Cahn-Hilliard and Thin film equations with nonlinear mobility as gradient flows in weighted Wasserstein metrics

Giuseppe Savaré
http://www.imati.cnr.it/~savare

Department of Mathematics, University of Pavia, Italy

DIMO2013
Levico Terme, September 11, 2013
Jointly with S. Lisini, D. Matthes, R. McCann

Outline

1 Evolution PDE's with a gradient flow structure

Outline

1 Evolution PDE's with a gradient flow structure

2 The dynamical approach to weighted transport distances

Outline

1 Evolution PDE's with a gradient flow structure

2 The dynamical approach to weighted transport distances

3 Basic tools for metric gradient flows: displacement convexity, variational approximation (JKO and WED schemes), flow interchange.

Outline

1 Evolution PDE's with a gradient flow structure

2 The dynamical approach to weighted transport distances

3 Basic tools for metric gradient flows: displacement convexity, variational approximation (JKO and WED schemes), flow interchange.

A general class of evolutionary PDE's

In many applications one is interested in nonnegative integrable solutions to evolution equations of the type

$$
\partial_{t} u-\operatorname{div}\left(\mathfrak{m}(\mathbf{u}) \mathbf{D} \frac{\delta \Phi}{\delta \mathbf{u}}\right)=0 \quad \text { in } \Omega \times(0, \infty), \quad \Omega \subset \mathbb{R}^{d}
$$

with Neumann-variational boundary conditions

$$
\mathbf{n} \cdot \mathrm{D} u=0, \quad \mathbf{n} \cdot \mathrm{D}\left(\mathfrak{m}(\mathrm{u}) \frac{\delta \Phi}{\delta u}\right)=0
$$

and initial condition $u_{0} \in L^{1}(\Omega), u_{0} \geq 0$.

A general class of evolutionary PDE's

In many applications one is interested in nonnegative integrable solutions to evolution equations of the type

$$
\partial_{t} u-\operatorname{div}\left(\mathfrak{m}(\mathbf{u}) \mathbf{D} \frac{\delta \Phi}{\delta \mathbf{u}}\right)=0 \quad \text { in } \Omega \times(0, \infty), \quad \Omega \subset \mathbb{R}^{d}
$$

with Neumann-variational boundary conditions

$$
\mathbf{n} \cdot \mathrm{D} u=0, \quad \mathbf{n} \cdot \mathrm{D}\left(\mathfrak{m}(\mathrm{u}) \frac{\delta \Phi}{\delta u}\right)=0
$$

and initial condition $u_{0} \in L^{1}(\Omega), u_{0} \geq 0$.
The equation can be split

$$
\begin{cases}\partial_{t} u+\operatorname{div} \mathbf{w}=0 & \text { (Continuity equation) } \\ & \\ \hline\end{cases}
$$

A general class of evolutionary PDE's

In many applications one is interested in nonnegative integrable solutions to evolution equations of the type

$$
\partial_{t} u-\operatorname{div}\left(\mathfrak{m}(\mathbf{u}) \mathbf{D} \frac{\delta \Phi}{\delta \mathbf{u}}\right)=0 \quad \text { in } \Omega \times(0, \infty), \quad \Omega \subset \mathbb{R}^{d}
$$

with Neumann-variational boundary conditions

$$
\mathbf{n} \cdot \mathrm{D} u=0, \quad \mathbf{n} \cdot \mathrm{D}\left(\mathfrak{m}(\mathrm{u}) \frac{\delta \Phi}{\delta u}\right)=0
$$

and initial condition $u_{0} \in L^{1}(\Omega), u_{0} \geq 0$.
The equation can be split

$$
\left\{\begin{array}{rlr}
\partial_{t} u+\operatorname{div} \mathbf{w} & =0 & \text { (Continuity equation) } \\
\mathbf{w}=\mathfrak{m}(\mathbf{u}) \mathbf{v} & =-\mathfrak{m}(\mathbf{u}) \mathbf{D} \psi & \text { (Flux structure) }
\end{array}\right.
$$

$\mathfrak{m}:[0,+\infty) \rightarrow[0,+\infty)$ is a given mobility function associated to the equation.

A general class of evolutionary PDE's

In many applications one is interested in nonnegative integrable solutions to evolution equations of the type

$$
\partial_{t} u-\operatorname{div}\left(\mathfrak{m}(\mathbf{u}) \mathbf{D} \frac{\delta \Phi}{\delta \mathbf{u}}\right)=0 \quad \text { in } \Omega \times(0, \infty), \quad \Omega \subset \mathbb{R}^{d}
$$

with Neumann-variational boundary conditions

$$
\mathbf{n} \cdot \mathrm{D} u=0, \quad \mathbf{n} \cdot \mathrm{D}\left(\mathfrak{m}(\mathbf{u}) \frac{\delta \Phi}{\delta u}\right)=0
$$

and initial condition $u_{0} \in L^{1}(\Omega), u_{0} \geq 0$.
The equation can be split

$$
\left\{\begin{array}{rlr}
\partial_{t} u+\operatorname{div} \mathbf{w} & =0 & \text { (Continuity equation) } \\
\mathbf{w}=\mathfrak{m}(\mathbf{u}) \mathbf{v} & =-\mathfrak{m}(\mathbf{u}) \mathbf{D} \psi & \text { (Flux structure) } \\
\psi & =\frac{\delta \Phi}{\delta \mathbf{u}} & \text { (Nonlinear variational condition) }
\end{array}\right.
$$

$\mathfrak{m}:[0,+\infty) \rightarrow[0,+\infty)$ is a given mobility function associated to the equation.

Examples: 2nd order equations

Heat equation:

$$
\partial_{t} u=\Delta u
$$

Examples: 2nd order equations

Heat equation:

$$
\partial_{t} u=\Delta u=\operatorname{div}\left(\mathbf{u}^{\alpha} \mathbf{D} \phi_{\alpha}^{\prime}(\mathbf{u})\right)
$$

Examples: 2nd order equations

Heat equation:

$$
\partial_{t} u=\Delta u=\operatorname{div}\left(\mathbf{u}^{\alpha} \mathbf{D} \phi_{\alpha}^{\prime}(\mathbf{u})\right)
$$

In this case $\mathfrak{m}(\mathbf{u})=\mathbf{u}^{\alpha}, \quad \boldsymbol{\Phi}(\mathbf{u})=\int_{\mathbb{R}^{\mathbf{d}}} \phi_{\alpha}(\mathbf{u}) \mathrm{d} \mathbf{x}=\frac{1}{(2-\alpha)(1-\alpha)} \int_{\mathbb{R}^{d}} u^{2-\alpha} \mathrm{d} x$.

Examples: 2nd order equations

Heat equation:

$$
\partial_{t} u=\Delta u=\operatorname{div}\left(\mathbf{u}^{\alpha} \mathbf{D} \phi_{\alpha}^{\prime}(\mathbf{u})\right)
$$

In this case $\mathfrak{m}(u)=u^{\alpha}$, $\Phi(\mathrm{u})=\int_{\mathbb{R}^{\mathrm{d}}} \phi_{\alpha}(\mathrm{u}) \mathrm{d} x=\frac{1}{(2-\alpha)(1-\alpha)} \int_{\mathbb{R}^{d}} u^{2-\alpha} \mathrm{d} x$.

$$
\partial_{t} u=\Delta u=\operatorname{div}\left(\mathbf{u}(1-\mathbf{u}) \mathbf{D F}^{\prime}(\mathbf{u})\right)
$$

Examples: 2nd order equations

Heat equation:

$$
\partial_{t} u=\Delta u=\operatorname{div}\left(\mathbf{u}^{\alpha} \mathbf{D} \phi_{\alpha}^{\prime}(\mathbf{u})\right)
$$

In this case $\mathfrak{m}(u)=u^{\alpha}, \quad \Phi(u)=\int_{\mathbb{R}^{d}} \phi_{\alpha}(u) d x=\frac{1}{(2-\alpha)(1-\alpha)} \int_{\mathbb{R}^{d}} u^{2-\alpha} d x$.

$$
\partial_{t} u=\Delta u=\operatorname{div}\left(\mathbf{u}(\mathbf{1}-\mathbf{u}) \mathbf{D F}^{\prime}(\mathbf{u})\right)
$$

$$
\mathfrak{m}(\mathbf{u})=\mathbf{u}(1-\mathbf{u}), \quad \Phi(\mathbf{u})=\int_{\mathbb{R}^{\mathbf{d}}} \mathbf{F}(\mathbf{u}) \mathrm{d} \mathbf{x}=\int_{\mathbb{R}^{d}}(u \log u+(1-u) \log (1-u)) \mathrm{d} x
$$

Examples: 2nd order equations

Heat equation:

$\mathfrak{m}(\mathrm{u})=\mathrm{u}(1-\mathrm{u}), \quad \Phi(\mathrm{u})=\int_{\mathbb{R}^{d}} \mathrm{~F}(\mathrm{u}) \mathrm{dx}=\int_{\mathbb{R}^{d}}(u \log u+(1-u) \log (1-u)) \mathrm{dx}$, Drift-diffusion-interaction $(\mathfrak{m}(\mathrm{u})=\mathbf{u})$:

$$
\partial_{t} u=\Delta u+\operatorname{div}(u \mathrm{D} V)+\operatorname{div}(u \mathrm{D} W * u)=\operatorname{div}(\mathbf{u} \mathbf{D}(\log \mathbf{u}+\mathbf{V}+\mathbf{W} * \mathbf{u})),
$$

Examples: 2nd order equations

Heat equation:

$\mathfrak{m}(\mathrm{u})=\mathrm{u}(1-\mathrm{u}), \quad \Phi(\mathrm{u})=\int_{\mathbb{R}^{d}} \mathrm{~F}(\mathrm{u}) \mathrm{dx}=\int_{\mathbb{R}^{d}}(u \log u+(1-u) \log (1-u)) \mathrm{d} x$,
Drift-diffusion-interaction $(\mathfrak{m}(\mathrm{u})=\mathbf{u})$:

$$
\begin{array}{r}
\partial_{t} u=\Delta u+\operatorname{div}(u \mathrm{D} V)+\operatorname{div}(u \mathrm{D} W * u)=\operatorname{div}(\mathbf{u} \mathbf{D}(\log \mathbf{u}+\mathbf{V}+\mathbf{W} * \mathbf{u})), \\
\Phi(\mathbf{u})=\int_{\mathbb{R}^{d}} u \log u \mathrm{~d} x+\int_{\mathbb{R}^{d}} V u \mathrm{~d} x+\iint_{\mathbb{R}^{d} \times \mathbb{R}^{d}} W(x-y) u(x) u(y) \mathrm{d} x \mathrm{~d} y
\end{array}
$$

Examples: 2nd order equations

Heat equation:

$\mathfrak{m}(\mathrm{u})=\mathrm{u}(1-\mathrm{u}), \quad \Phi(\mathrm{u})=\int_{\mathbb{R}^{d}} \mathrm{~F}(\mathrm{u}) \mathrm{dx}=\int_{\mathbb{R}^{d}}(u \log u+(1-u) \log (1-u)) \mathrm{d} x$,
Drift-diffusion-interaction $(\mathfrak{m}(\mathrm{u})=\mathrm{u})$:

$$
\partial_{t} u=\Delta u+\operatorname{div}(u \mathrm{D} V)+\operatorname{div}(u \mathrm{D} W * u)=\operatorname{div}(\mathbf{u} \mathrm{D}(\log \mathbf{u}+\mathbf{V}+\mathbf{W} * \mathbf{u}))
$$

Chemotaxis with overcrowding prevention [HILLEN-PAINTER '01]:

$$
\partial_{t} u=\operatorname{div}(\mathrm{D} u+\mathfrak{m}(\mathbf{u}) \mathrm{D}(W * u))=\operatorname{div}\left(\mathfrak{m}(\mathbf{u}) \mathbf{D}\left(\mathbf{F}^{\prime}(\mathbf{u})+\mathbf{W} * \mathbf{u}\right)\right)
$$

Examples: 4th order equations

Thin film (typically $\mathfrak{m}(\mathbf{u})=\mathbf{u}^{\alpha}$):

$$
\partial_{t} u+\operatorname{div}(\mathfrak{m}(\mathbf{u}) \mathbf{D} \boldsymbol{\Delta} \mathbf{u})=0
$$

