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Hamel basis and additive functions

Hamel basis

References: [Hei, Section 4.1], [Kul Section 4.2, Chapter 11], [NS|, Kapitola 4.7],
[Al Section 6F] E|

Existence of Hamel basis

Definition 1. Let V be a vector space over a field K. We say that B is a
Hamel basis in V if B is linearly independent and every vector v € V can be
obtained as a linear combination of vectors from B.

This is equivalent to the condition that every x € V can be written in
precisely one way as
> i

=
where F si finite, ¢; € K and x; € B for each i € F.

It is also easy to see that for any vector space W and any map g: B - W
there exists exactly one linear map f: V — W such that f|g =g.

Theorem 1. Let V be a vector space over K. Let A be an linearly independent
subset of V. Then there exist a Hamel basis B of V' such that A C B. (Any
linearly independent set is contained in a basis.)

Proof. Zorn’s lemma. O
Corollary 1. Ewvery vector space has a Hamel basis.

Proof. For V = {0} we have a basis B = {).
If V # {0}, we can take any non-zero element z € V and use Theorem [1] for
A= {z}. O

In some cases we are able to write down a basis explicitly, for example in
finitely-dimensional space or in the following example. However, the claim that
a Hamel basis exists for each vector space over any field already implies AC (see
[HR] Form 1A]).

Example 1. Let cgo be the space of all real sequences which have only finitely

many non-zero terms. Then {e(?;i € N}, where the sequence e is given by

esf) = d;n, is a Hamel basis of this space.

1See also: [thales.doa.fmph.uniba.sk/sleziak/texty/rozne/AC/cont .pdf


thales.doa.fmph.uniba.sk/sleziak/texty/rozne/AC/cont.pdf

Cardinality of Hamel basis

Proposition 1. If By, Bs are Hamel bases of a vector space V', then card B; =
card Bsy.

Because of the above result, it makes sense to define Hamel dimension of a
vector space V as the cardinality of any of its bases.

Hamel bases in linear normed spaces and Banach spaces

B

Cardinality. Recall that a subset A of a topological space X is called meagre
in X if it is a countable union of nowhere-dense sets. Baire category theorem:
If X is a complete metric space, then X is not meagre in X; i.e., X cannot be
obtained as a countable union of nowhere-dense sets. (Similar claim is true for
locally compact Hausdorff spaces.)

Theorem 2. Let X be an infinite-dimensional Banach space.
a) If S is a subspace of X which has countable Hamel basis, then X is meagre
in X.
b) Any Hamel basis of X is uncountable.

The proof uses Baire category theorem and the fact that every finitely-
dimensional subspace of a Banach space is closed (see [FHH™|, Proposition 1.36]).
The same argument can be used to show analogous result for completely metriz-
able topological vector spaces (see [ABl Corollary 5.23]).

The above result can be in fact improved: It can be shown that cardinality
of infinite-dimensional Banach space is at least ¢. We will give here a proof from
[L].

We first recall a few fact about almost disjoint families (see [BS, §I11.1], [B]
Theorem 5.35], [JW| Theorems 17.17, 17.18]).

Definition 2. Let A = {4;;i € I} be a system of subset of X. We say that
A is an almost disjoint family or AD family on X, if card A; = card X for each
i € I and the intersection A; N A; is finite for each ¢,5 € I, ¢ # j.

Lemma 1. If X is an infinite countable set then there is an AD family on X
of cardinality c.

Proof. We will work with X = Q. (The obtained AD family can be transferred
to any infinite countable set.)

For every r € R there is an injective sequence f,.: N — Q of rational numbers,
which converges to r. Put A, = f.[N]. It is easy to see that {A,;r € R} is an
AD family. O

21 should mention that I've learned about some of these results (and their proofs)
from discussions at http://math.stackexchange.com. See http://math.stackexchange.com/
questions/74101/, http://math.stackexchange.com/questions/33282/| and http://math.
stackexchange.com/questions/79184/.
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Theorem 3. If X is an infinite-dimensional Banach space then Hamel dimen-
sion of X is at least ¢.

Proof. We first construct inductively systems {z;;¢ € N} C X and {z};i €
N} € X* such that o} (z;) = 6;; and ||z;|| = 1.

Let us describe the inductive step in detail. Suppose we have already con-
structed 1, ...,z and 27, ..., z} fulfilling the above conditions. Then the space
X can be written as X = [z1,...,2;] ® X’ and the space X’ is again infinite-
dimensional )] Then we can choose any 11 € X’ such that ||z = 1.
The map xj_,: [v1,...,2k41] — R given by x} (i) = d;; is linear map on a
finitely-dimensional subspace, hence it is continuous. By Hahn-Banach theorem
it can be extended to a linear continuous function from X to R.

The above conditions imply z ¢ [{z;;j € N, j # k}], since z ¢ (z})~1(0)
and the later set is a closed subspace of X containing {z;;j € N, j # k}.

