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Abstract. In this short note we present a direct method to establish the
optimal regularity of the attractor for the semilinear damped wave equation

with a nonlinearity of critical growth.

We consider the semilinear (weakly) damped wave equation on a bounded domain
Ω ⊂ R3 with smooth boundary ∂Ω





∂ttu + ∂tu−∆u + ϕ(u) = f,

u(0) = u0, ∂tu(0) = u1,

u|∂Ω = 0.

(1)

Here, f ∈ L2(Ω) is independent of time and ϕ ∈ C2(R), with ϕ(0) = 0, satisfies the
growth and the dissipation conditions

|ϕ′′(u)| ≤ c
(
1 + |u|), (2)

lim inf
|u|→∞

ϕ(u)
u

> −λ1, (3)

ϕ′(u) ≥ −`, (4)

where c, ` ≥ 0 and λ1 > 0 is the first eigenvalue of −∆ on L2(Ω) with Dirichlet
boundary conditions.

The asymptotic behavior of solutions to equation (1) has been the object of
extensive studies (see, e.g. [1]–[5], [7], [9]–[14] and [17]–[21]). Denoting

H = H1
0 (Ω)× L2(Ω) and V =

[
H2(Ω) ∩H1

0 (Ω)
]×H1

0 (Ω),

problem (1) is known to generate a C0-semigroup S(t) on the phase space H, and
the following result holds.
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Theorem 1. The semigroup S(t) on H possesses a compact global attractor A.
Besides, A is a bounded subset of V.

Theorem 1 was first proved by Babin and Vishik [3]. We mention that the result
is still valid if one removes condition (4), which is however very reasonable. In that
case, the existence of the attractor was shown in [1], whereas its V-regularity first
appeared in the papers [9, 10, 20]. In particular, the argument presented in [20]
allows also to treat the nonautonomous case.

In all the preceding works, the V-regularity of the attractor is achieved by means
of rather complicated and long procedures, requiring multiplications by fractional
operators and bootstrap arguments. The aim of this note is to show how to obtain
this result in a very direct way, exploiting only quite simple energy estimates. This
approach can be applied to treat more complicated boundary conditions such as,
for example, dynamic boundary conditions (where the use of fractional operators
may be problematic), as well as to deal with stabilization problems (see the end of
the paper for more details). The key step of our proof is a suitable decomposition
of the solution u to (1), which has been already successfully employed in the recent
works [6, 8, 21].

A new proof of Theorem 1. We denote by 〈·, ·〉 and ‖ · ‖ the inner product
and the norm on L2(Ω). In what follows, we will often make use without explicit
mention of the Sobolev embeddings and of the Young, the Hölder and the Poincaré
inequalities. As usual, we will perform formal estimates that can be justified in a
proper Galerkin approximation scheme. Finally, for any function z(t), we will write
for short ξz(t) = (z(t), ∂tz(t)).

We begin recalling a basic estimate.

Lemma 2. For every t ≥ 0,

‖ξu(t)‖2H +
∫ ∞

t

‖∂tu(τ)‖2dτ ≤ Q(‖ξu(0)‖H)e−εt + Q(‖f‖),

for some ε > 0 and some positive increasing function Q.

The proof may be found, for instance, in [3], and it is carried out by multiplying
the equation by ∂tu + εu, for some ε > 0 suitably small. In particular, this result
yields the existence of a bounded absorbing set B0 ⊂ H for the semigroup S(t).

In view of (2), for every z, ζ ∈ H1
0 (Ω) we have that

|〈ϕ′(ζ)z, z〉| ≤ c1

(
1 + ‖∇ζ‖)2‖z‖‖∇z‖ ≤ 1

2
‖∇z‖2 + c2(1 + ‖∇ζ‖)4‖z‖2,

for some c1, c2 ≥ 0. Consequently, by Lemma 2, we can choose θ ≥ ` large enough
such that the inequality

1
2
‖∇z‖2 + (θ − 2`)‖z‖2 − 〈ϕ′(u(t))z, z〉 ≥ 0 (5)

holds for every z ∈ H1
0 (Ω), every t ≥ 0 and every solution u(t) with ξu(0) ∈ B0.

