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1. Introduction.

In this paper we study the equation

(1.1) A
du

dt
+ Bu 3 f in H,

where H is a Hilbert space, A and B are maximal monotone (multival-

ued) operators in H, with A bounded and B unbounded, and f is a

datum. Obviously equations of this type are meant for applications to nonlin-

ear partial differential equations, more precisely possibly degenerate parabolic

equations. So, although in the next sections we shall deal with equation (1.1)

in abstract form, here we will illustrate our results on an example in Sobolev

spaces.

Let Ω be a bounded domain of RM (M ≥ 1) and let α, β be two

maximal monotone graphs of RN ×RN (N ≥ 1) and of RM×N ×RM×N ,

respectively. Given a function f : Q := Ω×]0, T [→ RN , we look for a



function u : Q → RN such that

(1.2) α

(
∂u

∂t

)
− div (β(∇u)) 3 f

in the sense of distributions, and satisfying suitable initial and boundary

conditions. More precisely, (1.2) must be understood as equivalent to the

system

(1.3) w + v = f, w ∈ α

(
∂u

∂t

)
, v ∈ − div (β(∇u)) in D′(Q).

We can prove existence of a solution of the corresponding initial-boundary

value problem, uniqueness being an open question if both α and β are

nonlinear.

First we require that α be coercive and with linear growth at infinity,

and β the subdifferential of a proper, convex lower semicontinuous function

ψ : RM×N → R such that for some a > 0, b ∈ R,

ψ(v) ≥ a|v|2 − b ∀ v ∈ RM×N .

This setting corresponds to a nonlinear relaxation dynamics for a potential

system. Here one can consider an approximate equation (depending on a

parameter ε > 0) and multiply it by
∂uε

∂t
; this yields the estimate

(1.4) uε is uniformly bounded in H1(0, T ;L2(Ω)N) ∩ L∞(0, T ;H1(Ω)N).

Hence, possibly extracting a subsequence, uε weakly star converges to some

u in that space. By means of a standard monotonicity and compactness

procedure, one can then show that

(1.5) v := − lim
ε↘0

div (βε(∇uε)) ∈ − div (β(∇u)) in D′(Q).

Finally, as β is cyclically monotone (being a subdifferential [9]), by using

(1.2) and (1.4), one can prove that

(1.6) w := lim
ε↘0

αε

(
∂uε

∂t

)
∈ α

(
∂u

∂t

)
in D′(Q).



Our other existence results require α to be linearly bounded and equal

to the subdifferential of a proper, convex lower semicontinuous function ϕ :

RN → R (without any coerciveness assumption), and β to be strongly

monotone and either Lipschitz continuous or equal to the subdifferential of

a proper, convex lower semicontinuous function ψ : RM×N → R. In this

setting the function ϕ can correspond to a dissipation potential. Also here

a convenient approximation is introduced, then the equation is differentiated

in time and multiplied by
∂uε

∂t
; this yields the estimate

(1.7) uε is uniformly bounded in H1(0, T ;H1(Ω)N),

which allows us to take the limit in the approximate equation without much

difficulty.

Equations of the form (1.1) occur in several physical models. For instance

in thermodynamics, denoting by u the vector of generalized displacements

and by F that of generalized forces, from the second principle of thermo-

dynamics it follows that the so-called phenomenological laws are of the form

(1.8) F = Bu,

with B monotone and B0 = 0 [15]. In a neighbourhood of u = 0 one

can assume that B is linear; moreover, by Onsager relations, B is also

self-adjoint, hence cyclically monotone, that is B = ∂ψ, with ψ convex

potential. We allow ψ to be nonquadratic. Now one can introduce the

assumption of normal dissipativity [17], requiring the existence of another

convex function ϕ, named dissipation potential, such that

(1.9) ∂ϕ

(
du

dt

)
= −F.

Thus by (1.8) and (1.9) we have

(1.10) ∂ϕ

(
du

dt

)
+ ∂ψ(u) 3 0.

More generally the presence of an exterior thermodynamic force −f would

yield a right hand side f.



