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Contents

0.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1 Preliminaries 8
1.1 Notation and functional spaces . . . . . . . . . . . . . . . . . . . . . . 8

1.1.1 Lebesgue and Sobolev spaces . . . . . . . . . . . . . . . . . . . 8
1.1.2 Traces and integration formulas . . . . . . . . . . . . . . . . . . 10
1.1.3 Hilbert triplets . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.1.4 Spaces of vector valued functions . . . . . . . . . . . . . . . . . 14
1.1.5 Miscellanea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 Convex analysis tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.1 Convex functions and duality . . . . . . . . . . . . . . . . . . . 17
1.2.2 Maximal monotone operators. Subdifferentials . . . . . . . . . . 18
1.2.3 Convex integrals . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3 Variational convergences . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Phase-field models 28
2.1 The physical background . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.1 The Stefan problem . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.1.2 Ginzburg-Landau potentials and relaxed models . . . . . . . . . 32
2.1.3 Extensions of the phase-field model . . . . . . . . . . . . . . . . 35

2.2 Known results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.1 Results on the Stefan problem . . . . . . . . . . . . . . . . . . . 38
2.2.2 The phase-field model: existence and uniqueness of solutions . . 42
2.2.3 The phase-field model: regularity . . . . . . . . . . . . . . . . . 47

3 Resolution of the phase-field system 50
3.1 An abstract approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.1 The mathematical problem . . . . . . . . . . . . . . . . . . . . . 50
3.1.2 Approximation and a priori estimates . . . . . . . . . . . . . . . 53
3.1.3 Proof of the abstract results . . . . . . . . . . . . . . . . . . . . 59

3.2 Applications to the phase-field system . . . . . . . . . . . . . . . . . . . 63
3.2.1 An alternative approach to the phase-field system . . . . . . . . 64
3.2.2 Formulation of the transmission problem . . . . . . . . . . . . . 65
3.2.3 Further monotone operators techniques . . . . . . . . . . . . . . 69
3.2.4 Existence and uniqueness of solutions to the transmission problem 73

3.3 Concentrated capacities . . . . . . . . . . . . . . . . . . . . . . . . . . 77

1



introduction 2

4 Convergence results 81
4.1 Singular limits of the transmission problem . . . . . . . . . . . . . . . . 81

4.1.1 Introduction and preliminaries . . . . . . . . . . . . . . . . . . . 81
4.1.2 Limit for µ2,n → 0 . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.1.3 Limit for ν2,n → 0 . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.1.4 Limit for αn → α . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2 Convergence to the Stefan problem . . . . . . . . . . . . . . . . . . . . 100
4.2.1 Mathematical problems and main results . . . . . . . . . . . . . 100
4.2.2 A priori estimates . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.2.3 Γ-convergence reformulation of (TPn) . . . . . . . . . . . . . . . 108
4.2.4 Conclusion of proofs and final remarks . . . . . . . . . . . . . . 111

0.1 Introduction

Phase-field models account for a significant attempt to give a rigorous mathemati-
cal presentation to some modern thermodynamical theories involving rather general
fusion-solidification processes; for instance, solidification of fluids, phase transitions in
metallic alloys, diffusion processes in solutes with variable concentration, austenitic-
martensitic structures in steel, formation of glasses are only some phenomena which
can be described in this framework. The introduction of the model goes back to the
mid 80’s and is essentially due to Caginalp [19] and Fix [40], who constructed it as an
extension of the weak formulation of the Stefan problem describing the phase transi-
tions in ice-water mixtures (or in similarly-behaving substances). In the latest years,
phase-field models have rapidly become very popular among the scientific community,
so that they are now extensively studied both from the thermodynamical and the
mathematical points of view; new generalizations are also continually provided, which
are able to apply to very complex and detailed physical situations.

In our dissertation, anyway, we are not interested in describing a complicated ther-
modynamical setting; we rather refer to the simpler original situation concerning heat
diffusion processes in substances allowed to phase transitions. So, let us briefly present
the precise physical situation and, in particular, start by listing the involved variables,
which are the temperature θ and the order parameter, or phase-field χ. Clearly, it is
not necessary to insist on the physical sense of θ, which is normally intended as the
relative temperature with respect to the fusion-solidification point θ∗ = 0 (i.e. not as
the absolute Kelvin temperature); as far as χ is concerned, instead, we now try and
explain its sense in the simplest thermodynamical setting, i.e. that of an ice-water
mixture; we point out anyway that the “interpretation” of the variable χ can be much
less intuitive in the general case (we refer to Chapter 2 for the detailed construction
of the phase-field model and for several related comments and generalizations).

So, take a bounded region Ω ⊂ RN (with N = 2 or N = 3) and suppose it
filled with water and ice, which are subject to the heat diffusion in the course of a
fixed time period [0, T ]. Then, for every point x and time instant t, χ(x, t) represents
the proportion of phases; for instance, if ice is present at x at the time t, then it
turns out to be χ(x, t) = −1 (pure solid), while χ(x, t) = 1 accounts for pure water;
furthermore, also the intermediate states, called mushy regions and corresponding to



introduction 3

−1 < χ(x, t) < 1, are allowed. We can now present the precise mathematical form
of the diffusion equations constituting what in the course of the dissertation will be
referred to as the (parabolic) phase-field model; in the following formulation, anyway,
we omit some (nonnegative) “physical” coefficients, since our interest is only that of
“giving an idea” of the related mathematical setting: we have

∂tθ + ∂t
χ−∆θ = f(1)

µ∂t
χ− ν∆χ+ α(χ) + γ(χ) 3 θ,(2)

where, in order to obtain a well-posed problem under an analytical point of view, the
system must clearly be complemented by means of the usual Cauchy and boundary
conditions (which should be of the Neumann type as far as χ is concerned). Notice
that the first equation is nothing else but the standard heat equation, where, anyway,
the time derivative of χ is added to the left hand side. The reason of this choice is
explained in detail in Chapter 2; for the present, just notice that the term ∂t

χ is zero in
the pure-solid or pure-liquid states, so that its contribution is only significant “near”
the interface between the solid and liquid phases. As (2) is concerned instead, observe
that we assume that a diffusion process (both in space and in time) is allowed also for
the order parameter χ. On the mathematical side, we also point out that equation (2)
can be seen as a gradient flow problem (see Subsection 2.1.2) for the following so-called
Ginzburg-Landau free energy functional:

(3) F (θ, χ) =

∫
Ω

(ν
2
|∇χ|2 + φ(χ)− θχ

)
dx.

Indeed, F gives a measure of the internal free energy of the fluid in terms of θ and
χ; equation (2), roughly speaking, states that the system tends to relax in a (small)
time (whose magnitude order is µ) towards an extreme (with respect to χ) point
of F . In (2), we have precisely chosen α(r) + γ(r) = φ′(r); notice anyway that, in
general, the function φ(r) in (3) is not convex; hence, we can expect not only minimum
energy configuration, but also unstable states which account for relative minimizers
(or maximizers) of φ. In most “physical” cases, we have that φ(r) ∼ (r2− 1)2, so that
two distinct minima (which, in a more general setting, could also not attain the same
minimal value) and a relative maximum for such a potential are present; here, in the
expression of (2), we have chosen to denote by α(r) the increasingly monotone part of
φ′(r) (∼ r3 in the above case) and by γ(r) the rest (behaving as −r); in general, on
the mathematical viewpoint, α is assumed to be a maximal monotone graph in R×R.
Moreover, we observe that the coefficient ν is related to the interfacial energy of the
fluid (ν1/2 gives a measure of the thickness of the mushy regions) and we emphasize
that the term θχ actually should also depend on the latent heat of the fluid; finally, the
interpretation of χ as the proportion of one phase is now not completely immediate,
since we no longer restrict its range to [−1, 1] (think indeed to have now pure solid for
χ ≤ −1 and pure liquid for χ ≥ 1).

Referring to equations (1–2), in this dissertation we are mainly concerned with
their extension to the case when the heat (and phase) exchange takes places between
two different substances. So, let us suppose that the set Ω is now subdivided into
two subdomains Ω1 and Ω2 by a smooth interface Γ. Assume also that two materials,
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allowed to a phase transition process, are placed in those subregions and allow them
to exhibit different physical characteristics; in particular, suppose that both in Ω1 and
in Ω2 equations analogous to (1–2) are satisfied, but naturally with different physical
coefficients (also those which do not explicitely appear in (1–2), indeed). Denoting by
θi, χi the unknowns in the domain Ωi, i = 1, 2, we add the transmission conditions at
the interface in the following form

θ1 = θ2 and χ
1 = χ

2 on Γ×]0, T [,(4)

∂nθ1 = ∂nθ2 and ν1∂n
χ

1 = ν2∂n
χ

2 on Γ×]0, T [,(5)

where νi replaces the ν of (2), referring now to the domain Ωi and n is the normal
unit vector on Γ, outer, e.g., with respect to Ω1. Equations (1–2), together with (4–5),
constitute the phase-field transmission problem, which will be the main object of this
dissertation.

Notice that relations (4–5) account for a diffusion of θ and χ through the interface
Γ; while this is a standard hypothesis as far as temperature is concerned, maybe it
can be surprising that the same holds for the phase variable; consider anyway that,
due to the above mentioned physical interpretation of ν, it seems realistic to assume
that no source of interfacial energy is present on the common boundary Γ, and this
leads exactly to the flux condition for χ of (5).

The reason of the choice of the transmission problem resides in the further interest
which it presents, especially from the mathematical point of view, with respect to the
standard (one-substance) situation, and which is particularly due to the discontinuity
of coefficients at the common boundary Γ. More specifically, while the management of
most of the discontinuous parameters is not difficult, what gives some troubles is the
simultaneous presence in the phase-field equation of a diffusion term (the −ν∆χ of (2))
and a discontinuous (though monotone) nonlinearity, which is due to the two graphs
α1 and α2 corresponding to the α of (2), but depending now on the domain Ω1 or Ω2.
This kind of discontinuity gives rise to the occurrence of nontrivial surface terms on Γ
in the derivation of the a priori estimates; consequently, some further hypotheses on
α1, α2 seem now to be necessary in order to get an existence result for the transmission
system and we believe that a considerable part of the work performed in this thesis is
aimed to get over this kind of troubles.

We now outline the plan of the dissertation, which consists of two introductory
chapters and of two original ones. In Chapter 1, the mathematical preliminaries are
developed and some notation, which will be extensively used in the sequel, is specified.
In particular, after recalling several properties of the Sobolev spaces, together with
some related trace and compact embedding theorems (also in the infinite-dimensional
vectorial case), we especially insist on the theory of maximal monotone operators in
Hilbert spaces and on its connexions with the Γ-convergence theory for convex func-
tionals. Naturally, we advance no claim of completeness in this part, referring indeed
to the textbooks [1, 5, 14, 36] for more details; we only intend to present in an as much
as possible self-contained form some results which are essential for the management
of our physical problems; in particular, almost no proofs are provided in this chap-
ter. Among the mathematical instruments which are needed in the second part of the
dissertation, instead, we do not discuss here (except for some scattered remarks) the
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basic theory of the variational formulation of elliptic and parabolic problems. Anyway,
all the related machinery which we are going to use in the sequel is rather standard;
hence, we can refer for instance to the very classical textbooks of Brezis [15], Nec̆as
[67], and Ladyzhenskaja-Solonnikov-Ural’ceva [50]. If more specifical results in this
area are used somewhere, we shall give at that point the precise references.

In Chapter 2, we present in some detail the physical derivation of equations (1–
2), together with some related comments and we also discuss several extensions of
the physical models of phase-field and of Stefan, and, finally, some known results
about the precise mathematical formulations of these problems and of related ones.
Naturally, doing all this in detail would be rather heavy and go indeed far beyond the
purposes of a Ph.D. dissertation; so, most of the finest thermodynamical features of
the model are only briefly mentioned; furthermore, we chose to report only a number
of mathematical results, which, in our opinion, are hystorically important and which
also might serve as elements of comparison with respect to our subsequent approach.

