \mathcal{L}^d|_{\Omega}$, Ω open, bounded, and convex subset of \mathbb{R}^d: equations in bounded domains with Neumann boundary condition.
3. $\gamma := e^{-V}\mathcal{L}^d$ is a log-concave measure: Fokker-Planck equations (Beckner/convex Sobolev inequalities)
4. $\gamma := H^k|_M$, M is k-dimensional Riemannian manifold embedded in \mathbb{R}^d: evolutions in Riemannian manifolds.

$W_{m,\gamma}$ enjoys nice properties:
- completeness, lower semicontinuity, convexity, subadditivity, convolution, rescaling, existence of geodesic.

Theorem (Dolbeault-Nazaret-S.)

Suppose that $\gamma^n \rightharpoonup \gamma$, $\rho^n_i \rightharpoonup \rho_i$ in $\mathcal{M}_{loc}(\mathbb{R}^d)$ and $m^n \downarrow m$ pointwise in $[0, +\infty)$. Then

$$\liminf_{n \to +\infty} W_{m^n,\gamma^n}(\rho^n_0, \rho^n_1) \geq W_{m,\gamma}(\rho_0, \rho_1).$$
The role of γ and simple properties of $W_{m,\gamma}$

1. Typically $\gamma = \mathcal{L}^d$ (omitted in W_m).
2. $\gamma = \mathcal{L}^d|_{\Omega}$, Ω open, bounded, and convex subset of \mathbb{R}^d: equations in bounded domains with Neumann boundary condition.
3. $\gamma := e^{-V}\mathcal{L}^d$ is a log-concave measure: Fokker-Planck equations (Beckner/convex Sobolev inequalities)
4. $\gamma := \mathcal{H}^k|_M$, M is k-dimensional Riemannian manifold embedded in \mathbb{R}^d: evolutions in Riemannian manifolds.

$W_{m,\gamma}$ enjoys nice properties:

- completeness, lower semicontinuity, convexity, subadditivity, convolution, rescaling, existence of geodesic.

Theorem (Dolbeault-Nazaret-S.)

Suppose that $\gamma^n \rightharpoonup \gamma$, $\rho^n_i \rightharpoonup \rho_i$ in $\mathcal{M}_{loc}(\mathbb{R}^d)$ and $m^n \downarrow m$ pointwise in $[0, +\infty)$. Then

$$\liminf_{n \to +\infty} W_{m^n,\gamma^n}(\rho^n_0, \rho^n_1) \geq W_{m,\gamma}(\rho_0, \rho_1).$$

Simplest case: bounded Ω with m defined on a bounded interval. In this case W_m induces the weak* topology on $L^\infty_+(\Omega)$.
Outline

1. Evolution PDE's with a gradient flow structure

2. The dynamical approach to weighted transport distances

3. Basic tools for metric gradient flows: displacement convexity, variational approximation (JKO and WED schemes), flow interchange.
Displacement convexity for weighted transport distances

A functional Φ is displacement convex if for every u_0, u_1 there exists a geodesic u_t, $t \in [0, 1]$, w.r.t. W_m connecting u_0 to u_1 such that

$$W_m(u_t, u_s) = |t - s|W_m(u_0, u_1), \quad \Phi(u_t) \leq (1 - t)\Phi(u_0) + t\Phi(u_1).$$

The functional generating the Heat equation is always displacement convex.
Displacement convexity for weighted transport distances

A functional Φ is displacement convex if for every u_0, u_1 there exists a geodesic u_t, $t \in [0, 1]$, w.r.t. W_m connecting u_0 to u_1 such that

$$W_m(u_t, u_s) = |t - s|W_m(u_0, u_1), \quad \Phi(u_t) \leq (1 - t)\Phi(u_0) + t\Phi(u_1).$$

Theorem (Generalized McCann condition \[Carrillo-Lisini-S.-Slepcev '09\])

The functional

$$\Phi(u) = \int F(u) \, dx$$

is displacement convex in $\mathcal{M}_m(\Omega)$ with respect to the distance W_m if

$$r \mapsto \frac{H(r)}{m(r)^{1-1/d}} \text{ is nonnegative and non decreasing in } (0, +\infty),$$

where

$$H(r) := \int_0^r F''(z)m(z)m'(z) \, dz.$$
Displacement convexity for weighted transport distances