It does not seem that equation (1.1) has yet been studied, unless one of

the operators is linear. In fact, the case with A linear (and self-adjoint) is

well known and has been first detailed by Brezis [9] (see also [4], [20], and

Chapter 3 of [10] for a review of the related literature), while equations with

B linear arise from heat control problems, e.g., and have been studied by

Duvaut and Lions [12,13]. Otherwise, the authors just know of an equation

of the form α

(
∂u

∂t

)
+ β(u) 3 f , coupled with a degenerate diffusion equa-

tion, studied by Blanchard, Damlamian and Guidouche [7]. More concern

has been devoted to equations of the form

(1.11)
d

dt
(Au) + Bu = f in H,

still with A and B nonlinear and B unbounded in H. These have been

examined by Raviart [19], Grange and Mignot [16], Bamberger [2], Benilan

[5], Barbu [3], Di Benedetto and Showalter [11], and by Bernis [6], as well as

other authors. General partial differential equations of this form have been

also studied by Alt and Luckhaus [1], who actually considered a much more

general setting for systems, and by Blanchard and Francfort [8].

The plan of this paper is as follows. In section 2 we give a precise

formulation of the abstract initial value problem for equation (1.1), state

the existence theorems and recall some preliminary results. Proofs are then

given in sections 3 and 4.

The authors are indebted to the referee, who pointed out some bibliog-

raphycal references.

2. Statement of results and preliminaries.

Let H be a real Hilbert space which we identify with its dual, and V a

reflexive Banach space dense and compactly embedded in H. Thus V ⊂
H ⊂ V ′, where V ′ is the dual space of V. We denote by ( · , · ) either

the scalar product in H or the duality pairing between V ′ and V, and

by | · | the norm in H .

Let A and B be maximal monotone operators in H with domains



D(A) and D(B). Our existence results require at least one of the operators

B or A to be cyclically monotone, hence equal to the subdifferential of a

proper, convex and lower semicontinuous function (see [9, Thm. 2.5]). The

operator A is always supposed to be bounded in H, so that A−1 is

surjective and D(A) ≡ H (see [9, Thm. 2.3]), while B will be unbounded

and such that D(B) ⊂ V. Besides we assume some coerciveness for one of

the two operators. Here below we state the precise results.

First we suppose B to be cyclically monotone and A coercive and with

linear growth in H . Namely we assume that

(i) ∃ C1 > 0 : ∀ u ∈ H, ∀ ξ ∈ Au (ξ, u) ≥ C1

(
|u|2 − 1

)
,

(ii) ∃ C2 > 0 : ∀ u ∈ H, ∀ ξ ∈ Au |ξ| ≤ C2 (|u| + 1) ,

B is the subdifferential of a proper, convex and lower(iii)

semicontinuous function ψ : H → ] −∞,+∞],

D(ψ) ⊂ V and there exist C3, C4 > 0, p1, p2 > 0 such that(iv)

ψ(u) ≥ C3 ‖u‖p1V − C4 (|u| + 1)p2 ∀ u ∈ V,

(v) f ∈ L2(0, T ;H),

(vi) u0 ∈ D(ψ).

Theorem 2.1. Under the assumptions (i)-(vi), there exists a triple u ∈
H1(0, T ;H)∩L∞(0, T ;V ), w, v ∈ L2(0, T ;H), such that for a.e. t ∈]0, T [

(2.1) w(t) + v(t) = f(t),

(2.2) w(t) ∈ Au′(t),

(2.3) v(t) ∈ Bu(t),



where u′ =
du

dt
, and

(2.4) u(0) = u0.

Remark 2.1. Assumptions (i)-(ii) restrict the behaviour of A at infinity,

but allow for the presence of horizontal segments in this graph.

Our second existence theorem deals with the case where A is cyclically

monotone. Now we do not require any coerciveness on A, but suppose B

to be strongly monotone and Lipschitz continuous in V. Namely we assume

that

A is the subdifferential of a proper, convex and lower(vii)

semicontinuous function ϕ : H → ] −∞,+∞], and

A is bounded in H (i.e. maps bounded sets into bounded sets),

B : V → V ′ is Lipschitz continuous, i.e.(viii)

∃ C5 > 0 : ∀ u1, u2 ∈ V ‖Bu1 −Bu2‖V ′ ≤ C5 ‖u1 − u2‖V ,

B is strongly monotone, i.e.(ix)

∃ C6 > 0 : ∀ u1,u2 ∈ V (Bu1 −Bu2, u1 − u2) ≥ C6 ‖u1 − u2‖2
V ,

(x) f ∈ H1(0, T ;V ′),

(xi) u0 ∈ V,

(xii) f(0) −Bu0 ∈ D(ϕ∗),

where ϕ∗ is the convex conjugate of ϕ (defined in the next proposition

2.4).

