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Gradient flows Weighted transport distances Basic tools

A general class of evolutionary PDE’s

In many applications one is interested in nonnegative integrable solutions to
evolution equations of the type

∂tu − div
(
m(u)D

δΦ

δu

)
= 0 in Ω× (0,∞), Ω ⊂ Rd ,

with Neumann-variational boundary conditions

n ·Du = 0, n ·D
(
m(u)

δΦ

δu

)
= 0

and initial condition u0 ∈ L1(Ω), u0 ≥ 0.
The equation can be split

∂tu + div w = 0 (Continuity equation)

w = m(u) v = −m(u)Dψ (Flux structure)

ψ =
δΦ

δu
(Nonlinear variational condition)

m : [0,+∞)→ [0,+∞) is a given mobility function associated to the
equation.
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Gradient flows Weighted transport distances Basic tools

Examples: 2nd order equations

Heat equation:
∂tu = ∆u = div

(
uαDφ′α(u)

)
,

In this case m(u) = uα, Φ(u) =

∫
Rd

φα(u) dx =
1

(2− α)(1− α)

∫
Rd

u2−α dx .

∂tu = ∆u = div
(
u(1− u)DF′(u)

)
,

m(u) = u(1− u), Φ(u) =

∫
Rd

F(u) dx =

∫
Rd

(
u log u+(1−u) log(1−u)

)
dx ,

Drift-diffusion-interaction (m(u) = u):

∂tu = ∆u + div(uDV ) + div(uDW ∗ u) = div
(
uD(log u + V + W ∗ u)

)
,

Φ(u) =

∫
Rd

u log u dx +

∫
Rd

V u dx +

∫∫
Rd×Rd

W (x − y)u(x)u(y) dx dy

Chemotaxis with overcrowding prevention [Hillen-Painter ’01]:

∂tu = div
(
Du + m(u)D(W ∗ u)

)
= div

(
m(u)D

(
F′(u) + W ∗ u

))
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Examples: 4th order equations

Thin film (typically m(u) = uα):

∂tu + div
(
m(u)D∆u

)
= 0, Φ(u) :=

1

2

∫
Rd

|Du|2 dx

[Bernis-Friedman ’90, Bertsch-Dal Passo-Garcke-Grün; Becker-Grün,
Carrillo-Toscani ’02, Carlen-Ulusoy ’07]
DLSS - Quantum drift-diffusion

∂tu + div
(
m(u)D

(
uβ−1∆uβ

))
= 0, Φ(u) :=

1

2β

∫
Rd
|Duβ |2 dx

Derrida-Lebowitz-Speer-Spohn ’91 [Bleher-Lebowitz-Speer, Jüngel,
Pinnau, Matthes, Gianazza-Toscani-S.]
Cahn-Hilliard: (m(u) = u(1 − u))

∂tu + div
(
u(1 − u)D

(
∆u − W′(u)

)
= 0 Φ(u) :=

∫
Rd

(1

2
|Du|2 + W (u)

)
dx .

[Elliott-Garcke ’96]

6



Gradient flows Weighted transport distances Basic tools

Examples: 4th order equations

Thin film (typically m(u) = uα):

∂tu + div
(
m(u)D∆u

)
= 0, Φ(u) :=

1

2

∫
Rd

|Du|2 dx

[Bernis-Friedman ’90, Bertsch-Dal Passo-Garcke-Grün; Becker-Grün,
Carrillo-Toscani ’02, Carlen-Ulusoy ’07]
DLSS - Quantum drift-diffusion

∂tu + div
(
m(u)D

(
uβ−1∆uβ

))
= 0, Φ(u) :=

1

2β

∫
Rd
|Duβ |2 dx

Derrida-Lebowitz-Speer-Spohn ’91 [Bleher-Lebowitz-Speer, Jüngel,
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Pinnau, Matthes, Gianazza-Toscani-S.]
Cahn-Hilliard: (m(u) = u(1 − u))

∂tu + div
(
u(1 − u)D

(
∆u − W′(u)

)
= 0 Φ(u) :=

∫
Rd

(1

2
|Du|2 + W (u)

)
dx .