We point out that the subsections devoted to the resolution of the phase-field model
are not directly based on any specific paper or textbook; anyway, the mathematical
procedure, which consists of a rather standard Faedo-Galerkin approximation – a
priori estimates – compactness argument, is relatively simple and cannot be considered
original under any aspect. We decided to present it in some detail for two precise
reasons: first, it can be compared with the more abstract approach of Chapter 3,
which gives results which are in good accordance with it. Second, it is simpler to
prove some estimates concerning the transmission problem in this framework than in
the more general abstract one; in fact, even if this procedure is actually referred to a
problem related to a sole substance, there is no great difficulty in extending it to the
transmission case, except for the management of the above mentioned surface terms
on Γ (which is performed indeed in Chapter 3).

In any case, the objectives of this chapter are only those of outlining, in a sufficiently
compact way, which are the physical features of the model we decided to study, and
what there is of mathematically interesting to do about it; we hope to have been able,
in very few pages, to give a reasonable idea of these points; for the sake of obtaining
further details, some basic references are quoted in the course of the exposition.

The original research part of the dissertation starts from Chapter 3. Here, our ob-
jective is twofold: first, we describe, in Section 3.1, an abstract version of a generaliza-
tion of equations (1–2) and we solve it by a backward finite differences approximation
scheme; then, we discuss some applications to important physical cases. In particular,
as a first example, we give an alternative proof of the “known” results of Chapter 2, by
deducing them from the new, and more general, setting; then the abstract approach
is adapted to the case of transmission problems. In particular, the question of the
discontinuity of the graphs α1, α2 at the common boundary is deeply analyzed and
solved at least under suitable compatibility or coerciveness conditions.

We particularly emphasize that the abstract method provides a solution to a prob-
lem which is stated in a weaker setting with respect to that of Chapter 2. Actually, this
argument guarantees the existence of solutions under much less restrictive hypotheses
on coefficients; however, it is sometimes difficult to give an interpretation of these so-
lutions in a physical sense, that corresponds to a stronger mathematical setting. The
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required procedure exploits, in the case of a single substance, the machinery of the
paper [10]; in the transmission case, instead, a mathematical analysis of some ques-
tions related with monotone operators of subdifferential type is needed. This study is
performed in detail in Section 3.2 and the related conclusions are also compared with
the standard theory of monotone operators outlined among the Preliminaries. That
section concludes with the proof of the existence and uniqueness results concerning
the transmission problem and with some further remarks about its thermodynamical
assumptions.

Finally, the chapter ends with a last application of the abstract results for the
phase-field system, which still goes in the direction of a transmission problem, which,
anyway, is now related to a conduction dynamics of a concentrated capacity type.
Indeed, this kind of model is related to a diffusion process where the thermal and
phase conductivities in the domain Ω2 are assumed to be very large at least in a
privileged direction (which is the normal direction to the common boundary Γ). Then,
it is possible to prove [76] that the transmission problem is well approximated by
a statement where the phase-field system in Ω1 is complemented with an analogous
system on Γ, which has as unknowns the traces of the variables of Ω1 and also presents a
further source term, deriving from the original trasmission conditions (5). An existence
and uniqueness theorem is proved for the concentrated capacity problem; indeed, due
to the generality of the abstract approach, the procedure results to be rather similar
to the standard transmission case, with the only remarkable difference concerning the
choice of the functional spaces. So, the method of resolution of this problem is just
briefly outlined; we refer for the full computations to the paper [77], where the same
analysis has been performed by means of a more direct approach.

In the last Chapter 4, we eventually examine a number of applications of the
abstract results concerning the phase field systems, again referring in particular to the
case of the transmission problem. First of all, in Section 4.1, we perform a detailed
asymptotic study of this situation under a blow out (or simply a variation) of some
coefficients of the phase-field equation (2) in the sole domain Ω2 (the contribution of
Ω1, instead, is essentially kept fixed). This analysis is considerably more difficult with
respect to that of the problem arising from the simultaneous variation of coefficients
in both domains; indeed, as we have seen for the transmission problem, the more
different the equations are in Ω1 and Ω2, the more difficult their resolution becomes.
In particular, we are able to treat the following three cases:

1. blow out of the coefficient µ in Ω2: we get as a limit the time-stationary phase-
field model of Plotnikov and Starovoitov [71];

2. blow out of the coefficient ν in Ω2: we get as a limit the phase-relaxation model
of Visintin [85];

3. variation of the operators α1 and α2: here we still get as a limit a kind of phase-
field transmission problem; the interest of this analysis resides indeed in the type
of variational convergence which is required for the varying operators.

In all these cases, uniqueness for the limit statements is also discussed.
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In the second part of the chapter, we come to the last, and more interesting of
the asymptotic studies concerning the transmission problem; this investigation, in a
sense, puts all the above described analyses together and gives rise, as a limit, to
a mixed formulation accounting for the phase-field equations on Ω1 and the Stefan
problem on Ω2. One point seems of particular interest in this analysis: it is not
difficult to verify directly that the limit statement is solvable without assuming any
supplementary condition on the graphs α1, α2; so, it is natural to wonder at which
step of the limit procedure do these conditions disappear. We precisely prove that a
balance of the convergence rates of ν and α2 in the region Ω2 is necessary in order
to have the convergence of the solutions. However, this result is not straightforward
and requires a careful reformulation of the asymptotic problem in the framework of
the Γ-convergence theory for convex functionals; in particular, some related results
reported among the Preliminaries, and not exploited yet, turn out to be essential for
the completion of proofs. The analysis of this problem, which follows the lines of our
paper [80], is the final step of the dissertation.



Chapter 1

Preliminaries

In this chapter we provide the main mathematical tools which are required for the
treatment and resolution of the concrete problems which we are going to study in
the second part of the dissertation. Most results which are reported here are fairly
classical; therefore, the proofs are generally omitted; one or more references will be
given when necessary. In some cases, anyway, for the convenience of the reader, we
preferred to report a brief proof; this is done, for instance, when we require a result
in a different or less general form than in the setting which is normally developed on
most texts.

1.1 Notation and functional spaces

In this section we report some definitions and properties of functional spaces of Sobolev
type. Most results are well known, so that they are just briefly recalled; we shall insist
in more detail on trace theorems and on some interpolation results concerning spaces
of vector valued functions, which are perhaps more sophisticated topics. The theory is
developed in the case of a bounded, connected and sufficiently smooth (C1,1 is generally
enough; if not, we shall give a remark) open set Ω ⊂ RN ; in the following, the capital
letter N will always stand for the space dimension.

1.1.1 Lebesgue and Sobolev spaces

Given a number 1 ≤ p ≤ ∞, we shall denote by Lp(Ω) the Lebesgue space of real-
valued measurable functions on Ω of summable p-th power, endowed with the usual
norm; moreover, for integer k ≥ 0, W k,p(Ω) will be the Sobolev space of real-valued
functions with all (partial) derivatives (in the sense of distributions on Ω), up to the
k-th order, of summable p-th power; naturally, it is W 0,p(Ω) = Lp(Ω). We also set
(also this notation is of common use) Hk(Ω) := W k,2(Ω). We recall that the W k,p(Ω)’s
are Banach spaces with respect to the natural norms (for p < +∞)

(1.1) ‖v‖p
W k,p(Ω)

:=
∑

0≤|α|≤k

∫
Ω

|Dαv(x)|p dx,

8
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which is hilbertian in the case of p = 2. The usual modifications are required in the
case of p = +∞.

Given σ ∈]0, 1[, p <∞, we also introduce the Sobolev space (of “fractional order”)
W σ,p(Ω) as the space of functions v ∈ Lp(Ω) such that

(1.2) pσ(v)p :=

∫
Ω

∫
Ω

|v(y)− v(x)|p

|y − x|N+σp
dx dy < +∞,

endowed with the graph norm ‖v‖pW σ,p := ‖v‖pLp + pσ(v)p (modify as usual for p =∞).
Finally, if s > 0 is an arbitrary noninteger, decompose it as s = k+σ, with k ∈ N and
σ ∈]0, 1[ and define W s,p(Ω) as the space of the W k,p(Ω)-functions with all derivatives
up to the k-th order in W σ,p(Ω) (put again the graph norm on it). We point out that,
if 0 < s1 < s2, we have that W s2,p(Ω) ⊂ W s1,p(Ω) with compact immersion.

In the following, we shall denote by D(Ω) the space of infinitely differentiable real-
valued functions on Ω with compact support. We recall that its dual D′(Ω) is the
space of distributions on Ω, for whose properties we refer for instance to [75].

We remind that D(RN) is dense in W s,p(Rn) for every s ≥ 0 and p ∈ [1,∞[. This
is in general no longer true if RN is substituted with Ω; so, we can denote by W s,p

0 (Ω)
the closure of D(Ω) in W s,p(Ω). We have anyway

Proposition 1.1.1. Let p ∈ [1,+∞[. It is W s,p(Ω) = W s,p
0 (Ω) if and only if s ≤ 1/p

and (s, p) 6= (1, 1).

Next step is to introduce the Sobolev spaces of negative order: if it is again s > 0
and p > 1, we can denote by W−s,p(Ω) the dual space of W s,p′

0 (Ω), where p′ is the

conjugate exponent of p (i.e. 1/p + 1/p′ = 1). Since the embedding D(Ω) ⊂ W s,p′

0 (Ω),

by definition of W s,p′

0 , is continuous and dense, we can see W−s,p(Ω) as a subspace
of D′(Ω). For every s ∈ R, we set again Hs(Ω) := W s,2(Ω) and, if s > 0, Hs

0(Ω) :=
W s,2

0 (Ω).
We recall now the Sobolev embedding theorem only in a particular case (the Hilbert

one), which will be used in the sequel; for a more general setting, we refer to the text
[1] (where indeed all the main properties of Sobolev spaces are presented and deeply
discussed).

Theorem 1.1.2. Given s > 0, we have that, if 2s < N , then Hs(Ω) ⊂ L2∗(s)(Ω), where
2∗(s) := 2N/(N − 2s); if 2s = N , then Hs(Ω) ⊂ Lp(Ω) for all p ∈ [1,∞[. Finally, if
2s > N , then we have Hs(Ω) ⊂ L∞(Ω). All these embeddings are continuous and still
hold if we substitute Hs with Hs

0 .

Finally, we introduce another family of Sobolev spaces which will turn out to be
very important in the statement of most trace theorems. Given a function u defined
on Ω, we shall denote by ũ its trivial extension to RN , that is the function which
coincides with u in Ω and is identically 0 in RN \ Ω.

Take now s ≥ 0, p ∈ [1,∞[ and u ∈ W s,p(Ω): recalling Prop. 1.1.1, one could
wonder when it is ũ ∈ W s,p(RN). Indeed, it is not difficult to see that this is true for
instance if s = 0 or if s = 1, p 6= 1 and u ∈ W 1,p

0 (Ω). For intermediate exponents, the
problem is more difficult:
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Proposition 1.1.3. Assume s ≥ 0, p ∈ [1,+∞[, and u ∈ W s,p(Ω). If s < 1/p, then
ũ ∈ W s,p(RN). If s > 1/p, then ũ ∈ W s,p(RN) if and only if u ∈ W s,p

0 (Ω).

The preceding result leads naturally to the

Definition 1.1.4. Given a function u ∈ W 1/p,p(Ω) (with p ∈]1,∞[), we say that

u ∈ W 1/p,p
00 (Ω) if and only if ũ ∈ W 1/p,p(RN).

The space W
1/p,p
00 (Ω) is endowed with the graph norm with respect to the trivial

extension operator; it could be proved that it is a Banach space which is continuously
and densely embedded into W 1/p,p(Ω); in particular, owing also to Prop. 1.1.1, we

deduce that W−1/p,p′(Ω) = (W
1/p,p
0 )′(Ω) = (W 1/p,p)′(Ω) ⊂ (W

1/p,p
00 )′(Ω) (with proper

inclusion). Set also (as usual) H
1/2
00 (Ω) := W

1/2,2
00 (Ω).