Remark 2.2. It is easy to see (cf., e.g., [18, pp. 171-173]) that by (viii) and

(ix) the restriction of the operator B to D(B) ⊂ V taking values in H



is maximal monotone in H and surjective: for any g ∈ H the equation

Bu = g has one and only one solution u ∈ V.

Theorem 2.2. Assume (vii)-(xii) hold. Then there exist u ∈ H1(0, T ;V )

and w ∈ L∞(0, T ;H) ∩H1(0, T ;V ′) satisfying (2.4), (2.2) and

(2.5) w(t) +Bu(t) = f(t) in V ′

for a.e. t ∈]0, T [.

Our third existence result is a variation of theorem 2.2, in which also B

is required to be cyclically monotone, but not necessarily Lipschitz continu-

ous.

Remark 2.3. Let B be as in assumption (iii) and let D(ψ) ⊂ V, so that

ψ is proper, convex and lower semicontinuous also in V. Denote by B̃ the

subdifferential of ψ restricted to V and by D̃ ⊂ V its domain. Obviously

B̃ : D̃ → V ′ is an extension of B and D(B) ⊂ D̃ ⊂ D(ψ).

Theorem 2.3. Assume that (vii), (iii) and (x) hold. Let D(ψ) ⊂ V and

let the operator B̃ of remark 2.3 be strongly monotone in D̃ in the sense of

assumption (ix). Besides let u0 ∈ D(B) and f(0)−B0u0 ∈ D(ϕ∗), where

B0u0 is the element of Bu0 with minimal norm (cf. the next proposition

2.2). Under these assumptions, there exists a triple u ∈ H1(0, T ;V ), w ∈
L∞(0, T ;H), v ∈ L∞(0, T ;V ′), satisfying (2.2) in H, both (2.1) and (2.3)

(with B replaced by B̃) in V ′ for a.e. t ∈]0, T [, and (2.4).

Remark 2.4 (cf. also remarks 2.2 and 2.3). By comparison in the corre-

sponding equations, it is straightforward to see that in theorem 2.2 (resp.

2.3) if f ∈ L2(0, T ;H), then Bu ∈ L2(0, T ;H) (resp. v ∈ L2(0, T ;H)),

and (2.5) (resp. (2.2) and (2.3)) holds in H for a.e. t ∈]0, T [.

Remark 2.5 (concerning uniqueness). It is not difficult to show that there

is at most one solution of problem (2.1)-(2.4), if at least one of A or B

is linear and self-adjoint in H, and moreover at least one of these operators

is strictly monotone (that is, for instance for A, (ξ1 − ξ2, u1 − u2) > 0 for

any u1, u2 ∈ D(A), u1 6= u2, and for any ξ1 ∈ Au1, ξ2 ∈ Au2). Indeed it



suffices to multiply the difference of the equations (2.1) corresponding to u1

and u2 by u1−u2 if A is linear and self-adjoint, by u′1 −u′2 in the other

case, and then to integrate in time. Since one of the operators is strictly

monotone, the conclusion easily follows.

Theorems 2.1-2.3 will be proved in the next sections. Here we list some

remarks and results which will be utilized later on. We refer to [9] and [14]

for their proofs and for additional related material.

Remark 2.6. Let A, B be maximal monotone operators in H : then

A and B induce on L2(0, T ;H) two maximal monotone operators (still

denoted by A and B) defined by w ∈ Au′, v ∈ Bu if and only if (2.2) and

(2.3) hold for a.e. t ∈]0, T [.

Proposition 2.1. Let A be a maximal monotone operator in some Hilbert

space X and let {yn , zn} be such that zn ∈ Ayn for any n ∈ N, yn →
y, zn → z weakly in X , and lim sup (zn, yn)X ≤ (z, y)X as n → ∞ .

Then z ∈ Ay and (zn, yn)X → (z, y)X as n→ ∞ .

Proposition 2.2. Let B be a maximal monotone operator in H, and

denote by I the identity in H. For any ε > 0 the resolvent of B

Jε := (I + εB)−1

is a contraction defined on all H. Moreover the Yoshida approximation

Bε :=
1

ε
(I − Jε)

is a monotone and Lipschitz continuous mapping defined on all H and has

the following properties:

(2.6) Bεu ∈ BJεu ∀ u ∈ H, ∀ ε > 0,

(2.7) ∀ u ∈ D(B) Bεu → B0u as ε↘ 0,

where B0u ∈ Bu is such that |B0u| = min{|ξ| : ξ ∈ Bu}.



Proposition 2.3. Let ψ and B satisfy (iii). For any ε > 0 and any

u ∈ H, define

ψε(u) := min
z∈H

{
1

2ε
|u− z|2 + ψ(z)

}
.