[Elliott-Garcke ’96]

6



Gradient flows Weighted transport distances Basic tools

Examples: 4th order equations

Thin film (typically m(u) = uα):

∂tu + div
(
m(u)D∆u

)
= 0, Φ(u) :=

1

2

∫
Rd

|Du|2 dx

[Bernis-Friedman ’90, Bertsch-Dal Passo-Garcke-Grün; Becker-Grün,
Carrillo-Toscani ’02, Carlen-Ulusoy ’07]
DLSS - Quantum drift-diffusion

∂tu + div
(
m(u)D

(
uβ−1∆uβ

))
= 0, Φ(u) :=

1

2β

∫
Rd
|Duβ |2 dx

Derrida-Lebowitz-Speer-Spohn ’91 [Bleher-Lebowitz-Speer, Jüngel,
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The gradient flow structure: a formal motivation

∂tu + div w = 0, w = m(u)v =−m(u)Dψ ψ =
δΦ

δu

d

dt
Φ(ut) =

∫
Rd

∂tu
δΦ

δu
dx = −

∫
Rd

(div w)ψ dx =

∫
Rd

w ·Dψ dx

=

∫
Rd

v ·Dψm(u) dx ≥ −
(∫

Rd

∣∣Dψ∣∣2 m(u)dx
)1/2(∫

Rd

∣∣v∣∣2 m(u)dx
)1/2

Ansatz: interpret (∫
Rd

∣∣v∣∣2 m(u)dx
)1/2

as the “velocity” of the moving family u.
If we want to decrease Φ as fast as possible, we have to choose

v = −Dψ
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Gradient flows Weighted transport distances Basic tools

Outline

1 Evolution PDE’s with a gradient flow structure

2 The dynamical approach to weighted transport distances

3 Basic tools for metric gradient flows: displacement convexity,
variational approximation (JKO and WED schemes), flow interchange.
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Weighted transport distances: the dynamical approach

[Benamou-Brenier ’00]

We interpret u as the density of a (probability) measure ρ = u dx and we
consider a time dependent family ut , t ∈ [0,T ], of densities satisfying the
nonlinear continuity equation

∂tu + div
(
m(u) v) = 0

The scalar velocity at time t is given by

Vt[ut ] := ‖vt‖L2(m(ut );Rd ) =
(∫

Rd

|vt(x)|2 m(ut)dx
)1/2

.

The length of the curve u between t0 and t1

L
t1
t0

[u] :=

∫ t1

t0

Vt [u]dt =

∫ t1

t0

(∫
Rd

|vt(x)|2 m(ut)dx
)1/2

dt

Weighted transport distance Wm between u0 and u1:

Wm(u0, u1) := min
{
L

1
0[u] : u|t=0

= u0, u|t=1
= u1

}
.
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Gradient flows Weighted transport distances Basic tools

Limiting cases
m(r) ≡ 1 ↔ Homogeneous dual W−1,2(Rd) distance.

Wm(u0, u1) = sup
{∫

Rd

(u0 − u1)ϕ dx :

∫
Rd

|Dϕ|2 dx ≤ 1
}

v = w, ∂tu + div w = 0. W2
m(u0, u1) = min

{∫
|w|2 : div w = u1 − u2

}
Hilbert Theory [Benilan, Brezis, Crandall, Pazy, . . .∼’70]

m(r) = r ↔ Wasserstein distance, Wm = W;
characterization in terms of optimal transport, linear transport equation

∂tu + div u v = 0

[Jordan-Kinderlehrer-Otto ’98, Otto ’01]

Applications: optimal transport, existence and asymptotic behaviour of
solutions, contraction properties, Logarithmic Sobolev Inequalities,
approximation algorithms, curvature and metric measure spaces, stability,...
[Ambrosio-Gigli-S., Agueh, Brenier, Carrillo, Carlen, McCann, Gangbo,

Giacomelli, Gianazza-Toscani-S., Lisini, Otto, Slepcev, Sturm, Villani,

Westdickenberg, ...]
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Gradient flows Weighted transport distances Basic tools

The interest of the method and the main problems
ADVANTAGES

I Non-negativity is for free.
I A general approximation scheme, which is a variational formulation of

the backward Euler method, is always available.
I Decay of the generating functional Φ along the (discrete/continuous)

flow.

DRAWBACKS
I It is not so simple as in the Hilbertian framework
I You loose the linear structure of the underlying space.
I The distance is not flat and the space behaves like the an infinitely

dimensional, non-smooth, positively curved Riemannian manifold.