A functional \(\Phi \) is displacement convex if for every \(u_0, u_1 \) there exists a geodesic \(u_t, t \in [0, 1], \) w.r.t. \(W_m \) connecting \(u_0 \) to \(u_1 \) such that

\[
W_m(u_t, u_s) = |t - s|W_m(u_0, u_1), \quad \Phi(u_t) \leq (1 - t)\Phi(u_0) + t\Phi(u_1).
\]

Theorem (Generalized McCann condition [Carrillo-Lisini-S.-Slepcev '09])

The functional

\[
\Phi(u) = \int F(u) \, dx
\]

is displacement convex in \(\mathcal{M}_m(\Omega) \) with respect to the distance \(W_m \) if

\[
 r \mapsto \frac{H(r)}{m(r)^{\frac{1}{1-d}}} \quad \text{is nonnegative and non decreasing in } (0, +\infty),
\]

where

\[
H(r) := \int_0^r F''(z)m(z)m'(z) \, dz.
\]

The functional generating the Heat equation is always displacement convex.
Given $u_0 \in D(\Phi) \subset L^\infty_+(\Omega)$ and a relaxation parameter $\varepsilon > 0$ consider the space-time minimization of the WED functional

$$
\mathcal{J}_\varepsilon(u_0) := \min \left\{ \int_0^\infty \frac{e^{-t/\varepsilon}}{\varepsilon} \left(\varepsilon \int_{\mathbb{R}^d} |v_t|^2 m(u_t) \, dx + \Phi(u_t) \right) \, dt : \partial_t u_t + \text{div} \left(m(u_t) v_t \right) = 0, \quad u(\cdot, 0) = u_0 \right\}
$$
Weighted Energy-Dissipation (WED) approximation

Given \(u_0 \in D(\Phi) \subset L^\infty_+(\Omega) \) and a relaxation parameter \(\varepsilon > 0 \) consider the space-time minimization of the WED functional

\[
\mathcal{J}_\varepsilon(u_0) := \min \left\{ \int_0^\infty \frac{e^{-t/\varepsilon}}{\varepsilon} \left(\varepsilon \int_{\mathbb{R}^d} |\nu_t|^2 m(u_t) \, dx + \Phi(u_t) \right) \, dt : \partial_t u_t + \text{div} \left(m(u_t) \nu_t \right) = 0, \quad u(\cdot, 0) = u_0 \right\}
\]

Theorem (Rossi-S.-Segatti-Stefanelli)

Assume that \(\Phi \) is displacement convex w.r.t. \(W_m \) and has compact sublevels. Then the family of minimizers \(\{u_\varepsilon\} \) of the WED functional is relatively compact and every limit point is a gradient flow of \(\Phi \).
The JKO-De Giorgi’s Minimizing movement scheme

- Choose a partition of \((0, +\infty)\) of **step size** \(\tau > 0\)
The JKO-De Giorgi’s Minimizing movement scheme

- Choose a partition of \((0, +\infty)\) of **step size** \(\tau > 0\)

\[
\begin{align*}
U^0_{\tau} \\
\tau \\
t_0 & \quad t_1 & \quad t_2 & \quad t_3 & \quad t_4 & \cdots & \quad t_n
\end{align*}
\]

- Starting from \(U^0_{\tau} := \rho_0\) **find recursively** \(U^n_{\tau}, \ n = 1, 2, \ldots,\)

\[
\frac{U^n_{\tau} - U^{n-1}_{\tau}}{\tau} + \nabla \Phi(U^n_{\tau}) = 0
\]
The JKO-De Giorgi’s Minimizing movement scheme

- Choose a partition of $(0, +\infty)$ of **step size** $\tau > 0$

Starting from $U_\tau^0 := \rho_0$ find recursively **minimizers** U^n_τ, $n = 1, 2, \ldots$,

\[
\frac{U^n_\tau - U^{n-1}_\tau}{\tau} + \nabla \Phi(U^n_\tau) = 0 \implies U^n_\tau \in \arg\min_V \frac{W^2_m(V, U^{n-1}_\tau)}{2\tau} + \Phi(V)
\]
The JKO-De Giorgi’s Minimizing movement scheme