Then ψε is convex, Fréchet-differentiable in H and its subdifferential ∂ψε

coincides with Bε. Moreover

(2.8) ψε(u) =
ε

2
|Bεu|2 + ψ(Jεu) ∀ u ∈ H, ∀ ε > 0,

(2.9) ∀ u ∈ H ψε(u) ↗ ψ(u) as ε↘ 0.

Proposition 2.4. Let φ : H → ] − ∞,+∞] be a proper, convex and

lower semicontinuous function. The convex conjugate of φ, defined for any

z ∈ H by

φ∗(z) := sup
u∈H

{(z, u) − φ(u)} ,

is such that ∂φ∗ = (∂φ)−1. Moreover the following three conditions are

equivalent:

u ∈ ∂φ∗(z), z ∈ ∂φ(u), φ(u) + φ∗(z) = (z, u).

Proposition 2.5. Let φ be as in proposition 2.4. If u ∈ H1(0, T ;H),

v ∈ L2(0, T ;H) and v(t) ∈ ∂φ(u(t)) for a.e. t ∈]0, T [, then the function

t 7→ φ(u(t)) is absolutely continuous on [0, T ], and for a.e. t ∈]0, T [

(2.10)
d

dt
φ(u(t)) = (w, u′(t)) ∀ w ∈ ∂φ(u(t)).

Proposition 2.6. Let φ : V → ] −∞,+∞] be proper, convex and lower

semicontinuous . Then the function Φ : L2(0, T ;V ) → ]−∞,+∞], defined

by

Φ(u) =





∫ T

0

φ(u(t))dt if φ(u) ∈ L1(0, T ),

+∞ elsewhere,

is proper, convex lower semicontinuous and

∂Φ(u) =
{
v ∈ L2(0, T ;V ′) : v(t) ∈ ∂φ(u(t)) for a.e. t ∈]0, T [

}
.



Moreover let {un , vn} be such that vn ∈ ∂φ(un) for n ∈ N, un → u

weakly in L2(0, T ;V ), vn → v weakly in L2(0, T ;V ′), and

lim sup
n→∞

∫ T

0

(vn(t), un(t))dt ≤
∫ T

0

(v(t), u(t))dt.

Then v ∈ ∂Φ(u).

Remark 2.7 ([9, Prop. 2.14]). Let A and ϕ satisfy (vii). Then A is

bounded if and only if

(2.11)
ϕ∗(u)

|u| → +∞ as u ∈ D(ϕ∗), |u| → +∞.

3. Proof of Theorem 2.1.

First we regularize problem (2.1)-(2.4). To this aim we introduce a sequence

{fε} such that

(3.1) fε ∈ C0([0, T ];H) ∀ ε > 0,

(3.2) fε → f strongly in L2(0, T ;H) as ε↘ 0,

and consider the following approximate problem

(3.3) εu′ε(t) + wε(t) +Bεuε(t) = fε(t) ∀ t ∈ [0, T ],

(3.4) wε(t) ∈ Au′ε(t) ∀ t ∈ [0, T ],

(3.5) uε(0) = u0,

where Bε is defined as in proposition 2.2. Note that the operator εI + A

is strongly monotone in H. Since (εI + A)−1 and Bε are Lipschitz con-

tinuous in H , it is not difficult to see (using, for instance, the Contraction

Mapping Principle step by step in time) that, by (3.1), problem (3.3)-(3.5)

has a unique solution uε ∈ C1([0, T ];H) satisfying (3.5) and

(3.6) u′ε(t) − (εI + A)−1(fε(t) −Bεuε(t)) = 0 ∀ t ∈ [0, T ],



while wε ∈ C0([0, T ];H) is given by

(3.7) wε(t) = fε(t) − εu′ε(t) −Bεuε(t) ∀ t ∈ [0, T ].

To derive a priori estimates, we take the scalar product of (3.3) with u′ε(t)

and integrate in time from 0 to any s ∈]0, T ]. Using (iii) and proposition

2.3, we obtain

ε

∫ s

0

|u′ε(t)|2dt +

∫ s

0

(wε(t), u
′
ε(t))dt + ψε(uε(s)) =(3.8)

= ψε(u0) +

∫ s

0

(fε(t), u
′
ε(t))dt ∀ s ∈ [0, T ].

