
Appunti del Corso di

Equazioni alle derivate parziali II
Attrattori

Cecilia Cavaterra - Elisabetta Rocca

Dipartimento di Matematica “F. Enriques”
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1. Semigroups of operators and dynamical

systems

A dynamical system (DS) is a set of parameters, state variables which evolves with
respect to time. To be more precise, a DS (X,S(t)) is determined by a phase
space X, X being a real Banach space which consists of all possible values of the
parameters describing the state of the system (phase space), and an evolution map
S(t) : X → X, which allows to find the state of the system at time t > 0 if the
initial state at t = 0 is known. Some authors (e.g., Robinson) call it semi-dinamical
system (being defined for nonnegative times only).

Very often, in mechanics or in physics, the evolution of the phenomena under
consideration is governed by systems of differential equations. If the system consists
of ordinary differential equations (ODE) then it can be formulated as

u′(t) = F (t, u(t))

for some nonlinear function F : R+ × Rn → Rn. If F does not depends explicitly
on time the equation is called autonomous. From now on we consider only this
situation, that is

u′(t) = F (u(t))

where F : Rn → Rn. Assume that for any initial datum u0 ∈ Rn, our equation
has a unique solution u ∈ C([0,∞),Rn) satisfying the initial condition u(0) = u0.
Also, we suppose that the solution continuously depends on the initial data. Then
we have a so-called finite-dimensional DS since here the phase space is X = Rn.
In the case of a system whose possible initial states are described by functions
u0 = u0(x) depending on the spatial variable x, the evolution is usually governed
by partial differential equations (PDE). Hence, the corresponding phase space X is
some infinite-dimensional function space (e.g. X = L2(Ω), or X = H1

0 (Ω)). Such
DS are usually called infinite-dimensional.

To refer to concrete examples, we can think to

u′(t) = ∆u(t) + f(u(t))

or ( u′(t)
v′(t)

)
=

( v(t)
∆u(t) + f(u(t))

)
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where ∆ is the Laplacian with homogeneous Dirichlet boundary condition. In the
former case the phase space X is L2(Ω), whereas in the latter is H1

0 (Ω) × L2(Ω).
Observe that we have considered autonomous equations, i.e., without an explicit
dependence on t. Again, assume that for any initial datum u0 ∈ X, our equations
have a unique solution u ∈ C([0,∞), X) satisfying the initial condition u(0) = u0.
Here by “solution” we mean a solution in some weak sense. Also, we suppose that
the solution continuously depends on the initial data.

In all the quoted examples (autonomous equations) we denote by

S(t)u0 = u(t), t ≥ 0

the solution at time t ≥ 0 of the equation with datum u0 ∈ X given at the initial
time t = 0. More in details, we built a one-parameter family {S(t)}t≥0 of maps
from X into X. Obviously, this family has to reflect the results we know about the
equation. Therefore, existence and uniqueness of global solutions for all initial data
translates into requiring that S(t) : X → X is well-defined for every t ≥ 0. Since the
system is autonomous, the solution at time t + τ with initial datum u0 is the same
of the solution at time t with initial datum u(τ), where u(τ) is the solution at time
τ with initial datum u0. In terms of S(t) we have the equality S(t + τ) = S(t)S(τ),
where S(t)S(τ) means S(t) ◦ S(τ). Since u(0) = u0 this means that S(0) = I. For
every u0, u(t) is continuous in X, that is, S(·)u0 ∈ C([0,∞), X) for all u0 ∈ X.
Finally, if u0 → ū0 then u(t) → ū(t). This reads S(t) ∈ C(X,X), for all t ≥ 0.
Summarizing all these considerations we have

1.1 Definition. Let X be a real Banach space. A dynamical system (or a strongly
continuous semigroup of operators, or a C0-semigroup of operators) on X is a one-
parameter family of functions S(t) : X → X (t ≥ 0) satisfying the properties:

S.1 S(0) = I;

S.2 S(t + τ) = S(t)S(τ), for all t, τ ≥ 0;

S.3 t 7→ S(t)x ∈ C([0,∞), X), for all x ∈ X;

S.4 S(t) ∈ C(X, X), for all t ≥ 0.

Notice that (S.2) implies that S(t) and S(τ) commute for all t, τ ≥ 0.

Remark. The limitation X Banach space is superfluous. At this stage, the
definition makes sense for X topological space (no linear structure is needed).

Remark. Notice that we do not require the joint continuity

(t, x) 7→ S(t)x ∈ C([0,∞)×X, X)

even if in most practical situations originating from PDE this is the case.
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1.2 [Exercise] Let K ⊂ X be a compact set. If the joint continuity holds, prove
that ∀ ε > 0 and ∀T > 0 there exists δ = δ(ε, T,K) such that, for u ∈ X and k ∈ K
then it holds

‖u− k‖ ≤ δ =⇒ ‖S(t)u− S(t)k‖ ≤ ε, ∀ t ∈ [0, T ].



2. Introduction to global attractors

“It is impossible to study the properties of a single mathematical trajec-
tory. The physicist knows only bundles of trajectories, corresponding to
slightly different initial conditions.”

Léon Brillouin

The qualitative study of DS of finite dimension goes back from the beginning of
the 20th century with the pioneering works of Poincaré on the N -body problem. One
of the most surprising and significant facts discovered at first was that even relatively
simple equations can generate very complicated chaotic behaviors. Moreover these
types of systems are extremely sensitive to initial conditions, that is, the trajectories
(solutions) with close but different initial data diverge exponentially.

Let us examine a simple example that should clarify Brillouin’s words. Consider
the dynamical system generated by the ODE in X = R

u′ = u− u3.