- Choose a partition of $(0, +\infty)$ of **step size** $\tau > 0$

Starting from $U^0_{\tau} := \rho_0$ find recursively **minimizers** $U^n_{\tau}, \ n = 1, 2, \ldots$

\[
\frac{U^n_{\tau} - U^{n-1}_{\tau}}{\tau} + \nabla \Phi(U^n_{\tau}) = 0 \implies U^n_{\tau} \in \arg\min_V \frac{W^2_{m}(V, U^{n-1}_{\tau})}{2\tau} + \Phi(V)
\]
The JKO-De Giorgi’s Minimizing movement scheme

- Choose a partition of \((0, +\infty)\) of **step size** \(\tau > 0\)

- Starting from \(U_0^\tau := \rho_0\) **find recursively** minimizers \(U_n^\tau, \ n = 1, 2, \ldots\),

\[
\frac{U_n^\tau - U_{n-1}^\tau}{\tau} + \nabla \Phi(U_n^\tau) = 0 \implies U_n^\tau \in \arg\min_V \frac{W^2_{m}(V, U_{n-1}^\tau)}{2\tau} + \Phi(V)
\]
The JKO-De Giorgi’s Minimizing movement scheme

- Choose a partition of \((0, +\infty)\) of step size \(\tau > 0\)

Starting from \(U_{\tau}^0 := \rho_0\) find recursively \textbf{minimizers} \(U_{\tau}^n, \ n = 1, 2, \ldots,\)

\[
\frac{U_{\tau}^n - U_{\tau}^{n-1}}{\tau} + \nabla \Phi(U_{\tau}^n) = 0 \quad \implies \quad U_{\tau}^n \in \arg\min_V \frac{W^2_{m}(V, U_{\tau}^{n-1})}{2\tau} + \Phi(V)
\]
The JKO-De Giorgi’s Minimizing movement scheme

- Choose a partition of $(0, +\infty)$ of **step size** $\tau > 0$

- Starting from $U_\tau^0 := \rho_0$ find recursively minimizers U_τ^n, $n = 1, 2, \ldots$,

\[
\frac{U_\tau^n - U_\tau^{n-1}}{\tau} + \nabla \Phi(U_\tau^n) = 0 \quad \leadsto \quad U_\tau^n \in \arg\min_V \frac{W_m^2(V, U_\tau^{n-1})}{2\tau} + \Phi(V)
\]
The JKO-De Giorgi's Minimizing movement scheme

- Choose a partition of \((0, +\infty)\) of \textbf{step size} \(\tau > 0\)

- Starting from \(U^0_\tau := \rho_0\) find recursively \textbf{minimizers} \(U^n_\tau, \ n = 1, 2, \ldots\)

\[
\frac{U^n_\tau - U^{n-1}_\tau}{\tau} + \nabla \Phi(U^n_\tau) = 0 \implies U^n_\tau \in \underset{V}{\text{argmin}} \frac{W^2_m(V, U^{n-1}_\tau)}{2\tau} + \Phi(V)
\]

- \(U_\tau\) is the \textbf{piecewise constant} interpolant of \(\{U^n_\tau\}_n\).

We look for \textbf{convergence results} of \(U_\tau\) as \(\tau \downarrow 0\).
First variation along auxiliary flows

MAIN IDEA: take the first variation of the minimum problem

\[U^n_\tau \in \arg\min_V W^2(V, U^{n-1}_\tau) + \Phi(V) \]

along the gradient flow \(S^\Psi \) generated by other “good” auxiliary functionals \(\Psi \).
First variation along auxiliary flows

MAIN IDEA: take the first variation of the minimum problem

\[U^n_\tau \in \arg\min_V W^2(V, U^{n-1}_\tau) + \Phi(V) \]

along the gradient flow \(S^\Psi \) generated by other “good” auxiliary functionals \(\Psi \).

HEURISTICS: in an euclidean space \(S^\Phi, S^\Psi \) corresponds to

\[u_t := S^\Phi(u_0) \text{ solves } \frac{d}{dt} u = -\nabla \Phi(u), \quad w_t := S^\Psi(w_0) \text{ solves } \frac{d}{dt} w = -\nabla \Psi(w) \]
First variation along auxiliary flows

MAIN IDEA: take the first variation of the minimum problem

$$U^n_\tau \in \arg\min_V \frac{W^2(V, U^{n-1}_\tau)}{2\tau} + \Phi(V)$$

along the gradient flow S^Ψ generated by other "good" auxiliary functionals Ψ.

