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Gradient flows

A general class of evolutionary PDE’s

In many applications one is interested in nonnegative integrable solutions to
evolution equations of the type

. o .
Oru — div (m(u)D%) =0 inQx(0,0), QCRY,
with Neumann-variational boundary conditions
n-Du=0, n-D(m(u)%):O

and initial condition up € L*(), wo > 0.
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A general class of evolutionary PDE’s

In many applications one is interested in nonnegative integrable solutions to
evolution equations of the type

. o .
Oru — div (m(u)Dﬁ) =0 inQx(0,0), QCRY,
with Neumann-variational boundary conditions
n-Du=0, n-D(m(u)%):O

and initial condition up € L*(), wo > 0.
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Gradient flows

A general class of evolutionary PDE’s

In many applications one is interested in nonnegative integrable solutions to
evolution equations of the type

. o .
Oru — div (m(u)Dﬁ) =0 inQx(0,0), QCRY,
with Neumann-variational boundary conditions
n-Du=0, n-D(m(u)%):O

and initial condition up € L*(), wo > 0.
The equation can be split

Oru+divw =0 (Continuity equation)

w =m(u)v = —m(u) Dy (Flux structure)
(U]

P = fs—u (Nonlinear variational condition)

m : [0, +00) — [0, 4+00) is a given mobility function associated to the

equation.
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Examples: 2nd order equations

Heat equation:
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Gradient flows

Examples: 2nd order equations

Drift-diffusion-interaction (m(u) = u):

Oeu = Au+ div(uDV) + div(uDW x u) = div (uD(logu + V + W x u)),

m(u)z/Rdulogudx+/Rdvudx+//RdXRd W(x — y)u(x)u(y) dx dy



Gradient flows

Examples: 2nd order equations

Chemotaxis with overcrowding prevention [HILLEN-PAINTER ’01]:

Otu = div (Du + m(u)D(W u)) =div (m(u)D(F'(u) + W % u))
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Gradient flows

Examples: 4th order equations

Thin film (typically m(u) = u®):

Oru +div (m(u) DAu) =0, ®(u) := %/ |Dul® dx
Rd

[BERNIS-FRIEDMAN '90, BERTSCH-DAL PAssO-GARCKE-GRUN; BECKER-GRUN,
CARRILLO-TOSCANI '02, CARLEN-ULUSOY '07]
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Gradient flows

Examples: 4th order equations

DLSS - Quantum drift-diffusion
1
Oru + div (m(u)D(u'B_lAuB)) =0, ®(u):= 25 /]Rd |Du?)? dx

DERRIDA-LEBOWITZ-SPEER-SPOHN '91 [BLEHER-LEBOWITZ-SPEER, JUNGEL,
PINNAU, MATTHES, GIANAZZA-TOSCANI-S.]
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Gradient flows

Examples: 4th order equations

Cahn-Hilliard: (m(u) = u(1 — u))

Otu+div (u(l — u)D(Au — W'(u)) =0
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Gradient flows

Examples: 4th order equations

Cahn-Hilliard: (m(u) = u(1 — u))
Beu +div (u(l — u) D(Au — W/ (1)) =0 ®(u) = /Rd <%|Du\2 + W(u)) dx.

[ELLIOTT-GARCKE 96|
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The gradient flow structure: a formal motivation
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The gradient flow structure: a formal motivation
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as the "velocity” of the moving family u.



Gradient flows

The gradient flow structure: a formal motivation

Oiu+divw =0, w :m(u)v P = (Z—t

d
Ed’(ut)

/}Rdv -Dypm(u)dx > f(/Rd ‘Dw{zm(u) dx>1/2(/Rd |v‘2m(u) dX)1/2

Ansatz: interpret
s 1/2
(/ |v| m(u)dx)
Rd

as the "velocity” of the moving family u.
If we want to decrease @ as fast as possible, we have to choose

v=—-Dvy
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Weighted transport distances: the dynamical approach
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consider a time dependent family u¢, t € [0, T], of densities satisfying the
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Weighted transport distances

Weighted transport distances: the dynamical approach

[BENAMOU-BRENIER 00]
We interpret u as the density of a (probability) measure p = udx and we

consider a time dependent family u¢, t € [0, T], of densities satisfying the
nonlinear continuity equation

’ Oru +div (m(u)v) =0 ‘

The scalar velocity at time t is given by
Vulud = velagnigzer = ( [ | )P m(w) ax)

The length of the curve u between t, and t;

el = [ vdulae= [ [ 0o mu i) ae

Weighted transport distance W, between ug and u;:

Wi (ug, u1) := min {Lé[u] TU),_, = Uo, U, = ul}.
- -
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Weighted transport distances

Limiting cases

m(r) =1 <+ Homogeneous dual W~12(R?) distance.