PROBLEMS
I How can we make rigorous this approach and when it is well posed, so

that it defines a distance?
I Does the distance enjoys similar/different properties to the

Sobolev/Wasserstein one?
I Could it be useful to study evolution equations and to get new geometric

insights?
I Are there interesting convexity properties of the integral functionals and

related functional inequalities ?
11
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The variational problem

Problem

Given nonnegative densities u0, u1 ∈ L1
loc(Rd) find a minimizer of the action

functional∫ 1

0

∫
Rd

|vt|2m(ut) dx dt s.t. ∂tu + div(m(ut)vt) = 0, u|t=0,1
= u0,1.

Direct method of the calculus of variations: fix the densities u0, u1 and take
a minimizing sequence (un

t ,w
n
t , v

n
t ) with wn

t = m(un
t )vn

t , such that

∂tu
n
t + div(m(un

t )vn
t ) = 0, un

|t=0,1
= u0,1,

∫ 1

0

∫
Rd

|vn
t |2m(un

t )dx dt → inf

Problem: sublevels of the minimizing functional are only weakly∗ relatively
compact: we get weak∗ convergence of a suitable subsequence but the
equation ∂tut + div(m(u)v) = 0 is nonlinear in the couple (u, v).
Basic idea: write everything in terms of (u,w)! Since w = m(u)v we minimize

A(u,w) :=

∫ 1

0

∫
Rd

A(ut ,wt) dx dt s.t. ∂tu + div wt = 0, u|t=0,1
= u0,1.

where A(u,w) :=
|w|2

m(u)
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Convexity (and l.s.c.) of the action requires a concave mobility

Lemma

The function

A : (u,w) ∈ (0,+∞)× Rd → |w|2

m(u)
∈ [0,+∞]

is convex iff m : [0,+∞)→ [0,∞) is concave.

Two cases:

A) m : [0,+∞)→ [0,+∞) is concave and nondecreasing.
Model example: m(u) = uα, 0 ≤ α ≤ 1. In this case A(λu, λw) is
superlinear as λ ↑ +∞, except when w = 0.

B) m : [0,M]→ [0,+∞) is concave with m(0) = m(M) = 0.
Model example: m(u) = u(M− u). In this case A(u,w) = +∞ if u > M
and all the densities u are uniformly bounded.
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Gradient flows Weighted transport distances Basic tools

A rigorous definition through convex functional of measures

To get weak∗ lower semicontinuity of A, we extend it to

couples (ρ,ν) where ρ ∈Mloc(Rd) is a nonnegative Radon
measure and ν ∈Mloc(Rd ;Rd) is a Radon vector measure.

Moreover, the function A is no more 1−homogeneous in the couple (ρ,ν), so
that the definition of A also depends from a reference measure
γ ∈Mloc(Rd) (usually the Lebesgue measure, but not necessarily).

Definition (The case of a sublinear mobility)

If ρ ∈Mloc(Rd),ν ∈Mloc(Rd ;Rd) we set

A(ρ,ν|γ) :=

∫
Rd

A
( dρ
dγ

,
dν

dγ

)
dγ

Given ρ0, ρ1 we have

W2
m,γ(ρ0, ρ1) := inf

{∫ 1

0

A(ρt ,νt) dt s.t. ∂tρ+ div ν = 0, ρ|t=0,1
= ρ0,1

}
We call Mm,γ [σ] the collection of all measures at finite distance from σ.

[Dolbeault-Nazaret-S. ’09, Lisini-Marigonda ’10]
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Gradient flows Weighted transport distances Basic tools

The role of γ and simple properties of Wm,γ

1. Typically γ = L d (omitted in Wm).

2. γ = L d
|Ω, Ω open, bounded, and convex subset of Rd : equations in

bounded domains with Neumann boundary condition.

3. γ := e−VL d is a log-concave measure: Fokker-Planck equations
(Beckner/convex Sobolev inequalities)

4. γ := H k
|M, M is k-dimensional Riemannian manifold embedded in Rd :

evolutions in Riemannian manifolds.

Wm,γ enjoys nice properties:

completeness, lower semicontinuity, convexity, subadditivity,
convolution, rescaling, existence of geodesic.

Theorem (Dolbeault-Nazaret-S.)

Suppose that γn ⇀ γ, ρni ⇀ ρi in Mloc(Rd) and mn ↓ m pointwise in
[0,+∞). Then

lim inf
n→+∞

Wmn,γn (ρn0, ρ
n
1) ≥Wm,γ(ρ0, ρ1).