If the initial datum u0 is positive, then u(t) → 1 as t → ∞. Conversely, if u0 is
negative, u(t) → −1 for t → ∞. If u0 = 0, then u(t) ≡ 0. Therefore a very small
change of the initial datum can produce a big difference as t →∞.

Moreover, we mention the famous example of the Lorenz system which is defined
by the system of ODE in X = R3





x′ = σ(y − x)
y′ = −xz + rx− y
z′ = xy − bz

Here σ, r and b are three positive numbers representing the Prandtl and Rayleigh
numbers and the aspect ratio. These equations are obtained by truncation of the
Navier-Stokes equations and give an approximate description of the horizontal fluid
layer heated from below. The warmer fluid formed at the bottom tends to rise, creat-
ing convection currents. This is similar to what happens in the earth’s atmosphere.
For a sufficiently intense heating, the time evolution has a sensitive dependence on
the initial conditions, thus representing a very irregular and chaotic convection. This
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fact was used by Lorenz to justify the so-called “butterfly effect”, a metaphor for
the imprecision of weather forecast.

These examples show that if we want to perform an asymptotic analysis which is
relevant from the physical viewpoint, we have to change our perspective, and find a
way to get information on the evolution of a set of initial data, rather then a single
initial datum.

The theory of DS in finite dimensions has been extensively developed by many
mathematicians during the 20th century. In particular, it is known that, very often,
the trajectories (solutions) of a chaotic system are localized, up to a transient pro-
cess, in some subset of the phase space having a very complicated fractal geometric
structure which accumulates the nontrivial dynamics of the system.

We now turn to infinite-dimensional DS generated by PDE. A first important
difficulty which arises here is that the analytic structure of a PDE is essentially
more complicated than that of an ODE and, in particular, we do not have in general
the unique solvability theorem as for ODE. So that, even finding the proper phase
space and the rigorous construction of the associated DS can be a highly nontrivial
problem. It suffices to recall the example of the three-dimensional Navier-Stokes
system (one of the most important equation of mathematical physics) for which the
required associate DS has not been constructed yet! Nevertheless, there exists a large
number of equations for which the problem of the global existence and uniqueness
of a solution has been solved. Thus, the question of extending (in these cases) the
highly developed finite-dimensional DS theory to infinite dimension arises naturally.
Observe that in this context the evolution system generated by PDE is treated as an
ODE whose solutions (trajectories) are viewed as curves in a suitable phase space
of infinite dimension.

One of the most important class of such equations consists of the so-called dissi-
pative PDE. This mathematical notion originates from the fact that in many natural
phenomena various kinds of dissipation are present, like, e.g., viscosity, friction, heat
loss. In the study of the evolution of these phenomena it can be observed the de-
caying of some form of energy (to be suitably defined). From the mathematical
viewpoint, a dynamical system may be called dissipative if there exists a bounded
absorbing set; that is, a subset in the phase space which attracts, in some sense,
any trajectory without being necessarily compact or of finite fractal dimension. We
emphasize once more that the phase space X is infinite-dimensional. Nevertheless,
it was observed in some experiments that, up to a transient process, the trajectories
of the DS under study are localized inside very thin subsets of the phase space.
These subsets present a complicated geometric structure which attracts all the non
trivial dynamics of the system. It was conjectured a little later that these sets
are, in some proper sense, finite-dimensional and that the dynamics restricted to
them (they are invariant in time) can be effectively described by a finite number
of parameters. Thus, (when this conjecture turns out to be true), in spite of the
infinite-dimensional initial phase space, the effective dynamics (reduced to this in-
variant set) is finite-dimensional and can be studied by using the algorithms and
concepts of the classical finite-dimensional DS theory. In particular, this means that
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the infinite-dimensionality plays here only the role of (possibly essential) technical
difficulties which cannot, however, produce any new dynamical phenomena which
are not observed in the finite-dimensional theory. This fact can be of some help, for
instance, for possible numerical approximations. Hence, in this context, a further
nice mathematical feature of a dissipative dynamical system is the existence of the
global attractor, that is, the minimal compact set (so, very thin!) that attracts
uniformly any bounded set in the phase space. In some cases it can be proved that
the global attractor possesses final fractal dimension.

Finally, we would like to mention the study of attractors for nonautonomous
systems, that is, systems of PDE in which time appears explicitly. This situation is
much more delicate and not still completely exploited.



3. The global attractor

Here and in the sequel, let X be a real Banach space, and let S(t) be a dynamical
system on X. In fact all the results that will be given hold for X complete metric
space in which balls are connected, upon replacing the norm, whenever it occurs,
with the distance.

Limit sets

Let us begin with some definitions.

3.1 Definition. Let x ∈ X, the orbit of x (or trajectory starting at x) is the set

Γ(x) =
⋃
t≥0

S(t)x ⊂ X.

3.2 Definition. A function y : R→ X is a complete bounded trajectory of S(t) if

sup
t∈R

‖y(t)‖ < ∞

and
y(t + τ) = S(t)y(τ), ∀ t ≥ 0, ∀ τ ∈ R.

3.3 [Exercise] Show that y ∈ C(R, X).

3.4 Definition. An equilibrium point of S(t) is a point u0 ∈ X such that

S(t)u0 = u0, ∀ t ≥ 0.

If we assume that S(t) is the family of operators associated to the equation

d

dt
u(t) = A(u)(t),

then u0 is an equilibrium point if and only if A(u0) = 0 (in some weak sense).
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3.5 Definition. Denote by S(t)B =
⋃

x∈B S(t)x.

A nonempty set B ⊂ X is (positively) invariant for S(t) if

S(t)B ⊂ B, ∀ t ≥ 0.

A nonempty set B ⊂ X is fully invariant for S(t) if

S(t)B = B, ∀ t ≥ 0.