1.1.2 Traces and integration formulas

We report here some important trace theorems for Sobolev-regular functions. While
some results are well known and of common use in the theory of boundary value
problems for PDE’s and consequently will be only briefly recalled, we also need to
present some more refined situations, especially concerning traces on proper subsets of
a boundary or optimal regularity estimates for extension operators. Strictly connected
with the theory of traces are some extensions of the Gauss-Green formula which will
also be recalled.

In order to fit the notation of the subsequent parts of the thesis, we consider
here a smooth, bounded and connected open set Ω1 ⊂ RN ; Γ and Γ1 will be proper
submanifolds of its boundary ∂Ω1 of strictly positive (N − 1)-dimensional measures
and also verifying Γ ∪ Γ1 = ∂Ω1.

We remark that in the following we will be concerned with Sobolev spaces defined
on the boundaries ∂Ω1, Γ and Γ1. In our (smooth) case, they can be introduced
essentially as in the previous subsection, by means of a system of local charts; in
a more general setting (i.e. nonsmooth manifolds or unbounded ones), instead, the
definitions are much more complicated [6]. We only point out that, essentially because
∂Ω1 is a compact manifold (where no boundary is present), it could be proved that
W s,p(∂Ω1) = W s,p

0 (∂Ω1) for any (suitable) choice of (s, p). This is no longer true for
the spaces living on Γ and Γ1, where the exponents must satisfy conditions as those
of Prop. 1.1.1; so, also Prop. 1.1.3 and the subsequent Def. 1.1.4 can be extended to
this case, provided that now ˜ denotes the trivial extension to ∂Ω1.

Theorem 1.1.5. (a) For any p ∈ [1,+∞[, there exists a linear, continuous and
surjective trace operator

(1.3) γ∂Ω1 : W 1,p(Ω1)→ W 1−1/p,p(∂Ω1),

coinciding with the restriction operator (in a classical sense) on the functions of
C0(Ω1) ∩W 1,p(Ω1) regularity.

(b) For any p ∈ [1,+∞[, there exists an extension operator, that is a linear and
continuous operator

(1.4) E : W 1−1/p,p(∂Ω1)→ W 1,p(Ω1)
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such that γ∂Ω1Ev = v for every v ∈ W 1−1/p,p(∂Ω1).

(c) The conclusions of (a) and (b) are still valid by substituting therein ∂Ω1 with Γ
or Γ1 (denote the related trace operators by γΓ and γΓ1 respectively).

We point out that the operator E in (b) is not unique; in the sequel we shall meet
a case where a particular construction of E is needed. Also, in order to lighten the
notation, when no danger of confusion is present, we shall avoid to write explicitely
the trace operators, actually denoting by the same symbol a function and its trace(s).

In order to state the next theorem, we now have to introduce a new family of
Sobolev spaces: set, for 1 ≤ p ≤ ∞,

(1.5) Lp
div(Ω1) := {v ∈ Lp(Ω1)

N : div v ∈ Lp(Ω1)},

endowed with the natural norm; for p = 2, define also H(div,Ω1) := L2
div(Ω1) (which

is a Hilbert space). The divergence operator in the definition is clearly to be intended
in the sense of distributions. It is also obvious that W 1,p(Ω1)

N ⊂ Lp
div(Ω1) with

continuous immersion and equality holding for N = 1.
In the following, we shall denote as n the outer normal unit vector to Ω1. We have:

Theorem 1.1.6. (a) For any p ∈]1,+∞[, there exists a linear, continuous and sur-
jective trace operator

(1.6) γn : Lp
div(Ω1)→ W−1/p,p(∂Ω1),

such that γn(v) = v · n for any v ∈ C0(Ω1)
N ∩ Lp

div(Ω1).

(b) For any p ∈]1,+∞[, there exists an extension operator, that is a linear and
continuous operator

(1.7) En : W−1/p,p(∂Ω1)→ Lp
div(Ω1)

such that γnEnv = v for every v ∈ W−1/p,p(∂Ω1).

(c) If v ∈ W 1,p′(Ω1), w ∈ Lp
div(Ω1), then we have

(1.8)

∫
Ω1

∇v ·w dx = −
∫

Ω1

v div w dx+ W−1/p,p〈γn(w), v〉W 1/p,p′ .

The last expression provides a generalization of the Gauss-Green formula; notice
that all the terms appearing therein make sense.

We now want to adapt the last result to the case of traces on Γ (or Γ1). With this
aim, given s > 0 and p ∈ [1,∞[, we note as C∞

0,Γ(Ω1) the space of the C∞(Ω1)-functions
which are identically 0 in a neighbourhood of Γ and we define W s,p

0,Γ(Ω1) as the closure of
C∞

0,Γ(Ω1) in W s,p(Ω1). Clearly, it is C∞
0,∂Ω1

(Ω1) = D(Ω1) and W s,p
0,∂Ω1

(Ω1) = W s,p
0 (Ω1).

Recalling Prop. 1.1.3 and Def. 1.1.4, it is immediate to derive (the same obviously
holds if we interchange Γ and Γ1):

Proposition 1.1.7. If v ∈ W 1,p
0,Γ(Ω1), then γΓ1v ∈ W

1−1/p,p
0 (Γ1) if p 6= 2 and γΓ1v ∈

H
1/2
00 (Γ1) if p = 2.
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So, the most difficult case is also the most common, i.e. the Hilbert one. Note,
for p = 2, another interesting consequence: taking v ∈ H1

0,Γ(Ω1) = W 1,2
0,Γ(Ω1) and

w ∈ H2(Ω1)
N , we have (compare with (1.8))

(1.9) H−1/2〈w · n, v〉H1/2 =

∫
∂Ω1

w · n v dHN−1 =

∫
Γ1

w · n v dHN−1

since the trace of v on the remaining part (Γ) of ∂Ω is 0. If we try and extend the
above expression to the case of w ∈ H(div,Ω1), we notice that, in order it makes

sense, it is enough that w · n ∈ (H
1/2
00 )′(Γ1), since γΓ1v ∈ H

1/2
00 (Γ1) which is a proper

subspace of H1/2(Γ1). Moreover, if it is clear what means to take the restriction of
a Lp function, the same is far from obvious in the case of functionals belonging to
Sobolev spaces of negative order.

The following result (find the proof and more details in [39]) explains the sense of
the restriction operator in these cases and also summarizes the behaviour of operator
γn on proper subsets of the boundary:

Proposition 1.1.8. Given two functional spaces X(∂Ω1) and Y (Γ) such that the
extension operator ˜ is continuous from Y to X, we define the generalized restriction
operator as ( )|Γ : X ′(∂Ω1)→ Y ′(Γ) as the adjoint of operator .̃

For instance, given φ ∈ H−1/2(∂Ω1), we can set, for v ∈ H1/2
00 (Γ),

(1.10) 〈φ|Γ, v〉 := 〈φ, ṽ〉,

where ˜ is now the trivial extension operator from H
1/2
00 (Γ) to H1/2(∂Ω1). Thus, we

have that φ|Γ ∈ (H
1/2
00 )′(Γ) (in general, it is not φ|Γ ∈ H−1/2(Γ)); moreover, we have

that φ|Γ ∈ H−1/2(Γ) if and only if φ|Γ1 ∈ H−1/2(Γ1). Finally, if this is true, for some
C > 0 depending only on the domain, it results

(1.11) ‖φ|Γ‖H−1/2(Γ) ≤ C(‖φ‖H−1/2(∂Ω1) + ‖φ|Γ1‖H−1/2(Γ1)),

and the same of course continues holding if we interchange Γ and Γ1.

Remark 1.1.9. Take now φ ∈ H−1/2(∂Ω1) and v ∈ H1/2(∂Ω1); we see that in general
it is not possible to write in some suitable sense

(1.12) 〈φ, v〉 = 〈φ|Γ, v|Γ〉+ 〈φ|Γ1 , v|Γ1〉.

One situation when this decomposition is allowed is when the (for instance) first duality
on the right hand side would result equal to 0; this is the case of either v|Γ = 0 (so

that it results v|Γ1 ∈ H
1/2
00 (Γ1) and the second duality makes sense in H

1/2
00 ), or φ|Γ = 0

(and, owing to the preceding proposition, this implies φ|Γ1 ∈ H−1/2(Γ1) and the second
duality works now in H1/2).

1.1.3 Hilbert triplets

In the course of the thesis, we shall face several different physical situations; so, in
order to unify the computations as much as possible, it is necessary to introduce a
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general abstract setting which turns out to be convenient for almost all the physical
problems.

Let us suppose V and H be Hilbert spaces, with V densely and compactly embed-
ded into H; name I the embedding (its compactness is actually required only for the
last property). In this situation, it is customary to identify H with H ′ through the
Riesz-Fréchet theorem; it is also a common notation that of (·, ·) for the scalar product
of H and of ((·, ·)) for that of V . Also, the norm of H is indicated by | · | and that of
V by ‖ · ‖.

Observe now that, for any h ∈ H, v ∈ V , we have

(1.13) |(h, Iv)| ≤ |h||Iv| ≤ |h|‖I‖L(V,H)‖v‖,

so that h can be seen as a linear and continuous functional on V , i.e. an element of
V ′. Moreover, if we indicate by 〈·, ·〉 the duality between V ′ and V and by I∗h the
above introduced functional, it is immediate to verify that

(1.14) 〈I∗h, v〉 = (h, Iv) for all h ∈ H and v ∈ V ;

moreover the operator I∗ is linear, continuous and injective between H and V ′. So,
the notation I∗h is not accidental, since we see from the preceding relation that I∗ is
just the adjoint operator of I. We also have that ‖I∗‖L(H,V ′) = ‖I‖L(V,H).

In this situation, the identification of V with V ′ becomes misleading; indeed, it
is related to a different scalar product (that of V instead of that of H which allowed
to identify H and H ′); consequently, it is generally preferred to avoid it; anyway, the
Riesz operator on V can still be introduced as

(1.15) R : V → V ′; 〈Rv, w〉 := ((v, w)) for v, w ∈ V .

This allows to define also a dual scalar product on V ′ as

(1.16) ((φ, ψ))∗ := ((R−1φ,R−1ψ)) = 〈φ,R−1ψ〉 = 〈ψ,R−1φ〉 for φ, ψ ∈ V ′;

the corresponding norm on V ′ will be called ‖ · ‖∗.
Furthermore, it is immediate to verify that the scalar product of V ′ and the trans-

pose immersion I∗ are linked by the relation

(1.17) (IR−1ψ, h) = 〈I∗h,R−1ψ〉 = ((I∗h, ψ))∗ = 〈ψ,R−1I∗h〉,

holding for h ∈ H, ψ ∈ V ′, which entails that IR−1 is the adjoint of R−1I∗ and will
result useful in the sequel.

In this situation, we say that the spaces (V,H, V ′) form a Hilbert triplet. We recall
a further property (easily following from the Hahn-Banach theorem):

Proposition 1.1.10. I∗(I(V )) is dense in V ′.

In particular, we have that I∗(H) is dense in V ′.
Notice that we have not used yet the compactness hypothesis on I. The only point

where it is required is the following (and easy too)
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Proposition 1.1.11. The transpose embedding I∗ : H → V ′ is compact.

We remark that in most cases, V is a proper subspace of H, so the embedding I
is a true inclusion and it is generally omitted in the notation. The same is done for
the transpose embedding I∗, so that we will generally write V ⊂ H ⊂ V ′ and consider
also the elements of H as functionals of V ′. Of course, the sense is still that given by
(1.14)); in particular, for h ∈ H and v ∈ V , we can now write 〈h, v〉 = (h, v).