Then, we set
ψ(r) = ϕ(r) + θr.

Clearly, condition (2) still holds with ψ in place of ϕ. Besides, on account of (4),

ψ′(r) ≥ 0. (6)
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We now consider initial data ξu(0) ∈ B0, and we decompose the solution to (1) into
the sum u = v + w, where v and w solve the equations




∂ttv + ∂tv −∆v + ψ(u)− ψ(w) = 0,

ξv(0) = ξu(0),
v|∂Ω = 0,

(7)

and 



∂ttw + ∂tw −∆w + ψ(w) = θu + f,

ξw(0) = (0, 0),
w|∂Ω = 0.

(8)

In the following, c ≥ 0 will stand for a generic constant depending (possibly) only
on the size of B0 (but neither on the particular ξu(0) ∈ B0 nor on the time t).

Lemma 3. For every t ≥ 0, we have that ‖ξw(t)‖H ≤ c.

Proof. The same argument of the proof of Lemma 2 applies to (8), since from
Lemma 2 we know that the right-hand side belongs to L∞(0,∞;L2(Ω)). Observe
also that here the initial data are null.

Lemma 4. For every t ≥ s ≥ 0 and every ω > 0,
∫ t

s

‖∂tw(τ)‖2dτ ≤ ω(t− s) +
c

ω
.

Proof. Define the functional

Λ = ‖∇w‖2 + ‖∂tw‖2 + 2〈Ψ(w), 1〉 − 2θ〈u,w〉 − 2〈f, w〉,
where Ψ(w) =

∫ w

0
ψ(y)dy. Note that Λ ≤ c, due to (2) and Lemma 3. Thus,

multiplying (8) by ∂tw, and applying once more Lemma 3, we obtain
d

dt
Λ + 2‖∂tw‖2 = −2θ〈∂tu,w〉 ≤ 2ω +

c

ω
‖∂tu‖2,

and the claim is proved integrating in time on (s, t), exploiting the integral estimate
furnished by Lemma 2.

Collecting the above results, for all initial data ξu(0) ∈ B0 we have the bounds

‖ξu(t)‖H + ‖ξw(t)‖H ≤ c, (9)

and ∫ t

s

[‖∂tu(τ)‖2 + ‖∂tw(τ)‖2]dτ ≤ ω(t− s) +
c

ω
, ∀ω > 0. (10)

In order to conclude, we need the following generalized version of the Gronwall
lemma.

Lemma 5. Let Λ : R+ → R+ be an absolutely continuous function satisfying
d

dt
Λ(t) + 2εΛ(t) ≤ h(t)Λ(t) + k,

where ε > 0, k ≥ 0 and
∫ t

s
h(τ)dτ ≤ ε(t−s)+m, for all t ≥ s ≥ 0 and some m ≥ 0.

Then,

Λ(t) ≤ Λ(0)eme−εt +
kem

ε
, ∀t ≥ 0.

We are now in a position to prove
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Lemma 6. For every t ≥ 0 and some ν > 0,

‖ξv(t)‖H ≤ ce−νt.

Proof. For ε ∈ (0, 1) to be determined later, define the functional

Λ = ‖∇v‖2 + ‖∂tv‖2 + ε‖v‖2 + 2〈ψ(u)− ψ(w), v〉 − 〈ψ′(u)v, v〉+ 2ε〈∂tv, v〉.
Note that, from (4) and (5),

2〈ψ(u)− ψ(w), v〉 − 〈ψ′(u)v, v〉 ≥ (θ − 2`)‖v‖2 − 〈ϕ′(u)v, v〉 ≥ −1
2
‖∇v‖2.

Hence, on account of (2) and (9), Λ satisfies the inequalities

1
4
‖ξv‖2H ≤ Λ ≤ c‖ξv‖2H, (11)

provided that ε is small enough. Multiplying (7) by ∂tv + εv, we find the equality

d

dt
Λ + εΛ +

ε

2
‖∇v‖2 + Γ = 2〈(ψ′(u)− ψ′(w))∂tw, v〉 − 〈ψ′′(u)∂tu, v2〉,

where we set

Γ =
ε

2
‖∇v‖2 + (2− 3ε)‖∂tv‖2 + ε〈ψ′(u)v, v〉 − ε2‖v‖2 − 2ε2〈∂tv, v〉.