Now let A = {A;;i € R} be an AD family on N. For each i € R we define

JEA;

(Not that || 55x;|| < 57, which implies that the above series is Cauchy and thus
convergent. )
We will show that {a;;i € R} is an independent set. By Theorem [1] this
implies that Hamel dimension of X is at least .
Let us assume that Zie rcia; = 0 for some finite set F', where all ¢;’s are
non-zero. Let
P .= U (AZHAJ)
i,jEF
i#£]
This set is finite, since A is an AD family. The above finite sum can be rewritten

as
[
E djxj = 07
Jj=1

where d; = 5+ whenever i € F' and j € A; \ P. Since each set A; \ P is infinite,

we have infinitely many non-zero coefficients in this sum. Thus we can rewrite
the last equation as
v =y fit;
itk
for some k and f; € R, which contradicts the assumption that xy ¢ {x;;j # k}.
O
Existence of unbounded linear functionals.

Proposition 2. If X is an infinite-dimensional linear normed space, then there
exist non-continuous linear function f: X — R.

3Here we used the fact that if f € X* and f(z) # 0, then X = Ker f @ [z].



Proof. Choose an infinite independent set {x,;n € N} such that ||z,| = 1 for
each n € N and a function f: X — R such that f(z,) = n. O

Continuity of coordinate functionals. If b is a Hamel basis of a vector
space X over R, and we define f;: © — R which assigns to z its b-th coordinate,
ie, =7 cpfo(x)bfor each x € X, then f; is a linear function from X to R.

Suppose that X is, moreover, a Banach space. We would like to know
whether the functions f;, are continuous. We will show that at most finitely
many of them can be continuous.

Proposition 3. Let B be a Hamel basis of a Banach space X. Let fy, b € B,
be the coordinate functionals. Then there is only finitely many b’s such that fp
18 continuous.

Proof. Suppose that {b;;i € N} is an infinite subset of B such that each f3, is
continuous. W.l.o.g. we may assume that [|b;|| = 1.
Let

| —

b

o0
(2

ey

i=1

[\)

(Since X is complete, the above sum converges.)

We also denote z,, := >, Q%bz Since x,, converges to z, we have f;, (z) =
lim fp, (x,) = 2% for each k € N. Thus the point = has infinitely many non-zero
aadeel

coordinates, which contradicts the definition of Hamel basis. O

We can give another proof based on Banach-Steinhaus theorem (uniform
boundedness principle). We show first the following:

Lemma 2. Let B be a Hamel basis of a Banach space X. Let f,, b € B, be the
coordinate functionals. Let C = {b € B; fy is continuous}. Then sup{||ful;b €
C} < 0.

Proof. For any x € X there is at most finitely many b’s in C such that f,(z) # 0.
This implies that supyc | fy ()] is finite. Banach-Steinhaus theorem this implies
sup{||ful[;b € C} < cc. O

Proof of Proposition[3. Let B be any Hamel basis for X. For any choice of
constants ¢y, b € B, is the set {cpfp;b € B} a Hamel basis as well. The
coordinate functionals for this new basis are g, = i fo. Iftheset C ={be B; fi
is continuous} is infinite, then by an appropriate choice of constant ¢; we can
obtain sup{||fs]|;b € C} = oo, which contradicts the above lemma. O

It is easy to show that finitely many of coordinate functionals can be con-
tinuous. If X is a Banach space with a basis B and z1,...,z, ¢ X, then
[x1,...,2,] ® X is a Banach space with a basis {z1,...,2,} U B and there are
at least m continuous coordinate functionals.

Also in the space cog from Example [I] with sup-norm all coordinate func-
tionals are continuous. The space cqq is, of course, not complete.



Cauchy functional equation

References: [Kul, Section 5.2, Chapter 12], [S Section 2.1], [Ka, Chapter 1], [Kh
Chapter 7], [Herl Section 5.1], [Al Appendix to Chapter 6]
Let us study the functions f: R — R fulfilling

fle+y) = flx)+ fy). (1)

The equation is called Cauchy equation and functions fulfilling are called
additive functions.
It is easy to show that

Lemma 3. If a function f: R — R fulfills , then

flgz) = qf (z)
holds for every q € Q, x € R.

This shows, that the additive functions are precisely the linear maps if we
consider R as a vector space over Q.
Lemma [3] implies that

Theorem 4. FEvery continuous solution is of the form f(x) = ax for some
a € R.
Non-linear solutions

Using the existence of Hamel basis in R (as a vector space over Q) we can show
that

Theorem 5. There exist non-linear solution of , i.e. functions f: R — R
that fulfill but are not of the form f(z) = ax.

Theorem 6. If f is a non-linear solution of , then the graph of this function

G(f) ={(z, f(z));z € R}
is dense in R?.

The proof can be found e.g. in [Her, Theorem 5.4].

Theorems [4| and |§| suggest that well-behaved solutions of are linear and
that non-linear solutions have to be, in some sense, pathological. Let us mention
a one more result in this direction.

Theorem 7. Every measurable solution of is linear.

An elegant proof is given in [Herl Theorem 5.5].
This last result means that by showing the existence of non-continuous so-
lutions of we have also obtained the existence of non-measurable sets.
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