1.1.4 Spaces of vector valued functions

We now want to extend the definitions of Lebesgue and Sobolev space to the case of
functions with values in an arbitrary Banach space B. We will limit ourselves to giving
the definitions and some properties in a particular case; we refer to [14, Appendix]
for a much more general overview of the matter (and also for all the proofs). In the
following, T > 0 will be a given number (to be thought as the final time of some
process).

First of all, we recall that the space C0([0, T ];X), defined in the habitual way, is a
Banach space with the norm ‖v‖C0([0,T ];X) := max0≤t≤T ‖v(t)‖X . Given a function v :
[0, T ]→ X, we can examine the behaviour of its derivative v′; if it is v′ ∈ C0([0, T ];X),
then we naturally say that v ∈ C1([0, T ];X); by induction, we can introduce the spaces
Ck([0, T ];X) for k ∈ N, which are all Banach with the natural norms.

More difficult is the definition of the spaces of measurable functions; so, we only give
some highlights: we say that a function v : [0, T ] → X belongs to Lp(0, T ;X) if and
only if it is measurable (in some suitable sense, for whose (nontrivial) mathematically
precise explanation we refer to [14]) and satisfies

(1.18) ‖v‖pLp(0,T ;X) :=

∫ T

0

‖v(t)‖pX dt <∞.

We point out that it is the condition of measurability that guarantees that also t 7→
‖v(t)‖X is a measurable function (in the usual sense). Indeed, Lp(0, T ;X) turns out
to be a Banach space with respect to the above introduced norm.

Finally, we introduce the Sobolev spaces. The fastest definition is perhaps the
following one (see again [14] for the definition of integrals of vector-valued functions):

Definition 1.1.12. If p ∈ [1,∞] and v ∈ Lp(0, T ;X), we say that v ∈ W 1,p(0, T ;X)
if and only if there exist c ∈ X, z ∈ Lp(0, T ;X) such that

(1.19) v(t) = c+

∫ t

0

z(s) ds for a.e. t ∈ [0, T ].

Under such a condition we say that z is the derivative of v in the sense of vector-valued
distributions and denote it (as usual) by v′.

Most properties (but not all!) of standard Sobolev spaces remain true in the vector
case. First of all, the above definition can of course be extended to introduce Sobolev
spaces of higher integer order k; moreover, if we set Hk(0, T ;X) = W k,2(0, T ;X) and
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X is a Hilbert space H, we still have that Hk(0, T ;H) is a Hilbert space with respect
to the scalar product

(1.20) (v, w)Hk(0,T ;H) :=
k∑

j=0

∫ T

0

(v(j)(t), w(j)(t))H dt.

Let us suppose now that X,Y are Banach spaces such that X ⊂ Y with continuous
inclusion. It is worthwhile to establish if the continuity of the inclusion remains true
when we pass to Banach spaces of functions with values in X, Y . We just cite one
result:

Proposition 1.1.13. Let p, q ∈]1,∞[ be given numbers. We have:

(a) It is W 1,p(0, T ;X) ⊂ C0([0, T ];X) with continuous, but not compact, inclusion.
Instead, if X ⊂ Y is compact, then also W 1,p(0, T ;X) ⊂ C0([0, T ];Y ) is compact.

(b) We have that W 1,p(0, T ;X) ⊂ Lq(0, T ;Y ) with continuous inclusion; this is also
compact if and only if such is the inclusion X ⊂ Y .

If a Hilbert triplet (V,H, V ′) is considered (and here the compactness of the em-
bedding V ⊂ H is essential!), it is now easy to see that the inclusion H1(0, T ;V ) ⊂
C0([0, T ];V ) is continuous but not compact; it is compact instead H1(0, T ;V ) ⊂
C0([0, T ];H), and such is H1(0, T ;H) ⊂ C0([0, T ];V ′). In the case of Hilbert triplets
we have indeed some other interesting properties, which we can summarize in the fol-
lowing proposition. We remark that a linear operator A : V → V ′ is said to be weakly
elliptic if and only if there exist α, λ0 > 0 such that

(1.21) 〈Av, v〉+ λ0|v|2 ≥ α‖v‖2 for all v ∈ V

(the notations for norms are as in the previous subsection).

Proposition 1.1.14. (a) It is L2(0, T ;V )∩H1(0, T ;V ′) ⊂ C0([0, T ];H) with contin-
uous inclusion; moreover, if v, w ∈ L2(0, T ;V )∩H1(0, T ;V ′), then, for any s, t ∈ [0, T ],
we have:

(1.22)

∫ t

s

〈v′(r), w(r)〉 dr = −
∫ t

s

〈w′(r), v(r)〉 dr + (v(t), w(t))− (v(s), w(s)).

(b) Consider a self-adjoint weakly elliptic operator A : V → V ′ and two functions
v, w ∈ L2(0, T ;V ) ∩H1(0, T ;H) such that Av,Aw ∈ L2(0, T ;H). Then we have that
v, w ∈ C0([0, T ];V ); moreover, for any s, t ∈ [0, T ], it is:∫ t

s

(v′(r), Aw(r)) dr +

∫ t

s

(w′(r), Av(r)) dr(1.23)

= 〈Av(t), w(t)〉 − 〈Aw(s), v(s)〉.

Find the proofs, e.g., in [7]; just notice here that the right hand sides of relations
(1.22–1.23) make sense precisely because of the regularities in the first part of the
related statements.
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1.1.5 Miscellanea

We present here some notation and some basic inequalities which will be repeatedly
used in the sequel of the dissertation; in particular, our purpose is to simplify the
computations involved in the deduction of several a priori estimates.

We start by stating the elementary Young inequality:

(1.24) ab ≤ σa2 +
1

4σ
b2 for every a, b ∈ R and σ > 0.

Provided that C is (as it will be in the deduction of the a priori estimates) a
nonnegative constant depending only on some data (it will result clear from the specific
situation which ones), we prefer to rewrite the above formula in a modified way, whose
notation will be rather convenient in the practical cases:

(1.25) Cab ≤ σa2 + Cσb
2 for every a, b ∈ R and σ > 0.

Here, σ is thought to be a constant which we are interested in keeping small and Cσ a
corresponding value, obviously depending also of the (supposed known) constant C.

We continue, by listing a general form of Gronwall inequality, for whose proof we
refer to [7, Th. 2.1, page 245] or to [14, Lemmas A.4, A.5, pages 156–157]

Proposition 1.1.15. Let a, T > 0; m1,m2 ∈ L1(0, T ), φ ∈ L∞(0, T ) such that
m1,m2, φ ≥ 0 a.e. in ]0, T [. Suppose also that

(1.26)
1

2
φ2(t) ≤ 1

2
a2 +

∫ t

0

m1(s)φ(s) ds+

∫ t

0

m2(s)φ
2(s) ds a.e. in ]0, T [.

Then, we have that

(1.27) φ(t) ≤ C

(
a+

∫ T

0

m1(s) ds

)
a.e. in ]0, T [,

where C depends only on a,m1,m2. Moreover, if m1 ≡ 0, then we can take C =

exp
(∫ T

0
m2(s) ds

)
, while, if m2 ≡ 0, then we can take C = 1.

From the quoted paper of Baiocchi, we report a well-known regularity result for
parabolic systems, which will be often used in the sequel.

Theorem 1.1.16. Let Ω ⊂ RN be a smooth bounded domain, T > 0 and take V =
H1(Ω) (or V = H1

0 (Ω)), H = L2(Ω), so that (V,H, V ′) is a Hilbert triplet. Suppose
also that A : V → V ′ is a weakly elliptic operator, and choose u0 ∈ V and f ∈
L2(0, T ;L2(Ω)) +W 1,1(0, T ;H1(Ω)). Then, the solution u of the evolution problem

(1.28)

{
∂tu+ Au = f in V ′, a.e. in ]0, T [,
u(0) = u0 in Ω

fulfills the regularity property θ ∈ C0([0, T ];V ).

Finally, we also state a “discrete” form of Gronwall’s inequality, which is useful
when dealing with finite-differences approximations of differential problems:
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Proposition 1.1.17. Let a,m > 0, and cj ∈ R for j = 0, . . . , n, satisfying

(1.29) ck ≤ a+m
k−1∑
j=1

cj for all k = 1, . . . , n.

Then,

(1.30) ck ≤ a(1 +m)k−1 for all k = 1, . . . , n.

1.2 Convex analysis tools

1.2.1 Convex functions and duality

In this section, unless otherwise specified, X will be a real reflexive Banach space and
X ′ its (topological) dual space; the duality between X ′ and X will be denoted as 〈·, ·〉.
Moreover, Ψ will be a convex functional on X with values in R∞ := R ∪ {+∞}. The
domain of Ψ is defined as follows:

(1.31) D(Ψ) := {x ∈ X : Ψ(x) 6= +∞};

clearly, it is a convex set in X. Moreover, we say that Ψ is proper if and only if
D(Ψ) 6= ∅. In this case, we define, for every f ∈ X ′,

(1.32) Ψ∗(f) := sup
x∈X
{〈f, x〉 −Ψ(x)}.

We remark that the supremum in the above definition could be restricted to the
x ∈ D(Ψ); moreover, we observe that Ψ∗ is a superior envelope of linear affine functions
of f ; so, it is convex and lower semicontinuous (l.s.c. in the following).

We introduce another related definition: the epigraph of Ψ is given by:

(1.33) epi(Ψ) := {(x, λ) ∈ X × R : λ ≥ Ψ(x)}.

It is not difficult to verify [15] that

Ψ convex⇐⇒ epi(Ψ) convex(1.34)

Ψ l.s.c.⇐⇒ epi(Ψ) closed(1.35)

Ψ proper⇐⇒ epi(Ψ) not empty.(1.36)

Take now an arbitrary (i.e., not necessarily convex) functional Ψ on X. We intro-
duce the relaxed functional sc- Ψ, as follows [31, Def. 3.1, page 28]:

(1.37) sc- Ψ(x) := sup
U∈U(x)

inf
y∈U

Ψ(y);

here (and in the sequel), U(x) denotes a base of neighborhoods of x for the topology
of X.
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Proposition 1.2.1. The functional sc- Ψ can be also characterized in the following
ways:

(a) epi(sc- Ψ) = epi(Ψ); that is, the closure (in X × R) of the epigraph of Ψ is still
an epigraph, and precisely that of sc- Ψ.

(b) For every x ∈ X, we have that

sc- Ψ(x) ≤ lim inf
n→∞

Ψ(xn) for every xn → x,(1.38)

sc- Ψ(x) = lim sup
n→∞

Ψ(xn) for some xn → x.(1.39)

Remark 1.2.2. If we consider more general situations, for example if X is an arbi-
trary topological vector space, characterization (a) still holds; (b) instead remains valid
provided that X is metrizable. For instance, if X is a reflexive Banach space endowed
with its weak topology, then the functional satisfying the properties (1.38–1.39) (with
xn → x intended now in the weak sense) represents the relaxation of Ψ in the sequen-
tial weak topology, and this can be strictly greater than sc- Ψ. We observe anyway
that, in case Ψ is convex, (a) and (b) are still valid, since, thanks to the Hahn-Banach
theorem, the closure of epi(Ψ) (which is a convex set) is the same in the strong, weak
and sequential weak topologies; in particular, the strong and weak relaxations of Ψ give
now rise to the same functional.

The procedure of conjugation for (proper) functionals can be iterated; indeed, for
x ∈ X, we can set

(1.40) Ψ∗∗(x) := sup
f∈X′
{〈f, x〉 −Ψ∗(f)}.

The following result, due to Fénchel and Moreau, is one of the fundamental tools in
convex analysis:

Theorem 1.2.3 ([15]). If Ψ is convex, then Ψ∗∗ ≡ sc- Ψ; in particular, if Ψ is convex
and l.s.c., we have that Ψ∗∗ = Ψ.

Remark 1.2.4. A characterization of Ψ∗∗ can be given also when Ψ is not convex;
indeed, in this case Ψ∗∗ is the so-called Γ-regularization of Ψ, that is the greatest
convex and l.s.c. functional majorized by Ψ (or, also, the function whose epigraph is
the convex closed envelope of epi(Ψ)).