HEURISTICS: in an euclidean space S^Φ, S^Ψ corresponds to

$u_t := S^\Phi_t(u_0)$ solves $\frac{d}{dt} u = -\nabla \Phi(u)$, \quad $w_t := S^\Psi_t(w_0)$ solves $\frac{d}{dt} w = -\nabla \Psi(w)$

If $u_0 = w_0$ then we have the "commutation" identity

$$\frac{d}{d\varepsilon} \Phi(w_\varepsilon)\bigg|_{\varepsilon=0^+} = \frac{d}{d\varepsilon} \Psi(u_\varepsilon)\bigg|_{\varepsilon=0^+}$$
First variation along auxiliary flows

MAIN IDEA: take the first variation of the minimum problem

\[U^n_n \in \arg\min_V W^2(V, U^{n-1}_\tau) + \Phi(V) \]

along the gradient flow \(S^\Psi \) generated by other "good" auxiliary functionals \(\Psi \).

HEURISTICS: in an euclidean space \(S^\Phi, S^\Psi \) corresponds to

\[
\begin{align*}
\u_t &:= S^\Phi_t(u_0) \text{ solves } \frac{d}{dt} u = -\nabla \Phi(u), & w_t &:= S^\Psi_t(w_0) \text{ solves } \frac{d}{dt} w = -\nabla \Psi(w)
\end{align*}
\]

If \(u_0 = w_0 \) then we have the "commutation" identity

\[
\frac{d}{d\epsilon} \Phi(w_\epsilon) \bigg|_{\epsilon=0^+} = \frac{d}{d\epsilon} \Psi(u_\epsilon) \bigg|_{\epsilon=0^+} \quad \left(= -\langle \nabla \Phi(w_0), \nabla \Psi(u_0) \rangle \right)
\]
First variation along auxiliary flows

MAIN IDEA: take the first variation of the minimum problem

$$U^n_\tau \in \arg\min_V \frac{W^2(V, U^{n-1}_\tau)}{2\tau} + \Phi(V)$$

along the gradient flow S^Ψ generated by other "good" auxiliary functionals Ψ.

HEURISTICS: in an euclidean space S^Φ, S^Ψ corresponds to

$$u_t := S^\Phi_t(u_0) \text{ solves } \frac{d}{dt} u = -\nabla \Phi(u), \quad w_t := S^\Psi_t(w_0) \text{ solves } \frac{d}{dt} w = -\nabla \Psi(w)$$

If $u_0 = w_0$ then we have the "commutation" identity

$$\frac{d}{d\varepsilon} \Phi(w_\varepsilon) \bigg|_{\varepsilon=0^+} = \frac{d}{d\varepsilon} \Psi(u_\varepsilon) \bigg|_{\varepsilon=0^+} \quad \left(= -\langle \nabla \Phi(w_0), \nabla \Psi(u_0) \rangle \right)$$

RECIPE: if the derivative of the (main) functional Φ along the (auxiliary) flow S^Ψ is negative

then Ψ is a Lyapunov functional for the main flow S^Φ
First variation along auxiliary flows

MAIN IDEA: take the first variation of the minimum problem

\[U^n_\tau \in \text{argmin}_V \frac{W^2(V, U^{n-1}_\tau)}{2\tau} + \Phi(V) \]

along the gradient flow \(S^\Psi \) generated by other "good" auxiliary functionals \(\Psi \).

HEURISTICS: in an euclidean space \(S^\Phi, S^\Psi \) corresponds to

\[u_t := S^\Phi_t(u_0) \text{ solves } \frac{d}{dt} u = -\nabla \Phi(u), \quad w_t := S^\Psi_t(w_0) \text{ solves } \frac{d}{dt} w = -\nabla \Psi(w) \]

If \(u_0 = w_0 \) then we have the "commutation" identity

\[\frac{d}{d\varepsilon} \Phi(w_\varepsilon) \bigg|_{\varepsilon=0^+} = \frac{d}{d\varepsilon} \Psi(u_\varepsilon) \bigg|_{\varepsilon=0^+} \quad \left(= -\langle \nabla \Phi(w_0), \nabla \Psi(u_0) \rangle \right) \]