Examples: 4th order equations

Thin film (typically $\mathfrak{m}(\mathbf{u})=\mathbf{u}^{\alpha}$):

$$
\partial_{t} u+\operatorname{div}(\mathfrak{m}(u) \mathbf{D} \boldsymbol{\Delta} \mathbf{u})=0, \quad \boldsymbol{\Phi}(u):=\frac{1}{2} \int_{\mathbb{R}^{d}}|\mathrm{D} u|^{2} \mathrm{~d} x
$$

Examples: 4th order equations

Thin film (typically $\mathfrak{m}(\mathbf{u})=\mathbf{u}^{\alpha}$):

$$
\partial_{t} u+\operatorname{div}(\mathfrak{m}(\mathbf{u}) \mathbf{D} \boldsymbol{\Delta} \mathbf{u})=0, \quad \boldsymbol{\Phi}(u):=\frac{1}{2} \int_{\mathbb{R}^{d}}|\mathrm{D} u|^{2} \mathrm{~d} x
$$

[Bernis-Friedman '90, Bertsch-Dal Passo-Garcke-Grün; Becker-Grün, Carrillo-Toscani '02, Carlen-Ulusoy '07]

Examples: 4th order equations

Thin film (typically $\mathfrak{m}(u)=u^{\alpha}$):

$$
\partial_{t} u+\operatorname{div}(\mathfrak{m}(\mathbf{u}) \mathbf{D} \boldsymbol{\Delta} \mathbf{u})=0,
$$

DLSS - Quantum drift-diffusion

$$
\partial_{t} u+\operatorname{div}\left(\mathfrak{m}(\mathbf{u}) \mathbf{D}\left(\mathbf{u}^{\boldsymbol{\beta}-\mathbf{1}} \boldsymbol{\Delta} \mathbf{u}^{\boldsymbol{\beta}}\right)\right)=0
$$

Examples: 4th order equations

Thin film (typically $\mathfrak{m}(u)=u^{\alpha}$):

$$
\partial_{t} u+\operatorname{div}(\mathfrak{m}(u) \mathbf{D} \boldsymbol{\Delta} \mathbf{u})=0,
$$

DLSS - Quantum drift-diffusion

$$
\partial_{t} u+\operatorname{div}\left(\mathfrak{m}(\mathbf{u}) \mathbf{D}\left(\mathbf{u}^{\beta-1} \Delta \mathbf{u}^{\boldsymbol{\beta}}\right)\right)=0, \quad \boldsymbol{\Phi}(u):=\frac{1}{2 \beta} \int_{\mathbb{R}^{d}}\left|\mathrm{D} u^{\beta}\right|^{2} \mathrm{~d} x
$$

Examples: 4th order equations

Thin film (typically $\mathfrak{m}(u)=u^{\alpha}$):

$$
\partial_{t} u+\operatorname{div}(\mathfrak{m}(\mathbf{u}) \mathbf{D} \boldsymbol{\Delta} \mathbf{u})=0
$$

DLSS - Quantum drift-diffusion

$$
\partial_{t} u+\operatorname{div}\left(\mathfrak{m}(\mathbf{u}) \mathbf{D}\left(\mathbf{u}^{\beta-1} \Delta \mathbf{u}^{\boldsymbol{\beta}}\right)\right)=0, \quad \boldsymbol{\Phi}(u):=\frac{1}{2 \beta} \int_{\mathbb{R}^{d}}\left|\mathrm{D} u^{\beta}\right|^{2} \mathrm{~d} x
$$

Derrida-Lebowitz-Speer-Spohn '91 [Bleher-Lebowitz-Speer, Jüngel, Pinnau, Matthes, Gianazza-Toscani-S.]

Examples: 4th order equations

Thin film (typically $\mathfrak{m}(u)=u^{\alpha}$):

$$
\partial_{t} u+\operatorname{div}(\mathfrak{m}(\mathbf{u}) \mathbf{D} \boldsymbol{\Delta} \mathbf{u})=0,
$$

DLSS - Quantum drift-diffusion

$$
\partial_{t} u+\operatorname{div}\left(m(u) D\left(u^{\beta-1} \Delta u^{\beta}\right)\right)=0
$$

Cahn-Hilliard: $(\mathfrak{m}(u)=u(1-u))$

$$
\partial_{t} u+\operatorname{div}\left(\mathbf{u}(\mathbf{1}-\mathbf{u}) \mathbf{D}\left(\mathbf{\Delta} \mathbf{u}-\mathbf{W}^{\prime}(\mathbf{u})\right)=0\right.
$$

Examples: 4th order equations

Thin film (typically $\mathfrak{m}(u)=u^{\alpha}$):

$$
\partial_{t} u+\operatorname{div}(\mathfrak{m}(\mathbf{u}) \mathbf{D} \boldsymbol{\Delta} \mathbf{u})=0,
$$

DLSS - Quantum drift-diffusion

$$
\partial_{t} u+\operatorname{div}\left(m(u) \mathrm{D}\left(\mathrm{u}^{\beta-1} \Delta \mathrm{u}^{\beta}\right)\right)=0
$$

Cahn-Hilliard: $(\mathfrak{m}(u)=u(1-u))$

$$
\partial_{t} u+\operatorname{div}\left(\mathbf{u}(\mathbf{1}-\mathbf{u}) \mathbf{D}\left(\mathbf{\Delta} \mathbf{u}-\mathbf{W}^{\prime}(\mathbf{u})\right)=0 \quad \boldsymbol{\Phi}(u):=\int_{\mathbb{R}^{d}}\left(\frac{1}{2}|\mathrm{D} u|^{2}+W(u)\right) \mathrm{d} x .\right.
$$

Examples: 4th order equations

Thin film (typically $\mathfrak{m}(u)=u^{\alpha}$):

$$
\partial_{t} u+\operatorname{div}(\mathfrak{m}(\mathbf{u}) \mathbf{D} \boldsymbol{\Delta} \mathbf{u})=0,
$$

DLSS - Quantum drift-diffusion

$$
\partial_{t} u+\operatorname{div}\left(m(u) D\left(u^{\beta-1} \Delta u^{\beta}\right)\right)=0,
$$

Cahn-Hilliard: $(\mathfrak{m}(u)=u(1-u))$

$$
\partial_{t} u+\operatorname{div}\left(\mathbf{u}(\mathbf{1}-\mathbf{u}) \mathbf{D}\left(\mathbf{\Delta} \mathbf{u}-\mathbf{W}^{\prime}(\mathbf{u})\right)=0 \quad \boldsymbol{\Phi}(u):=\int_{\mathbb{R}^{d}}\left(\frac{1}{2}|\mathrm{D} u|^{2}+W(u)\right) \mathrm{d} x .\right.
$$

[Elliott-Garcke '96]

The gradient flow structure: a formal motivation

$$
\begin{array}{cr}
\partial_{t} u+\operatorname{div} \mathbf{w}=0, & \psi=\frac{\delta \Phi}{\delta \mathbf{u}} \\
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{\Phi}\left(\mathbf{u}_{\mathrm{t}}\right)=\int_{\mathbb{R}^{d}} \partial_{t} u \frac{\delta \boldsymbol{\phi}}{\delta \mathbf{u}} \mathrm{~d} x=-\int_{\mathbb{R}^{d}}(\operatorname{div} \mathbf{w}) \psi \mathrm{d} x=\int_{\mathbb{R}^{d}} \mathbf{w} \cdot \mathbf{D} \psi \mathrm{~d} x
\end{array}
$$

The gradient flow structure: a formal motivation

$$
\partial_{t} u+\operatorname{div} \mathbf{w}=0, \quad \mathbf{w}=\mathfrak{m}(\mathbf{u}) \mathbf{v} \quad \psi=\frac{\delta \Phi}{\delta \mathbf{u}}
$$

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{\Phi}\left(\mathbf{u}_{\mathrm{t}}\right) & =\int_{\mathbb{R}^{d}} \partial_{t} u \frac{\delta \boldsymbol{\Phi}}{\delta \mathbf{u}} \mathrm{~d} x=-\int_{\mathbb{R}^{d}}(\operatorname{div} \mathbf{w}) \psi \mathrm{d} x=\int_{\mathbb{R}^{d}} \mathbf{w} \cdot \mathbf{D} \psi \mathrm{~d} x \\
& =\int_{\mathbb{R}^{d}} \mathbf{v} \cdot \mathbf{D} \psi \mathfrak{m}(\mathbf{u}) \mathrm{d} x \geq-\left(\int_{\mathbb{R}^{d}}|\mathbf{D} \psi|^{2} \mathfrak{m}(\mathbf{u}) \mathrm{d} x\right)^{1 / 2}\left(\int_{\mathbb{R}^{d}}|\mathbf{v}|^{2} \mathfrak{m}(\mathbf{u}) \mathrm{d} x\right)^{1 / 2}
\end{aligned}
$$

The gradient flow structure: a formal motivation

$$
\begin{gathered}
\partial_{t} u+\operatorname{div} \mathbf{w}=0, \quad \mathbf{w}=\mathfrak{m}(\mathbf{u}) \mathbf{v} \\
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{\Phi}\left(\mathbf{u}_{\mathbf{t}}\right)=\int_{\mathbb{R}^{d}} \partial_{t} u \frac{\delta \Phi}{\delta \mathrm{u}} \mathrm{~d} x=-\int_{\mathbb{R}^{d}}(\operatorname{div} \mathbf{w}) \psi \mathrm{d} x=\int_{\mathbb{R}^{d}} \mathbf{w} \cdot \mathbf{D} \psi \mathrm{~d} \mathrm{~d} x \\
= \\
=\int_{\mathbb{R}^{d}} \mathbf{v} \cdot \mathbf{D} \psi \mathfrak{m}(\mathbf{u}) \mathrm{d} x \geq-\left(\int_{\mathbb{R}^{d}}|\mathbf{D} \psi|^{2} \mathfrak{m}(\mathbf{u}) \mathrm{d} x\right)^{1 / 2}\left(\int_{\mathbb{R}^{d}}|\mathbf{v}|^{2} \mathfrak{m}(\mathbf{u}) \mathrm{d} x\right)^{1 / 2}
\end{gathered}
$$

Ansatz: interpret

$$
\left(\int_{\mathbb{R}^{d}}|\boldsymbol{v}|^{2} \mathfrak{m}(\mathbf{u}) \mathrm{d} x\right)^{1 / 2}
$$

as the "velocity" of the moving family u.

The gradient flow structure: a formal motivation

$$
\partial_{t} u+\operatorname{div} \mathbf{w}=0, \quad \mathbf{w}=\mathfrak{m}(\mathbf{u}) \mathbf{v}=-\mathfrak{m}(\mathbf{u}) \mathbf{D} \psi \quad \psi=\frac{\delta \Phi}{\delta \mathbf{u}}
$$

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{\Phi}\left(\mathbf{u}_{\mathrm{t}}\right) & =\int_{\mathbb{R}^{d}} \partial_{t} u \frac{\delta \Phi}{\delta \mathrm{u}} \mathrm{~d} x=-\int_{\mathbb{R}^{d}}(\operatorname{div} \mathrm{w}) \psi \mathrm{d} x=\int_{\mathbb{R}^{d}} \mathrm{w} \cdot \mathrm{D} \psi \mathrm{~d} x \\
& =\int_{\mathbb{R}^{d}} \mathbf{v} \cdot \mathbf{D} \psi \mathfrak{m}(\mathbf{u}) \mathrm{d} x \geq-\left(\int_{\mathbb{R}^{d}}|\mathbf{D} \boldsymbol{\psi}|^{2} \mathfrak{m}(\mathbf{u}) \mathrm{d} x\right)^{1 / 2}\left(\int_{\mathbb{R}^{d}}|\mathbf{v}|^{2} \mathfrak{m}(\mathbf{u}) \mathrm{d} x\right)^{1 / 2}
\end{aligned}
$$

Ansatz: interpret

$$
\left(\int_{\mathbb{R}^{d}}|\mathbf{v}|^{2} \mathfrak{m}(\mathbf{u}) \mathrm{d} x\right)^{1 / 2}
$$

as the "velocity" of the moving family u.
If we want to decrease $\boldsymbol{\Phi}$ as fast as possible, we have to choose

$$
\mathbf{v}=-\mathbf{D} \psi
$$

Outline

1 Evolution PDE's with a gradient flow structure

2 The dynamical approach to weighted transport distances

3 Basic tools for metric gradient flows: displacement convexity, variational approximation (JKO and WED schemes), flow interchange.