1.2.2 Maximal monotone operators. Subdifferentials

We introduce here a notion which plays an essential role in the statement of the
problems of phase transition in their variational version. For instance, the weak for-
mulation of the Stefan problem in terms of monotone graphs goes back to Olenik [69]
and Damlamian [32].

For this part, the standard reference texts are Barbu [9] and Brezis [14]; see also
Attouch [5] for the connexions with the theory of Γ-convergence. In the following,
we suppose X to be a uniformly convex [15] Banach space (so that, in particular, it
is reflexive). We denote in the following by 〈·, ·〉 the duality between X and X ′ and
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by J : V → V ′ the related duality map (which is single-valued owing to the uniform
convexity of X), i.e.

(1.41) 〈Jx, x〉 = ‖x‖2X and ‖Jx‖X′ = ‖x‖X for x ∈ X.

We begin by a fundamental

Definition 1.2.5. A (nonlinear) operator on X is a subset A ⊂ X ×X ′.

We have chosen to identify nonlinear operators with their graphs rather then view-
ing them as functions of X into X ′; indeed, in the following we will be concerned with
multivalued operators, i.e. operators A such that, given x ∈ X, it can happen that
Ax := {y ∈ X ′ : (x, y) ∈ A} is not a singleton. In the sequel, we will use indifferently
either of notations y ∈ Ax and (x, y) ∈ A.

Moreover, we define the domain of A as the set D(A) := {x ∈ X : Ax 6= ∅} and
its range as R(A) := ∪x∈XAx.

Remark 1.2.6. We point out that, in case X is a Hilbert space H identified with its
dual, A will be naturally be seen as a subset of H ×H; if a Hilbert triplet (V,H, V ′) is
considered instead, an operator A of V will be seen as a subset of V × V ′. It is easy
to verify that, in this case, setting (x, y) ∈ AV ⇐⇒ (x,Ry) ∈ A, where R is the Riesz
operator of V , we canonically associate to A another operator AV ⊂ V × V (related
to the identification of V with V ′).

Definition 1.2.7. An operator A ⊂ X ×X ′ is said to be

(a) monotone, if and only if, for any (x1, y1) ∈ A, (x2, y2) ∈ A, we have that
〈y2 − y1, x2 − x1〉 ≥ 0

(b) maximal monotone, if and only if it is monotone and also fulfils the surjectivity
property R(J + A) = X ′.

The following result accounts for other equivalent definitions of maximal monotone
operators; while the proof of implication (b)⇐⇒(c) is trivial, the equivalence of (a)
and (b) is a consequence of a difficult theorem of Rockafellar [73]. For the proof, you
can also refer to the text [14].

Proposition 1.2.8. Let A be a monotone operator on X. Then the following condi-
tions are equivalent:

(a) A is maximal monotone;

(b) for every monotone operator B ⊂ X ×X ′ such that A ⊂ B (in sense of graph
inclusion), it results A = B;

(c) if (ξ, η) ∈ X ×X ′ fulfils 〈y − η, x− ξ〉 ≥ 0 for every (x, y) ∈ A, then it is also
(ξ, η) ∈ A.

Also, it is not difficult to verify that, if A is maximal monotone, then Ax is a convex
closed set of X ′. Given x ∈ D(A), we denote by A0x the element of minimum norm
in Ax, whose existence and uniqueness can be proved by exploiting the reflexivity of
X and proceeding by weak compactness methods, see [5].
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Proposition 1.2.9. Let A be a maximal monotone operator, J the duality map between
X and X ′, ε > 0. Then, the function (J + εA)−1J : X → X is single-valued, has the
whole X as domain, D(A) as range and is continuous (if X is a Hilbert space, it
is Lipschitz continuous of Lipschitz constant 1). We name it (ε-)resolvent of A and
denote it by Jε.

Definition 1.2.10. Under the same hypotheses as above, we set, for x ∈ X, Aεx :=
ε−1J(x− Jεx); this is the Yosida-regularization of operator A.

The main properties of Yosida-regularizations are stated in the following

Proposition 1.2.11. (a) Aε is a single-valued maximal monotone operator on X
which has X as domain; moreover, it is continuous (in the Hilbert case Lipschitz
continuous, with ε−1 as a Lipschitz constant).

(b) For every x ∈ D(A), we have that Aεx→ A0x as ε→ 0; moreover, we have the
monotonicity ‖Aε1x‖X′ ≤ ‖Aε2x‖X′ for ε2 ≤ ε1. Finally, for x ∈ X \ D(A), we have
that ‖Aεx‖X′ →∞ as ε→ 0.

We give now a definition which it is convenient to state in a somehow more general
setting than before:

Definition 1.2.12. Let B,C be Banach spaces, A : B → C be a (single-valued)
operator defined on the whole B. We say that A is

(a) demicontinuous if and only if it is continuous with respect to the strong topology
of B and the weak one of C;

(b) hemicontinuous if and only if, for every x, y ∈ B, we have that

(1.42) lim
t→0

A(x+ ty) = Ax weakly in C.

Naturally, in the above definition, we have (a)⇒(b); moreover, we are particularly
interested in the case of B = X, C = X ′ (X as above):

Proposition 1.2.13. If A : X → X ′ is monotone hemicontinuous, then it is maximal
monotone.

The following definition permits to identify another important class of maximal
monotone operators.

Definition 1.2.14. Given Ψ : X → R∞ convex, l.s.c. and proper, we call subdiffer-
ential of Ψ the operator of X defined, for x ∈ X, by

(1.43) y ∈ ∂Ψ(x)⇐⇒ 〈y, z − x〉 ≤ Ψ(z)−Ψ(x) for all z ∈ X.

We remark that it is enough to verify the above property for all z ∈ D(Ψ) (otherwise
the inequality is trivial); moreover, we observe that D(∂Ψ) ⊂ D(Ψ). Under the
preceding hypotheses, we also have:

Theorem 1.2.15. ∂Ψ is a maximal monotone operator.
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An important example of subdifferential operator is the following: in a Hilbert
space H, take a convex, closed, not empty subset K ⊂ H and denote by IK the
indicator function ofK; i.e. the function which is identically 0 onK and +∞ elsewhere.
It is easy to see that the properties of K entail IK to be convex, l.s.c. and proper.
Moreover, the subdifferential of IK is a maximal monotone operator which has K as
domain and takes identically the value 0 in the interior of K.

Yosida regularizations of subdifferential operators can be characterized in the fol-
lowing additional way:

Proposition 1.2.16. (a) For all ε > 0, x ∈ X, we can set

(1.44) Ψε(x) := min
y∈X

{
1

2ε
‖y − x‖2X + Ψ(y)

}
;

then, the minimum on the right hand side of the above expression is achieved in an
unique point ȳ and precisely in ȳ = Jεx. The functional Ψε is called Moreau-Yosida
approximation of Ψ.

(b) The function Ψε is convex, proper (with X as effective domain) and Fréchet-
differentiable for all x ∈ X. Moreover, we have that

(1.45) ∂Ψε(x) = {Ψ′
ε(x)} = Aε,

where Aε is the Yosida approximation of operator A := ∂Ψ. Finally, Ψε(x) ↗ Ψ(x)
for every x ∈ X.

We give now some sufficient condition for a maximal monotone operator A to be
surjective; recalling Def. 1.2.7 (b), intuitively it will be necessary for A to satisfy some
more coerciveness property than the only monotonicity. Here we only report one result
[14, Cor. 2.4, page 31], which will be exploited in the sequel:

Theorem 1.2.17. Let X be a Hilbert space (identified with its dual) of scalar product
(·, ·), A ⊂ X ×X maximal monotone; suppose that there exists x0 ∈ X such that

(1.46) lim
‖x‖X→∞

(A0x, x− x0)

‖x‖X
= +∞.

Then, A is surjective (i.e., R(A) = X).

We shall also need a result ensuring that, under some additional hypotheses, the
sum of two maximal monotone operators A and B is still maximal monotone; naturally,
this cannot be true in the general case, since, for instance, it can happen that D(A)∩
D(B) = ∅. The following result holds again in the Hilbert space setting.

Theorem 1.2.18 ([14, page 37]). If A is monotone hemicontinuous and B is any
maximal monotone operator, then A+B is still maximal monotone.
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1.2.3 Convex integrals

We introduce here a particular class of maximal monotone operators, which plays an
important role in the statement of phase transition problems. We shall develop this
part of the theory in a more general form than it will be effectively needed in the
sequel; we think anyway that this kind of approach could result clearer.

Given a smooth and bounded open set Λ ⊂ RN (we could also take Λ as an arbitrary
measure space of finite regular measure), we consider here a function φ : Λ×R→ R∞.

Definition 1.2.19. Let us suppose φ to verify the following assumptions:

(a) The function r 7→ φ(x, r) is convex, l.s.c., proper and nonnegative for a.e.
x ∈ X (the last condition could be weakened, but this form is sufficiently general for
the sequel).

(b) There exists a Borel-measurable function f : Λ × R → R∞ such that, for a.e.
x ∈ Λ, it is f(x, ·) = φ(x, ·) on R.

Under these conditions, we say that φ is a convex integrand on Λ× R.

Our aim is to prove that, at least for 1 < p < ∞, the functional Φ : Lp(Λ) → R∞

given by

(1.47) Φ : u 7→


∫

Λ

φ(x, u(x)) dx if φ(·, u(·)) ∈ L1(Λ),

+∞ otherwise

is still convex, l.s.c., proper (and nonnegative) on Lp(Λ).

Remark 1.2.20. We point out that the above assumptions (a), (b) guarantee in par-
ticular that the function φ(·, u(·)) is measurable on Λ for any u ∈ Lp(Λ). More-
over, (b) cannot be substituted with the (apparently) more natural weaker condition of
Carathéodory type

(b′) The function x 7→ φ(x, r) is measurable on Λ for every r ∈ R,

unless we suppose the continuity of φ in (a) (instead of the lower semicontinuity);
however, this hypothesis is not verified in most applications (see also [36, Prop. 1.1,
page 218]).

We now denote as φ∗(x, r) : Λ × R → R∞ the convex conjugate of φ, for fixed
x ∈ Λ, with respect to the second variable. We have:

Proposition 1.2.21. φ∗ is still a convex integrand.

So, it can be extended to Lp′(Λ) too, by setting:

(1.48) G : u 7→


∫

Λ

φ∗(x, u(x)) dx if φ∗(·, u(·)) ∈ L1(Λ),

+∞ otherwise.

The following important result summarizes the properties of Φ∗ and ∂Φ.



preliminaries 23

Theorem 1.2.22 ([36, pages 251 and 318]). (a) If there exists u0 ∈ L∞(Λ) verifying
Φ(u0) < +∞, then it is Φ∗ = G.

(b) Given u ∈ Lp′(Λ), v ∈ Lp(Λ), it is v ∈ D(∂Φ) and u ∈ ∂Φ(v) if and only if
v(x) ∈ D(∂φ(x, ·)) and u(x) ∈ ∂φ(x, v(x)) for a.e. x ∈ Λ (where the last subdifferential
is naturally taken with respect to the sole second variable).

(c) Denoting as φε(x, r) the Moreau-Yosida approximation of φ(x, ·) (with respect to
the second variable), we have that φε is a convex integrand; moreover, setting

(1.49) Gε : u 7→


∫

Λ

φε(x, u(x)) dx if φε(·, u(·)) ∈ L1(Λ),

+∞ otherwise,

it results that Gε = Φε; finally, for v ∈ Lp(Λ), u ∈ Lp′(Λ), we have that u ∈ ∂Φε(v) if
and only if u(x) ∈ ∂φε(x, v(x)) for a.e. x ∈ Λ.