RECIPE: if the derivative of the (main) functional \(\Phi \) along the (auxiliary) flow \(S^\Psi \) is negative

then \(\Psi \) is a Lyapunov functional for the main flow \(S^\Phi \)

Look for good flows \(S^\Psi \) having \(\Phi \) as Lyapunov functional
First variation along auxiliary flows

MAIN IDEA: take the first variation of the minimum problem

$$U^n_\tau \in \arg\min_V W^2(V, U^{n-1}_\tau) + \Phi(V)$$

along the gradient flow S^ψ generated by other “good” auxiliary functionals Ψ.

HEURISTICS: in an euclidean space S^Φ, S^ψ corresponds to

$$u_t := S^\phi_t(u_0) \text{ solves } \frac{d}{dt} u = -\nabla \Phi(u), \quad w_t := S^\psi_t(w_0) \text{ solves } \frac{d}{dt} w = -\nabla \Psi(w)$$

If $u_0 = w_0$ then we have the “commutation” identity

$$\frac{d}{d\varepsilon} \Phi(w_\varepsilon) \bigg|_{\varepsilon = 0^+} = \frac{d}{d\varepsilon} \Psi(u_\varepsilon) \bigg|_{\varepsilon = 0^+} \quad \left(= -\langle \nabla \Phi(w_0), \nabla \Psi(u_0) \rangle \right)$$

RECIPE: if the derivative of the (main) functional Φ along the (auxiliary) flow S^ψ is negative (up to lower order terms)

then Ψ is a Lyapunov functional for the main flow S^ϕ (up to lower order terms).

Look for good flows S^ψ having Φ as Lyapunov functional.
A Lyapunov-type estimate at the discrete level

Suppose that Ψ generates a flow $w_t = S_t^\Psi(w)$ satisfying a suitable metric formulation.
A Lyapunov-type estimate at the discrete level

Suppose that Ψ generates a flow $w_t = S_t^\Psi(w)$ satisfying a suitable metric formulation. We call \mathcal{D} the dissipation of Φ along S^Ψ

$$\mathcal{D}(w) := \left. - \frac{d}{d\varepsilon} \Phi(S_{\varepsilon}^\Psi(w)) \right|_{\varepsilon=0^+} = \limsup_{\varepsilon \downarrow 0} \Phi(w) - \Phi(S_{\varepsilon}^\Psi(w))$$
A Lyapunov-type estimate at the discrete level

Suppose that ψ generates a flow $w_t = S_t^\psi(w)$ satisfying a suitable metric formulation. We call \mathcal{D} the dissipation of Φ along S^ψ

$$\mathcal{D}(w) := - \frac{d}{d\varepsilon} \Phi(S^\psi_\varepsilon(w)) \bigg|_{\varepsilon=0^+} = \limsup_{\varepsilon \downarrow 0} \frac{\Phi(w) - \Phi(S^\psi_\varepsilon(w))}{\varepsilon}$$

$$\frac{d}{dt} \psi(u_t) = -\mathcal{D}(w) \implies \psi(u_t) + \int_0^t \mathcal{D}(u_s) \, ds \leq \psi(u_0)$$
A Lyapunov-type estimate at the discrete level

Suppose that ψ generates a flow $w_t = S^\psi_t(w)$ satisfying a suitable metric formulation. We call \mathcal{D} the dissipation of Φ along S^ψ

$$\mathcal{D}(w) := \left. -\frac{d}{d\varepsilon} \Phi(S^\psi_\varepsilon(w)) \right|_{\varepsilon=0^+} = \limsup_{\varepsilon \downarrow 0} \frac{\Phi(w) - \Phi(S^\psi_\varepsilon(w))}{\varepsilon}$$

$$\frac{d}{dt} \psi(u_t) = -\mathcal{D}(w) \implies \psi(u_t) + \int_0^t \mathcal{D}(u_s) \, ds \leq \psi(u_0)$$

Theorem (Discrete flow-interchange estimate)

If U^n_τ is a minimizer of $V \mapsto \frac{W^2(V, U^{n-1}_\tau)}{2\tau} + \Phi(V)$ then

$$\psi(U^n_\tau) + \tau \mathcal{D}(U^n_\tau) \leq \psi(U^{n-1}_\tau)$$
Auxiliary flow for the Cahn-Hilliard equation