Using (3.4), (i) and (2.9), standard calculations lead to

(3.9)
C1

2

∫ T

0

|u′ε(t)|2dt + ψε(uε(s)) ≤ ψ(u0) + C1T +
1

2C1
‖fε‖2

L2(0,T ;H) .

In the sequel we shall denote by C7, C8, . . . positive constants independent

of ε. Note that, thanks to the Hahn-Banach Theorem,

∃ zψ ∈ H, ∃ cψ ∈ R : ∀ u ∈ H ψ(u) ≥ (zψ, u) + cψ ,

and that

|uε(T )|2 ≤ 2

{
|u0|2 + T

∫ T

0

|u′ε(t)|2dt
}
.

Then, from (vi), (3.2), (3.9), (2.8) and by the contraction property of Jε

(cf. proposition 2.2), it follows that

|uε(T )|2 + ‖u′ε‖
2
L2(0,T ;H) ≤ C7 − 2(T + 1)

C1
ψε(uε(T )) ≤(3.10)

≤ C7 +
2(T + 1)

C1

|zψ| |uε(T )| + C8 .

Hence, by standard arguments and using again the fact that Jε is a con-

traction on H, we infer that (see, e.g., [9, Appendice])

(3.11) ‖uε‖H1(0,T ;H) + ‖Jεuε‖H1(0,T ;H) ≤ C9 .

Owing to (iv), (2.8), (3.8) and (3.11), we deduce that

(3.12) ‖Jεuε‖2
L∞(0,T ;V ) ≤ C10 ,



where the constant C10 depends on C3, C4, p1, p2 and C9. Finally by

(ii), (3.4) and (3.11), we have

(3.13) ‖wε‖L2(0,T ;H) ≤
√

2C2

(
C9 +

√
T

)

and , using (3.11), (3.13) and (3.2), by comparison in (3.3) we obtain

(3.14) ‖Bεuε‖L2(0,T ;H) ≤ C11 .

By the a priori estimates (3.11)-(3.14), there exist u ∈ H1(0, T ;H) ∩
L∞(0, T ;V ), w, v ∈ L2(0, T ;H) and subsequences, still denoted by uε, wε,

such that

(3.15) Jεuε → u, wε → w, Bεuε → v weakly (star)

in the corresponding spaces, as ε goes to 0. Since (cf. proposition 2.2)

(3.16) uε − Jεuε = εBεuε → 0 strongly

in L2(0, T ;H) , by a standard compactness result due to Aubin (see, e.g.,

[18, p. 58]) from (3.11), (3.12) and (3.16) it follows that

(3.17) Jεuε → u strongly in L2(0, T ;H),

(3.18) uε → u strongly in L2(0, T ;H) and weakly in H1(0, T ;H)

as ε goes to 0. It remains to show that u, w, v satisfy (2.1)-(2.4). Taking

the scalar product of (3.3) with any z ∈ H and integrating in time, we

obtain

ε(uε(t), z) +

∫ t

0

(wε(s) +Bεuε(s) − fε(s), z)ds = ε(u0, z)(3.19)

∀ z ∈ H, ∀ t ∈ [0, T ].

Taking the limit as ε↘ 0 and using (3.2), (3.15), (3.18), we have

(3.20)

∫ t

0

(w(s) + v(s) − f(s), z)ds = 0 ∀ z ∈ H, ∀ t ∈ [0, T ],



which is equivalent to (2.1). Thanks to remark 2.6, proposition 2.1 and (2.6),

to get (2.2) and (2.3) it suffices to prove that

(3.21) lim sup
ε↘0

∫ T

0

(wε(t), u
′
ε(t))dt ≤

∫ T

0

(w(t), u′(t))dt,

(3.22) lim sup
ε↘0

∫ T

0

(Bεuε(t), Jεuε(t))dt ≤
∫ T

0

(v(t), u(t))dt.

Now (3.22) follows directly from (3.15) and (3.17). To show (3.21), we utilize

the equations (3.3) and (2.1) to infer that (see also proposition 2.5)

∫ T

0

(wε(t), u
′
ε(t))dt = − ε

∫ T

0

|u′ε(t)|2dt − ψε(uε(T )) +(3.23)

+ ψε(u0) +

∫ T

0

(fε(t), u
′
ε(t))dt,

(3.24)

∫ T

0

(w(t), u′(t))dt = −ψ(u(T )) + ψ(u0) +

∫ T

0

(f(t), u′(t))dt.

Hence, owing to (vi), (2.9), (3.2) and (3.18), (3.21) is equivalent to

(3.25) lim inf
ε↘0

ψε(uε(T )) ≥ ψ(u(t)).