Remark. If B is fully invariant, then the whole set is important in the dynamics
since no part of B disappears as we run the dynamics on B forward in time.

Remark. If B ⊂ X is an invariant set for S(t), then the restriction of S(t)
on B is a dynamical system on B. If in addition B is fully invariant and S(t)
is injective on B, then S(−t) = S(t)−1 is well defined. It is then easy to check
that (S.2)-(S.3) hold for the restriction of S(t) on B, replacing [0,∞) with R. In
terms of the differential equation associated to S(t), this means that, for data
on B, we have backwards uniqueness. Finally, if B is compact, then (S.4) holds
for all t ∈ R.

3.6 [Exercise] Let B ⊂ X be a compact invariant set for S(t). Show that S(t)
is a strongly continuous group of operators on B.

3.7 Definition. The ω-limit set of a nonempty set B ⊂ X is given by

ω(B) =
{
x ∈ X : ∃ tn →∞, xn ∈ B with S(tn)xn → x

}
.

In particular the ω-limit set of a single point x0 ∈ X is

ω(x0) =
{
x ∈ X : ∃ tn →∞ with S(tn)x0 → x

}
.

Remark. Notice that ω(B) might be empty. If x is an equilibrium point, then
ω(x) = {x}.
Now we want to describe better the properties of an ω-limit set. For the sake of

brevity we denote by B the closure of B ⊂ X with respect to the metric induced by
the norm in X.

3.8 Proposition. Let B ⊂ X and ω(B) be a nonempty set. Then we have

• ω(B) =
⋂

t≥0

⋃
τ≥t S(τ)B

• ω(S(t)B) = ω(B), ∀t ≥ 0

• S(t)ω(B) ⊂ ω(B), that is ω(B) is invariant
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proof (1) Let

x ∈
⋂
t≥0

⋃
τ≥t

S(τ)B.

Then

x ∈
⋃
τ≥t

S(τ)B, ∀ t ≥ 0.

Setting t = n ∈ N, we find τn ≥ n and xn ∈ B such that

‖S(τn)xn − x‖ ≤ 1

n

from which we deduce S(τn)xn → x, as n → +∞, and then x ∈ ω(B).

Conversely, if x ∈ ω(B), then there exist τn → +∞ and xn ∈ B such that
S(τn)xn → x, as n → +∞. Choosing t ≥ 0 we can take τn ≥ t. Then we get
x ∈ ⋃

τ≥t S(τ)B for all t ≥ 0. Finally, x ∈ ⋂
t≥0

⋃
τ≥t S(τ)B.

(2) Fix t ≥ 0. Consider x ∈ ω(S(t)B). Then there exist τn → +∞ and xn ∈ B
such that S(τn)(S(t)xn) = S(τn + t)xn → x, as n → +∞. Setting τn + t = tn we
easily obtain x ∈ ω(B).

Conversely, let x ∈ ω(B). Then there exist tn → +∞ and xn ∈ B such that
S(t)xn → x, as n → +∞. Fix t ≥ 0, we can take tn ≥ t. Hence we have

S(tn)xn = S(tn − t)(S(t)xn) = S(τn)(S(t)xn) → x

as n → +∞. We conclude x ∈ ω(S(t)B).

(3) Let x ∈ ω(B). Then S(tn)xn → x, as n → +∞, for some xn ∈ B and
tn →∞. Fix t ≥ 0. Since S(t) ∈ C(X, X), then

S(t + tn)xn = S(t)S(tn)xn → S(t)x

as n → +∞. That is, S(t)x ∈ ω(B). ¦

Dissipative systems

3.9 Definition. A nonempty set B0 ⊂ X is an absorbing set for (X, S(t)) if for
every bounded set B ⊂ X there exists tB ≥ 0 such that

S(t)B ⊂ B0, ∀ t ≥ tB.

3.10 Definition. (X, S(t)) is dissipative if it has a bounded absorbing set.
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3.11 [Exercise] If B0 ⊂ X is an absorbing set, then

B1 =
⋃

t≥tB0

S(t)B

is a bounded, absorbing, invariant set.

Since in a dissipative system all the trajectories eventually enter in B0, one might
expect that the set ⋃

x∈B0

ω(x)

would capture the asymptotic dynamics. However, as it will be clear in the sequel,
this set turns out to be too small to give the necessary information.

Unfortunately, in infinite-dimensional Banach spaces, balls are not so nice sets. For
instance, they are not compact. So the knowledge of the existence of a bounded
absorbing set gives little information on the longterm dynamics. Then one might
try to find a compact absorbing set. In most situations, this is hopeless. The idea
is then to look for compact sets that, though not absorbing, “attract” all the orbits
departing from bounded sets. This “attraction” can be measured in terms of the
Hausdorff semidistance.

3.12 Definition. If A and B are nonempty subsets of X, the Hausdorff semidis-
tance between A and B is defined as

distH(A,B) = sup
a∈A

‖a− B‖ = sup
a∈A

inf
b∈B

‖a− b‖.

Notice that the Hausdorff semidistance is not symmetric (so it is not a distance). To
obtain a metric on subsets of X, we need to use the symmetric Hausdorff distance

distsym(A,B) = max(distH(A,B), distH(B,A)).

3.13 [Exercise] distH(A,B) = 0 if and only if A ⊂ B

3.14 Definition. A nonempty set K ⊂ X is an attracting set for (X, S(t)) if for
every bounded set B ⊂ X

lim
t→∞

distH(S(t)B,K) = 0.

3.15 Definition. (X, S(t)) is asymptotically compact if it has a compact attract-
ing set.

3.16 Proposition. If (X, S(t)) is asymptotically compact then it possesses a
bounded absorbing set (that is (X,S(t)) is dissipative).
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proof If K ⊂ X is a compact attracting set then, for any bounded B ⊂ X,

lim
t→∞

(
sup
x∈B

inf
y∈K

‖S(t)x− y‖
)

= 0

that is, for any ε > 0 there exists tB > 0 such that

sup
x∈B

inf
y∈K

‖S(t)x− y‖ < ε, ∀ t > tB.