Proof. We show only (c), which is not in [36], in the Hilbert case p = p′ = 2.
First of all, let us take f as in condition (b) of definition 1.2.19; set now:

(1.50) fε(x, r) := inf
s∈R

{
1

2ε
(s− r)2 + f(x, s)

}
.

Recalling Prop. 1.2.16 (a), we see that, for a.e. x ∈ Λ (and precisely where f coincides
with φ), the infimum in the above expression is achieved for every r ∈ R; moreover, it
is also obvious that fε(x, ·) ≡ φε(x, ·) for a.e. x ∈ Λ. Finally, fε is Borel-measurable on
Λ×R, since, looking back to the right hand side of (1.50), we notice that it can be seen
as an inferior envelope of a countably infinite family of Borel-measurable functions of
(x, r).

Let us name now Jε the resolvent of operator ∂Φ and jε(·) that of ∂φ(x, ·) (as an
operator on R); Owing to part (b) of this theorem, given v, z ∈ L2(Λ), we deduce

z(x) = jε(x, v(x)) a.e.⇐⇒ v(x) ∈ (z(x) + ε∂φ(x, z(x)) a.e.(1.51)

⇐⇒ v(x)− z(x)
ε

∈ ∂φ(x, z(x)) a.e.⇐⇒ v − z
ε
∈ ∂Φ(z)

⇐⇒ v ∈ z + ε∂Φ(z)⇐⇒ z = Jεv;

so, also the resolvent of ∂Φ can be obtained “by integration” from that of φ.
Now, recalling the definition of Moreau-Yosida approximation and exploiting again

Prop. 1.2.16 (a), for v ∈ L2(Λ), we infer:

Φε(v) =
1

2ε
‖v − Jεv‖2L2(Λ) + Φ(Jεv)(1.52)

=

∫
Λ

[
1

2ε
(v(x)− Jεv(x))

2 + φ(x,Jεv(x))

]
dx

=

∫
Λ

[
1

2ε
(v(x)− jε(x, v(x)))2 + φ(x, jε(x, v(x)))

]
dx

=

∫
Λ

φε(x, v(x)) dx = Gε(v),
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as desired.
As for the proof of the last statement, using again (1.51), we derive:

u = ∂Φε(v)⇐⇒ u =
v − Jεv

ε
⇐⇒ v − εu = Jεv(1.53)

⇐⇒ v(x)− εu(x) = jε(x, u(x)) a.e.

⇐⇒ u(x) =
v(x)− jε(x, v(x))

ε
a.e.

⇐⇒ u(x) = ∂φε(x, v(x)) a.e. .

To conclude, we give another related result involving convex integrands φ(x, r) not
depending of x, but where the second variable r is allowed to vary in an arbitrary
Hilbert space (instead of R).

Theorem 1.2.23 ([14, Prop. 2.16, page 47]). Let ψ : H → R∞ be a convex, l.s.c. and
proper function on a Hilbert space H. We define, for v ∈ L2(Λ;H), the functional:

(1.54) Ψ : v 7→


∫

Λ

ψ(v(x)) dx if ψ(v(·)) ∈ L1(Λ),

+∞ otherwise.

Then, Ψ is convex, l.s.c. and proper on L2(Λ;H); its subdifferential is given by u ∈
∂Ψ(v)⇐⇒ u(x) ∈ ∂ψ(v(x)) a.e. in Λ and its Moreau-Yosida approximation Ψε is the
convex integral of functional ψε (i.e. is still given by a formula analogous to (1.54)).

It should be interesting to extend this last result to the case of convex integrands
ψ : Λ×H → R∞ by following the lines of Theorem 1.2.22; we really do not know how
much of the quoted theorem remains true in this framework.

1.3 Variational convergences

We now introduce some important concepts related to the Γ-convergence of convex
functionals and monotone operators. The topic is very wide and we only list here a
series of results which will be employed in the sequel; for a systematical exposition of
the matter, we refer to the texts [5] and [31] (whence we derived indeed almost all the
material of this section).

Let us be given a topological space (X, τ), and functions Ψn (for n ∈ N) on X with
values in R∞.

Definition 1.3.1. We set

Γτ - lim inf
n→∞

Ψn(x) := sup
U∈U(x)

lim inf
n→∞

inf
y∈U

Ψn(y),(1.55)

Γτ - lim sup
n→∞

Ψn(x) := sup
U∈U(x)

lim sup
n→∞

inf
y∈U

Ψn(y).(1.56)

If Γτ - lim infn→∞ Ψn(x) = Γτ - lim supn→∞ Ψn(x) =: Ψ(x) for every x ∈ X, we say
that Ψn Γ-converges to Ψ in the topology τ .
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Let us also recall now a characterization of Γ-limits in the case of first countable
topological vector spaces:

Proposition 1.3.2 ([31, Prop. 8.1, pages 86–87]). If X is first countable (in particular
if X is a metrizable topological vector space), we have:

Γτ - lim inf
n→∞

Ψn(x) = min
xn→x

lim inf
n→∞

Ψn(xn),(1.57)

Γτ - lim sup
n→∞

Ψn(x) = min
xn→x

lim sup
n→∞

Ψn(xn).(1.58)

In particular, we have that Ψn Γ-converges to Ψ if and only if, for every x ∈ X,
we have that Ψ(x) ≤ lim inf Ψn(xn) for every xn → x and, in addition, there exists
xn → x such that Ψ(x) = limn→∞ Ψn(xn).

The definition of Γ-convergence has a very wide range of applications; here, anyway,
we are interested in a very specifical situation. So, in the following, X will always be
a reflexive Banach space and Ψ and Ψn will be convex, l.s.c. and proper real-extended
valued functionals on X.

In this case, we shall write Ψ = Γs-limn→∞ Ψn (Ψ = Γw-limn→∞ Ψn) to say that Ψ
is the Γ-limit of Ψn in the strong (sequential weak, respectively) topology of X.

Let us remark a fundamental problem which arises at this point and motivates the
introduced terminology. When we endow X with its strong topology, the preceding
proposition gives a characterization of Γs-lim Ψn in terms of convergent sequences to
x; anyway, it cannot be used when we consider the weak topology on X, since this
is not metrizable. Anyway, in this case, the most relevant concept is fortunately also
the easier to handle, that is the Γ-convergence with respect to the sequential weak
topology of X (rather than the (usual) weak one).

We are now ready to recall a

Definition 1.3.3 ([5, page 295]). We say that Ψn M-converges to Ψ (or converges
to Ψ in the sense of Mosco) if and only if Ψ = Γs-limn→∞ Ψn = Γw-limn→∞ Ψn.

Remark 1.3.4. In the case of X = R, the M-convergence obviously coincides with the
standard Γ-convergence.

Proposition 1.3.5 ([5, Prop. 3.19, page 297]). Under the above hypotheses, the fol-
lowing conditions (a), (b) are equivalent:

(a) Ψn M-converges to Ψ;

(b) For all x ∈ X and for all xn → x in X-weak, it is

(1.59) Ψ(x) ≤ lim inf
n→∞

Ψn(xn);

moreover, for all x ∈ X there exists xn → x in X-strong, such that

(1.60) Ψ(x) ≥ lim sup
n→∞

Ψn(xn).

We point out that, owing to Prop. 1.3.2, condition (1.59) above is equivalent to
Ψ ≤ Γw-lim inf Ψn, while (1.60) holds if and only if Ψ ≥ Γs-lim sup Ψn.
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Definition 1.3.6 ([5, page 360]). Let An : X → 2X′
be a sequence of maximal

monotone operators on a reflexive Banach space X. We say that An G-converges to
another maximal monotone operator A : X → 2X′

(or converges to A in the sense of
graphs) if and only if, for every (x, y) ∈ A, there exists a sequence (xn, yn) ∈ An such
that xn → x in X-strong and yn → y in X ′-strong.

The following fundamental result collects all the notions we have just introduced:

Theorem 1.3.7 ([5, Prop. 3.60 and Th. 3.66]). With the same hypotheses and
notation as above, if we set An = ∂Ψn and A = ∂Ψ, the following conditions (a), (b),
(c) are equivalent:

(a) Ψn M-converges to Ψ.

(b) An G-converges to A.

(c) An
ε (x) converges to Aε(x) in X ′-strong for every x ∈ X and every ε > 0. Here

we have denoted by An
ε (Aε) the Yosida-regularization of An (A, respectively).

The next proposition is an easy extension for instance of [9, Prop. 1.1, page 42] or
[5, Prop. 3.59]. We give the elementary proof for the sake of convenience of the reader:

Proposition 1.3.8. If An G-converges to A, given a sequence (xn, yn) ∈ An such that
xn → x in X-weak, yn → y in X ′-weak and

(1.61) lim sup
n→∞

X′〈yn, xn〉X ≤ X′〈y, x〉X ,

then we have that (x, y) ∈ A.

Proof. Let us consider an arbitrary element (ξ, η) ∈ A. By the definition of G-
convergence, there exists a sequence (ξn, ηn) ⊂ X ×X ′ such that (ξn, ηn) ∈ An for all
n ∈ N and ξn → ξ in X-strong, ηn → η in X ′-strong. Now, hypothesis (1.61) entails

(1.62) 0 ≤ lim sup
n→∞

X′〈ηn − yn, ξn − xn〉X ≤ X′〈η − y, ξ − x〉X .

Since (ξ, η) is arbitrary, we can conclude by exploiting the maximality of A and re-
calling (c) of Prop. 1.2.8.

We now give some results which guarantee the M-convergence of particular classes of
functionals (Ψn,Ψ and X are as before).

Proposition 1.3.9 ([5, Prop. 3.20, page 298]). (a) If Ψn is nondecreasing, then it
converges to supn∈N Ψn in the sense of Mosco.

(b) If Ψn is nonincreasing, then it converges to the relaxed functional sc-(infn∈N Ψn)
in the sense of Mosco.

In particular, recalling (b) of Prop. 1.2.16, we immediately derive:

Corollary 1.3.10. The Moreau-Yosida approximates Ψε of functional Ψ M-converge
to it (with respect to ε)1.

1Indeed, it is not difficult to show [5, page 360] that for every maximal monotone operator A, we
have that Aε G-converges to A (even if A is not a subdifferential).
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In particular, Prop. 1.3.8 can be applied when An = Aεn for a sequence εn → 0.
We conclude by listing a property of Γ-limits of sum of functionals:

Proposition 1.3.11 ([31, Prop. 6.17]). If Φn,Ψn are two given sequences of func-
tionals with values in R∞, defined on a topological space X, then, for every x ∈ X, we
have that:

Γ- lim inf
n→∞

(Φn + Ψn)(x) ≥ Γ- lim inf
n→∞

Φn(x) + Γ- lim inf
n→∞

Ψn(x)(1.63)

Γ- lim sup
n→∞

(Φn + Ψn)(x) ≥ Γ- lim sup
n→∞

Φn(x) + Γ- lim sup
n→∞

Ψn(x).(1.64)

The converse inequalities are in general false; anyway, such a lack of linearity must
not surprise: of course it is essentially due to the “inf” and the “sup” appearing in
Def. 1.3.1.



Chapter 2

Phase-field models

2.1 The physical background

This section is intended to provide a short overview of the physical motivations under-
lying the phase-field problems which we are going to study in the sequel. We start by
describing the first mathematical model of heat diffusion inside substances allowed to
phase transitions which appeared in history, that is the Stefan one; as a second step,
we briefly present in some detail several more modern models extending and improving
it. We shall especially insist on the parabolic phase-field model, which provides the
physical background for the specifical problems of this dissertation.