Weighted transport distances: the dynamical approach

[BEnAmou-Brenier '00]
We interpret u as the density of a (probability) measure $\rho=u \mathrm{~d} x$ and we consider a time dependent family $\mathbf{u}_{t}, t \in[0, T]$, of densities satisfying the nonlinear continuity equation

$$
\partial_{t} \mathbf{u}+\operatorname{div}(\mathfrak{m}(\mathbf{u}) \mathbf{v})=0
$$

Weighted transport distances: the dynamical approach

[BEnAmou-Brenier '00]
We interpret u as the density of a (probability) measure $\rho=u \mathrm{~d} x$ and we consider a time dependent family $\mathbf{u}_{t}, t \in[0, T]$, of densities satisfying the nonlinear continuity equation

$$
\partial_{t} \mathbf{u}+\operatorname{div}(\mathfrak{m}(\mathbf{u}) \mathbf{v})=0
$$

The scalar velocity at time t is given by

$$
\mathcal{V}_{\mathbf{t}}\left[\mathbf{u}_{t}\right]:=\left\|\mathbf{v}_{\mathbf{t}}\right\|_{L^{2}\left(\mathfrak{m}\left(u_{t}\right) ; \mathbb{R}^{d}\right)}=\left(\int_{\mathbb{R}^{d}}\left|\mathbf{v}_{\mathbf{t}}(\mathbf{x})\right|^{2} \mathfrak{m}\left(\mathbf{u}_{\mathrm{t}}\right) \mathrm{d} x\right)^{1 / 2} .
$$

Weighted transport distances: the dynamical approach

[BEnAmou-Brenier '00]
We interpret u as the density of a (probability) measure $\rho=u \mathrm{~d} x$ and we consider a time dependent family $\mathbf{u}_{t}, t \in[0, T]$, of densities satisfying the nonlinear continuity equation

$$
\partial_{t} \mathbf{u}+\operatorname{div}(\mathfrak{m}(\mathbf{u}) \mathbf{v})=0
$$

The scalar velocity at time t is given by

$$
\mathcal{V}_{\mathbf{t}}\left[\mathbf{u}_{t}\right]:=\left\|\mathbf{v}_{\mathbf{t}}\right\|_{L^{2}\left(\mathfrak{m}\left(u_{t}\right) ; \mathbb{R}^{d}\right)}=\left(\int_{\mathbb{R}^{d}}\left|\mathbf{v}_{\mathbf{t}}(\mathbf{x})\right|^{2} \mathfrak{m}\left(\mathbf{u}_{\mathrm{t}}\right) \mathrm{d} x\right)^{1 / 2}
$$

The length of the curve \mathbf{u} between t_{0} and t_{1}

$$
\mathcal{L}_{t_{0}}^{t_{1}}[\mathbf{u}]:=\int_{t_{0}}^{t_{1}} \mathcal{V}_{t}[\mathbf{u}] \mathrm{d} t=\int_{t_{0}}^{t_{1}}\left(\int_{\mathbb{R}^{d}}\left|\mathbf{v}_{\mathbf{t}}(\mathbf{x})\right|^{2} \mathfrak{m}\left(\mathbf{u}_{\mathrm{t}}\right) \mathrm{d} x\right)^{1 / 2} \mathrm{~d} t
$$

Weighted transport distances: the dynamical approach

[BEnAmou-Brenier '00]
We interpret u as the density of a (probability) measure $\rho=u \mathrm{~d} x$ and we consider a time dependent family $\mathbf{u}_{t}, t \in[0, T]$, of densities satisfying the nonlinear continuity equation

$$
\partial_{t} \mathbf{u}+\operatorname{div}(\mathfrak{m}(\mathbf{u}) \mathbf{v})=0
$$

The scalar velocity at time t is given by

$$
\mathcal{V}_{\mathbf{t}}\left[\mathbf{u}_{t}\right]:=\left\|\mathbf{v}_{\mathbf{t}}\right\|_{L^{2}\left(\mathfrak{m}\left(u_{t}\right) ; \mathbb{R}^{d}\right)}=\left(\int_{\mathbb{R}^{d}}\left|\mathbf{v}_{\mathbf{t}}(\mathbf{x})\right|^{2} \mathfrak{m}\left(\mathbf{u}_{\mathrm{t}}\right) \mathrm{d} x\right)^{1 / 2} .
$$

The length of the curve \mathbf{u} between t_{0} and t_{1}

$$
\mathcal{L}_{t_{0}}^{t_{1}}[\mathbf{u}]:=\int_{t_{0}}^{t_{1}} \mathcal{V}_{t}[\mathbf{u}] \mathrm{d} t=\int_{t_{0}}^{t_{1}}\left(\int_{\mathbb{R}^{d}}\left|\mathbf{v}_{\mathbf{t}}(\mathbf{x})\right|^{2} \mathfrak{m}\left(\mathbf{u}_{\mathrm{t}}\right) \mathrm{d} x\right)^{1 / 2} \mathrm{~d} t
$$

Weighted transport distance W_{m} between u_{0} and u_{1} :

$$
\mathrm{W}_{\mathfrak{m}}\left(\mathbf{u}_{0}, \mathbf{u}_{1}\right):=\min \left\{\mathcal{L}_{0}^{1}[\mathbf{u}]: \mathbf{u}_{t=0}=\mathbf{u}_{0}, \mathbf{u}_{\left.\right|_{t=1}}=\mathbf{u}_{1}\right\}
$$

Limiting cases

$\mathfrak{m}(r) \equiv 1 \quad \leftrightarrow \quad$ Homogeneous dual $W^{-1,2}\left(\mathbb{R}^{d}\right)$ distance.

$$
\mathrm{W}_{\mathfrak{m}}\left(\mathbf{u}_{0}, \mathbf{u}_{1}\right)=\sup \left\{\int_{\mathbb{R}^{d}}\left(\mathbf{u}_{0}-\mathbf{u}_{1}\right) \varphi \mathrm{d} x: \int_{\mathbb{R}^{d}}|\mathrm{D} \varphi|^{2} \mathrm{~d} x \leq 1\right\}
$$

Limiting cases

$\mathfrak{m}(r) \equiv 1 \leftrightarrow$ Homogeneous dual $W^{-1,2}\left(\mathbb{R}^{d}\right)$ distance.

$$
\begin{gathered}
\mathrm{W}_{\mathfrak{m}}\left(\mathbf{u}_{0}, \mathbf{u}_{1}\right)=\sup \left\{\int_{\mathbb{R}^{d}}\left(\mathbf{u}_{0}-\mathbf{u}_{1}\right) \varphi \mathrm{d} x: \int_{\mathbb{R}^{d}}|\mathrm{D} \varphi|^{2} \mathrm{~d} x \leq 1\right\} \\
\mathbf{v}=\mathbf{w}, \quad \partial_{t} \mathbf{u}+\operatorname{div} \mathbf{w}=0 . \quad \mathrm{W}_{\mathfrak{m}}^{2}\left(\mathbf{u}_{0}, \mathbf{u}_{1}\right)=\min \left\{\int|\mathbf{w}|^{2}: \operatorname{div} \mathbf{w}=\mathbf{u}_{1}-\mathbf{u}_{2}\right\}
\end{gathered}
$$

Limiting cases

$\mathfrak{m}(r) \equiv 1 \quad \leftrightarrow \quad$ Homogeneous dual $W^{-1,2}\left(\mathbb{R}^{d}\right)$ distance.

$$
\begin{gathered}
\mathrm{W}_{\mathfrak{m}}\left(\mathbf{u}_{0}, \mathbf{u}_{1}\right)=\sup \left\{\int_{\mathbb{R}^{d}}\left(\mathbf{u}_{0}-\mathbf{u}_{1}\right) \varphi \mathrm{d} x: \int_{\mathbb{R}^{d}}|\mathrm{D} \varphi|^{2} \mathrm{~d} x \leq 1\right\} \\
\mathbf{v}=\mathbf{w}, \quad \partial_{t} \mathbf{u}+\operatorname{div} \mathbf{w}=0 . \quad \mathrm{W}_{\mathfrak{m}}^{2}\left(\mathbf{u}_{0}, \mathbf{u}_{1}\right)=\min \left\{\int|\mathbf{w}|^{2}: \operatorname{div} \mathbf{w}=\mathbf{u}_{1}-\mathbf{u}_{2}\right\}
\end{gathered}
$$

Hilbert Theory [Benilan, Brezis, Crandall, Pazy, ... ~'70]

Limiting cases

$\mathfrak{m}(r) \equiv 1 \leftrightarrow$ Homogeneous dual $W^{-1,2}\left(\mathbb{R}^{d}\right)$ distance.

$$
\begin{aligned}
& \qquad W_{\mathrm{m}}\left(\mathbf{u}_{0}, \mathbf{u}_{1}\right)=\sup \left\{\int_{\mathbb{R}^{d}}\left(\mathbf{u}_{0}-\mathbf{u}_{1}\right) \varphi \mathrm{d} x: \int_{\mathbb{R}^{d}}|\mathrm{D} \varphi|^{2} \mathrm{~d} x \leq 1\right\} \\
& \mathbf{v}=\mathrm{w}, \quad \partial_{t} \mathbf{u}+\operatorname{div} \mathbf{w}=0 . \quad \mathrm{W}_{\mathrm{m}}^{2}\left(\mathbf{u}_{0}, \mathbf{u}_{1}\right)=\min \left\{\int|\mathrm{w}|^{2}: \operatorname{div} \mathbf{w}=\mathbf{u}_{1}-\mathbf{u}_{2}\right\} \\
& \text { Hilbert Theory }\left[\text { Benilan, Brezis, Crandall, Pazy, } \ldots \sim^{\prime} 70\right] \\
& \mathfrak{m}(\mathbf{r})=\mathbf{r} \quad \leftrightarrow \quad \text { Wasserstein distance, } \mathrm{W}_{\mathfrak{m}}=\mathrm{W} ; \\
& \text { characterization in terms of optimal transport, linear transport equation } \\
& \qquad \partial_{t} \mathbf{u}+\operatorname{div} \mathbf{u} \mathbf{v}=0
\end{aligned}
$$

Limiting cases

$\mathfrak{m}(r) \equiv 1 \leftrightarrow$ Homogeneous dual $W^{-1,2}\left(\mathbb{R}^{d}\right)$ distance.
$\mathbf{v}=\mathbf{w}, \quad \partial_{t} \mathbf{u}+\operatorname{div} \mathbf{w}=0$.

$$
\mathrm{W}_{\mathrm{m}}^{2}\left(\mathbf{u}_{0}, \mathbf{u}_{1}\right)=\min \left\{\int|\mathrm{w}|^{2}: \operatorname{div} \mathrm{w}=\mathbf{u}_{1}-\mathbf{u}_{2}\right\}
$$

Hilbert Theory [Benilan, Brezis, Crandall, Pazy, ... ~'70]
$\mathfrak{m}(r)=r \quad \leftrightarrow \quad$ Wasserstein distance, $W_{\mathfrak{m}}=W$;
characterization in terms of optimal transport, linear transport equation

$$
\partial_{t} \mathbf{u}+\operatorname{div} \mathbf{u} \mathbf{v}=0
$$

[Jordan-Kinderlehrer-Otto '98, Оtto '01]
Applications: optimal transport, existence and asymptotic behaviour of solutions, contraction properties, Logarithmic Sobolev Inequalities, approximation algorithms, curvature and metric measure spaces, stability,... [Ambrosio-Gigli-S., Agueh, Brenier, Carrillo, Carlen, McCann, Gangbo, Giacomelli, Gianazza-Toscani-S., Lisini, Otto, Slepcev, Sturm, Villani, Westdickenberg, ...]

The interest of the method and the main problems

ADVANTAGES

- Non-negativity is for free.
- A general approximation scheme, which is a variational formulation of the backward Euler method, is always available.
- Decay of the generating functional $\boldsymbol{\Phi}$ along the (discrete/continuous) flow.