Using (2), (6) and (9), it is apparent that Γ ≥ 0 if ε is small enough, and

2〈(ψ′(u)− ψ′(w))∂tw, v〉 − 〈ψ′′(u)∂tu, v2〉 ≤ c
(‖∂tu‖+ ‖∂tw‖

)‖∇v‖2

≤ ε

2
‖∇v‖2 +

c

ε

(‖∂tu‖2 + ‖∂tw‖2
)
Λ,

by means of (11). At this point, choosing ε > 0 such that the above conditions are
all satisfied, we obtain the differential inequality

d

dt
Λ + εΛ ≤ c

(‖∂tu‖2 + ‖∂tw‖2
)
Λ. (12)

In view of (10), the desired conclusion follows from Lemma 5 and (11).

Lemma 7. For every t ≥ 0,
‖ξw(t)‖V ≤ c.

Proof. Setting q = ∂tw, we differentiate (8) with respect to time, so to obtain

∂ttq + ∂tq −∆q + ψ′(w)q = θ∂tu.

Then, for ε > 0, we define the functional

Λ = ‖∇q‖2 + ‖∂tq‖2 + ε‖q‖2 + 〈ψ′(w)q, q〉+ 2ε〈∂tq, q〉,
which, similarly to the previous lemma, satisfies the inequalities

1
2
‖ξq‖2H ≤ Λ ≤ c‖ξq‖2H,

when ε is small enough. Multiplying the above equation by ∂tq + εq, we are led to

d

dt
Λ + εΛ +

ε

2
‖∇q‖2 + ‖∂tq‖2 + Γ = 2θ〈∂tu, ∂tq〉+ 〈ψ′′(w)∂tw, q2〉+ 2εθ〈∂tu, ∂tw〉,

where

Γ =
ε

2
‖∇q‖2 + (1− 3ε)‖∂tq‖2 + ε〈ψ′(w)q, q〉 − ε2‖q‖2 − 2ε2〈∂tq, q〉.



DAMPED WAVE EQUATION 615

Again, Γ ≥ 0 provided that ε is small enough, whereas the right-hand side of the
above differential equality is controlled as

2θ〈∂tu, ∂tq〉+ 2εθ〈∂tu, ∂tw〉+ 〈ψ′′(w)∂tw, q2〉
≤ ε

2
‖∇q‖2 + ‖∂tq‖2 +

c

ε
‖∂tw‖2Λ + c.

Hence, fixing ε small, we end up with the differential inequality

d

dt
Λ + εΛ ≤ c‖∂tw‖2Λ + c,

and from Lemma 5, we get the bound

‖∇∂tw(t)‖+ ‖∂ttw(t)‖ ≤ c.

With this information, we recover from (8) the further control ‖∆w(t)‖ ≤ c.

Collecting Lemma 6 and Lemma 7, we learn that S(t)B0 is (exponentially) at-
tracted by a bounded subset C ⊂ V. In other words, C is a compact attracting set.
This, by standard arguments of the theory of attractors (see e.g. [3, 12, 19]), yields
the existence of a compact global attractor A ⊂ C for the semigroup S(t). The
proof of Theorem 1 is then completed.

Further remarks. The proof of Lemma 7 repeats word by word the standard
argument of the dissipative estimate in the phase space V for the original hyperbolic
problem (1). Indeed, equation (8) can be rewritten in the form

∂ttw + ∂tw −∆w + ϕ(w) = f + θv, (13)

which coincides with (1), up to the exponentially decaying (and so nonessential)
external force θv. Therefore, our technique allows to reduce the proof of the ex-
istence of an exponentially attracting set in a more regular space to verifying the
dissipative estimate in that space. It is worth noting that the latter problem has
been always considered much simpler (usually, it does not require any fractional
Sobolev spaces, bootstrapping, etc.).