2.1.1 The Stefan problem

The starting point of the Stefan phase-transition model is nothing else but the usual
heat equation. So, fix (as in the previous chapter) a smooth, bounded and connected
(in view of the most general boundary conditions) domain Ω ⊂ RN (obviously, for
the physically most relevant results, we could just assume N ≤ 3; however, often
no more mathematical effort is needed to give the proofs in an arbitrary dimension).
Consider also a final time T < +∞ and set Q := Ω×]0, T [ and Qt := Ω×]0, t[ for
t ≤ T . Assuming that Ω is filled with a nonnecessarily homogeneous substance of
temperature θ(x, t) and supposing that a heat source f(x, t) is present in Ω at every
time t ∈ [0, T ], it is well known that the heat propagation inside Ω is described by the
relation

(2.1) C∂tθ + div q = f in Ω×]0, T [,

where C is the thermal capacity of the substance, possibly depending on (x, t) (actually
also on θ, but we do not want to discuss this case here) and q is the heat flux at the
point (x, t) ∈ Q. It is well known that, when q is given by the Fourier law

(2.2) q = −k∇θ in Ω×]0, T [,

(2.1) gives rise to the standard heat equation. Here, k > 0, nonnecessarily constant,
denotes the heat conductivity of the fluid; in an anisotropic substance, k could also
stand for a regular field of uniformly elliptic matrices. In the following, we will meet

28
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some more sophisticated models where (2.2) is substituted by different constitutive
assumptions.

The heat equation provides the starting point to introduce the so-called strong
formulation of the two-phase Stefan problem. The underlying idea is essentially due
to the physician Josef Stefan [84], who constructed this model at the end of the last
century, starting from concrete observations of the solidification and melting of polar
ices.

So, suppose now that at every time instant t ∈ [0, T ], the domain Ω is subdivided
by a smooth interface S(t) into two subdomains ΩS(t) and ΩL(t) occupied by the solid
and liquid phases, respectively. Assume also that the phase transition temperature
is identically equal to 0, so that θ > 0 on ΩL(t), θ < 0 on ΩS(t) and θ = 0 on
S(t). Define now QS := ∪t∈]0,T [(ΩS(t) × {t}), QL := ∪t∈]0,T [(ΩL(t) × {t}) and finally
S := ∪t∈]0,T [(S(t)×{t}); suppose that the so obtained interface S is a globally smooth
N -dimensional hypersuperface of RN+1. In particular, we can assume that S is given
in an implicit form as the set {(x, t) ∈ RN+1 : F (x, t) = 0}, where F : Q → R is a
suitably smooth function and we also require that F (x, t) < 0 on QS and F (x, t) > 0
on QL (naturally, if also θ is smooth enough, an obvious parametrization for S is
obtained by choosing F = θ).

Let us indicate by n the unit vector of RN+1 normal to S and pointing outwards
QS; clearly, we have that n = ∇(x,t)F/|∇(x,t)F |. We also denote by nx the RN -vector
of the space components and by nt the component of n in the direction of the time
axis, so that n = (nx, nt). The strong formulation of the two-phase Stefan problem
essentially consists of the equations:

CS∂tθ − div(kS∇θ) = f in QS(2.3)

CL∂tθ − div(kL∇θ) = f in QL(2.4)

2λnt = kL∂nxθL − kS∂nxθS = [k∇θ]LS · nx on S(2.5)

(∇ denoting, here and below, the gradient in the sole space directions). Here, (2.3–
2.4) are standard heat equations and also the notations are the same as before; the
coefficients CS, CL, kS, kL, anyway, are allowed to depend on the phase. Relation (2.5),
instead, is the so-called Stefan condition, which essentially states that the “normal
velocity” of the interface at the time t is proportional to the jump of the gradient of
the temperature; the positive coefficient λ accounts for the latent heat of the substance.
At the end of this subsection, we shall give a more detailed physical (and geometrical)
interpretation of this condition in the case of space dimension N = 1.

We point out that the above equations (naturally coupled with suitable initial and
boundary conditions) constitute what is called a free boundary problem, since also
the interface S is an unknown. Indeed, we can define a strong solution of the Stefan
problem to be a sufficiently smooth couple (S, θ) satisfying (2.4–2.5) and the Cauchy
and boundary conditions (we do not insist, at this level, on the precise regularity
requests for such a solution).

This strong formulation (s.S.p. in the following) of the Stefan problem has been
deeply studied and still there are many open problems left, especially as the maximal
regularity properties of S are concerned. Here, our purpose is different; indeed, we
would like to deduce a weak formulation of the above problem; we remark that the
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following procedure is essentially due to Kamenomostskaja [45] and Oleinik [69] who
were the first ones to restate the problem in a weak form. First of all, modify (2.3–2.4)
by introducing a new variable, that is the phase-field χ, by setting,

(2.6)
χ(x, t) := 1 if θ(x, t) > 0

χ(x, t) := −1 if θ(x, t) < 0

}
for (x, t) ∈ Q \ S.

Notice that there is no hope of getting in this framework a global continuity property
for χ on Q; hence, at present, there is no reason to define it on S, i.e. for θ = 0. A
purely formal modification of (2.3–2.4) gives anyway

CS∂tθ + λ∂t
χ− div(kS∇θ) = f in QS,(2.7)

CL∂tθ + λ∂t
χ− div(kL∇θ) = f in QL.(2.8)

The reason of adding the two zero-terms inside the above equations will result clear in
a while: suppose indeed to have a sufficiently smooth solution (S, θ) of (2.7–2.8) and
take a test function v ∈ D(Q) (we try to condense (2.7–2.8) and the Stefan condition
in an unique relation in D′(Q)). Multiplying (2.7) by the restriction of v to QS and
integrating over QS, we easily obtain:∫∫

QS

CS∂tθv dx dt−
∫∫

QS

λχ∂tv dx dt+

∫∫
QS

λ∂t(χv) dx dt(2.9)

+

∫∫
QS

kS∇θ · ∇v dx dt−
∫

S

kS∇θ · nxv dHN =

∫∫
QS

fv dx dt,

HN denoting here and below the N -dimensional Hausdorff measure on S (note that
the Gauss-Green formula has been used only for the space variables on a noncylindrical
domain; this explains the occurrence of the nonunit normal vector nx).

Integrating now by parts in time the third term on the left hand side of the previous
relation, we infer

(2.10)

∫∫
QS

λ∂t(χv) dx ds = λ

∫
S

χvnt dHN = λ

∫
S

vnt dHN ,

since χ ≡ 1 on QS (and hence χ ≡ 1 in sense of traces on S). The same procedure
can be also applied to equation (2.8): notice that when we perform the integration
by parts as in (2.10), we get the same result as above, since χ ≡ −1 on QL, but now
the term nt appears with the minus sign. Summing the result of computation (2.9)
with its analogous for the liquid phase and taking account of (2.10) and of the Stefan
condition, it is now easy to derive

(2.11) C∂tθ + λ∂t
χ− div(k∇θ) = f in D′(Q),

where we have no longer emphasized the dependence of the coefficients C, k, λ on the
phase (indeed, in the new setting, they are seen as χ-dependent functions). The latter
is a much weaker relation with respect to (2.3–2.4), since all what we can say is that
it holds in the sense of distributions on Q. Indeed, we have proved that every regular
solution of the strong Stefan problem is also a solution of (2.11). Moreover, if we
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consider (2.11) by itself, in order to have a well-posed problem, this equation must be
complemented with a relation linking the two unknowns θ and χ, as (2.6). However,
in this variational setting, condition (2.6) is often restated in a dfifferent way. Indeed,
introducing a maximal monotone graph α ⊂ R× R, as

(2.12) α(s) :=


]−∞, 0] if s = −1,
{0} if −1 < s < 1,
[0,+∞[ if s = 1,
∅ if |s| > 1,

we can now complement equation (2.11) with the following abstract constitutive as-
sumption

(2.13) θ ∈ α(χ) in Q.

We remark that, anyway, the above relation is much more general than (2.6);
in particular, it makes sense also as χ assumes intermediate values between −1 and
1, which was not allowed in the previous formulation. The couple (2.11)–(2.13), still
accompanied by suitable initial and boundary conditions, defines the weak formulation
(w.S.p.) of the Stefan problem. We also point out that (2.11) can actually be stated in
a slightly stronger sense than the distributional one; for instance, in the next section,
we shall rewrite it in a natural Hilbert space setting.

Furthermore, we emphasize that the solutions of equations (2.3–2.5) and of (2.11),
(2.13) can have deeply different physical properties (cf. also the next subsection for a
more detailed analysis). For the present, we have only seen that every smooth solution
of the strong Stefan problem is also a solution of the weak formulation; not only the
converse is not true, but we remark that there are solutions of the strong problem
which are not “regular” enough to be interpreted as solutions of the weak one.

Let us give examples of both situations: first, notice that a solution of (w.S.p.)
can exhibit “solid” interfaces (which are usually called “mushy regions”), where the
phase variable takes values strictly between −1 and 1, and this can happen even if the
separating interface S(0) related to the initial values of the temperature and phase has
0-depth, instead. Moreover, new regions of solid (liquid) phase can appear, starting
from a certain time t, inside the liquid (solid, respectively) one; think for instance of a
cold source acting for some time on a region of liquid phase. This phenomenon, called
nucleation, cannot happen in the framework of the s.S.p., since the interface S(t), by
assumption, evolves through a smooth modification in time of S(0); in particular, no
disconnected portions of S can appear ex novo.

In the above outlined situation (cold source acting on the liquid phase) the s.S.p.
would exhibit instead a so-called supercooling region, i.e. a region of liquid phase below
the freezing point; correspondently, this is not possible in the w.S.p.-setting, due to
the locality of the constitutive relation (2.13).

Notice anyway that neither situation (mushy region-nucleation or supercooling) is
unnatural or “wrong”, but the occurrence of either phenomenon strongly depends on
some finer physical properties of the material considered, that the Stefan model is not
able to balance. Indeed, one of the main features of phase-field models is their good
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description of the solidification dynamics under rather fine thermodynamical assump-
tions. Indeed, in the next subsection, we shall see that the solidification patterns of
w.S.p. and s.S.p. can be seen as asymptotic limits of the phase-field model for differ-
ent blowouts of an “interfacial energy coefficient”, whose purpose is precisely that of
weighing the supercooling and nucleation phenomena.

We conclude this subsection by giving a geometrical interpretation of the Stefan
condition (2.5) in the case of one space dimension (so that nx is now a number nx).
Here, we want to express the interface as the graph of a function x(t), with t ∈ [0, T ];
thus, recalling the general case (where S is viewed as {(x, t) ∈ Q : F (x, t) = 0} for a
C1 function F : Q→ R) and applying the implicit function theorem (or differentiating
in t the relation F (x(t), t) ≡ 0), we get

(2.14) x′(t) = − ∂tF

∂xF
= − ∂tF

|∇(x,t)F |
|∇(x,t)F |
∂xF

= −nt

nx

,

so that (2.5) can be rewritten as

(2.15) −2λx′(t) = kL∂xθL − kS∂xθS on S,

whence it results clear that x′(t), which evidently can be seen as a normal velocity of
the interface, is proportional to the jump of the temperature gradient at the interface.
Actually, in many texts, it is preferred to introduce the strong Stefan problem in any
space dimension by starting from the geometrical considerations which led to (2.15),
instead that by following our more analytical approach.

2.1.2 Ginzburg-Landau potentials and relaxed models

The main feature of phase-field systems consists in their capacity of extending the
Stefan model to cases where a careful balance of the phenomena of supercooling and
nucleation is needed; morover, they also account for the presence of a surface tension
in the considered substance. They can be introduced in several ways; the most usual
one, which we chose to follow, starts exactly from the weak Stefan problem.

First, let us first consider a simpler thermodynamical situation, anyway: suppose
to be in time-stationary conditions and take θ as a datum; also, assume a Hilbert
space setting (indeed other choices are possible); i.e., take θ ∈ L2(Ω). Then, we can
define a functional Fθ on L2(Ω), as follows

(2.16) Fθ(v) :=

−c
∫

Ω

θv dx if |v| ≤ 1 a.e. in Ω,

+∞ otherwise;

we remark [87] that the above constant c > 0 has a precise physical meaning; in
general, it is proportional to the latent heat.