The interest of the method and the main problems

ADVANTAGES

- Non-negativity is for free.
- A general approximation scheme, which is a variational formulation of the backward Euler method, is always available.
- Decay of the generating functional $\boldsymbol{\Phi}$ along the (discrete/continuous) flow.
DRAWBACKS
- It is not so simple as in the Hilbertian framework
- You loose the linear structure of the underlying space.
- The distance is not flat and the space behaves like the an infinitely dimensional, non-smooth, positively curved Riemannian manifold.

The interest of the method and the main problems

ADVANTAGES

- Non-negativity is for free.
- A general approximation scheme, which is a variational formulation of the backward Euler method, is always available.
- Decay of the generating functional $\boldsymbol{\Phi}$ along the (discrete/continuous) flow.

DRAWBACKS

- It is not so simple as in the Hilbertian framework
- You loose the linear structure of the underlying space.
- The distance is not flat and the space behaves like the an infinitely dimensional, non-smooth, positively curved Riemannian manifold.

PROBLEMS

- How can we make rigorous this approach and when it is well posed, so that it defines a distance?

The interest of the method and the main problems

ADVANTAGES

- Non-negativity is for free.
- A general approximation scheme, which is a variational formulation of the backward Euler method, is always available.
- Decay of the generating functional $\boldsymbol{\Phi}$ along the (discrete/continuous) flow.

DRAWBACKS

- It is not so simple as in the Hilbertian framework
- You loose the linear structure of the underlying space.
- The distance is not flat and the space behaves like the an infinitely dimensional, non-smooth, positively curved Riemannian manifold.

PROBLEMS

- How can we make rigorous this approach and when it is well posed, so that it defines a distance?
- Does the distance enjoys similar/different properties to the Sobolev/Wasserstein one?

The interest of the method and the main problems

ADVANTAGES

- Non-negativity is for free.
- A general approximation scheme, which is a variational formulation of the backward Euler method, is always available.
- Decay of the generating functional $\boldsymbol{\Phi}$ along the (discrete/continuous) flow.

DRAWBACKS

- It is not so simple as in the Hilbertian framework
- You loose the linear structure of the underlying space.
- The distance is not flat and the space behaves like the an infinitely dimensional, non-smooth, positively curved Riemannian manifold.

PROBLEMS

- How can we make rigorous this approach and when it is well posed, so that it defines a distance?
- Does the distance enjoys similar/different properties to the Sobolev/Wasserstein one?
- Could it be useful to study evolution equations and to get new geometric insights?

The interest of the method and the main problems

ADVANTAGES

- Non-negativity is for free.
- A general approximation scheme, which is a variational formulation of the backward Euler method, is always available.
- Decay of the generating functional $\boldsymbol{\Phi}$ along the (discrete/continuous) flow.

DRAWBACKS

- It is not so simple as in the Hilbertian framework
- You loose the linear structure of the underlying space.
- The distance is not flat and the space behaves like the an infinitely dimensional, non-smooth, positively curved Riemannian manifold.

PROBLEMS

- How can we make rigorous this approach and when it is well posed, so that it defines a distance?
- Does the distance enjoys similar/different properties to the Sobolev/Wasserstein one?
- Could it be useful to study evolution equations and to get new geometric insights?
- Are there interesting convexity properties of the integral functionals and related functional inequalities ?

The variational problem

Problem

Given nonnegative densities $u_{0}, u_{1} \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{d}\right)$ find a minimizer of the action functional

$$
\int_{0}^{1} \int_{\mathbb{R}^{d}}\left|\mathbf{v}_{\mathbf{t}}\right|^{2} \mathfrak{m}\left(\mathbf{u}_{\mathrm{t}}\right) \mathrm{d} x \mathrm{~d} t \quad \text { s.t. } \quad \partial_{t} u+\operatorname{div}\left(\mathfrak{m}\left(\mathbf{u}_{\mathrm{t}}\right) \mathbf{v}_{\mathbf{t}}\right)=0, \quad u_{t=0,1}=u_{0,1}
$$

The variational problem

Problem

Given nonnegative densities $u_{0}, u_{1} \in L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right)$ find a minimizer of the action functional

$$
\int_{0}^{1} \int_{\mathbb{R}^{d}}\left|\mathbf{v}_{\mathbf{t}}\right|^{2} \mathfrak{m}\left(\mathbf{u}_{\mathrm{t}}\right) \mathrm{d} x \mathrm{~d} t \quad \text { s.t. } \quad \partial_{t} u+\operatorname{div}\left(\mathfrak{m}\left(\mathbf{u}_{\mathrm{t}}\right) \mathbf{v}_{\mathrm{t}}\right)=0, \quad u_{\left.\right|_{t=0,1}}=u_{0,1}
$$

Direct method of the calculus of variations: fix the densities u_{0}, u_{1} and take a minimizing sequence $\left(u_{t}^{n}, \mathbf{w}_{t}^{n}, \mathbf{v}_{\mathrm{t}}^{\mathrm{n}}\right)$ with $\mathbf{w}_{t}^{n}=\mathfrak{m}\left(\mathbf{u}_{\mathrm{t}}^{\mathrm{n}}\right) \mathbf{v}_{\mathrm{t}}^{\mathrm{n}}$, such that

$$
\partial_{t} u_{t}^{n}+\operatorname{div}\left(\mathfrak{m}\left(u_{t}^{n}\right) v_{t}^{n}\right)=0,\left.\quad u^{n}\right|_{t=0,1}=u_{0,1}, \quad \int_{0}^{1} \int_{\mathbb{R}^{d}}\left|v_{t}^{n}\right|^{2} \mathfrak{m}\left(u_{t}^{n}\right) \mathrm{d} x d t \rightarrow \inf
$$

The variational problem

Problem

Given nonnegative densities $u_{0}, u_{1} \in L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right)$ find a minimizer of the action functional

$$
\int_{0}^{1} \int_{\mathbb{R}^{d}}\left|\mathbf{v}_{\mathbf{t}}\right|^{2} \mathfrak{m}\left(\mathbf{u}_{\mathrm{t}}\right) \mathrm{d} x \mathrm{~d} t \quad \text { s.t. } \quad \partial_{t} u+\operatorname{div}\left(\mathfrak{m}\left(\mathbf{u}_{\mathrm{t}}\right) \mathbf{v}_{\mathrm{t}}\right)=0, \quad u_{\left.\right|_{t=0,1}}=u_{0,1}
$$

Direct method of the calculus of variations: fix the densities u_{0}, u_{1} and take a minimizing sequence $\left(u_{t}^{n}, \mathbf{w}_{t}^{n}, \mathbf{v}_{\mathbf{t}}^{\mathrm{n}}\right)$ with $\mathbf{w}_{t}^{n}=\mathfrak{m}\left(\mathbf{u}_{\mathrm{t}}^{\mathrm{n}}\right) \mathbf{v}_{\mathbf{t}}^{\mathrm{n}}$, such that

$$
\partial_{t} u_{t}^{n}+\operatorname{div}\left(\mathfrak{m}\left(u_{t}^{n}\right) v_{t}^{n}\right)=0,\left.\quad u^{n}\right|_{t=0,1}=u_{0,1}, \quad \int_{0}^{1} \int_{\mathbb{R}^{d}}\left|v_{t}^{n}\right|^{2} \mathfrak{m}\left(u_{t}^{n}\right) \mathrm{d} x \mathrm{~d} t \rightarrow \inf
$$

Problem: sublevels of the minimizing functional are only weakly* relatively compact: we get weak* convergence of a suitable subsequence but the equation $\partial_{t} u_{t}+\operatorname{div}(\mathfrak{m}(\mathbf{u}) \mathbf{v})=0$ is nonlinear in the couple (u, \mathbf{v}).

The variational problem

Problem

Given nonnegative densities $u_{0}, u_{1} \in L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right)$ find a minimizer of the action functional

$$
\int_{0}^{1} \int_{\mathbb{R}^{d}}\left|\mathbf{v}_{\mathbf{t}}\right|^{2} \mathfrak{m}\left(u_{t}\right) \mathrm{d} x \mathrm{~d} t \quad \text { s.t. } \quad \partial_{t} u+\operatorname{div}\left(\mathfrak{m}\left(\mathbf{u}_{\mathrm{t}}\right) \mathbf{v}_{\mathrm{t}}\right)=0, \quad u_{\left.\right|_{t=0,1}}=u_{0,1}
$$

Direct method of the calculus of variations: fix the densities u_{0}, u_{1} and take a minimizing sequence $\left(u_{t}^{n}, \mathbf{w}_{t}^{n}, \mathbf{v}_{\mathbf{t}}^{\mathrm{n}}\right)$ with $\mathbf{w}_{t}^{n}=\mathfrak{m}\left(\mathbf{u}_{\mathrm{t}}^{\mathrm{n}}\right) \mathbf{v}_{\mathbf{t}}^{\mathrm{n}}$, such that

$$
\partial_{t} u_{t}^{n}+\operatorname{div}\left(\mathfrak{m}\left(u_{t}^{n}\right) v_{t}^{n}\right)=0,\left.\quad u^{n}\right|_{t=0,1}=u_{0,1}, \quad \int_{0}^{1} \int_{\mathbb{R}^{d}}\left|v_{t}^{n}\right|^{2} \mathfrak{m}\left(u_{t}^{n}\right) d x d t \rightarrow \inf
$$

Problem: sublevels of the minimizing functional are only weakly* relatively compact: we get weak* convergence of a suitable subsequence but the equation $\partial_{t} u_{t}+\operatorname{div}(\mathfrak{m}(\mathbf{u}) \mathbf{v})=0$ is nonlinear in the couple (u, \mathbf{v}).
Basic idea: write everything in terms of (u, \mathbf{w}) ! Since $\mathbf{w}=\mathfrak{m}(\mathbf{u}) \mathbf{v}$ we minimize

$$
\begin{gathered}
\mathcal{A}(u, \mathbf{w}):=\int_{0}^{1} \int_{\mathbb{R}^{d}} A\left(u_{t}, \mathbf{w}_{t}\right) \mathrm{d} x \mathrm{~d} t \quad \text { s.t. } \quad \partial_{t} u+\operatorname{div} \mathbf{w}_{t}=0, \quad u_{\left.\right|_{t=0,1}}=u_{0,1} \\
\text { where } \quad A(u, \mathbf{w}):=\frac{|\mathbf{w}|^{2}}{\mathfrak{m}(\mathbf{u})}
\end{gathered}
$$

Convexity (and I.s.c.) of the action requires a concave mobility

Lemma

The function

$$
A:(u, \mathbf{w}) \in(0,+\infty) \times \mathbb{R}^{d} \rightarrow \frac{|\mathbf{w}|^{2}}{\mathfrak{m}(\mathbf{u})} \in[0,+\infty]
$$

is convex iff $\mathfrak{m}:[0,+\infty) \rightarrow[0, \infty)$ is concave.

Convexity (and I.s.c.) of the action requires a concave mobility

Lemma

The function

$$
A:(u, \mathbf{w}) \in(0,+\infty) \times \mathbb{R}^{d} \rightarrow \frac{|\mathbf{w}|^{2}}{\mathfrak{m}(\mathbf{u})} \in[0,+\infty]
$$

is convex iff $\mathfrak{m}:[0,+\infty) \rightarrow[0, \infty)$ is concave.
Two cases:
A) $\mathfrak{m}:[0,+\infty) \rightarrow[0,+\infty)$ is concave and nondecreasing.

Model example: $\mathfrak{m}(\mathbf{u})=\mathbf{u}^{\alpha}, 0 \leq \alpha \leq 1$. In this case $A(\lambda u, \lambda \mathbf{w})$ is superlinear as $\lambda \uparrow+\infty$, except when $\mathbf{w}=0$.

Convexity (and I.s.c.) of the action requires a concave mobility

Lemma

The function

$$
A:(u, \mathbf{w}) \in(0,+\infty) \times \mathbb{R}^{d} \rightarrow \frac{|\mathbf{w}|^{2}}{\mathfrak{m}(\mathbf{u})} \in[0,+\infty]
$$

is convex iff $\mathfrak{m}:[0,+\infty) \rightarrow[0, \infty)$ is concave.
Two cases:
A) $\mathfrak{m}:[0,+\infty) \rightarrow[0,+\infty)$ is concave and nondecreasing.