A typical example in the case of the Cahn-Hilliard equation with mobility $m(u) = u(1 - u)$ is given by the (displacement convex) entropy functional

$$
\Psi(w) = \int_\Omega w \log w + (1 - w) \log(1 - w) \, dx
$$

S^Ψ is the heat flow $\partial_t w - \Delta w = 0$
Auxiliary flow for the Cahn-Hilliard equation

A typical example in the case of the Cahn-Hilliard equation with mobility $m(u) = u(1 - u)$ is given by the (displacement convex) entropy functional

$$\Psi(w) = \int_{\Omega} w \log w + (1 - w) \log(1 - w) \, dx$$

S^Ψ is the heat flow $\partial_t w - \Delta w = 0$

The functional

$$\Phi(u) = \frac{1}{2} \int_{\mathbb{R}^d} |Du|^2 \, dx$$

decays along the heat flow with

$$\mathcal{D}(w) = -\frac{d}{d\varepsilon} \Phi(S^\Psi(w))\big|_{\varepsilon=0} = \int_{\Omega} |\Delta w|^2 \, dx = \int_{\Omega} |D^2 w|^2 \, dx$$
Auxiliary flow for the Cahn-Hilliard equation

A typical example in the case of the Cahn-Hilliard equation with mobility $m(u) = u(1 - u)$ is given by the (displacement convex) entropy functional

$$\Psi(w) = \int_\Omega w \log w + (1 - w) \log(1 - w) \, dx$$

S^Ψ is the heat flow $\partial_t w - \Delta w = 0$

The functional

$$\Phi(u) = \frac{1}{2} \int_{\mathbb{R}^d} |Du|^2 \, dx$$

decays along the heat flow with

$$\mathcal{D}(w) = -\frac{d}{d\varepsilon} \Phi(S^\Psi(w)) \bigg|_{\varepsilon=0} = \int_\Omega |\Delta w|^2 \, dx = \int_\Omega |D^2 w|^2 \, dx$$

The discrete flow-interchange estimate shows that Ψ is a Lyapunov functional and satisfies

$$\Psi(U^n_\tau) + \tau \int_\Omega |D^2 U^n_\tau|^2 \, dx \leq \Psi(U^{n-1}_\tau).$$
Auxiliary flow for the Cahn-Hilliard equation

A typical example in the case of the Cahn-Hilliard equation with mobility $m(u) = u(1 - u)$ is given by the (displacement convex) entropy functional

$$\Psi(w) = \int_{\Omega} w \log w + (1 - w) \log(1 - w) \, dx$$

S^Ψ is the heat flow $\partial_t w - \Delta w = 0$

The functional

$$\Phi(u) = \frac{1}{2} \int_{\mathbb{R}^d} |Du|^2 \, dx$$

decays along the heat flow with

$$\mathcal{D}(w) = -\frac{d}{d\varepsilon} \Phi(S^\Psi(w))\bigg|_{\varepsilon=0} = \int_{\Omega} |\Delta w|^2 \, dx = \int_{\Omega} |D^2 w|^2 \, dx$$

The discrete flow-interchange estimate shows that Ψ is a Lyapunov functional and satisfies

$$\Psi(U^n_{\tau}) + \tau \int_{\Omega} |D^2 U^n_{\tau}|^2 \, dx \leq \Psi(U^{n-1}_{\tau}).$$

In term of U_{τ} it corresponds to

$$\int_0^T \int_{\Omega} |D^2 U_{\tau}|^2 \, dx \, dt \leq C.$$
An example of convergence result

Assume that

$$P'(r) = m(r) W''(r) \geq -C \quad \text{in } (0, 1),$$

and the initial condition u_0 satisfies

$$0 \leq u_0 \leq 1, \quad \Phi(u_0) = \int_{\Omega} \left(\frac{1}{2} |Du|^2 \, dx + W(u_0) \right) \, dx$$

There exists an infinitesimal subsequence of time steps $\tau_k \downarrow 0$ such that $U_{\tau_k} \to u$ pointwise in $L^2(\mathbb{R}^d)$ and in $L^2(0, T; W^{1,2}(\mathbb{R}^d))$ as $k \to \infty$.