Hence, for any x ∈ X, we have

inf
y∈K

‖S(t)x− y‖ < ε, ∀ t > tB.

We can construct a sequence yn ∈ K such that

‖S(t)x− yn‖ < ε, ∀ t > tB, ∀n ∈ N.

Since K is compact, we can extract a subsequence ynk
converging to y0 ∈ K and

then

‖S(t)x− y0‖ ≤ ε, ∀ t > tB.

If we define

Kε = {z ∈ X : ∃ y ∈ K : ‖z − y‖ ≤ ε}
then Kε is bounded (K is compact) and we have

S(t)x ∈ Kε, ∀x ∈ B, ∀ t > tB.

So Kε is an absorbing set. ¦
If a dynamical systems is asymptotically compact, we can possibly think of finding
the smallest compact attracting set. This set should describe properly the asymp-
totic dynamics.

The global attractor

3.17 Definition. A nonempty set A ⊂ X is said to be the global attractor of
(X,S(t)) if it enjoys the following properties:

A.1 A is fully invariant for S(t);

A.2 A is an attracting set;

A.3 A is compact.



12

We speak of the global attractor rather than a global attractor since, if A exists, it
is necessarily unique. Indeed, it holds

3.18 Proposition. Assume that A and Ã are two global attractors of (X, S(t)).
Then A = Ã.

proof Using (A.2),
lim
t→∞

distH(S(t)Ã,A) = 0.

But on account of (A.1), S(t)Ã = Ã. Hence dist(Ã,A) = 0 which implies
Ã ⊂ A = A (since A is closed due to (A.3)). Interchanging the role of A and Ã,
we get the reverse inclusion. ¦

Needless to say that the global attractor might not exist. Just consider the trivial
example S(t) = I for all t ≥ 0.

The global attractor satisfies some peculiar maximal and minimal properties.

3.19 Proposition. Let A be the global attractor of (X, S(t)).

(i) Let Ã be a bounded set satisfying (A.1). Then A ⊃ Ã.

(ii) Let Ã be a closed set satisfying (A.2). Then A ⊂ Ã.

proof (i) Since Ã is bounded, then

lim
t→∞

distH(S(t)Ã,A) = 0.

But on account of (A.1), S(t)Ã = Ã. Hence distH(Ã,A) = 0 which implies
Ã ⊂ A = A (since A is closed due to (A.3)).

(ii) Since Ã is an attracting set and A is bounded, then

lim
t→∞

distH(S(t)A, Ã) = 0.

But A is also invariant, hence distH(A, Ã) = 0 which implies A ⊂ Ã = Ã (since
Ã is closed). ¦

On account of the previous result, we can say that the global attractor (when it
exists) is the bigger compact invariant set (with reference to (i)) and the smallest
compact attracting set (with reference to (ii)). This is the reason why in literature
A is sometimes called the maximal attractor or the minimal attractor.

3.20 [Exercise] Prove that if x is an equilibrium point of S(t) and A is the global
attractor then x ∈ A.

proof If S(t)x = x, ∀ t ≥ 0, then Ã = {x} is fully invariant and bounded.
Hence (by 3.11 (i)), Ã = {x} ⊂ A. ¦
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3.21 [Exercise] Prove that if S(t)x is a periodic orbit andA is the global attractor
then S(t)x ∈ A, ∀t ≥ 0.

In the next result we show a characterization of the global attractor

3.22 Theorem. If A is the global attractor of (X, S(t)) then it holds

A =
{

y(0) : y is a complete bounded trajectory of S(t)
}

that is, A is the section at time t = 0 (or at any time t = t∗) of all the complete
bounded trajectories.

proof Let A be the global attractor of S(t), and set

Ã =
{

y(0) : y is a complete bounded trajectory of S(t)
}

.

If y is a complete bounded trajectory of S(t), then the set B = y(R) is bounded.
Moreover, S(t)B = B for all t ≥ 0. Hence, by Proposition 3.19 (i), B ⊂ A which
gives Ã ⊂ A.

To show the converse, let x ∈ A. Using the fully invariance of A we build in a
recursive (backward) way a sequence xn ∈ A (with x0 = x) such that

S(1)xn+1 = xn

from which we deduce
S(k)xn+k = xn, ∀ k ∈ N.

Define then
y(t) = S(t + n)xn, for t ≥ −n.

Notice that this definition is coherent; indeed, if t ≥ −m and we assume, for
instance, n ≥ m, then (t ≥ −m > −n)

S(t + n)xn = S(t + m + n−m)xn = S(t + m)S(n−m)xn = S(t + m)xm.

Observe that y(t) ∈ A for every t ∈ R. So, in particular, y is bounded. Moreover,
if τ ∈ R and t ≥ 0,

y(t + τ) = S(t + τ + n)xn = S(t)S(τ + n)xn = S(t)y(τ).

Hence, we have proved that y is a complete bounded trajectory of S(t). Since
y(0) = S(0)x0 = x0 = x, we obtain the inclusion Ã ⊃ A. ¦
Remark. If S(t) is injective on A, then for every x ∈ A there is just one
complete bounded trajectory of S(t) passing through x. Hence S(t) is a strongly
continuous group of operators on A.

