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Hamel basis and additive functions

Hamel basis

References: [Hei, Section 4.1], [Ku, Section 4.2, Chapter 11], [NS, Kapitola 4.7],
[A, Section 6F] 1

Existence of Hamel basis

Definition 1. Let V be a vector space over a field K. We say that B is a
Hamel basis in V if B is linearly independent and every vector v ∈ V can be
obtained as a linear combination of vectors from B.

This is equivalent to the condition that every x ∈ V can be written in
precisely one way as ∑

i∈F
cixi

where F si finite, ci ∈ K and xi ∈ B for each i ∈ F .
It is also easy to see that for any vector space W and any map g : B → W

there exists exactly one linear map f : V →W such that f |B = g.

Theorem 1. Let V be a vector space over K. Let A be an linearly independent
subset of V . Then there exist a Hamel basis B of V such that A ⊆ B. (Any
linearly independent set is contained in a basis.)

Proof. Zorn’s lemma.

Corollary 1. Every vector space has a Hamel basis.

Proof. For V = {0} we have a basis B = ∅.
If V 6= {0}, we can take any non-zero element x ∈ V and use Theorem 1 for

A = {x}.

In some cases we are able to write down a basis explicitly, for example in
finitely-dimensional space or in the following example. However, the claim that
a Hamel basis exists for each vector space over any field already implies AC (see
[HR, Form 1A]).

Example 1. Let c00 be the space of all real sequences which have only finitely
many non-zero terms. Then {e(i); i ∈ N}, where the sequence e(i) is given by

e
(i)
n = δin, is a Hamel basis of this space.

1See also: thales.doa.fmph.uniba.sk/sleziak/texty/rozne/AC/cont.pdf
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Cardinality of Hamel basis

Proposition 1. If B1, B2 are Hamel bases of a vector space V , then cardB1 =
cardB2.

Because of the above result, it makes sense to define Hamel dimension of a
vector space V as the cardinality of any of its bases.

Hamel bases in linear normed spaces and Banach spaces
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Cardinality. Recall that a subset A of a topological space X is called meagre
in X if it is a countable union of nowhere-dense sets. Baire category theorem:
If X is a complete metric space, then X is not meagre in X; i.e., X cannot be
obtained as a countable union of nowhere-dense sets. (Similar claim is true for
locally compact Hausdorff spaces.)

Theorem 2. Let X be an infinite-dimensional Banach space.
a) If S is a subspace of X which has countable Hamel basis, then X is meagre

in X.
b) Any Hamel basis of X is uncountable.

The proof uses Baire category theorem and the fact that every finitely-
dimensional subspace of a Banach space is closed (see [FHH+, Proposition 1.36]).
The same argument can be used to show analogous result for completely metriz-
able topological vector spaces (see [AB, Corollary 5.23]).

The above result can be in fact improved: It can be shown that cardinality
of infinite-dimensional Banach space is at least c. We will give here a proof from
[L].

We first recall a few fact about almost disjoint families (see [BŠ, §III.1], [B,
Theorem 5.35], [JW, Theorems 17.17, 17.18]).

Definition 2. Let A = {Ai; i ∈ I} be a system of subset of X. We say that
A is an almost disjoint family or AD family on X, if cardAi = cardX for each
i ∈ I and the intersection Ai ∩Aj is finite for each i, j ∈ I, i 6= j.

Lemma 1. If X is an infinite countable set then there is an AD family on X
of cardinality c.

Proof. We will work with X = Q. (The obtained AD family can be transferred
to any infinite countable set.)

For every r ∈ R there is an injective sequence fr : N→ Q of rational numbers,
which converges to r. Put Ar = fr[N]. It is easy to see that {Ar; r ∈ R} is an
AD family.

2I should mention that I’ve learned about some of these results (and their proofs)
from discussions at http://math.stackexchange.com. See http://math.stackexchange.com/

questions/74101/, http://math.stackexchange.com/questions/33282/ and http://math.

stackexchange.com/questions/79184/.
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Theorem 3. If X is an infinite-dimensional Banach space then Hamel dimen-
sion of X is at least c.

Proof. We first construct inductively systems {xi; i ∈ N} ⊆ X and {x∗i ; i ∈
N} ⊆ X∗ such that x∗i (xj) = δij and ‖xi‖ = 1.

Let us describe the inductive step in detail. Suppose we have already con-
structed x1, . . . , xk and x∗1, . . . , x

∗
k fulfilling the above conditions. Then the space

X can be written as X = [x1, . . . , xk] ⊕X ′ and the space X ′ is again infinite-
dimensional.3 Then we can choose any xk+1 ∈ X ′ such that ‖xk+1‖ = 1.
The map x∗k+1 : [x1, . . . , xk+1] → R given by x∗k+1(xi) = δij is linear map on a
finitely-dimensional subspace, hence it is continuous. By Hahn-Banach theorem
it can be extended to a linear continuous function from X to R.

The above conditions imply xk /∈ [{xj ; j ∈ N, j 6= k}], since xk /∈ (x∗k)−1(0)
and the later set is a closed subspace of X containing {xj ; j ∈ N, j 6= k}.

Now let A = {Ai; i ∈ R} be an AD family on N. For each i ∈ R we define

ai =
∑
j∈Ai

1

2j
xj .