Simplest case: bounded Ω with m defined on a bounded interval. In this case
Wm induces the weak∗-topology on L∞+ (Ω).

15



Gradient flows Weighted transport distances Basic tools

The role of γ and simple properties of Wm,γ

1. Typically γ = L d (omitted in Wm).

2. γ = L d
|Ω, Ω open, bounded, and convex subset of Rd : equations in

bounded domains with Neumann boundary condition.

3. γ := e−VL d is a log-concave measure: Fokker-Planck equations
(Beckner/convex Sobolev inequalities)

4. γ := H k
|M, M is k-dimensional Riemannian manifold embedded in Rd :

evolutions in Riemannian manifolds.

Wm,γ enjoys nice properties:

completeness, lower semicontinuity, convexity, subadditivity,
convolution, rescaling, existence of geodesic.

Theorem (Dolbeault-Nazaret-S.)

Suppose that γn ⇀ γ, ρni ⇀ ρi in Mloc(Rd) and mn ↓ m pointwise in
[0,+∞). Then

lim inf
n→+∞

Wmn,γn (ρn0, ρ
n
1) ≥Wm,γ(ρ0, ρ1).

Simplest case: bounded Ω with m defined on a bounded interval. In this case
Wm induces the weak∗-topology on L∞+ (Ω).

15



Gradient flows Weighted transport distances Basic tools

The role of γ and simple properties of Wm,γ

1. Typically γ = L d (omitted in Wm).

2. γ = L d
|Ω, Ω open, bounded, and convex subset of Rd : equations in

bounded domains with Neumann boundary condition.

3. γ := e−VL d is a log-concave measure: Fokker-Planck equations
(Beckner/convex Sobolev inequalities)

4. γ := H k
|M, M is k-dimensional Riemannian manifold embedded in Rd :

evolutions in Riemannian manifolds.

Wm,γ enjoys nice properties:

completeness, lower semicontinuity, convexity, subadditivity,
convolution, rescaling, existence of geodesic.

Theorem (Dolbeault-Nazaret-S.)

Suppose that γn ⇀ γ, ρni ⇀ ρi in Mloc(Rd) and mn ↓ m pointwise in
[0,+∞). Then

lim inf
n→+∞

Wmn,γn (ρn0, ρ
n
1) ≥Wm,γ(ρ0, ρ1).

Simplest case: bounded Ω with m defined on a bounded interval. In this case
Wm induces the weak∗-topology on L∞+ (Ω).

15



Gradient flows Weighted transport distances Basic tools

The role of γ and simple properties of Wm,γ

1. Typically γ = L d (omitted in Wm).

2. γ = L d
|Ω, Ω open, bounded, and convex subset of Rd : equations in

bounded domains with Neumann boundary condition.

3. γ := e−VL d is a log-concave measure: Fokker-Planck equations
(Beckner/convex Sobolev inequalities)

4. γ := H k
|M, M is k-dimensional Riemannian manifold embedded in Rd :

evolutions in Riemannian manifolds.

Wm,γ enjoys nice properties:

completeness, lower semicontinuity, convexity, subadditivity,
convolution, rescaling, existence of geodesic.

Theorem (Dolbeault-Nazaret-S.)

Suppose that γn ⇀ γ, ρni ⇀ ρi in Mloc(Rd) and mn ↓ m pointwise in
[0,+∞). Then

lim inf
n→+∞

Wmn,γn (ρn0, ρ
n
1) ≥Wm,γ(ρ0, ρ1).

Simplest case: bounded Ω with m defined on a bounded interval. In this case
Wm induces the weak∗-topology on L∞+ (Ω).

15



Gradient flows Weighted transport distances Basic tools

The role of γ and simple properties of Wm,γ

1. Typically γ = L d (omitted in Wm).

2. γ = L d
|Ω, Ω open, bounded, and convex subset of Rd : equations in

bounded domains with Neumann boundary condition.

3. γ := e−VL d is a log-concave measure: Fokker-Planck equations
(Beckner/convex Sobolev inequalities)

4. γ := H k
|M, M is k-dimensional Riemannian manifold embedded in Rd :

evolutions in Riemannian manifolds.

Wm,γ enjoys nice properties:

completeness, lower semicontinuity, convexity, subadditivity,
convolution, rescaling, existence of geodesic.

Theorem (Dolbeault-Nazaret-S.)