But this easily follows from the lower semicontinuity of ψ because of (2.8)

and (3.15).

4. Proofs of Theorems 2.2 and 2.3.

First we prove theorem 2.2.

Proof of theorem 2.2. In order to approximate problem (2.5), (2.2), (2.4),

we shall use the following simple result.

Remark 4.1. Let X and Y be two Banach spaces such that X ⊂ Y

with dense and continuous inclusion. Then for any y ∈ Y there exists a

sequence {yε ∈ X} such that

(4.1) yε → y strongly in Y as ε↘ 0,



(4.2) lim
ε↘0

ε1/2 ‖yε‖X = 0.

Indeed, given a sequence {yε} such that yε ∈ X for any ε > 0 and verify-

ing (4.1), if {yε} does not satisfy (4.2) it is sufficient to select a subsequence

which has the desired property.

Lemma 4.1. Let B, u0 and f satisfy (viii)-(xii). Then there exist two

approximating sequences {uε0} and {fε} such that

(4.3) Buε0 ∈ H ∀ ε > 0 (i.e. uε0 ∈ D(B) in H),

(4.4)

{
uε0, Jεu

ε
0 → u0 strongly in V

Bεu
ε
0 → Bu0 strongly in V ′

as ε↘ 0,

(4.5) fε ∈ C1([0, T ];H), fε(0) = f(0) −Bu0 +Bεu
ε
0,

(4.6) fε → f strongly in H1(0, T ;V ′) as ε↘ 0,

(4.7) lim
ε↘0

ε1/2
{
|Bεu

ε
0| + ‖fε‖C1([0,T ];H)

}
= 0,

where Jε, Bε are defined as in proposition 2.2.

Proof. Set b0 = Bu0 ∈ V ′ and let {bε0}, with bε0 ∈ H for any ε > 0,

be a sequence as in remark 4.1 (it exists since H is dense in V ′). Setting

uε0 = B−1 bε0 (cf. remark 2.2) and zε = Jε u
ε
0, by proposition 2.2 we have

(4.8) Bzε = Bεu
ε
0,

1

ε
(zε − uε0) + Bzε = 0.

Hence, since B is strongly monotone (cf. (ix)), uε0 → u0 strongly in V

and

1

ε
|zε − uε0|2 + C6 ‖zε − uε0‖2

V ≤ − (bε0, zε − uε0) ≤(4.9)

≤ 1

2ε
|zε − uε0|2 +

ε

2
|bε0|2 ∀ ε > 0.

Therefore zε → u0 strongly in V. Using the Lipschitz continuity of B,

Bεu
ε
0 = Bzε → Bu0 stongly in V ′, and so (4.4) is proved. By (4.8) and

(4.9) we have

(4.10) ε |Bεu
ε
0|2 =

1

ε
|zε − uε0|2 → 0 as ε↘ 0.



Taking now a sequence {gε ∈ C0(0, T ;H)} approximating f ′ ∈ L2(0, T ;V ′)

in the sense of remark 4.1, it is easy to see that the sequence {fε} defined

for any ε > 0 by

fε(t) := f(0) −Bu0 +Bεu
ε
0 +

∫ t

0

gε(s)ds, t ∈ [0, T ],

satisfies (4.5)-(4.7) (cf. (xii) and (4.10)).

Consider now the following approximation of problem (2.5), (2.2), (2.4):

find uε verifying (3.3) and (3.4) for any t ∈ [0, T ], and such that

(4.11) uε(0) = uε0,

where fε and uε0 are given by lemma 4.1. As we have seen in section

3, this problem has one and only one solution, with uε and wε given by

(3.6) and (3.7). Since (εI + A)−1 and Bε are Lipschitz continuous and

fε, uε ∈ C1([0, T ];H), here we have the additional regularity

(4.12) uε ∈ C1,1([0, T ];H), wε, Bεuε ∈ C0,1([0, T ];H)

(cf., e.g., [9, Appendice]). Then, differentiating (3.3) with respect to t, we

obtain

(4.13) εu′′ε(t) + w′
ε(t) + (Bεuε)

′(t) = f ′
ε(t) for a.e. t ∈]0, T [,

and, writing (3.6) and (3.7) for t = 0, we have (see also (4.11) and (4.5))

(4.14) u′ε(0) = (εI + A)−1(f(0)−Bu0),

(4.15) wε(0) = f(0) −Bu0 − εu′ε(0).