3.23 Theorem. Let A be the global attractor of (X, S(t)), with X connected.
Then A is connected.
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proof Let B be a ball containing A. Then B is clearly (path) connected.
Assume by contradiction A be not connected. Then there are two disjoint open
sets U1 and U2 such that A∩Uj 6= ∅ and A ⊂ U1∪U2. Since S(t) ∈ C(X,X) for
every fixed t ≥ 0, we get that S(n)B is connected for every n ∈ N. Moreover,

S(n)B ⊃ S(n)A = A, ∀ n ∈ N

hence

Uj ∩ S(n)B 6= ∅, ∀ n ∈ N.

Then for every n ∈ N there is xn ∈ S(n)B \ (U1 ∪ U2), due to the connectedness
of S(n)B. We know that

lim
n→∞

distH(S(n)B,A) = 0

so in particular

lim
n→∞

[
inf
a∈A

‖xn − a‖
]

= 0.

Thus we can find a sequence an ∈ A such that

lim
n→∞

‖xn − an‖ = 0.

Using the compactness of A, we reckon that (up to a subsequence) an → a ∈ A.
But then we have also xn → a, which implies that a 6∈ U1 ∪ U2 and therefore
a 6∈ A. Contradiction. ¦

3.24 [Exercise] Using the definition and the related properties, find the global
attractor of the dynamical system generated by the ODE

x′ = x− x3.

Up to now, we investigated some properties of the global attractor. We now show
that indeed there are cases in which this object exists.

The main existence theorem

Let us show to begin a “conditional” existence result.

3.25 Theorem. Let B ⊂ X be a bounded nonempty set. Assume that ω(B) is
nonempty, compact and attracting for (X,S(t)). Then ω(B) is the global attractor
of (X, S(t)).
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proof We only have to prove that ω(B) is fully invariant. In fact, we need to
show that

S(t)ω(B) ⊃ ω(B), ∀ t ≥ 0

the reverse inclusion being always true (we already know that ω(B) is invariant).

Fix t ≥ 0, and let z ∈ ω(B). Then there exist tn →∞ and zn ∈ B such that

S(tn)zn → z.

We may suppose tn ≥ t for all n ∈ N. Since ω(B) is attracting, we get in
particular

lim
n→∞

distH(S(tn − t)B, ω(B)) = 0

that is

lim
n→∞

(
sup
z∈B

inf
x∈ω(B)

‖S(tn − t)z − x‖
)

= 0.

Hence, we deduce

lim
n→∞

[
inf

x∈ω(B)
‖S(tn − t)zn − x‖

]
= 0.

So there is a sequence xn ∈ ω(B) such that

lim
n→∞

‖S(tn − t)zn − xn‖ = 0.

But ω(B) is compact, thus, up to a subsequence, xn → x ∈ ω(B) as n → ∞,
which yields at once

S(tn − t)zn → x, n →∞.

Using the continuity of S(t),

S(t)S(tn − t)zn → S(t)x, n →∞.

On the other hand,

S(t)S(tn − t)zn = S(tn)zn → z, n →∞.

We conclude that z = S(t)x, i.e., z ∈ S(t)ω(B). ¦

To carry out successfully our analysis, we need to introduce some technical tools.
Recall the following well-known fact.

3.26 Theorem. If B is a closed subset of X then B is compact if and only if B
is totally bounded, that is, B can be covered by finitely many balls of radius ε, for
every ε > 0.

The above result suggests a way to measure how far a set is from being compact.
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3.27 Definition. Given a bounded set B ⊂ X, the Kuratowski measure of
noncompactness α(B) is defined by

α(B) = inf
{
d : B has a finite cover of balls of X of diameter less than d

}
.

Here are some basic properties.

3.28 Proposition.

K.1 α(B) = 0 if and only if B is compact.

K.2 B1 ⊂ B2 implies α(B1) ≤ α(B2); and α(B1 ∪ B2) = max{α(B1), α(B2)}.
K.3 α(B) = α(B).

K.4 Let {Bt}t≥0 be a family of nonempty bounded closed sets such that Bt1 ⊃ Bt2

for t1 < t2, and limt→∞ α(Bt) = 0. Denote B =
⋂

t≥0 Bt. Then

(i) B is nonempty;

(ii) B is compact;

(iii) if the sets Bt are connected for all t, then B is connected.

3.29 [Exercise] Prove (K.1)-(K.3) and (K.4ii).

In order to prove (K.4i), we state and prove a stronger result.

3.30 Proposition. Let {Bt}t≥0 be as in (K.4). Let tn ↑ ∞, and let ζn ∈ Btn.
Then there exist ζ ∈ ⋂

t≥0 Bt and a subsequence ζnk
→ ζ.

proof Select m ∈ N. Then there is nm such that

α(Btn) ≤ 1

m
, ∀ n ≥ nm.

In particular, there exists a ball of diameter less than or equal to 1/m which
contains infinitely many terms of the sequence ζn. Proceeding with a classical
diagonalization method, we find a Cauchy subsequence ζnk

, that converges to
some ζ, for X is complete. On the other hand, for any fixed t ≥ 0, ζnk

∈ Bt for
all k ≥ k0(t). So ζ ∈ Bt (since Bt is closed) and therefore ζ ∈ ⋂

t≥0 Bt. ¦

3.31 [Exercise] Prove (K.4iii). [Hint: Use the arguments of the above proposi-
tion and of the proof of Theorem 3.23].

3.32 [Exercise] Show that if K is relatively compact then

distH(B,K) ≤ c =⇒ α(B) ≤ 2c.
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We are now ready to state the main existence result.

3.33 Theorem. Let (X,S(t)) be a dynamical system. Assume the following
hypotheses:

(i) there exists a bounded absorbing set B0 ⊂ X;

(ii) there exists a sequence tn ≥ 0 such that lim
n→∞

α(S(tn)B0) = 0;

Then ω(B0) is the global attractor of (X,S(t)).

proof In light of Theorem 3.25, we have to show that ω(B0) is nonempty,
compact and attracting. The result will be obtained in three steps.