Another interesting application of our method is the stabilization to a single
equilibrium for the solutions to (1) as t →∞. Indeed, since the equation possesses
a global Lyapunov function, the convergence to the whole set E of equilibria is im-
mediate, but if E is not totally disconnected, the convergence to a single equilibrium
may not take place in general. Nevertheless, when the nonlinearity ϕ is real ana-
lytic, the above convergence can be recovered by the so-called Simon-Lojashevich
technique. However, this technique naturally provides the stabilization of more
regular solutions (or it requires the nonlinearity ϕ to be subcritical [15, 16]), and
the convergence of weak energy solutions in the critical case is more delicate. In
contrast to that, our decomposition allows to show the convergence of the weak
energy solution u by proving the convergence of the more regular solution w to
problem (13). Indeed, since u = w + v and v is exponentially decaying, then the
convergence of w obviously implies the convergence of u. We point out that the
presence of the exponentially decaying external force θv in (13) is nonessential for
the Simon-Lojashevich technique.

Finally, we mention a more recent application to the hyperbolic equation with
nonlinear damping in a bounded two-dimensional domain

∂ttu + σ(u)∂tu−∆u + ϕ(u) = f,
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where the damping σ is strictly positive (σ(u) > σ0 > 0) and satisfies some natural
assumptions. In this situation, the standard bootstrapping methods seem to be
inapplicable in order to improve the regularity of the attractor (we do not know
whether or not this equation is well-posed in fractional spaces). On the contrary,
the above decomposition works perfectly, and it yields the optimal regularity of the
global attractor (see [18]).

REFERENCES

[1] J. Arrieta, A.N. Carvalho and J.K. Hale, A damped hyperbolic equation with critical exponent,
Comm. Partial Differential Equations, 17 (1992), 841–866.

[2] A.V. Babin and M.I. Vishik, Regular attractors of semigroups and evolution equation, J.
Math. Pures Appl., 62 (1983), 441–491.

[3] A.V. Babin and M.I. Vishik, Attractors of evolution equations, North-Holland, Amsterdam,

1992.
[4] A. Eden, A.J. Milani and B. Nicolaenko, Finite dimensional exponential attractors for semi-

linear wave equations with damping, J. Math. Anal. Appl., 169 (1992), 408–419.

[5] P. Fabrie, C. Galusinski, A. Miranville and S. Zelik, Uniform exponential attractors for a
singularly perturbed damped wave equation, Discrete Contin. Dynam. Systems, 10 (2004),

211-238.

[6] S. Gatti, M. Grasselli, A. Miranville and V. Pata, On the hyperbolic relaxation of the one-

dimensional Cahn-Hilliard equation, J. Math. Anal. Appl., 312 (2006), 230–247.

[7] J.M. Ghidaglia and R. Temam, Attractors for damped nonlinear hyperbolic equations, J.
Math. Pures Appl., 66 (1987), 273–319.

[8] M. Grasselli, A. Miranville, V. Pata and S. Zelik, Well-posedness and long time behavior of

a parabolic-hyperbolic phase-field system with singular potentials, Math. Nachr., to appear.
[9] M. Grasselli and V. Pata, On the damped semilinear wave equation with critical exponent, Dy-

namical systems and differential equations (Wilmington, NC, 2002). Discrete Contin. Dynam.

Systems, (suppl.) (2003), 351–358.
[10] M. Grasselli and V. Pata, Asymptotic behavior of a parabolic-hyperbolic system, Commun.

Pure Appl. Anal., 3 (2004), 849–881.

[11] J.K. Hale, Asymptotic behavior and dynamics in infinite dimensions, in “Nonlinear Differen-
tial Equations” (J.K. Hale and P. Mart̀ınez-Amores Eds), Pitman, Boston, 1985.

[12] J.K. Hale, Asymptotic behavior of dissipative systems, Amer. Math. Soc., Providence, 1988.
[13] J.K. Hale and G. Raugel, Upper semicontinuity of the attractor for a singularly perturbed

hyperbolic equation, J. Differential Equations, 73 (1988), 197–214.

[14] A. Haraux, Two remarks on dissipative hyperbolic problems, in “Séminaire du Collége de
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