In order to deduce a priori estimates, we take the scalar product of (4.13)

with u′ε(t) and integrate in time, getting

ε

2
|u′ε(t)|2 + (w′

ε(t), u
′
ε(t)) +

∫ t

0

((Bεuε)
′(s), u′ε(s)) ds ≤(4.16)

≤ ε

2
|u′ε(0)|2 +

∫ t

0

|f ′
ε(s)| |u′ε(s)| ds ∀ t ∈ [0, T ].



Since uε − Jεuε = εBεuε and Bεuε = BJεuε (cf. proposition 2.2), note

that (see, e.g., [9, Appendice]) by (ix) we have

(4.17)

∫ t

0

((Bεuε)
′(s), u′ε(s)) ds =

=

∫ t

0

lim
h↘0

1

h2
{(Bεuε(s+ h) −Bεuε(s), Jεuε(s+ h) − Jεuε(s)) +

+ ε|Bεuε(s+ h) −Bεuε(s)|2}ds ≥

≥
∫ t

0

lim
h↘0

{
C6

∥∥∥∥
Jεuε(s+ h) − Jεuε(s)

h

∥∥∥∥
2

V

+

+ ε

∣∣∣∣
Bεuε(s+ h) −Bεuε(s)

h

∣∣∣∣
2
}
ds =

=

∫ t

0

{
C6 ‖(Jεuε)′(s)‖2

V + ε |(Bεuε)
′(s)|2

}
ds ∀ t ∈ [0, T [.

Besides, as u′ε(t) ∈ A−1(wε(t)) ≡ ∂ϕ∗(wε(t)) for a.e. t ∈]0, T [ by (vii), (3.4)

and proposition 2.4, with the help of proposition 2.5 we infer

(4.18) (w′
ε(t), u

′
ε(t)) =

d

dt
ϕ∗(wε(t)) for a.e. t ∈]0, T [.

Then from (4.16)-(4.18) it follows that

(4.19)
ε

2
|u′ε(t)|

2
+ϕ∗(wε(t)) +

∫ t

0

{
C6 ‖(Jεuε)′(s)‖2

V + ε |(Bεuε)
′(s)|2

}
ds ≤

≤ ε

2
|u′ε(0)|2 + ϕ∗(wε(0)) +

∫ t

0

(f ′
ε(s), u

′
ε(s))ds ∀ t ∈ [0, T ].

Since uε = Jεuε + εBεuε (cf. proposition 2.2), by (4.6) and (4.7) we have

(4.20)

∫ t

0

(f ′
ε(s), u

′
ε(s))ds ≤

≤ C12 +

∫ t

0

{
C6

2
‖(Jεuε)′(s)‖2

V +
ε

2
|(Bεuε)

′(s)|2
}
ds ∀ t ∈ [0, T ]

(recall that we denote by Ci’ s constants independent of ε).

As u′ε(0) ∈ ∂ϕ∗(wε(0)) (cf. (vii), (3.4) and proposition 2.4), by (xii) and

(4.15) we obtain

(4.21)
ε

2
|u′ε(0)|2 + ϕ∗(wε(0)) ≤



≤ ε

2
|u′ε(0)|2 + ϕ∗(f(0)−Bu0) + (u′ε(0), wε(0) − f(0) +Bu0) ≤ C13 .

From (4.19)-(4.21) and (2.11) it follows that

(4.22) ε1/2
{
‖u′ε‖C0([0,T ];H) + ‖(Bεuε)

′‖L2(0,T ;H)

}
+ ‖(Jεuε)′‖L2(0,T ;V ) +

+ ‖wε‖C0([0,T ];H) ≤ C14 ,

then by (4.22) and (4.4) we have

(4.23) ‖Jεuε‖H1(0,T ;V ) ≤ C15 ,

and by the Lipschitz continuity of B (cf. (viii))

(4.24) ‖(Bεuε)
′‖2
L2(0,T ;V ′) ≤ lim

h↘0

∫ T−h

0

C2
5

h2
‖Jεuε(s+ h) − Jεuε(s)‖2

V dt ≤

≤ (C5C14)
2 .

Finally by comparison in (3.3) we get

(4.25) ‖Bεuε − fε‖C0([0,T ];H) ≤ C16 .

Owing to (4.22)-(4.25), (4.6) we have that, possibly extracting subsequences,

(4.26) Jεuε → u weakly in H1(0, T ;V ),

(4.27) wε → w weakly star in L∞(0, T ;H),

(4.28) Bεuε − fε → v − f weakly star in L∞(0, T ;H) ∩H1(0, T ;V ′).