Step 1. We have lim
t→∞

α(S(t)B0) = 0.

On account of (i), there is t0 ≥ 0 such that

S(t)B0 ⊂ B0, ∀ t ≥ t0.

Let us fix ε > 0. From (ii) there is tn0 such that α(S(tn0)B0) < ε.

Then, taking t ≥ t0 + tn0 ,

S(t)B0 = S(tn0)S(t− tn0)B0 ⊂ S(tn0)B0

which yields
α(S(t)B0) ≤ α(S(tn0)B0) < ε, ∀ t ≥ t0 + tn0

Hence, limt→∞ α(S(t)B0) = 0. ¦

Step 2. ω(B0) is nonempty and compact.

Let t0 ≥ 0 be as above. If t ≥ t0 there holds
⋃
τ≥t

S(τ)B0 =
⋃
σ≥0

S(t + σ)B0 =
⋃
σ≥0

S(t− t0)S(σ + t0)B0

⊂
⋃
σ≥0

S(t− t0)B0 = S(t− t0)B0.

Observe that S(t− t0)B0 is definitely bounded. Hence, on account of Step 1,

lim
t→∞

α
( ⋃

τ≥t

S(τ)B0

)
= 0.

Set then for t ≥ 0

At =
⋃
τ≥t

S(τ)B0.
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The sets At are closed, bounded (definitely) and nested, and

lim
t→∞

α(At) = 0.

Therefore, by (K.4) and Proposition 3.8

ω(B0) =
⋂
t≥0

At

is nonempty and compact. ¦

Step 3. ω(B0) is an attracting set.

Assume not. Then there exist a bounded set B, zn ∈ B, δ > 0, and a sequence
τn ↑ ∞ such that

inf
x∈ω(B0)

‖S(τn)zn − x‖ ≥ δ.

Choose t∗ ≥ 0 such that
S(t∗)B ⊂ B0

and let n be large enough such that τn ≥ t∗. Clearly,

ζn = S(τn)zn ∈ Aτn−t∗ .

Since At satisfy the assumptions of Proposition 3.30, then there is a subsequence

ζnk
→ ζ ∈

⋂
t≥0

At = ω(B0).

This means that the sequence S(τn)zn has a cluster point in ω(B0), which is a
contradiction. ¦

We highlight some situations in which the previous theorem applies at once, so
yielding the existence of the global attractor.

3.34 Corollary. If (X S(t)) has a compact absorbing set, then there exists the
global attractor.

proof Let B0 be a compact absorbing set. Then assumption i) of Theorem 3.33
is satisfied.

Since B0 is a compact absorbing set, then there exists t0 ≥ 0 such that

S(t)B0 ⊂ B0, ∀t ≥ t0.

Hence, α(S(t)B0) ⊂ B0 ≤ α(B0) = 0, ∀t ≥ t0.

Finally, α(S(t)B0) → 0 as t →∞, and also ii) of Theorem 3.33 holds. ¦

3.35 Corollary. Let (X S(t)) be asymptotically compact. Then there exists the
global attractor.
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proof (X S(t)) admits a compact attracting set K. On account of Proposition
3.16, there exists a bounded absorbing set B0. Hence, i) of Theorem 3.33 holds.

Since K is attracting and B0 is bounded, then we have

lim
t→∞

distH(S(t)B0, K) = lim
t→∞

sup
z∈B0

inf
y∈K

‖S(t)z − y‖ = 0

Hence, there exists a sequence tn such that

sup
z∈B0

inf
y∈K

‖S(tn)z − y‖ ≤ 1

n

from which

inf
y∈K

‖S(tn)z − y‖ ≤ 1

n
, ∀ z ∈ B0.

We can find a sequence yj ∈ K such that ‖S(tn)z − yj‖ ≤ 1
n
, ∀ z ∈ B0, ∀j ∈ N.

Since K is compact there exist a subsequence yjk
∈ K and y0 ∈ K such that

yjk
→ y0. This implies ‖S(tn)z − y0‖ ≤ 1

n
, ∀ z ∈ B0. Consider now the set

K 1
n

=
⋃

y∈K By(
1
n
) where Bw(ρ) denotes a ball centered in w with radius ρ > 0.

Since K 1
n

is a cover of K compact, then we can extract a finite subcover of balls

centered in γ, . . . , γk ∈ K such that K ⊂ ⋃
i=1,...,k Bγi

( 1
n
).

Observe that, for any z ∈ B0, there exists y0 ∈ K such that ‖S(tn)z − y0‖ ≤
1
n
. Moreover, for any y0 ∈ K, there exists γi ∈ {γ1, . . . , γk} ⊂ K such that
‖y0 − yi‖ ≤ 1

n
. Hence we deduce ‖S(tn)z − γi‖ ≤ ‖S(tn)z − y0‖+ ‖y0 − γi‖ ≤ 2

n
,

from which S(tn)B0 ⊂
⋃

i=1,...,k Bγi
( 2

n
). Finally, we have α(S(tn)B0) ≤ 4

n
and

then α(S(tn)B0) → 0 as n →∞. So ii) of Theorem 3.33 holds. ¦

3.36 Corollary. Let (X, S(t)) be dissipative. In addition, assume

S(t) = S1(t) + S2(t)

(where Sj(t) : X → X are not necessarily semigroups), with

sup
x∈B0

‖S1(t)x‖ → 0 as t →∞

and
S2(t)B0 ⊂ K compact, ∀ t ≥ 0.

Then there exists the global attractor A ⊂ K.

proof Since (X, S(t)) is dissipative, it admits a bounded absorbing set B0.

Moreover, there exists a sequence tn such that supx∈B0
‖S1(tn)x‖ ≤ 1

n
.