W (uo, u1) = sup { /d(uo —up)pdx: /d |De|? dx < 1}
R R

vV=w, deu +divw = 0. W3 (up, ur) = min { / lw|* : divw = u; — uz}

Hilbert Theory [Benilan, Brezis, Crandall, Pazy, ...~'70]
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Weighted transport distances

Limiting cases

m(r) =r < Wasserstein distance, W, = W;
characterization in terms of optimal transport, linear transport equation

Otu +divuv =0

[JORDAN-KINDERLEHRER-OTTO '98, OTTO '01]

Applications: optimal transport, existence and asymptotic behaviour of

solutions, contraction properties, Logarithmic Sobolev Inequalities,

approximation algorithms, curvature and metric measure spaces, stability,...
[AMBROSIO-GIGLI-S., AGUEH, BRENIER, CARRILLO, CARLEN, MCCANN, GANGBO,
GIACOMELLI, GIANAZZA-TOSCANI-S., LI1SINI, OTTO, SLEPCEV, STURM, VILLANI, é’?
WESTDICKENBERG, -...] =
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Weighted transport distances

The interest of the method and the main problems
ADVANTAGES
» Non-negativity is for free.
> A general approximation scheme, which is a variational formulation of
the backward Euler method, is always available.
» Decay of the generating functional ® along the (discrete/continuous)
flow.



Weighted transport distances

The interest of the method and the main problems

DRAWBACKS
> It is not so simple as in the Hilbertian framework
» You loose the linear structure of the underlying space.
» The distance is not flat and the space behaves like the an infinitely
dimensional, non-smooth, positively curved Riemannian manifold.
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Weighted transport distances

The interest of the method and the main problems

PROBLEMS

» How can we make rigorous this approach and when it is well posed, so
that it defines a distance?

» Does the distance enjoys similar/different properties to the
Sobolev/Wasserstein one?

> Could it be useful to study evolution equations and to get new geometric
insights?

> Are there interesting convexity properties of the integral functionals and é’g
related functional inequalities ? =

11



Weighted transport distances

The variational problem

Problem

Given nonnegative densities uo, tn € L, (RY) find a minimizer of the action
functional

1
/ /d lve|*m(u) dxdt st deu + div(m(ue)ve) = 0, Uj_gq = Uo1:
o Jr ’
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Weighted transport distances

The variational problem

Problem

Given nonnegative densities uo, tn € L, (RY) find a minimizer of the action
functional

1
/ /d lve|*m(u) dxdt st deu + div(m(ue)ve) = 0, Uj_gq = Uo1:
o Jr ’

Direct method of the calculus of variations: fix the densities up, u; and take
a minimizing sequence (uf,w}, vi) with wi = m(u{)vy, such that

1
8tu? + div(]n(u?)v:‘) =0, u"|t:0 | = Uo.1, / /d ‘v?‘2ﬂl(u?) dxdt — inf
’ o JR

Problem: sublevels of the minimizing functional are only weakly™ relatively
compact: we get weak™ convergence of a suitable subsequence but the
equation d:u; + div(m(u)v) = 0 is nonlinear in the couple (u, v).



Weighted transport distances

The variational problem

Problem
Given nonnegative densities uo, tn € L, (RY) find a minimizer of the action

functional

1
/ /d lve|*m(u) dxdt st deu + div(m(ue)ve) = 0, Uj_gq = Uo1:
o Jr ’

Direct method of the calculus of variations: fix the densities up, u; and take
a minimizing sequence (uf,w}, vi) with wi = m(u{)vy, such that

1
8tu? + div(]n(u?)v?) =0, u"|t70 | = Uo.1, / / ‘v{“2ﬂl(u?) dxdt — inf
- 0 JRrI

Basic idea: write everything in terms of (u,w)! Since w = m(u)v we minimize

1,
Au,w) = / / A(us,wi)dxdt st Owu+divwe =0, Yoy
0 JRrI o

[wl?
where Alu,w) =
w(u)

= Uuop,1.