(Not that ‖ 1
2j xj‖ ≤

1
2j , which implies that the above series is Cauchy and thus

convergent.)
We will show that {ai; i ∈ R} is an independent set. By Theorem 1 this

implies that Hamel dimension of X is at least c.
Let us assume that

∑
i∈F ciai = 0 for some finite set F , where all ci’s are

non-zero. Let
P :=

⋃
i,j∈F
i 6=j

(Ai ∩Aj).

This set is finite, since A is an AD family. The above finite sum can be rewritten
as

∞∑
j=1

djxj = 0,

where dj = ci
2j whenever i ∈ F and j ∈ Ai \ P . Since each set Ai \ P is infinite,

we have infinitely many non-zero coefficients in this sum. Thus we can rewrite
the last equation as

xk =
∑
i 6=k

fixi

for some k and fi ∈ R, which contradicts the assumption that xk /∈ {xj ; j 6= k}.

Existence of unbounded linear functionals.

Proposition 2. If X is an infinite-dimensional linear normed space, then there
exist non-continuous linear function f : X → R.

3Here we used the fact that if f ∈ X∗ and f(x) 6= 0, then X = Ker f ⊕ [x].
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Proof. Choose an infinite independent set {xn;n ∈ N} such that ‖xn‖ = 1 for
each n ∈ N and a function f : X → R such that f(xn) = n.

Continuity of coordinate functionals. If b is a Hamel basis of a vector
space X over R, and we define fb : x→ R which assigns to x its b-th coordinate,
i.e., x =

∑
b∈B fb(x)b for each x ∈ X, then fb is a linear function from X to R.

Suppose that X is, moreover, a Banach space. We would like to know
whether the functions fb are continuous. We will show that at most finitely
many of them can be continuous.

Proposition 3. Let B be a Hamel basis of a Banach space X. Let fb, b ∈ B,
be the coordinate functionals. Then there is only finitely many b’s such that fb
is continuous.

Proof. Suppose that {bi; i ∈ N} is an infinite subset of B such that each fbi is
continuous. W.l.o.g. we may assume that ‖bi‖ = 1.

Let

x :=

∞∑
i=1

1

2i
bi.

(Since X is complete, the above sum converges.)
We also denote xn :=

∑n
i=1

1
2i bi. Since xn converges to x, we have fbk(x) =

lim
n→∞

fbk(xn) = 1
2k

for each k ∈ N. Thus the point x has infinitely many non-zero

coordinates, which contradicts the definition of Hamel basis.

We can give another proof based on Banach-Steinhaus theorem (uniform
boundedness principle). We show first the following:

Lemma 2. Let B be a Hamel basis of a Banach space X. Let fb, b ∈ B, be the
coordinate functionals. Let C = {b ∈ B; fb is continuous}. Then sup{‖fb‖; b ∈
C} <∞.

Proof. For any x ∈ X there is at most finitely many b’s in C such that fb(x) 6= 0.
This implies that supb∈C |fb(x)| is finite. Banach-Steinhaus theorem this implies
sup{‖fb‖; b ∈ C} <∞.

Proof of Proposition 3. Let B be any Hamel basis for X. For any choice of
constants cb, b ∈ B, is the set {cbfb; b ∈ B} a Hamel basis as well. The
coordinate functionals for this new basis are gb = 1

cb
fb. If the set C = {b ∈ B; fb

is continuous} is infinite, then by an appropriate choice of constant cb we can
obtain sup{‖fb‖; b ∈ C} =∞, which contradicts the above lemma.

It is easy to show that finitely many of coordinate functionals can be con-
tinuous. If X is a Banach space with a basis B and x1, . . . , xn /∈ X, then
[x1, . . . , xn]⊕X is a Banach space with a basis {x1, . . . , xn} ∪B and there are
at least n continuous coordinate functionals.

Also in the space c00 from Example 1 with sup-norm all coordinate func-
tionals are continuous. The space c00 is, of course, not complete.
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Cauchy functional equation

References: [Ku, Section 5.2, Chapter 12], [S, Section 2.1], [Ka, Chapter 1], [Kh,
Chapter 7], [Her, Section 5.1], [A, Appendix to Chapter 6]

Let us study the functions f : R→ R fulfilling

f(x+ y) = f(x) + f(y). (1)

The equation (1) is called Cauchy equation and functions fulfilling (1) are called
additive functions.

It is easy to show that

Lemma 3. If a function f : R→ R fulfills (1), then

f(qx) = qf(x)

holds for every q ∈ Q, x ∈ R.

This shows, that the additive functions are precisely the linear maps if we
consider R as a vector space over Q.

Lemma 3 implies that

Theorem 4. Every continuous solution (1) is of the form f(x) = ax for some
a ∈ R.

Non-linear solutions

Using the existence of Hamel basis in R (as a vector space over Q) we can show
that

Theorem 5. There exist non-linear solution of (1), i.e. functions f : R → R
that fulfill (1) but are not of the form f(x) = ax.

Theorem 6. If f is a non-linear solution of (1), then the graph of this function

G(f) = {(x, f(x));x ∈ R}

is dense in R2.

The proof can be found e.g. in [Her, Theorem 5.4].
Theorems 4 and 6 suggest that well-behaved solutions of (1) are linear and

that non-linear solutions have to be, in some sense, pathological. Let us mention
a one more result in this direction.

Theorem 7. Every measurable solution of (1) is linear.

An elegant proof is given in [Her, Theorem 5.5].
This last result means that by showing the existence of non-continuous so-

lutions of (1) we have also obtained the existence of non-measurable sets.
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