Model example: $\mathfrak{m}(\mathbf{u})=\mathbf{u}^{\alpha}, 0 \leq \alpha \leq 1$. In this case $A(\lambda u, \lambda \mathbf{w})$ is superlinear as $\lambda \uparrow+\infty$, except when $\mathbf{w}=0$.
B) $\mathfrak{m}:[0, M] \rightarrow[0,+\infty)$ is concave with $\mathfrak{m}(0)=\mathfrak{m}(M)=0$. Model example: $\mathfrak{m}(\mathbf{u})=\mathbf{u}(\mathbf{M}-\mathbf{u})$. In this case $A(u, \mathbf{w})=+\infty$ if $u>M$ and all the densities u are uniformly bounded.

A rigorous definition through convex functional of measures

To get weak* lower semicontinuity of \mathcal{A}, we extend it to couples ($\boldsymbol{\rho}, \boldsymbol{\nu}$) where $\rho \in \mathcal{M}_{\text {loc }}\left(\mathbb{R}^{d}\right)$ is a nonnegative Radon measure and $\nu \in \mathcal{M}_{\mathrm{loc}}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right)$ is a Radon vector measure.

A rigorous definition through convex functional of measures

To get weak* lower semicontinuity of \mathcal{A}, we extend it to
couples $(\boldsymbol{\rho}, \boldsymbol{\nu})$ where $\rho \in \mathcal{M}_{\text {loc }}\left(\mathbb{R}^{d}\right)$ is a nonnegative Radon measure and $\nu \in \mathcal{M}_{\text {loc }}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right)$ is a Radon vector measure.

Moreover, the function \boldsymbol{A} is no more 1 -homogeneous in the couple ($\rho, \boldsymbol{\nu}$), so that the definition of \mathcal{A} also depends from a reference measure $\gamma \in \mathcal{M}_{\text {loc }}\left(\mathbb{R}^{\mathrm{d}}\right)$ (usually the Lebesgue measure, but not necessarily).

A rigorous definition through convex functional of measures

To get weak* lower semicontinuity of \mathcal{A}, we extend it to couples ($\boldsymbol{\rho}, \boldsymbol{\nu}$) where $\rho \in \mathcal{M}_{\text {loc }}\left(\mathbb{R}^{d}\right)$ is a nonnegative Radon measure and $\nu \in \mathcal{M}_{\text {loc }}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right)$ is a Radon vector measure.

Moreover, the function \boldsymbol{A} is no more 1 -homogeneous in the couple ($\rho, \boldsymbol{\nu}$), so that the definition of \mathcal{A} also depends from a reference measure $\gamma \in \mathcal{M}_{\text {loc }}\left(\mathbb{R}^{\mathrm{d}}\right)$ (usually the Lebesgue measure, but not necessarily).

Definition (The case of a sublinear mobility)

If $\rho \in \mathcal{M}_{\text {loc }}\left(\mathbb{R}^{d}\right), \nu \in \mathcal{M}_{\text {loc }}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right)$ we set

$$
\mathcal{A}(\rho, \boldsymbol{\nu} \mid \gamma):=\int_{\mathbb{R}^{d}} A\left(\frac{\mathrm{~d} \rho}{\mathrm{~d} \gamma}, \frac{\mathrm{~d} \boldsymbol{\nu}}{\mathrm{~d} \gamma}\right) \mathrm{d} \gamma
$$

Given ρ_{0}, ρ_{1} we have

$$
\mathrm{W}_{\mathrm{m}, \gamma}^{2}\left(\rho_{0}, \rho_{1}\right):=\inf \left\{\int_{0}^{1} \mathcal{A}\left(\rho_{t}, \boldsymbol{\nu}_{t}\right) \mathrm{d} t \quad \text { s.t. } \quad \partial_{t} \rho+\operatorname{div} \boldsymbol{\nu}=0, \quad \rho_{t=0,1}=\rho_{0,1}\right\}
$$

We call $\mathcal{M}_{\mathfrak{m}, \gamma}[\sigma]$ the collection of all measures at finite distance from σ.
[Dolbeault-Nazaret-S. '09, Lisini-Marigonda '10]

The role of γ and simple properties of $\mathrm{W}_{\mathfrak{m}, \gamma}$

1. Typically $\gamma=\mathscr{L}^{\mathrm{d}}$ (omitted in W_{m}).

The role of γ and simple properties of $W_{\mathfrak{m}, \gamma}$

1. Typically $\gamma=\mathscr{L}^{\mathrm{d}}$ (omitted in W_{m}).
2. $\gamma=\mathscr{L}^{\mathrm{d}}{ }_{\Omega^{\prime}}, \Omega$ open, bounded, and convex subset of \mathbb{R}^{d} : equations in bounded domains with Neumann boundary condition.

The role of γ and simple properties of $W_{\mathfrak{m}, \gamma}$

1. Typically $\gamma=\mathscr{L}^{\mathrm{d}}$ (omitted in $\mathrm{W}_{\mathfrak{m}}$).
2. $\gamma=\left.\mathscr{L}^{\mathrm{d}}\right|_{\Omega}, \Omega$ open, bounded, and convex subset of \mathbb{R}^{d} : equations in bounded domains with Neumann boundary condition.
3. $\gamma:=\mathrm{e}^{-\mathrm{v}} \mathscr{L}^{\mathrm{d}}$ is a log-concave measure: Fokker-Planck equations (Beckner/convex Sobolev inequalities)

The role of γ and simple properties of $\mathrm{W}_{\mathfrak{m}, \gamma}$

1. Typically $\gamma=\mathscr{L}^{\mathrm{d}}$ (omitted in $\mathrm{W}_{\mathfrak{m}}$).
2. $\gamma=\left.\mathscr{L}^{\mathrm{d}}\right|_{\Omega}, \Omega$ open, bounded, and convex subset of \mathbb{R}^{d} : equations in bounded domains with Neumann boundary condition.
3. $\gamma:=\mathrm{e}^{-\mathrm{v}} \mathscr{L}^{\mathrm{d}}$ is a log-concave measure: Fokker-Planck equations (Beckner/convex Sobolev inequalities)
4. $\gamma:=\left.\mathscr{H}^{k}\right|_{M}, M$ is k-dimensional Riemannian manifold embedded in \mathbb{R}^{d} : evolutions in Riemannian manifolds.

The role of γ and simple properties of $\mathrm{W}_{\mathfrak{m}, \gamma}$

```
1. Typically \(\gamma=\mathscr{L}^{\mathrm{d}}\) (omitted in \(\left.\mathrm{W}_{\mathrm{m}}\right)\).
2. \(\gamma=\left.\mathscr{L}^{\mathrm{d}}\right|_{\Omega}\), \(\Omega\) open, bounded, and convex subset of \(\mathbb{R}^{d}\) : equations in
    bounded domains with Neumann boundary condition.
3. \(\gamma:=\mathrm{e}^{-\mathrm{V}} \mathscr{L}^{\mathrm{d}}\) is a log-concave measure: Fokker-Planck equations
    (Beckner/convex Sobolev inequalities)
4. \(\gamma:=\left.\mathscr{H}^{k}\right|_{M}, M\) is \(k\)-dimensional Riemannian manifold embedded in \(\mathbb{R}^{d}\) :
        evolutions in Riemannian manifolds.
```

$\mathrm{W}_{\mathfrak{m}, \gamma}$ enjoys nice properties:
completeness, lower semicontinuity, convexity, subadditivity, convolution, rescaling, existence of geodesic.

The role of γ and simple properties of $\mathrm{W}_{\mathfrak{m}, \gamma}$

1. Typically $\gamma=\mathscr{L}^{\mathrm{d}}$ (omitted in W_{m}).
2. $\gamma=\left.\mathscr{L}^{\mathrm{d}}\right|_{\Omega}, \Omega$ open, bounded, and convex subset of \mathbb{R}^{d} : equations in bounded domains with Neumann boundary condition.
3. $\gamma:=\mathrm{e}^{-\mathrm{V}} \mathscr{L}^{\mathrm{d}}$ is a log-concave measure: Fokker-Planck equations (Beckner/convex Sobolev inequalities)
4. $\gamma:=\left.\mathscr{H}^{\mathrm{k}}\right|_{M}, M$ is k-dimensional Riemannian manifold embedded in \mathbb{R}^{d} : evolutions in Riemannian manifolds.
$W_{\mathfrak{m}, \gamma}$ enjoys nice properties:
completeness, lower semicontinuity, convexity, subadditivity, convolution, rescaling, existence of geodesic.

Theorem (Dolbeault-Nazaret-S.)

Suppose that $\gamma^{\mathrm{n}} \rightharpoonup \gamma, \rho_{i}^{n} \rightharpoonup \rho_{i}$ in $\mathcal{M}_{\mathrm{loc}}\left(\mathbb{R}^{d}\right)$ and $\mathfrak{m}^{\mathrm{n}} \downarrow \mathfrak{m}$ pointwise in $[0,+\infty)$. Then

$$
\liminf _{n \rightarrow+\infty} \mathrm{W}_{\mathfrak{m}^{n}, \gamma^{n}}\left(\rho_{0}^{n}, \rho_{1}^{n}\right) \geq \mathrm{W}_{\mathfrak{m}, \gamma}\left(\rho_{0}, \rho_{1}\right)
$$

The role of γ and simple properties of $\mathrm{W}_{\mathfrak{m}, \gamma}$

1. Typically $\gamma=\mathscr{L}^{\mathrm{d}}$ (omitted in $\left.\mathrm{W}_{\mathrm{m}}\right)$.
2. $\gamma=\left.\mathscr{L}^{\mathrm{d}}\right|_{\Omega}, \Omega$ open, bounded, and convex subset of \mathbb{R}^{d} : equations in bounded domains with Neumann boundary condition.
3. $\gamma:=\mathrm{e}^{-\mathrm{V}} \mathscr{L}^{\mathrm{d}}$ is a log-concave measure: Fokker-Planck equations (Beckner/convex Sobolev inequalities)
4. $\gamma:=\left.\mathscr{H}^{k}\right|_{M}, M$ is k-dimensional Riemannian manifold embedded in \mathbb{R}^{d} : evolutions in Riemannian manifolds.
$\mathrm{W}_{\mathfrak{m}, \gamma}$ enjoys nice properties:
completeness, lower semicontinuity, convexity, subadditivity, convolution, rescaling, existence of geodesic.

Theorem (Dolbeault-Nazaret-S.)

Suppose that $\gamma^{\mathrm{n}} \rightharpoonup \gamma, \rho_{i}^{n} \rightharpoonup \rho_{i}$ in $\mathcal{M}_{\mathrm{loc}}\left(\mathbb{R}^{d}\right)$ and $\mathfrak{m}^{\mathrm{n}} \downarrow \mathfrak{m}$ pointwise in $[0,+\infty)$. Then

$$
\liminf _{n \rightarrow+\infty} \mathrm{W}_{\mathfrak{m}^{n}, \gamma^{n}}\left(\rho_{0}^{n}, \rho_{1}^{n}\right) \geq \mathrm{W}_{\mathfrak{m}, \gamma}\left(\rho_{0}, \rho_{1}\right)
$$

Simplest case: bounded Ω with \mathfrak{m} defined on a bounded interval. In this case $\mathrm{W}_{\mathfrak{m}}$ induces the weak*-topology on $L_{+}^{\infty}(\Omega)$.

Outline

1 Evolution PDE's with a gradient flow structure

2 The dynamical approach to weighted transport distances

3 Basic tools for metric gradient flows: displacement convexity, variational approximation (JKO and WED schemes), flow interchange.