Weighted transport distances

Convexity (and l.s.c.) of the action requires a concave mobility

The function

2
A: RY 5 W
(u,w) € (0,+00) X R* — mu) € [0, +o0]

is convex iff m : [0, +00) — [0, c©) is concave.
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The function

2
A: RY 5 W
(u,w) € (0,+00) X R* — mu) € [0, +o0]

is convex iff m : [0, +00) — [0, c©) is concave.

Two cases:

A) m: [0,400) — [0, +00) is concave and nondecreasing.
Model example: m(u) = u®, 0 < a < 1. In this case A(Au, Aw) is

superlinear as A\ 1 400, except when w = 0.



Weighted transport distances

Convexity (and l.s.c.) of the action requires a concave mobility

The function

[wl?

m(u)

is convex iff m : [0, +00) — [0, c©) is concave.

A: (u,w) € (0,+00) x RY — € [0, +o0]

Two cases:

A) m: [0,400) — [0, +00) is concave and nondecreasing.
Model example: m(u) = u®, 0 < a < 1. In this case A(Au, Aw) is
superlinear as A\ 1 400, except when w = 0.

B) m: [0, M] — [0, +00) is concave with m(0) = m(M) = 0.
Model example: m(u) = u(M — u). In this case A(u,w) = o0 if u > M
and all the densities u are uniformly bounded.



A rigorous definition through convex functional of measures
To get weak™ lower semicontinuity of A, we extend it to

couples (p,v) where p € Mioc(RY) is a nonnegative Radon
measure and v € Mio.(R?; R?) is a Radon vector measure.
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that the definition of A also depends from a reference measure
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Weighted transport distances

A rigorous definition through convex functional of measures
To get weak™ lower semicontinuity of A, we extend it to

couples (p,v) where p € Mioc(RY) is a nonnegative Radon
measure and v € Mio.(R?; R?) is a Radon vector measure.

Moreover, the function A is no more 1—homogeneous in the couple (p, ), so
that the definition of A also depends from a reference measure
~ € Mioe(R?) (usually the Lebesgue measure, but not necessarily).

Definition (The case of a sublinear mobility)

If p € Mioc(RY), v € Mioc(R%; R?) we set

A(p,vlv) == /Rd A(%, dl) dy

Given po, p1 we have

1
Wily.y(po,pl) = inf {/ A(pe,ve)dt st Op+dive =0, Py = po,l}
; 5

We call M, ~[o] the collection of all measures at finite distance from o.

[Dolbeault-Nazaret-S. '09, Lisini-Marigonda '10]
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The role of v and simple properties of W,

1. Typically v = £ (omitted in W,,).
2. v = ffdkz, Q open, bounded, and convex subset of RY: equations in
bounded domains with Neumann boundary condition.

3. v:= eV 2%isa log-concave measure: Fokker-Planck equations
(Beckner/convex Sobolev inequalities)

4. ~ = ,%’k|M, M is k-dimensional Riemannian manifold embedded in R:
evolutions in Riemannian manifolds.
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Wi,~ enjoys nice properties:

completeness, lower semicontinuity, convexity, subadditivity,
convolution, rescaling, existence of geodesic.
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Wi,~ enjoys nice properties:
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convolution, rescaling, existence of geodesic.

Theorem (Dolbeault-Nazaret-S.)

Suppose that 4" — ~, pf — p;i in Mioc(R?) and m" | m pointwise in
[0, +00). Then
lim inf Woan n (00, p7) > W~ (po, p1)-
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Weighted transport distances

The role of v and simple properties of W,

2. v = ffdh, Q open, bounded, and convex subset of R?: equations in
bounded domains with Neumann boundary condition.

Wi,~ enjoys nice properties:

completeness, lower semicontinuity, convexity, subadditivity,
convolution, rescaling, existence of geodesic.

Theorem (Dolbeault-Nazaret-S.)