Suppose that γn ⇀ γ, ρni ⇀ ρi in Mloc(Rd) and mn ↓ m pointwise in
[0,+∞). Then

lim inf
n→+∞

Wmn,γn (ρn0, ρ
n
1) ≥Wm,γ(ρ0, ρ1).

Simplest case: bounded Ω with m defined on a bounded interval. In this case
Wm induces the weak∗-topology on L∞+ (Ω).

15



Gradient flows Weighted transport distances Basic tools

The role of γ and simple properties of Wm,γ

1. Typically γ = L d (omitted in Wm).

2. γ = L d
|Ω, Ω open, bounded, and convex subset of Rd : equations in

bounded domains with Neumann boundary condition.

3. γ := e−VL d is a log-concave measure: Fokker-Planck equations
(Beckner/convex Sobolev inequalities)

4. γ := H k
|M, M is k-dimensional Riemannian manifold embedded in Rd :

evolutions in Riemannian manifolds.

Wm,γ enjoys nice properties:

completeness, lower semicontinuity, convexity, subadditivity,
convolution, rescaling, existence of geodesic.

Theorem (Dolbeault-Nazaret-S.)

Suppose that γn ⇀ γ, ρni ⇀ ρi in Mloc(Rd) and mn ↓ m pointwise in
[0,+∞). Then

lim inf
n→+∞

Wmn,γn (ρn0, ρ
n
1) ≥Wm,γ(ρ0, ρ1).

Simplest case: bounded Ω with m defined on a bounded interval. In this case
Wm induces the weak∗-topology on L∞+ (Ω).

15



Gradient flows Weighted transport distances Basic tools

The role of γ and simple properties of Wm,γ

1. Typically γ = L d (omitted in Wm).

2. γ = L d
|Ω, Ω open, bounded, and convex subset of Rd : equations in

bounded domains with Neumann boundary condition.

3. γ := e−VL d is a log-concave measure: Fokker-Planck equations
(Beckner/convex Sobolev inequalities)

4. γ := H k
|M, M is k-dimensional Riemannian manifold embedded in Rd :

evolutions in Riemannian manifolds.

Wm,γ enjoys nice properties:

completeness, lower semicontinuity, convexity, subadditivity,
convolution, rescaling, existence of geodesic.

Theorem (Dolbeault-Nazaret-S.)

Suppose that γn ⇀ γ, ρni ⇀ ρi in Mloc(Rd) and mn ↓ m pointwise in
[0,+∞). Then

lim inf
n→+∞

Wmn,γn (ρn0, ρ
n
1) ≥Wm,γ(ρ0, ρ1).

Simplest case: bounded Ω with m defined on a bounded interval. In this case
Wm induces the weak∗-topology on L∞+ (Ω).

15



Gradient flows Weighted transport distances Basic tools

Outline

1 Evolution PDE’s with a gradient flow structure

2 The dynamical approach to weighted transport distances

3 Basic tools for metric gradient flows: displacement convexity,
variational approximation (JKO and WED schemes), flow interchange.
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Gradient flows Weighted transport distances Basic tools

Displacement convexity for weighted transport distances

A functional Φ is displacement convex if for every u0, u1 there exists a geodesic
ut , t ∈ [0, 1], w.r.t. Wm connecting u0 to u1 such that

Wm(ut , us) = |t − s|Wm(u0, u1), Φ(ut) ≤ (1− t)Φ(u0) + tΦ(u1).

Theorem (Generalized McCann condition [Carrillo-Lisini-S.-Slepcev ’09])

The functional

Φ(u) =

∫
F (u) dx

is displacement convex in Mm(Ω) with respect to the distance Wm if

r 7→ H(r)

m(r)1−1/d
is nonnegative and non decreasing in (0,+∞),

where

H(r) :=

∫ r

0

F ′′(z)m(z)m′(z)dz .