Displacement convexity for weighted transport distances

A functional Φ is displacement convex if for every $\mathbf{u}_{0}, \mathbf{u}_{1}$ there exists a geodesic $\mathbf{u}_{t}, t \in[0,1]$, w.r.t. $W_{\mathfrak{m}}$ connecting \mathbf{u}_{0} to \mathbf{u}_{1} such that

$$
\mathrm{W}_{\mathfrak{m}}\left(\mathbf{u}_{t}, \mathbf{u}_{s}\right)=|t-\boldsymbol{s}| \mathrm{W}_{\mathfrak{m}}\left(\mathbf{u}_{0}, \mathbf{u}_{1}\right), \quad \Phi\left(\mathbf{u}_{t}\right) \leq(1-t) \Phi\left(\mathbf{u}_{0}\right)+t \Phi\left(\mathbf{u}_{1}\right)
$$

Displacement convexity for weighted transport distances

A functional Φ is displacement convex if for every $\mathbf{u}_{0}, \mathbf{u}_{1}$ there exists a geodesic $\mathbf{u}_{t}, t \in[0,1]$, w.r.t. $\mathrm{W}_{\mathfrak{m}}$ connecting \mathbf{u}_{0} to \mathbf{u}_{1} such that

$$
\mathrm{W}_{\mathfrak{m}}\left(\mathbf{u}_{t}, \mathbf{u}_{s}\right)=|t-s| \mathrm{W}_{\mathfrak{m}}\left(\mathbf{u}_{0}, \mathbf{u}_{1}\right), \quad \Phi\left(\mathbf{u}_{t}\right) \leq(1-t) \Phi\left(\mathbf{u}_{0}\right)+t \Phi\left(\mathbf{u}_{1}\right)
$$

Theorem (Generalized McCann condition [Carrillo-Lisini-S.-Slepcev '09])

The functional

$$
\Phi(u)=\int F(u) \mathrm{d} x
$$

is displacement convex in $\mathcal{M}_{\mathfrak{m}}(\Omega)$ with respect to the distance $\mathrm{W}_{\mathfrak{m}}$ if

$$
r \mapsto \frac{H(r)}{\mathfrak{m}(r)^{1-1 / d}} \quad \text { is nonnegative and non decreasing in }(0,+\infty)
$$

where

$$
H(r):=\int_{0}^{r} F^{\prime \prime}(z) \mathfrak{m}(z) \mathfrak{m}^{\prime}(z) \mathrm{d} z
$$

Displacement convexity for weighted transport distances

A functional Φ is displacement convex if for every $\mathbf{u}_{0}, \mathbf{u}_{1}$ there exists a geodesic $\mathbf{u}_{t}, t \in[0,1]$, w.r.t. $W_{\mathfrak{m}}$ connecting \mathbf{u}_{0} to \mathbf{u}_{1} such that

$$
\mathrm{W}_{\mathfrak{m}}\left(\mathbf{u}_{t}, \mathbf{u}_{s}\right)=|t-s| \mathrm{W}_{\mathfrak{m}}\left(\mathbf{u}_{0}, \mathbf{u}_{1}\right), \quad \Phi\left(\mathbf{u}_{t}\right) \leq(1-t) \Phi\left(\mathbf{u}_{0}\right)+t \Phi\left(\mathbf{u}_{1}\right)
$$

Theorem (Generalized McCann condition [Carrillo-Lisini-S.-Slepcev '09])

The functional

$$
\Phi(u)=\int F(u) \mathrm{d} x
$$

is displacement convex in $\mathcal{M}_{\mathfrak{m}}(\Omega)$ with respect to the distance $\mathrm{W}_{\mathfrak{m}}$ if

$$
r \mapsto \frac{H(r)}{\mathfrak{m}(r)^{1-1 / d}} \quad \text { is nonnegative and non decreasing in }(0,+\infty)
$$

where

$$
H(r):=\int_{0}^{r} F^{\prime \prime}(z) \mathfrak{m}(z) \mathfrak{m}^{\prime}(z) \mathrm{d} z
$$

The functional generating the Heat equation is always displacement convex.

Weighted Energy-Dissipation (WED) approximation

Given $u_{0} \in D(\Phi) \subset L_{+}^{\infty}(\Omega)$ and a relaxation parameter $\varepsilon>0$ consider the space-time minimization of the WED functional

$$
\begin{array}{r}
\mathfrak{I}_{\varepsilon}\left(u_{0}\right):=\min \left\{\int_{0}^{\infty} \frac{\mathrm{e}^{-t / \varepsilon}}{\varepsilon}\left(\varepsilon \int_{\mathbb{R}^{d}}\left|\mathbf{v}_{\mathbf{t}}\right|^{2} \mathfrak{m}\left(\mathbf{u}_{\mathrm{t}}\right) \mathrm{d} x+\Phi\left(u_{t}\right)\right) \mathrm{d} t:\right. \\
\left.\partial_{t} u_{t}+\operatorname{div}\left(\mathfrak{m}\left(\mathbf{u}_{\mathrm{t}}\right) \mathbf{v}_{\mathbf{t}}\right)=0, \quad u(\cdot, 0)=u_{0}\right\}
\end{array}
$$

Weighted Energy-Dissipation (WED) approximation

Given $u_{0} \in D(\Phi) \subset L_{+}^{\infty}(\Omega)$ and a relaxation parameter $\varepsilon>0$ consider the space-time minimization of the WED functional

$$
\begin{array}{r}
\mathfrak{I}_{\varepsilon}\left(u_{0}\right):=\min \left\{\int_{0}^{\infty} \frac{\mathrm{e}^{-t / \varepsilon}}{\varepsilon}\left(\varepsilon \int_{\mathbb{R}^{d}}\left|\mathbf{v}_{\mathbf{t}}\right|^{2} \mathfrak{m}\left(\mathbf{u}_{\mathrm{t}}\right) \mathrm{d} x+\Phi\left(u_{t}\right)\right) \mathrm{d} t:\right. \\
\left.\partial_{t} u_{t}+\operatorname{div}\left(\mathfrak{m}\left(\mathbf{u}_{\mathrm{t}}\right) \mathbf{v}_{\mathbf{t}}\right)=0, \quad u(\cdot, 0)=u_{0}\right\}
\end{array}
$$

Theorem (Rossi-S.-Segatti-Stefanelli)

Assume that Φ is displacement convex w.r.t. $\mathrm{W}_{\mathfrak{m}}$ and has compact sublevels. Then the family of minimizers $\left\{u_{\varepsilon}\right\}$ of the WED functional is relatively compact and every limit point is a gradient flow of Φ.

The JKO-De Giorgi's Minimizing movement scheme

- Choose a partition of $(0,+\infty)$ of step size $\tau>0$

The JKO-De Giorgi's Minimizing movement scheme

- Choose a partition of $(0,+\infty)$ of step size $\tau>0$

- Starting from $U_{\tau}^{0}:=\rho_{0}$ find recursively

$$
U_{\tau}^{n}, \quad n=1,2, \ldots
$$

$$
\frac{U_{\tau}^{n}-U_{\tau}^{n-1}}{\tau}+\nabla \Phi\left(U_{\tau}^{n}\right)=0
$$

The JKO-De Giorgi's Minimizing movement scheme

- Choose a partition of $(0,+\infty)$ of step size $\tau>0$

- Starting from $U_{\tau}^{0}:=\rho_{0}$ find recursively minimizers $U_{\tau}^{n}, n=1,2, \ldots$,

$$
\frac{U_{\tau}^{n}-U_{\tau}^{n-1}}{\tau}+\nabla \Phi\left(U_{\tau}^{n}\right)=0 \quad \rightsquigarrow \quad U_{\tau}^{n} \in \underset{V}{\operatorname{argmin}} \frac{W_{\mathfrak{m}}^{2}\left(V, U_{\tau}^{n-1}\right)}{2 \tau}+\Phi(V)
$$

The JKO-De Giorgi's Minimizing movement scheme

- Choose a partition of $(0,+\infty)$ of step size $\tau>0$

- Starting from $U_{\tau}^{0}:=\rho_{0}$ find recursively minimizers $U_{\tau}^{n}, n=1,2, \ldots$,

$$
\frac{U_{\tau}^{n}-U_{\tau}^{n-1}}{\tau}+\nabla \Phi\left(U_{\tau}^{n}\right)=0 \quad \rightsquigarrow \quad U_{\tau}^{n} \in \underset{V}{\operatorname{argmin}} \frac{\mathrm{~W}_{\mathrm{m}}^{2}\left(V, U_{\tau}^{n-1}\right)}{2 \tau}+\Phi(V)
$$

The JKO-De Giorgi's Minimizing movement scheme

- Choose a partition of $(0,+\infty)$ of step size $\tau>0$

- Starting from $U_{\tau}^{0}:=\rho_{0}$ find recursively minimizers $U_{\tau}^{n}, n=1,2, \ldots$,

$$
\frac{U_{\tau}^{n}-U_{\tau}^{n-1}}{\tau}+\nabla \Phi\left(U_{\tau}^{n}\right)=0 \quad U_{\tau}^{n} \in \underset{V}{\operatorname{argmin}} \frac{W_{\mathrm{m}}^{2}\left(V, U_{\tau}^{n-1}\right)}{2 \tau}+\Phi(V)
$$

The JKO-De Giorgi's Minimizing movement scheme

- Choose a partition of $(0,+\infty)$ of step size $\tau>0$

- Starting from $U_{\tau}^{0}:=\rho_{0}$ find recursively minimizers $U_{\tau}^{n}, n=1,2, \ldots$,

$$
U_{r}^{n}-U_{n}^{n-1}
$$

$$
\tau
$$

$$
U_{\tau}^{n} \in \underset{V}{\operatorname{argmin}} \frac{\mathrm{~W}_{\mathrm{m}}^{2}\left(V, U_{\tau}^{n-1}\right)}{2 \tau}+\Phi(V)
$$

The JKO-De Giorgi's Minimizing movement scheme

- Choose a partition of $(0,+\infty)$ of step size $\tau>0$

- Starting from $U_{\tau}^{0}:=\rho_{0}$ find recursively minimizers $U_{\tau}^{n}, n=1,2, \ldots$,

$$
\frac{U_{\tau}^{n}-U_{\tau}^{n-1}}{\tau}+\nabla \Phi\left(U_{\tau}^{n}\right)=0 \quad U_{\tau}^{n} \in \underset{V}{\operatorname{argmin}} \frac{W_{\mathrm{m}}^{2}\left(V, U_{\tau}^{n-1}\right)}{2 \tau}+\Phi(V)
$$

The JKO-De Giorgi's Minimizing movement scheme

- Choose a partition of $(0,+\infty)$ of step size $\boldsymbol{\tau}>0$

- Starting from $U_{\tau}^{0}:=\rho_{0}$ find recursively minimizers $U_{\tau}^{n}, n=1,2, \ldots$,

$$
U_{\tau}^{n} \in \underset{V}{\operatorname{argmin}} \frac{\mathrm{~W}_{\mathrm{m}}^{2}\left(V, U_{\tau}^{n-1}\right)}{2 \tau}+\Phi(V)
$$

- \mathbf{U}_{τ} is the piecewise constant interpolant of $\left\{U_{\tau}^{n}\right\}_{n}$. We look for convergence results of $\mathbf{U}_{\boldsymbol{\tau}}$ as $\boldsymbol{\tau} \downarrow 0$.

First variation along auxiliary flows

MAIN IDEA: take the first variation of the minimum problem

$$
U_{\tau}^{n} \in \underset{V}{\operatorname{argmin}} \frac{W^{2}\left(V, U_{\tau}^{n-1}\right)}{2 \tau}+\Phi(V)
$$

along the gradient flow S^{ψ} generated by other "good" auxiliary functionals Ψ.