Suppose that 4" — ~, pf — p;i in Mioc(R?) and m" | m pointwise in
[0, +00). Then
lim inf Woan n (00, p7) > W~ (po, p1)-

n—-+o0

Simplest case: bounded Q with m defined on a bounded interval. In this case
W, induces the weak™-topology on L°(9). =



Outline

Basic tools for metric gradient flows: displacement convexity,
variational approximation (JKO and WED schemes), flow interchange.
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Displacement convexity for weighted transport distances

A functional ® is displacement convex if for every ug, u; there exists a geodesic
u;, t € [0,1], w.r.t. Wy, connecting uo to u; such that

Wi (ue, us) = |t — s|Wi(uo, u1), &(ur) < (1 — t)d(ug) + td(uy).
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The functional
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H(r) := /or F"(z)m(z)m’(z) dz.
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Displacement convexity for weighted transport distances

A functional ® is displacement convex if for every ug, u; there exists a geodesic
u;, t € [0,1], w.r.t. Wy, connecting uo to u; such that

Wi (ue,us) = |t — s|Wa(uo, ur), d(ue) < (1= t)P(uo) + td(u1).

Theorem (Generalized McCann condition [Carrillo-Lisini-S.-Slepcev '09])

The functional
d(u) = / F(u)dx
is displacement convex in M, (2) with respect to the distance W, if
H(r) . . .
r— —=~i5 is nonnegative and non decreasing in (0, 4+00),
m(r)
where

H(r) := /or F"(z)m(z)m’(z) dz.

The functional generating the Heat equation is always displacement convex.




Basic tools

Weighted Energy-Dissipation (WED) approximation

Given up € D(®) C L°(£2) and a relaxation parameter ¢ > 0 consider the
space-time minimization of the WED functional

Je(uwo) := min { /Ooo e (s /Rd ve|*m(ue) dx + Cb(ut)) dt :

g

Oruy + div (\“(Ut)vt) =0, u(-0)= ”0}



Weighted Energy-Dissipation (WED) approximation

Given up € D(®) C L°(£2) and a relaxation parameter ¢ > 0 consider the
space-time minimization of the WED functional

Je(uwo) := min { /Ooo e (s /Rd ve|*m(ue) dx + Cb(ut)) dt :

g

Oruy + div (\“(Ut)vt) =0, u(-0)= ”0}

Theorem (Rossi-S.-Segatti-Stefanelli)

Assume that ® is displacement convex w.r.t. W, and has compact sublevels.
Then the family of minimizers {u.} of the WED functional is relatively
compact and every limit point is a gradient flow of ®.
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Basic tools

The JKO-De Giorgi's Minimizing movement scheme

» Choose a partition of (0, +00) of step size 7 > 0

» Starting from U2 := po find recursively ur, n=1,2,...,

Y U;j’_
Ul —®
T° ~Ux(t)
‘UE Ui
SR ur
— e —
T T T T
- ~>‘< >‘< >‘< >‘ ‘ -
to ‘ tl ‘ t2 ‘ t3 ‘ t4 - ‘ tﬂ g

U € argmin
v

Uz )

W2 (V
2

T

+ d(V)

» U, is the piecewise constant interpolant of {U}},.
We look for convergence results of U as 7 | 0.
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First variation along auxiliary flows
MAIN IDEA: take the first variation of the minimum problem
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2T +o(V)

U; € argmin
v

along the gradient flow sY generated by other “good” auxiliary functionals W.
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First variation along auxiliary flows
MAIN IDEA: take the first variation of the minimum problem

WA(V, Uz )

2T +o(V)

U; € argmin
v

along the gradient flow sY generated by other “good” auxiliary functionals W.
HEURISTICS: in an euclidean space s®.s¥ corresponds to

ue := S¢ (up) solves Su=—Vo(u), w := S (wo) solves dw=—VW¥(w)

If up = wo then we have the “commutation” identity

d d
d—stb(ws) I d—E\U(us)

=0+

( = —(Vd(w), V"’(UO)>)

e=0t

RECIPE: if the derivative of the (main) functional ® along the (auxiliary)
flow SV is negative

then W is a Lyapunov functional for the main flow s®

Look for good flows sV having ® as Lyapunov functional ‘
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Basic tools

First variation along auxiliary flows
MAIN IDEA: take the first variation of the minimum problem

WA(V, Uz )

2T +o(V)

U; € argmin
v

along the gradient flow sY generated by other “good” auxiliary functionals W.
HEURISTICS: in an euclidean space s®.s¥ corresponds to

ue := S¢ (up) solves Su=—Vo(u), w := S (wo) solves dw=—VW¥(w)

If up = wo then we have the “commutation” identity

d d
d—stb(ws) I d—E\U(us)

=0+t

( = —(Vd(w), V"’(UO)>)

e=0t

RECIPE: if the derivative of the (main) functional ® along the (auxiliary)
flow S" is negative (up to lower order terms)

then W is a Lyapunov functional for the main flow S® (up to lower order
terms).
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Suppose that W generates a flow w; = S}’ (w) satisfying a suitable metric
formulation.