Consider K 1
n

=
⋃

y∈K By(
1
n
) that is a cover of the compact K. Then we can

extract a finite subcover of balls centered in γ1, . . . , γk ∈ K such that K ⊂⋃
i=1,...,k Bγi

( 1
n
).
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Let us fix now x ∈ B0. Then we have S(tn)x = S1(tn)x+S2(tn)x. Since S2(tn)x ∈
K then there exists γi ∈ {γ1, . . . , γk} such that ‖S2(tn)x − γi‖ ≤ 1

n
. Hence we

have ‖S(tn)x− γi‖ = ‖S1(tn)x + S2(tn)x− γi‖ ≤ 2
n

from which α(S(tn)B0) ≤ 4
n
.

Finally, one deduces α(S(tn)B0) → 0, as n →∞. This implies the existence the
global attractor A.

To show that A ⊂ K it is enough to prove that the compact K is an attracting
set. Let us consider a bounded set B. Since B0 is an absorbing set, then there
exists t0 ≥ 0 such that S(t)B ⊂ B0, ∀ t ≥ t0. Hence we can always reduce the
analysis to the case B = B0, taking t ≥ t0 (S(t)B = S(t−t0)S(t0)B = S(t−t0)B0).

Recalling the properties of S1(t) and S2(t), then we have

distH(S(t)B0, K) = sup
z∈B0

inf
y∈K

‖S(t)z − y‖ = sup
z∈B0

inf
y∈K

‖S1(t)z + S2(t)z − y‖

≤ sup
z∈B0

inf
y∈K

(‖S1(t)z‖+ ‖S2(t)z − y‖)

≤ sup
z∈B0

‖S1(t)z‖+ sup
z∈B0

inf
y∈K

‖S2(t)z − y‖ = sup
z∈B0

‖S1(t)z‖ → 0, as t →∞.

From this we deduce that K is a compact attracting set and we conclude that
A ⊂ K. ¦

3.37 Corollary. Let (X, S(t)) be dissipative. In addition, assume

S(t) = S1(t) + S2(t)

(where Sj(t) : X → X are not necessarily semigroups), with

sup
x∈B0

‖S1(t)x‖ → 0 as t →∞

and
S2(t)B0 ⊂ K(t) compact, ∀ t ≥ 0.

Then there exists the global attractor A.

proof [Exercise] ¦

3.38 [Exercise] Prove that the dynamical system generated by the Lorenz system
admits the global attractor.

Dynamics on the attractor

We explain in which sense the global attractor determines the longterm dynamics of
the system. We discuss the particular (but sufficiently general) case when the semi-
group is jointly continuous. Loosely speaking, what happens is that if we consider
a trajectory departing from a point x ∈ X, after a sufficient time it will “look like”
some trajectory on the attractor for a long time.
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3.39 Theorem. Assume S(t) is jointly continuous, that is,

(t, x) 7→ S(t)x ∈ C([0,∞)×X, X)

and let A be the global attractor of (X, S(t)). Then, for every x0 ∈ X, every ε > 0,
and every T > 0 there exist τ = τ(ε, T ) and a0 ∈ A such that

‖S(t + τ)x0 − S(t)a0‖ ≤ ε, ∀ t ∈ [0, T ].

proof By force of Exercise 1.2, there exists δ = δ(ε, T ) > 0 such that, taking
x0 ∈ X and a ∈ A, then

‖x0 − a‖ ≤ δ =⇒ ‖S(t)x− S(t)a‖ ≤ ε, ∀ t ∈ [0, T ].

Since A is the global attractor, then

lim
t→∞

distH(S(τ)x0,A) = 0.

Then there exists a time τ ≥ 0 such that distH(S(τ)x0,A) ≤ δ and then
infa∈A ‖S(τ)x0 − a‖ ≤ δ.

Since A is compact, then there exists a0 ∈ A such that distH(S(τ)x0,A) ≤ δ =
‖S(τ)x0 − a0‖ ≤ δ Considering the two trajectories having initial data at time
t = 0 the values S(τ)x0 and a0, then we get

‖S(t + τ)x0 − S(t)a0‖ ≤ ε, ∀ t ∈ [0, T ].

¦

Gradient systems and equilibrium points

We now want to examine in more detail the set E of equilibrium points of S(t). Due
to the continuity of S(t), E is a closed set. Also, if there is the global attractor
A, then E ⊂ A. We already mentioned that the knowledge of E is not sufficient
to understand the whole asymptotic dynamics. Here we consider a special class of
dynamical systems, the so-called gradient systems.

The following definitions and results hold if we replace the whole space X with
a closed set X0 ⊂ X that is invariant for S(t). Clearly, in order to have information
on the longterm dynamics, the set X0 should not be too small. Certainly it should
contain the set E and, if it exists, the global attractor A.

3.40 Definition. A function Φ ∈ C(X,R) is said a Lyapunov function for S(t) if

(i) Φ(S(t)x) ≤ Φ(x) for all x ∈ X and t ≥ 0;



22

(ii) Φ(S(t)x) = Φ(x) for all t > 0 implies that x ∈ E .

If (X, S(t)) has a Lyapunov function, then (X, S(t)) is called a gradient system.

3.41 [Exercise] Let Φ satisfy (i). Then the function t 7→ Φ(S(t)x) is decreasing
for all x ∈ X.

Notice that condition (ii) above implies that a gradient system cannot have periodic
trajectories.

3.42 Theorem. Let (X, S(t)) be a gradient system. Let x ∈ X be such that

lim
t→∞

α
( ⋃

τ≥t

S(τ)x
)

= 0

(this is clearly true for all x ∈ X whenever the global attractor A exists). Then
E 6= ∅ and ω(x) ⊂ E . Moreover, if E is discrete (i.e., with no cluster points) then
ω(x) ∈ E .