First variation along auxiliary flows

MAIN IDEA: take the first variation of the minimum problem

$$
U_{\tau}^{n} \in \underset{V}{\operatorname{argmin}} \frac{W^{2}\left(V, U_{\tau}^{n-1}\right)}{2 \tau}+\Phi(V)
$$

along the gradient flow S^{ψ} generated by other "good" auxiliary functionals Ψ. HEURISTICS: in an euclidean space $\mathbf{S}^{\Phi}, \mathbf{S}^{\psi}$ corresponds to

$$
\mathbf{u}_{\mathrm{t}}:=\mathrm{S}_{\mathrm{t}}^{\Phi}\left(\mathbf{u}_{0}\right) \text { solves } \frac{\mathrm{d}}{\mathrm{dt}} \mathbf{u}=-\nabla \boldsymbol{\Phi}(\mathbf{u}), \quad \mathbf{w}_{\mathrm{t}}:=\mathrm{S}_{\mathrm{t}}^{\Psi}\left(\mathrm{w}_{0}\right) \text { solves } \frac{\mathrm{d}}{\mathrm{dt}} \mathbf{w}=-\nabla \Psi(\mathbf{w})
$$

First variation along auxiliary flows

MAIN IDEA: take the first variation of the minimum problem

$$
U_{\tau}^{n} \in \underset{V}{\operatorname{argmin}} \frac{W^{2}\left(V, U_{\tau}^{n-1}\right)}{2 \tau}+\Phi(V)
$$

along the gradient flow S^{ψ} generated by other "good" auxiliary functionals Ψ. HEURISTICS: in an euclidean space $\mathbf{S}^{\Phi}, \mathbf{S}^{\psi}$ corresponds to

$$
\left.\mathbf{u}_{\mathrm{t}}:=\mathrm{S}_{\mathrm{t}}^{\Phi}\left(\mathbf{u}_{0}\right) \text { solves } \frac{\mathrm{d}}{\mathrm{dt}} \mathbf{u}=-\nabla \boldsymbol{(} \mathbf{u}\right), \quad \mathbf{w}_{\mathrm{t}}:=\mathrm{S}_{\mathrm{t}}^{\Psi}\left(\mathbf{w}_{0}\right) \text { solves } \frac{\mathrm{d}}{\mathrm{dt}} \mathbf{w}=-\nabla \Psi(\mathbf{w})
$$

If $\mathbf{u}_{0}=\mathbf{w}_{0}$ then we have the "commutation" identity

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} \varepsilon} \boldsymbol{\Phi}\left(\mathbf{w}_{\varepsilon}\right)\right|_{\varepsilon=0^{+}}=\left.\frac{\mathrm{d}}{\mathrm{~d} \varepsilon} \boldsymbol{\Psi}\left(\mathbf{u}_{\varepsilon}\right)\right|_{\varepsilon=0^{+}}
$$

First variation along auxiliary flows

MAIN IDEA: take the first variation of the minimum problem

$$
U_{\tau}^{n} \in \underset{V}{\operatorname{argmin}} \frac{W^{2}\left(V, U_{\tau}^{n-1}\right)}{2 \tau}+\Phi(V)
$$

along the gradient flow S^{ψ} generated by other "good" auxiliary functionals Ψ. HEURISTICS: in an euclidean space $\mathbf{S}^{\Phi}, \mathbf{S}^{\psi}$ corresponds to

$$
\mathbf{u}_{\mathrm{t}}:=\mathrm{S}_{\mathrm{t}}^{\Phi}\left(\mathbf{u}_{0}\right) \text { solves } \frac{\mathrm{d}}{\mathrm{dt}} \mathbf{u}=-\nabla \boldsymbol{(u)}, \quad \mathbf{w}_{\mathrm{t}}:=\mathrm{S}_{\mathrm{t}}^{\Psi}\left(\mathbf{w}_{0}\right) \text { solves } \frac{\mathrm{d}}{\mathrm{dt}} \mathbf{w}=-\nabla \Psi(\mathbf{w})
$$

If $\mathbf{u}_{0}=\mathbf{w}_{0}$ then we have the "commutation" identity

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} \varepsilon} \boldsymbol{\Phi}\left(\mathbf{w}_{\varepsilon}\right)\right|_{\varepsilon=0^{+}}=\left.\frac{\mathrm{d}}{\mathrm{~d} \varepsilon} \boldsymbol{\Psi}\left(\mathbf{u}_{\varepsilon}\right)\right|_{\varepsilon=0^{+}} \quad\left(=-\left\langle\boldsymbol{\nabla} \boldsymbol{\Phi}\left(\mathbf{w}_{0}\right), \nabla \boldsymbol{\Psi}\left(\mathbf{u}_{0}\right)\right\rangle\right)
$$

First variation along auxiliary flows

MAIN IDEA: take the first variation of the minimum problem

$$
U_{\tau}^{n} \in \underset{V}{\operatorname{argmin}} \frac{W^{2}\left(V, U_{\tau}^{n-1}\right)}{2 \tau}+\Phi(V)
$$

along the gradient flow S^{ψ} generated by other "good" auxiliary functionals Ψ. HEURISTICS: in an euclidean space $\mathbf{S}^{\Phi}, \mathbf{S}^{\psi}$ corresponds to
$\mathbf{u}_{\mathrm{t}}:=\mathrm{S}_{\mathrm{t}}^{\Phi}\left(\mathbf{u}_{0}\right)$ solves $\frac{\mathrm{d}}{\mathrm{dt}} \mathbf{u}=-\nabla \boldsymbol{\nabla}(\mathbf{u}), \quad \mathbf{w}_{\mathrm{t}}:=\mathrm{S}_{\mathrm{t}}^{\psi}\left(\mathbf{w}_{0}\right)$ solves $\frac{\mathrm{d}}{\mathrm{dt}} \mathbf{w}=-\nabla \Psi(\mathbf{w})$
If $\mathbf{u}_{0}=\mathbf{w}_{0}$ then we have the "commutation" identity

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} \varepsilon} \boldsymbol{\Phi}\left(\mathbf{w}_{\varepsilon}\right)\right|_{\varepsilon=0^{+}}=\left.\frac{\mathrm{d}}{\mathrm{~d} \varepsilon} \boldsymbol{\Psi}\left(\mathbf{u}_{\varepsilon}\right)\right|_{\varepsilon=0^{+}} \quad\left(=-\left\langle\boldsymbol{\nabla} \boldsymbol{\Phi}\left(\mathbf{w}_{0}\right), \nabla \boldsymbol{\Psi}\left(\mathbf{u}_{0}\right)\right\rangle\right)
$$

RECIPE: if the derivative of the (main) functional Φ along the (auxiliary) flow S^{*} is negative then Ψ is a Lyapunov functional for the main flow \mathbf{S}^{Φ}

First variation along auxiliary flows

MAIN IDEA: take the first variation of the minimum problem

$$
U_{\tau}^{n} \in \underset{V}{\operatorname{argmin}} \frac{W^{2}\left(V, U_{\tau}^{n-1}\right)}{2 \tau}+\Phi(V)
$$

along the gradient flow S^{ψ} generated by other "good" auxiliary functionals Ψ. HEURISTICS: in an euclidean space $\mathbf{S}^{\Phi}, \mathbf{S}^{\psi}$ corresponds to
$\mathbf{u}_{\mathrm{t}}:=\mathbf{S}_{\mathrm{t}}^{\Phi}\left(\mathbf{u}_{0}\right)$ solves $\frac{\mathrm{d}}{\mathrm{dt}} \mathbf{u}=-\boldsymbol{\nabla} \boldsymbol{\Phi}(\mathbf{u}), \quad \mathbf{w}_{\mathrm{t}}:=\mathrm{S}_{\mathrm{t}}^{\Psi}\left(\mathbf{w}_{0}\right)$ solves $\frac{\mathrm{d}}{\mathrm{dt}} \mathbf{w}=-\nabla \Psi(\mathbf{w})$
If $\mathbf{u}_{0}=\mathbf{w}_{0}$ then we have the "commutation" identity

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} \varepsilon} \boldsymbol{\Phi}\left(\mathbf{w}_{\varepsilon}\right)\right|_{\varepsilon=0^{+}}=\left.\frac{\mathrm{d}}{\mathrm{~d} \varepsilon} \boldsymbol{\Psi}\left(\mathbf{u}_{\varepsilon}\right)\right|_{\varepsilon=0^{+}} \quad\left(=-\left\langle\boldsymbol{\nabla} \boldsymbol{\Phi}\left(\mathbf{w}_{0}\right), \nabla \boldsymbol{\Psi}\left(\mathbf{u}_{0}\right)\right\rangle\right)
$$

RECIPE: if the derivative of the (main) functional Φ along the (auxiliary) flow S^{*} is negative then Ψ is a Lyapunov functional for the main flow \mathbf{S}^{Φ}

Look for good flows \mathbf{S}^{Ψ} having $\boldsymbol{\Phi}$ as Lyapunov functional

First variation along auxiliary flows

MAIN IDEA: take the first variation of the minimum problem

$$
U_{\tau}^{n} \in \underset{V}{\operatorname{argmin}} \frac{W^{2}\left(V, U_{\tau}^{n-1}\right)}{2 \tau}+\Phi(V)
$$

along the gradient flow S^{ψ} generated by other "good" auxiliary functionals Ψ. HEURISTICS: in an euclidean space $\mathbf{S}^{\Phi}, \mathbf{S}^{\psi}$ corresponds to
$\mathbf{u}_{\mathrm{t}}:=\mathrm{S}_{\mathrm{t}}^{\Phi}\left(\mathbf{u}_{0}\right)$ solves $\frac{\mathrm{d}}{\mathrm{dt}} \mathbf{u}=-\nabla \boldsymbol{\nabla}(\mathbf{u}), \quad \mathbf{w}_{\mathrm{t}}:=\mathrm{S}_{\mathrm{t}}^{\psi}\left(\mathbf{w}_{0}\right)$ solves $\frac{\mathrm{d}}{\mathrm{dt}} \mathbf{w}=-\nabla \Psi(\mathbf{w})$
If $\mathbf{u}_{0}=\mathbf{w}_{0}$ then we have the "commutation" identity

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} \varepsilon} \boldsymbol{\Phi}\left(\mathbf{w}_{\varepsilon}\right)\right|_{\varepsilon=0^{+}}=\left.\frac{\mathrm{d}}{\mathrm{~d} \varepsilon} \boldsymbol{\Psi}\left(\mathbf{u}_{\varepsilon}\right)\right|_{\varepsilon=0^{+}} \quad\left(=-\left\langle\boldsymbol{\nabla} \boldsymbol{\Phi}\left(\mathbf{w}_{0}\right), \nabla \boldsymbol{\Psi}\left(\mathbf{u}_{0}\right)\right\rangle\right)
$$

RECIPE: if the derivative of the (main) functional Φ along the (auxiliary) flow S^{ψ} is negative (up to lower order terms)
then Ψ is a Lyapunov functional for the main flow \mathbf{S}^{Φ} (up to lower order terms).

A Lyapunov-type estimate at the discrete level

Suppose that Ψ generates a flow $w_{t}=S_{t}^{\psi}(w)$ satisfying a suitable metric formulation.

A Lyapunov-type estimate at the discrete level

Suppose that Ψ generates a flow $w_{t}=S_{t}^{\Psi}(w)$ satisfying a suitable metric formulation. We call \mathcal{D} the dissipation of Φ along S^{ψ}

$$
\mathcal{D}(\mathbf{w}):=\square-\left.\frac{\mathrm{d}}{\mathrm{~d} \varepsilon} \boldsymbol{\Phi}\left(\mathbf{S}_{\varepsilon}^{\Psi}(\mathbf{w})\right)\right|_{\varepsilon=0^{+}}=\limsup _{\varepsilon \downarrow 0} \frac{\boldsymbol{\Phi}(\mathbf{w})-\boldsymbol{\Phi}\left(\mathbf{S}_{\varepsilon}^{\Psi}(\mathbf{w})\right)}{\varepsilon}
$$

A Lyapunov-type estimate at the discrete level

Suppose that Ψ generates a flow $w_{t}=S_{t}^{\Psi}(w)$ satisfying a suitable metric formulation. We call \mathcal{D} the dissipation of Φ along S^{ψ}

$$
\begin{aligned}
\mathcal{D}(\mathbf{w}) & :=--\left.\frac{\mathrm{d}}{\mathrm{~d} \varepsilon} \boldsymbol{\Phi}\left(\mathbf{S}_{\varepsilon}^{\Psi}(\mathbf{w})\right)\right|_{\varepsilon=0^{+}}=\limsup _{\varepsilon \downarrow 0} \frac{\boldsymbol{\Phi}(\mathbf{w})-\boldsymbol{\Phi}\left(\mathrm{S}_{\varepsilon}^{\Psi}(\mathbf{w})\right)}{\varepsilon} \\
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{\Psi}\left(\mathbf{u}_{\mathbf{t}}\right) & =-\mathcal{D}(\mathbf{w}) \quad \Longrightarrow \quad \Psi\left(\mathbf{u}_{\mathrm{t}}\right)+\int_{0}^{t} \mathcal{D}\left(\mathbf{u}_{\mathbf{s}}\right) \mathrm{d} s \leq \Psi\left(\mathbf{u}_{0}\right)
\end{aligned}
$$