$$u \in C^0_w([0, +\infty); W^{1,2}(\Omega)) \cap L^2_{\text{loc}}([0, +\infty); W^{2,2}(\mathbb{R}^d))$$
is a non-negative global solution of the weak formulation of the Cahn-Hilliard equation

$$\int \int \left(u \partial_t \zeta - \Delta u \, \text{div} \left(m(u) D\zeta \right) + P(u) \Delta \zeta \right) \, dx \, dt = 0,$$

for every test function $\zeta \in C^\infty_c(\overline{\Omega} \times (0, \infty))$ such that $D\zeta \cdot \mathbf{n} = 0$ on $\partial \Omega \times (0, \infty)$.
An example of convergence result

Assume that

\[P'(r) = m(r) W''(r) \geq -C \text{ in } (0, 1), \]

and the initial condition \(u_0 \) satisfies

\[0 \leq u_0 \leq 1, \quad \Phi(u_0) = \int_{\Omega} \left(\frac{1}{2} |Du|^2 + W(u_0) \right) dx \]

Theorem

There exists an infinitesimal subsequence of time steps \(\tau_k \downarrow 0 \) such that

\[U_{\tau_k} \rightarrow u \text{ pointwise in } L^2(\mathbb{R}^d) \text{ and in } L^2(0, T; W^{1,2}(\mathbb{R}^d)) \text{ as } k \uparrow \infty \]
An example of convergence result

Assume that

\[P'(r) = m(r) W''(r) \geq -C \quad \text{in } (0, 1), \]

and the initial condition \(u_0 \) satisfies

\[0 \leq u_0 \leq 1, \quad \Phi(u_0) = \int_{\Omega} \left(\frac{1}{2} |Du|^2 \, dx + W(u_0) \right) \, dx \]

Theorem

There exists an infinitesimal subsequence of time steps \(\tau_k \downarrow 0 \) such that

\[U_{\tau_k} \rightarrow u \quad \text{pointwise in } L^2(\mathbb{R}^d) \text{ and in } L^2(0, T; W^{1,2}(\mathbb{R}^d)) \quad \text{as } k \uparrow \infty \]

\(u \in C^0([0, +\infty); W^{1,2}(\Omega)) \cap L^2_{\text{loc}}([0, +\infty); W^{2,2}(\mathbb{R}^d)) \) is a non-negative global solution of the weak formulation of the Cahn-Hilliard equation.
An example of convergence result

Assume that

\[P'(r) = m(r) W''(r) \geq -C \quad \text{in} \ (0, 1), \]

and the initial condition \(u_0 \) satisfies

\[0 \leq u_0 \leq 1, \quad \Phi(u_0) = \int_{\Omega} \left(\frac{1}{2} |Du|^2 \, dx + W(u_0) \right) \, dx \]

Theorem

There exists an infinitesimal subsequence of time steps \(\tau_k \downarrow 0 \) such that

\[U_{\tau_k} \to u \quad \text{pointwise in} \ L^2(\mathbb{R}^d) \text{ and in} \ L^2(0, T; W^{1,2}(\mathbb{R}^d)) \quad \text{as} \ k \uparrow \infty \]

\(u \in C^0_w([0, +\infty); W^{1,2}(\Omega)) \cap L^2_{\text{loc}}([0, +\infty); W^{2,2}(\mathbb{R}^d)) \) is a non-negative global solution of the weak formulation of the Cahn-Hilliard equation

\[\int\int \left(u \partial_t \zeta - \Delta u \ \text{div} \ (m(u)D\zeta) + P(u)\Delta \zeta \right) \, dx \, dt = 0, \]

for every test function \(\zeta \in C^\infty_0(\Omega \times (0, \infty)) \) such that \(D\zeta \cdot n = 0 \) on \(\partial\Omega \times (0, \infty) \).
Open problems

▶ More explicit characterizations of W_m and of measures at finite W_m-distance.
▶ Develop a duality approach to the weighted distances and find a precise characterization of their geodesics. [Carliet-Nazaret-Cardaliaguet '12]. Curvature properties?
▶ Study the gradient flow of other integral functionals: potential and interaction energies do not behave well with respect to the weighted distances.
▶ What about non-concave mobilities?
▶