Before going to the proof, let us notice that if S(t) is a gradient system with a
global attractor A, then

E =
⋃
x∈X

ω(x).

This should tell the difference between taking the union of the ω-limits of all the
points of a bounded set in place of the ω-limit of the whole set.

proof The sets

Bt =
⋃
τ≥t

S(τ)x

are nonempty, closed, connected, nested, and

lim
t→∞

α(Bt) = 0.

So by (K.4) the set

ω(x) =
⋂
t≥0

Bt

is nonempty, compact and connected. Let now z ∈ ω(x). Then there exists
tn →∞ such that S(tn)x → z. Exploiting the Lyapunov function Φ, we get

L = lim
t→∞

Φ(S(t)x) = lim
n→∞

Φ(S(tn)x) = Φ(z).

In particular we conclude that Φ(w) = L for all w ∈ ω(x). The invariance of
ω(x) then implies that

Φ(S(t)z) = L, ∀ t ≥ 0

that is, z ∈ E . Finally, if E is discrete, then ω(x), which is connected, can meet
only a connected component of E , thus ω(x) ∈ E . ¦
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3.43 [Exercise] Let S(t) be a gradient system on R that possesses a global
attractor A. Setting m = min E and M = max E , prove that A = [m,M ].

3.44 Example. Let G ∈ C2(R) and consider the dynamical system on R gener-
ated by

x′(t) = G′(x(t)).

We show that this is a gradient system. Set

Φ(x) = −G(x), x ∈ R.

Notice that, if x(t) is the solution,

d

dt
Φ(x(t)) = −G′(x(t))x′(t) = −[

G′(x(t))
]2

.

Therefore Φ(x(t)) is decreasing in t. Moreover, if

Φ(x(t)) = Φ(x(0)), ∀ t ≥ 0

this entails
x′(t) = G′(x(t)) = 0, ∀ t ≥ 0

i.e., x is an equilibrium point.

Apparently, the set E gives few information on the attractor. However, there is
a way to recover the attractor from E . Indeed, for gradient systems, all and only
the trajectories which extend to complete trajectories “departing” (at −∞) from E
locate the whole attractor.

3.45 Definition. The unstable manifold of E is defined by

WU(E) =

{
y(0) : y is a complete trajectory

of S(t) and lim
t→∞

‖y(−t)− E‖ = 0

}
.

In an analogous manner, the unstable manifold of a point x ∈ E is

WU(x) =

{
y(0) : y is a complete trajectory

of S(t) and lim
t→∞

‖y(−t)− x‖ = 0

}
.

If S(t) is not injective on X, then there might be more complete trajectories arriving
at a given point. However notice that WU(E) is not empty if E is not empty. Indeed,
if x0 ∈ E , then the constant function y(t) = x0 is certainly a complete (bounded)
trajectory.

3.46 Theorem. Let (X, S(t)) be a gradient system with admits the global
attractor A and a Lyapunov function Φ. Then

A = WU(E).
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Moreover if E is a finite set, then

A =
⋃
x∈E

WU(x).

Notice that since E is contained in A, then it is compact. Therefore saying that E
is discrete or finite is the same thing.

proof The inclusion A ⊃ WU(E) follows directly from the characterization of
A given in Theorem 3.22 (due to the presence of the attractor, the elements of
WU(E) are in fact complete bounded trajectories [Exercise]).

Let then x ∈ A, and let y be a complete bounded trajectory of S(t) such that
y(0) = x. Consider the set

γ(x) =
⋂
t≥0

Bt where Bt =
⋃
τ≥t

y(−τ).

Notice that Bt ⊂ A, hence Bt is compact. So γ(x), a nested intersection of
compact sets, is nonempty and compact. Let z ∈ γ(x). Then there is tn → ∞
such that

y(−tn) → z, (n →∞).

This bears

Φ(y(−tn)) → Φ(z), (n →∞).

But Φ(y(−t)) is increasing as t →∞. Indeed, if τ > 0,

Φ(y(−t + τ)) = Φ(S(τ)y(−t)) ≤ Φ(y(−t)).

Hence

L = lim
t→∞

Φ(y(−t)) = Φ(z).

On the other hand, for any fixed t ≥ 0, we have

S(t)y(−tn) = y(−tn + t) → S(t)z, (n →∞)

and therefore

L = lim
n→∞

Φ(y(−tn + t)) = Φ(S(t)z)

which yields z ∈ E . We have proved that γ(x) ⊂ E . We are left to show that

lim
t→∞

‖y(−t)− E‖ = 0.

Indeed, if not, there are ε > 0 and tn →∞ such that

‖y(−tn)− E‖ ≥ ε.
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Since y(−tn) ∈ A, due to compactness, we have that, up to a subsequence,
y(−tn) → w. But this means that w ∈ γ(x), and consequently w ∈ E . Thus

lim
n→∞

‖y(−tn)− E‖ = ‖w − E‖ = 0

leading to a contradiction. Finally, if E is finite, it is immediate to see that

WU(E) =
⋃
x∈E

WU(x).

This concludes the proof. ¦

3.47 [Exercise] Discuss again the ODE

x′ = x− x3

on account of the above result.

3.48 [Exercise] Let (X,S(t)) be a gradient system, with Lyapunov function Φ,
that possesses the global attractor A. Assume also that E = {x0}. Prove that
A = {x0}. [Hint: Given any complete trajectory y(t), observe that Φ(y(t)) is a
decreasing function].

Some additional topics

Further developments of the theory not treated here, such as Hausdorff and frac-
tal dimension of global attractor, stability of the attractor, exponential attractors,
inertial manifolds, and nonautonomous dynamical systems, may be found in the
references.
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