A Lyapunov-type estimate at the discrete level

Suppose that Ψ generates a flow $w_{t}=S_{t}^{\Psi}(w)$ satisfying a suitable metric formulation. We call \mathcal{D} the dissipation of Φ along S^{ψ}

$$
\begin{aligned}
\mathcal{D}(\mathbf{w}) & :=--\left.\frac{\mathrm{d}}{\mathrm{~d} \varepsilon} \boldsymbol{\Phi}\left(\mathbf{S}_{\varepsilon}^{\psi}(\mathbf{w})\right)\right|_{\varepsilon=0^{+}}=\limsup _{\varepsilon \downarrow 0} \frac{\boldsymbol{\Phi}(\mathbf{w})-\boldsymbol{\Phi}\left(\mathrm{S}_{\varepsilon}^{\Psi}(\mathbf{w})\right)}{\varepsilon} \\
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{\Psi}\left(\mathbf{u}_{\mathrm{t}}\right) & =-\mathcal{D}(\mathbf{w}) \quad \Longrightarrow \quad \Psi\left(\mathbf{u}_{\mathrm{t}}\right)+\int_{0}^{t} \mathcal{D}\left(\mathbf{u}_{\mathbf{s}}\right) \mathrm{d} s \leq \Psi\left(\mathbf{u}_{0}\right)
\end{aligned}
$$

Theorem (Discrete flow-interchange estimate)

If $\mathbf{U}_{\tau}^{\mathrm{n}}$ is a minimizer of $V \mapsto \frac{W^{2}\left(V, \mathbf{U}_{\tau}^{\mathrm{n}-1}\right)}{2 \tau}+\boldsymbol{\Phi}(V)$ then

$$
\Psi\left(\mathbf{U}_{\tau}^{\mathrm{n}}\right)+\tau \mathcal{D}\left(\mathrm{U}_{\tau}^{\mathrm{n}}\right) \leq \Psi\left(\mathbf{U}_{\tau}^{\mathrm{n}-1}\right)
$$

Auxiliary flow for the Cahn-Hilliard equation

A typical example in the case of the Cahn-Hilliard equation with mobility $\mathfrak{m}(\mathbf{u})=\mathbf{u}(1-\mathbf{u})$ is given by the (displacement convex) entropy functional

$$
\begin{gathered}
\Psi(w)=\int_{\Omega} w \log w+(1-w) \log (1-w) d x \\
S^{\psi} \quad \text { is the heat flow } \quad \partial_{t} w-\Delta w=0
\end{gathered}
$$

Auxiliary flow for the Cahn-Hilliard equation

A typical example in the case of the Cahn-Hilliard equation with mobility $\mathfrak{m}(\mathbf{u})=\mathbf{u}(1-\mathbf{u})$ is given by the (displacement convex) entropy functional

$$
\begin{gathered}
\Psi(w)=\int_{\Omega} w \log w+(1-w) \log (1-w) d x \\
S^{\psi} \quad \text { is the heat flow } \quad \partial_{t} w-\Delta w=0
\end{gathered}
$$

The functional

$$
\Phi(\mathrm{u})=\frac{1}{2} \int_{\mathbb{R}^{\mathrm{d}}}|\mathrm{Du}|^{2} \mathrm{dx}
$$

decays along the heat flow with

$$
\mathcal{D}(w)=-\left.\frac{d}{d \varepsilon} \boldsymbol{\Phi}\left(\mathbf{S}^{\psi}(\mathbf{w})\right)\right|_{\varepsilon=0}=\int_{\Omega}|\Delta w|^{2} \mathrm{dx}=\int_{\Omega}\left|D^{2} \mathbf{w}\right|^{2} \mathrm{dx}
$$

Auxiliary flow for the Cahn-Hilliard equation

A typical example in the case of the Cahn-Hilliard equation with mobility $\mathfrak{m}(\mathbf{u})=\mathbf{u}(1-\mathbf{u})$ is given by the (displacement convex) entropy functional

$$
\begin{gathered}
\Psi(w)=\int_{\Omega} w \log w+(1-w) \log (1-w) d x \\
S^{\psi} \quad \text { is the heat flow } \quad \partial_{t} w-\Delta w=0
\end{gathered}
$$

The functional

$$
\Phi(\mathrm{u})=\frac{1}{2} \int_{\mathbb{R}^{\mathrm{d}}}|\mathrm{Du}|^{2} \mathrm{dx}
$$

decays along the heat flow with

$$
\mathcal{D}(\mathbf{w})=-\left.\frac{\mathrm{d}}{\mathrm{~d} \varepsilon} \boldsymbol{\Phi}\left(\mathrm{~S}^{\Psi}(\mathbf{w})\right)\right|_{\varepsilon=0}=\int_{\Omega}|\Delta \mathbf{w}|^{2} \mathrm{dx}=\int_{\Omega}\left|D^{2} \mathbf{w}\right|^{2} \mathrm{dx}
$$

The discrete flow-interchange estimate shows that Ψ is a Lyapunov functional and satisfies

$$
\Psi\left(\mathbf{U}_{\tau}^{\mathrm{n}}\right)+\tau \int_{\Omega}\left|\mathbf{D}^{2} \mathbf{U}_{\tau}^{\mathrm{n}}\right|^{2} \mathrm{dx} \leq \Psi\left(\mathbf{U}_{\tau}^{\mathrm{n}-1}\right)
$$

Auxiliary flow for the Cahn-Hilliard equation

A typical example in the case of the Cahn-Hilliard equation with mobility $\mathfrak{m}(\mathbf{u})=\mathbf{u}(1-\mathbf{u})$ is given by the (displacement convex) entropy functional

$$
\begin{gathered}
\Psi(w)=\int_{\Omega} w \log w+(1-w) \log (1-w) d x \\
S^{\psi} \quad \text { is the heat flow } \quad \partial_{t} w-\Delta w=0
\end{gathered}
$$

The functional

$$
\Phi(\mathrm{u})=\frac{1}{2} \int_{\mathbb{R}^{\mathrm{d}}}|\mathrm{Du}|^{2} \mathrm{dx}
$$

decays along the heat flow with

$$
\mathcal{D}(\mathbf{w})=-\left.\frac{\mathrm{d}}{\mathrm{~d} \varepsilon} \boldsymbol{\Phi}\left(\mathrm{~S}^{\psi}(\mathbf{w})\right)\right|_{\varepsilon=0}=\int_{\Omega}|\Delta \mathrm{w}|^{2} \mathrm{dx}=\int_{\Omega}\left|\mathrm{D}^{2} \mathbf{w}\right|^{2} \mathrm{dx}
$$

The discrete flow-interchange estimate shows that Ψ is a Lyapunov functional and satisfies

$$
\Psi\left(\mathbf{U}_{\tau}^{\mathrm{n}}\right)+\tau \int_{\Omega}\left|\mathbf{D}^{2} \mathbf{U}_{\tau}^{\mathrm{n}}\right|^{2} \mathrm{dx} \leq \Psi\left(\mathbf{U}_{\tau}^{\mathrm{n}-1}\right)
$$

In term of $\mathbf{U}_{\boldsymbol{\tau}}$ it corresponds to

$$
\int_{0}^{T} \int_{\Omega}\left|\mathrm{D}^{2} \mathbf{U}_{\tau}\right|^{2} \mathrm{~d} x \mathrm{~d} t \leq C
$$

An example of convergence result

Assume that

$$
P^{\prime}(r)=\mathfrak{m}(r) W^{\prime \prime}(r) \geq-C \quad \text { in }(0,1)
$$

and the initial condition u_{0} satisfies

$$
0 \leq u_{0} \leq 1, \quad \boldsymbol{\Phi}\left(u_{0}\right)=\int_{\Omega}\left(\frac{1}{2}|\mathrm{D} u|^{2} \mathrm{~d} x+W\left(u_{0}\right)\right) \mathrm{d} x
$$

An example of convergence result

Assume that

$$
P^{\prime}(r)=\mathfrak{m}(r) W^{\prime \prime}(r) \geq-C \quad \text { in }(0,1)
$$

and the initial condition u_{0} satisfies

$$
0 \leq u_{0} \leq 1, \quad \boldsymbol{\Phi}\left(u_{0}\right)=\int_{\Omega}\left(\frac{1}{2}|\mathrm{D} u|^{2} \mathrm{~d} x+W\left(u_{0}\right)\right) \mathrm{d} x
$$

Theorem

There exists an infinitesimal subsequence of time steps $\tau_{k} \downarrow 0$ such that

$$
\mathbf{U}_{\tau_{\mathrm{k}}} \rightarrow \mathbf{u} \quad \text { pointwise in } L^{2}\left(\mathbb{R}^{d}\right) \text { and in } L^{2}\left(0, T ; W^{1,2}\left(\mathbb{R}^{d}\right)\right) \text { as } k \uparrow \infty
$$

An example of convergence result

Assume that

$$
P^{\prime}(r)=\mathfrak{m}(r) W^{\prime \prime}(r) \geq-C \quad \text { in }(0,1)
$$

and the initial condition u_{0} satisfies

$$
0 \leq u_{0} \leq 1, \quad \boldsymbol{\Phi}\left(u_{0}\right)=\int_{\Omega}\left(\frac{1}{2}|\mathrm{D} u|^{2} \mathrm{~d} x+W\left(u_{0}\right)\right) \mathrm{d} x
$$

Theorem

There exists an infinitesimal subsequence of time steps $\tau_{k} \downarrow 0$ such that

$$
\mathbf{U}_{\tau_{\mathrm{k}}} \rightarrow \mathbf{u} \quad \text { pointwise in } L^{2}\left(\mathbb{R}^{d}\right) \text { and in } L^{2}\left(0, T ; W^{1,2}\left(\mathbb{R}^{d}\right)\right) \quad \text { as } k \uparrow \infty
$$

$\mathbf{u} \in C_{w}^{0}\left([0,+\infty) ; W^{1,2}(\Omega)\right) \cap L_{\text {loc }}^{2}\left([0,+\infty) ; W^{2,2}\left(\mathbb{R}^{d}\right)\right)$ is a non-negative global solution of the weak formulation of the Cahn-Hilliard equation

An example of convergence result

Assume that

$$
P^{\prime}(r)=\mathfrak{m}(r) W^{\prime \prime}(r) \geq-C \quad \text { in }(0,1)
$$

and the initial condition u_{0} satisfies

$$
0 \leq u_{0} \leq 1, \quad \boldsymbol{\Phi}\left(u_{0}\right)=\int_{\Omega}\left(\frac{1}{2}|\mathrm{D} u|^{2} \mathrm{~d} x+W\left(u_{0}\right)\right) \mathrm{d} x
$$

Theorem

There exists an infinitesimal subsequence of time steps $\tau_{k} \downarrow 0$ such that

$$
\mathbf{U}_{\tau_{\mathrm{k}}} \rightarrow \mathbf{u} \quad \text { pointwise in } L^{2}\left(\mathbb{R}^{d}\right) \text { and in } L^{2}\left(0, T ; W^{1,2}\left(\mathbb{R}^{d}\right)\right) \text { as } k \uparrow \infty
$$

$\mathbf{u} \in C_{w}^{0}\left([0,+\infty) ; W^{1,2}(\Omega)\right) \cap L_{\text {loc }}^{2}\left([0,+\infty) ; W^{2,2}\left(\mathbb{R}^{d}\right)\right)$ is a non-negative global solution of the weak formulation of the Cahn-Hilliard equation

$$
\iint\left(\mathbf{u} \partial_{t} \zeta-\Delta \mathbf{u} \operatorname{div}(\mathfrak{m}(\mathbf{u}) \mathrm{D} \zeta)+P(\mathbf{u}) \Delta \zeta\right) \mathrm{d} x \mathrm{~d} t=0
$$

for every test function $\zeta \in \mathrm{C}_{c}^{\infty}(\bar{\Omega} \times(0, \infty))$ such that $\mathrm{D} \zeta \cdot \mathbf{n}=0$ on $\partial \Omega \times(0, \infty)$.

Open problems

- More explicit characterizations of $\mathrm{W}_{\mathfrak{m}}$ and of measures at finite $\mathrm{W}_{\mathfrak{m}}$-distance.
- Develop a duality approach to the weighted distances and find a precise characterization of their geodesics. [Carliet-Nazaret-Cardaliaguet '12]. Curvature properties?
- Study the gradient flow of other integral functionals: potential and interaction energies do not behave well with respect to the weighted distances.
- What about non-concave mobilities?
-