The functional generating the Heat equation is always displacement convex.
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Gradient flows Weighted transport distances Basic tools

Weighted Energy-Dissipation (WED) approximation

Given u0 ∈ D(Φ) ⊂ L∞+ (Ω) and a relaxation parameter ε > 0 consider the
space-time minimization of the WED functional

Iε(u0) := min
{∫ ∞

0

e−t/ε

ε

(
ε

∫
Rd

|vt|2m(ut) dx + Φ(ut)
)
dt :

∂tut + div
(
m(ut)vt

)
= 0, u(·, 0) = u0

}

Theorem (Rossi-S.-Segatti-Stefanelli)

Assume that Φ is displacement convex w.r.t. Wm and has compact sublevels.
Then the family of minimizers {uε} of the WED functional is relatively
compact and every limit point is a gradient flow of Φ.
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Gradient flows Weighted transport distances Basic tools

The JKO-De Giorgi’s Minimizing movement scheme

I Choose a partition of (0,+∞) of step size τ > 0

t

t0 t1 t2 t3 t4 tn

τ τ τ τ

· · ·

u

U0
τ

U1
τ

U2
τ

U3
τ

U4
τ

Un
τ

Uτ (t)

I Starting from U0
τ := ρ0 find recursively minimizers Un

τ , n = 1, 2, . . . ,

Un
τ − Un−1

τ

τ
+∇Φ(Un

τ ) = 0  Un
τ ∈ argmin

V

W2
m(V ,Un−1

τ )

2τ
+ Φ(V )

I Uτ is the piecewise constant interpolant of {Un
τ}n.

We look for convergence results of Uτ as τ ↓ 0.
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First variation along auxiliary flows
MAIN IDEA: take the first variation of the minimum problem

Un
τ ∈ argmin

V

W 2(V ,Un−1
τ )

2τ
+ Φ(V )

along the gradient flow SΨ generated by other “good” auxiliary functionals Ψ.
HEURISTICS: in an euclidean space SΦ,SΨ corresponds to

ut := SΦ
t (u0) solves d

dt u = −∇Φ(u), wt := SΨ
t (w0) solves d

dt w = −∇Ψ(w)

If u0 = w0 then we have the “commutation” identity

d

dε
Φ(wε)

∣∣∣
ε=0+

=
d

dε
Ψ(uε)

∣∣∣
ε=0+

(
= −

〈
∇Φ(w0),∇Ψ(u0)

〉)

RECIPE: if the derivative of the (main) functional Φ along the (auxiliary)
flow SΨ is negative (up to lower order terms)

then Ψ is a Lyapunov functional for the main flow SΦ (up to lower order
terms).

Look for good flows SΨ having Φ as Lyapunov functional
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Un
τ ∈ argmin

V

W 2(V ,Un−1
τ )

2τ
+ Φ(V )

along the gradient flow SΨ generated by other “good” auxiliary functionals Ψ.
HEURISTICS: in an euclidean space SΦ,SΨ corresponds to

ut := SΦ
t (u0) solves d

dt u = −∇Φ(u), wt := SΨ
t (w0) solves d

dt w = −∇Ψ(w)

If u0 = w0 then we have the “commutation” identity

d

dε
Φ(wε)

∣∣∣
ε=0+

=
d

dε
Ψ(uε)

∣∣∣
ε=0+

(
= −

〈
∇Φ(w0),∇Ψ(u0)

〉)
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A Lyapunov-type estimate at the discrete level

Suppose that Ψ generates a flow wt = SΨ
t (w) satisfying a suitable metric

formulation. We call D the dissipation of Φ along SΨ

D(w) := − d

dε
Φ(SΨ

ε (w))
∣∣∣
ε=0+

= lim sup
ε↓0

Φ(w)−Φ(SΨ
ε (w))

ε

d

dt
Ψ(ut) = −D(w) =⇒ Ψ(ut) +

∫ t

0

D(us)ds ≤ Ψ(u0)

Theorem (Discrete flow-interchange estimate)

If Un
τ is a minimizer of V 7→ W 2(V ,Un−1

τ )

2τ
+ Φ(V ) then

Ψ(Un
τ ) + τ D(Un

τ ) ≤ Ψ(Un−1
τ )

21



Gradient flows Weighted transport distances Basic tools

A Lyapunov-type estimate at the discrete level

Suppose that Ψ generates a flow wt = SΨ
t (w) satisfying a suitable metric

formulation. We call D the dissipation of Φ along SΨ

D(w) := − d

dε
Φ(SΨ

ε (w))
∣∣∣
ε=0+

= lim sup
ε↓0

Φ(w)−Φ(SΨ
ε (w))

ε

d

dt
Ψ(ut) = −D(w) =⇒ Ψ(ut) +

∫ t

0

D(us)ds ≤ Ψ(u0)

Theorem (Discrete flow-interchange estimate)

If Un
τ is a minimizer of V 7→ W 2(V ,Un−1

τ )