21



Basic tools

A Lyapunov-type estimate at the discrete level

Suppose that W generates a flow w; = S}’ (w) satisfying a suitable metric
formulation. We call D the dissipation of ® along sV

D(w) := E%“’(SE’(W)) . = limsup ®(w) - ‘:(55 (w))

21



Basic tools

A Lyapunov-type estimate at the discrete level

Suppose that W generates a flow w; = S’ (w) satisfying a suitable metric
formulation. We call D the dissipation of ® along sV

D(w) := E%“’(SE’(W)) . = limsup ®(w) - ‘:(55 (w))

%W(ut) = —D(w) = W(ue) + /OtD(us)ds < W(up)




Basic tools

A Lyapunov-type estimate at the discrete level

Suppose that W generates a flow w; = S}’ (w) satisfying a suitable metric
formulation. We call D the dissipation of ® along sV

D(w) := E%“’(SE’(W)) . = limsup ®(w) - ‘:(55 (w))

%W(ut) = —D(w) = W(ue) + /OtD(us)ds < W(up)

Theorem (Discrete flow-interchange estimate)

If U is a minimizer of V

2 n—1
WAL | g1 ey

w(UL) + 7 D(UL) < w(ur ™)
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Auxiliary flow for the Cahn-Hilliard equation
A typical example in the case of the Cahn-Hilliard equation with mobility
m(u) = u(1 — u) is given by the (displacement convex) entropy functional

W(w) = /leogw+ (1 — w)log(1 — w)dx

SY s the heat flow Ow — Aw =0
The functional

1
®(u) = = / |Du|? dx
2 Jpa
decays along the heat flow with

d

D(w) = 3 ¢(Sw(w))L:O:/§;|Aw|2dx=/Q|D2w|2dx

€
The discrete flow-interchange estimate shows that W is a Lyapunov functional
and satisfies

w(un) + T/ ID?U" |2 dx < w(U" ). ’
Q

In term of U it corresponds to

-
DU, |*dxdt < C. @
| [ lprueaxaes ®



An example of convergence result
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Q

bk



Basic tools
An example of convergence result
Assume that
P'(r) = m(r)W"(r) > —C in (0,1),

and the initial condition ug satisfies

0<u <1, ‘D(uo) = / (%|Du\2dx+ W(UO)> dx
Q

Theorem

There exists an infinitesimal subsequence of time steps T | 0 such that

U, —u pointwise in L>(R?) and in L>(0, T; W"(RY)) as k 1 oo



Basic tools

An example of convergence result

Assume that
P'(r) = m(r)W"(r) > —C in (0,1),

and the initial condition ug satisfies

0<u <1, ‘D(uo) = / (%|Du\2dx+ W(Uo)) dx
Q

Theorem

There exists an infinitesimal subsequence of time steps T | 0 such that
U, —u pointwise in L>(R?) and in L>(0, T; W"(RY)) as k 1 oo

u € C3([0, +00); WH2(Q)) N L2, ([0, +00); WH2(RY)) is a non-negative global
solution of the weak formulation of the Cahn-Hilliard equation




Basic tools

An example of convergence result

Assume that
P'(r) = m(r)W"(r) > —C in (0,1),

and the initial condition ug satisfies

0<u <1, ‘D(uo) = / (%|Du\2dx+ W(Uo)) dx
Q

Theorem

There exists an infinitesimal subsequence of time steps T | 0 such that
U, —u pointwise in L>(R?) and in L>(0, T; W"(RY)) as k 1 oo

u € C3([0, +00); WH2(Q)) N L2, ([0, +00); WH2(RY)) is a non-negative global
solution of the weak formulation of the Cahn-Hilliard equation

// (u :¢ — Au div (m(u)DC) + P(u)Ag) dxdt = 0,

for every test function ¢ € C2°(Q x (0,00)) such that D -n =0 on

9 x (0, 00).
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Open problems

» More explicit characterizations of W, and of measures at finite
W..-distance.

> Develop a duality approach to the weighted distances and find a precise
characterization of their geodesics. [Carliet-Nazaret-Cardaliaguet '12].
Curvature properties?

» Study the gradient flow of other integral functionals: potential and
interaction energies do not behave well with respect to the weighted
distances.

» What about non-concave mobilities?
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