By using (4.26)-(4.28) and standard compactness results including Aubin’s

Lemma (see, e.g., [18, p. 58]), we deduce that

(4.29) Jεuε → u strongly in C0([0, T ];H),

(4.30) Bεuε − fε → v − f strongly in L2(0, T ;V ′),

and by (3.16), (4.6), (4.7) and (4.25),

(4.31) uε → u strongly in C0([0, T ];H),



(4.32) Bεuε → v strongly in L2(0, T ;V ′).

Recalling now the proof of theorem 2.1, here the passage to the limit is

straightforward, once we have shown that

(4.33) v(t) = Bu(t) for a.e. t ∈]0, T [

and that (3.21) holds. But (4.33) follows from (3.22) (consequence of (4.26)

and (4.32)) and from the Lipschitz continuity of B (see, e.g., [18, p. 161]).

Besides, using (3.3) and (3.16), we have

(4.34) lim sup
ε↘0

∫ T

0

(wε(t), u
′
ε(t))dt =

= − lim inf
ε↘0

∫ T

0

{ε|u′ε(t)|2 + (Bεuε(t) − fε(t), u
′
ε(t))}dt ≤

≤ − lim inf
ε↘0

{∫ T

0

(Bεuε(t) − fε(t), (Jεuε)
′(t)) dt − ε

2
|Bεu

ε
0|2 +

+
ε

2
|Bεuε(T )|2 −

∫ T

0

ε (fε(t), (Bεuε)
′(t))dt

}
.

Then, by (4.6), (4.7), (4.22), (4.26) and (4.32), we deduce that

(4.35) lim sup
ε↘0

∫ T

0

(wε(t), u
′
ε(t))dt ≤ −

∫ T

0

(Bu(t) − f(t), u′(t))dt,

that is (3.21), since w = f −Bu a.e. in ]0, T [ by (2.5).

Proof of theorem 2.3. This follows in parts the previous one, hence we

shall just point out the main differences.

As u0 ∈ D(B), in (4.11) we take uε0 = u0 and

fε(t) := f(0) −B0u0 +Bεu0 +

∫ t

0

gε(s)ds, t ∈ [0, T ],

for any ε > 0, where gε ∈ C0([0, T ];H) approximates f ′ ∈ L2(0, T ;V ′)

in the sense of remark 4.1. Since B̃ is strongly monotone, by (2.7) we

have that (4.3)-(4.7) still hold with Bu0 replaced by B0u0. The estimates

(4.22), (4.23) and (4.25) (but not (4.24)) are deduced in the same way as

before. Hence we still have (4.26), (4.27), (4.29), (4.31) and

(4.36) Bεuε → v weakly star in L∞(0, T ;V ′),



(4.37) Bεuε − fε → v − f weakly star in L∞(0, T ;H).

In the passage to the limit,

(4.38) v(t) ∈ B̃u(t) for a.e. t ∈]0, T [

is a consequence of proposition 2.6, and of the fact that

(4.39) lim sup
ε↘0

∫ T

0

(Bεuε(t), Jεuε(t))dt =

= lim sup
ε↘0

∫ T

0

(Bεuε(t) − fε(t), Jεuε(t))dt + lim
ε↘0

∫ T

0

(fε(t), Jεuε(t))dt ≤

≤
∫ T

0

(v(t), u(t))dt

by (4.37), (4.29), (4.6) and (4.26). In order to obtain (3.21), note that (iii),

propositions 2.2, 2.3 and 2.5 yield

lim inf
ε↘0

∫ T

0

(Bεuε(t) − fε(t), u
′
ε(t))dt =

= lim inf
ε↘0

{
ψ(Jεuε(T )) − ψ(Jεu0) − ε

2
|Bεu0|2 +

ε

2
|Bεuε(T )|2 −

−
∫ T

0

(fε(t), (Jεuε)
′(t) + ε(Bεuε)

′(t))dt

}
.

Then, using the lower semicontinuity of ψ, (4.29), (4.6), (4.7) and (4.22),

we have

(4.40)

lim inf
ε↘0

∫ T

0

(Bεuε(t) − fε(t), u
′
ε(t))dt ≥ ψ(u(T )) − ψ(u0) −

∫ T

0

(f(t), u′(t))dt

and we can conclude as in the proof of theorem 3.1.
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non linéaires, Dunod Gauthier-Villars, Paris, 1969.

[19] P. A. Raviart, Sur la résolution de certaines équations paraboliques non
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