2τ
+ Φ(V ) then

Ψ(Un
τ ) + τ D(Un

τ ) ≤ Ψ(Un−1
τ )

21



Gradient flows Weighted transport distances Basic tools

A Lyapunov-type estimate at the discrete level

Suppose that Ψ generates a flow wt = SΨ
t (w) satisfying a suitable metric

formulation. We call D the dissipation of Φ along SΨ

D(w) := − d

dε
Φ(SΨ

ε (w))
∣∣∣
ε=0+

= lim sup
ε↓0

Φ(w)−Φ(SΨ
ε (w))

ε

d

dt
Ψ(ut) = −D(w) =⇒ Ψ(ut) +

∫ t

0

D(us)ds ≤ Ψ(u0)

Theorem (Discrete flow-interchange estimate)

If Un
τ is a minimizer of V 7→ W 2(V ,Un−1

τ )

2τ
+ Φ(V ) then

Ψ(Un
τ ) + τ D(Un

τ ) ≤ Ψ(Un−1
τ )

21



Gradient flows Weighted transport distances Basic tools

A Lyapunov-type estimate at the discrete level

Suppose that Ψ generates a flow wt = SΨ
t (w) satisfying a suitable metric

formulation. We call D the dissipation of Φ along SΨ

D(w) := − d

dε
Φ(SΨ

ε (w))
∣∣∣
ε=0+

= lim sup
ε↓0

Φ(w)−Φ(SΨ
ε (w))

ε

d

dt
Ψ(ut) = −D(w) =⇒ Ψ(ut) +

∫ t

0

D(us)ds ≤ Ψ(u0)

Theorem (Discrete flow-interchange estimate)

If Un
τ is a minimizer of V 7→ W 2(V ,Un−1

τ )

2τ
+ Φ(V ) then

Ψ(Un
τ ) + τ D(Un

τ ) ≤ Ψ(Un−1
τ )

21



Gradient flows Weighted transport distances Basic tools

Auxiliary flow for the Cahn-Hilliard equation
A typical example in the case of the Cahn-Hilliard equation with mobility
m(u) = u(1− u) is given by the (displacement convex) entropy functional

Ψ(w) =

∫
Ω

w log w + (1− w) log(1− w) dx

SΨ is the heat flow ∂tw −∆w = 0

The functional

Φ(u) =
1

2

∫
Rd

|Du|2 dx

decays along the heat flow with

D(w) = − d

dε
Φ(SΨ(w))

∣∣∣
ε=0

=

∫
Ω

|∆w|2 dx =

∫
Ω

|D2w|2 dx

The discrete flow-interchange estimate shows that Ψ is a Lyapunov functional
and satisfies

Ψ(Un
τ ) + τ

∫
Ω

|D2Un
τ |2 dx ≤ Ψ(Un−1

τ ).

In term of Uτ it corresponds to∫ T

0

∫
Ω

∣∣D2Uτ
∣∣2 dx dt ≤ C .
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An example of convergence result

Assume that
P ′(r) = m(r)W ′′(r) ≥ −C in (0, 1),

and the initial condition u0 satisfies

0 ≤ u0 ≤ 1, Φ(u0) =

∫
Ω

(1

2
|Du|2 dx + W (u0)

)
dx

Theorem

There exists an infinitesimal subsequence of time steps τk ↓ 0 such that

Uτk → u pointwise in L2(Rd) and in L2(0,T ; W 1,2(Rd)) as k ↑ ∞

u ∈ C 0
w ([0,+∞); W 1,2(Ω)) ∩ L2

loc([0,+∞); W 2,2(Rd)) is a non-negative global
solution of the weak formulation of the Cahn-Hilliard equation∫∫ (

u ∂tζ −∆u div
(
m(u)Dζ

)
+ P(u)∆ζ

)
dxdt = 0,

for every test function ζ ∈ C∞c (Ω× (0,∞)) such that Dζ · n = 0 on
∂Ω× (0,∞).
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Open problems

I More explicit characterizations of Wm and of measures at finite
Wm-distance.

I Develop a duality approach to the weighted distances and find a precise
characterization of their geodesics. [Carliet-Nazaret-Cardaliaguet ’12].
Curvature properties?

I Study the gradient flow of other integral functionals: potential and
interaction energies do not behave well with respect to the weighted
distances.

I What about non-concave mobilities?

I .....
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