Now, it is easy to verify that Fθ is convex, l.s.c., proper and coercive on L2(Ω);
moreover, it admits a unique minimizer χ, which is precisely characterized by means
of the constitutive assumption (2.13). The physical interpretation of Fθ is that of a
measure of the (global) internal energy of the fluid when the temperature θ is fixed.
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Our aim is now to see that, through a modification of the energy functional Fθ, it is
possible to increase the number of thermodynamical situations which can be described
this way. The phase-field model only accounts for one of the possible choices; other
temptatives have been done and we shall briefly discuss some in the next subsection.
Thus, we now introduce the so-called Ginzburg-Landau free energy functional [51,
19], as follows

(2.17) F ν
θ (χ) :=

∫
Ω

c1ν

2
|∇χ|2 dx+

c2
ν

∫
Ω

(χ2 − 1)2 dx− c
∫

Ω

θχ dx,

where c1, c2, ν are positive constants depending, as c, on the physical characteristics of
the fluid (the most relevant from the thermodynamical viewpoint is ν, whose meaning
will be discussed later).

We want to remark at once what is the main mathematical feature of the functional
F ν

θ [87]: looking at its first two integral terms, we observe that they are in competition
(note that now χ is “allowed” to assume every real value, not only −1 ≤ χ ≤ 1): the
first one is smaller when the gradient of χ is not too large; the other, instead, when
the phase variable χ is very close either to +1 or to −1 (pure liquid or pure solid).
Naturally, if a phase transition is really present, this means that the gradient of χ

must be very large in a neighbourhood of the (thick) interface.
The parameter ν has the purpose of giving more importance to either of the quoted

terms; more precisely [20, 40], we remark that ν1/2 actually comes out to be propor-
tional to the thickness of the interface, which, in most physical cases, has the magni-
tude order of approximately 10−7 cm. [87].

We also observe that the above functional is no more convex; this accounts for the
presence of relative maximizers and minimizers, which physically correspond to the su-
percooling and overheating phenomena (called metastable states, [87]). Furthermore,
in case ν is very small (so that the interface thickness can be neglected), it can also
be proved that the solutions of the above minimum problem enjoy a property which
is asymptotically equivalent (as ν → 0) to the following Gibbs-Thomson relation

(2.18) θ = −c0κσ on S;

here, S is, as before, the phase interface, σ the surface tension of the fluid, and κ
the mean curvature of S (assumed positive for convex solid phase). This is indeed a
difficult theorem, which has been proved by Caginalp [19] by means of a formal limit
procedure; an alternative approach, which is due to Luckhaus [55], can be given by
assuming (2.18) instead of “θ = 0 on S” in the statement of S.s.p.. Observe that the
Gibbs-Thomson relation actually states that the solidification temperature is lower
for κ > 0; this can be justified by observing that, in this case, the solid molecules
have a greater number of liquid neighbours, or also by means of chemical potential
arguments [19]. Furthermore, notice that this effect becomes more important as the
surface tension is larger.

Under the previous assumptions, the fact that the system assumes a stable con-
figuration can be mathematically expressed in the form 0 = δχF

ν
θ , where by δχF

ν
θ we

mean the Fréchet derivative of F ν
θ with respect to χ in the appropriate space L2(Ω).
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Performing the explicit calculations, it is easy to derive the evolution equation

(2.19) −c1ν∆χ+
4c2
ν

(χ3 − χ)− cθ = 0 in Ω.

Notice anyway that (2.19) must be intended in the variational sense; moreover, the
choice of either H1(Ω) or H1

0 (Ω) as the domain of the functional F ν
θ also yields (im-

plicitely) the related homogeneous boundary condition of Neumann type (or Dirichlet,
respectively).

This analysis can be simply extended to the case when θ is also an unknown of
the problem; now, equation (2.19) is coupled in a natural way with a time-stationary
diffusion relation for the temperature of the usual form

(2.20) − div(k∇θ) = f in Ω

(other choices are possible in a non-Fourier setting). Again, in order to obtain a
well-posed problem, it is necessary to assume suitable boundary conditions.

To complete the discussion of the phase-field model, it remains now to consider
the time-dependent case. With this purpose, we first recall a general mathematical
definition. Given a Hilbert space H and a functional J : H → R of (at least) C1

regularity, we call gradient flow associated to J the differential problem:

(2.21) µ∂t
χ(t) = −δχJ(χ(t)) in H, for t ∈]0, T [,

where T > 0 is, as usual, an assigned final time and µ > 0 the relaxation parameter.
Here we are not interested in a deep mathematical analysis of this kind of problems

(which can be very complicated in the general case); we only emphasize that, if the
functional J is convex, µ can be seen, roughly speaking, as a time period which the
dynamical system “employs” to move towards a stable state (i.e. the minimizer of J).
Indeed, we have that

(2.22) ∂tJ(χ)(t) = (δχJ(χ(t)), ∂t
χ(t))H = −µ−1‖δχJ(χ(t))‖2H ≤ 0,

so that the energy J results to be decreasing in time “along” the solution χ of the
problem, which is seen as the trajectory of a motion in H, starting from the initial
configuration χ0.

IfH = L2(Ω) and J = F ν
θ (with the choice of either H1(Ω) or H1

0 (Ω) as the effective
domain for it, on account of the desired boundary conditions), we get the phase-field
equation:

(2.23) µ∂t
χ = c1ν∆χ−

4c2
ν

(χ3 − χ) + cθ in Ω×]0, T [.

As in the stationary case, in order to obtain a well-posed problem, it is necessary to
couple (2.23) with a diffusion equation for the temperature, for instance in the form
(2.11) and, of course, with the suitable Cauchy and boundary conditions for both
unknowns θ, χ. In the next subsections, anyway, we shall give some further remarks
about this derivation, which seems to be not completely satisfactory under the physical
viewpoint.
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Summarizing, we have obtained a system of coupled parabolic evolution equations
of which the heat one is linear, while the second has a monotone nonlinearity (χ3).
Indeed, a similar system will be the starting point of our study in the next section;
however, we shall consider slightly more general equations (at least from the math-
ematical viewpoint), whose thermodynamical derivation, anyway, does not differ too
much from that outlined above.

2.1.3 Extensions of the phase-field model

We conclude the discussion of the physical background by giving a brief description of
some extensions of the phase-field models which are also currently studied by physicists
and mathematicians. Naturally, the topic is very wide, so that we just outline the most
physically relevant cases and give, with no claim of completeness, of course, a related
list of references.

As a starting point, we observe that the justification of the (time-dependent) phase-
field equation given in (2.21) as a gradient flow with respect to the energy functional
F ν

θ has been provided only in case the temperature θ is a datum. If θ is allowed
instead to vary, it is no longer true that F ν

θ , which depends now also on θ, need to
be decreasing along the solution trajectories of the resulting system. Consider that
the free energy has now a nontrivial dependence on θ, which might also take account
of external factors (e.g, a heat source); hence, solutions with locally nondecreasing
energy might exist indeed.

Starting from this consideration, in 1990 Penrose and Fife [70] gave a different
justification of the phase field model in terms of a more suitable thermodynamical
variable, which is the entropy. Moreover, their approach, which we now outline, can
be adapted to derive a much greater variety of physically consistent models.

Hence, as a thermodynamical constitutive assumption, we suppose that the entropy
S(θ, χ) is a function of the following form:

(2.24) S(θ, χ) =

∫
Ω

(
s(e(θ, χ), χ)− κ

2
|∇χ|2

)
dx,

where κ is a positive constant, e the space density of enthalpy and s a known consti-
tutive function related to the physical properties of the fluid. Since we are trying to
write a gradient flow system accounting for a growth of S along solution paths, (i.e.
S should relax towards a maximum), the natural hypothesis we assume on s is to be
concave with respect to the variables (e, θ); however, since (for example in the case
of true phase-field models) a double-well term for χ could be present as a factor of s,
we do not require it to be concave with respect to χ. We shall see in the following
that this does not prevent the entropy from growing along the trajectories of solutions;
however, it might happen that the solution of a gradient flow for S moves, for small
times, towards a metastable state (i.e. a relative maximizer, or minimizer, of S, only
with respect to χ).

We can now consider the following abstract evolution problem (which is again to
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be seen in a variational framework)

∂te = − div(κ1∇δeS) in Q,(2.25)

µ∂t
χ = κ2δχS in Q,(2.26)

where κ1 and κ2 are smooth and strictly positive functions of (x, t, θ, χ) (in most cases
they are reduced to positive constants).

It is clear that in this very general framework, the phase-field model is only a
special case of (2.25–2.26) and precisely that corresponding to the choices

(2.27) e = θ + λ(χ), s(e, χ) = −1

2
(e− λ(χ))2 − (χ2 − 1)2;

notice that here we allow the latent heat to be nonlinear; hence, we have written λ(χ)
in place of λχ. Indeed, it seems that two particular choices are thermodynamically
consistent for the function λ: the first assumes it Lipschitz continuous, and this means
that the latent heat can vary with respect to the phase, but still behaves similarly as
in the Stefan case; another possibility [70] is to allow λ a quadratic growth; actually,
this choice complicates the mathematical study of the resulting system [12].

Furthermore, we want to emphasize another feature of system (2.25–2.26): why
does equation (2.26) account for a true gradient flow for χ, while (2.25) presents a
second order differential term before the Fréchet derivative of S? The reason is that, at
least in the case where Neumann boundary conditions are assumed on χ (which seems
the most meaningful under the physical viewpoint), the internal energy is a conserved
quantity in time. This fact can be physically justified by simply observing that we are
speaking of insulated systems; on a mathematical viewpoint, this hypothesis can be
practically checked from equation (2.25) by integrating it in time, so that, on account of
the Gauss-Green formula and of Neumann homogeneous boundary conditions, we get

(2.28) ∂t

∫
Ω

e dx = 0 for t ∈]0, T [.

Notice that, in this framework, the entropy S really results to be increasing along
the solution trajectories; infact (compare with (2.22))

∂tS(e, χ)(t) = (δeS(e, χ), ∂te)H + (δχS(e, χ), ∂t
χ)H(2.29)

=

∫
Ω

− div(κ1∇δeS)δeS dx+ κ2µ
−1

∫
Ω

|δχS|2 dx ≥ 0

(integrate by parts the first term and exploit again the boundary conditions) and this
naturally yields the desired thermodynamical justification of all the models that can
be described in this setting (corresponding to the various choices of S and e).

The above considerations suggest to investigate other models, where also the phase-
field is a conserved quantity (see again [70] for further physical details): here, relation
(2.26) is substituted by

(2.30) µ∂t
χ = − div(κ2∇δχS) in Q,
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so that, by suitably modifying (2.29), it could be seen that also in this case the entropy
is increasing along the trajectories of solutions. Notice also that the presence of the
term |∇χ|2 in the expression of S implies that the corresponding evolution equation
for the phase variable comes out to be of the fourth order in space. These kind of
models have been deeply studied by [47, 48]; we also quote the papers [68, 29, 28],
which are related to the case where memory effects (see below) are present.

Finally, in view of the study of phase-field equations which will be carried out in
the next section, it remains to mention another extension of the model, which can be
derived by means of the Penrose-Fife approach (indeed, in their original paper, it is the
standard model which is derived as a linearization of the following). In our notation,
we have to substitute (2.27) with the following

(2.31) e = −1

θ
− λ(χ), s(e, χ) = −1

2
(e+ λ(χ))2 − (χ2 − 1)2,

with the agreement that now θ stays for the absolute temperature (so that it is always
θ > 0). Developing as before the computations of (2.25–2.26), it is easy to derive the
following system (for the sake of simplicity we omit some coefficients)

∂t(θ + λ(χ)) + ∆

(
1

θ

)
= f in Q,(2.32)

∂t
χ−∆χ+ χ3 − χ =

λ′(χ)

θ
in Q,(2.33)

which has been studied for instance in the papers [83, 52].
Another class of extensions of the phase-field model can be obtained by modifying

instead the heat equation and in particular the Fourier heat flux law (2.2). Two
important choices, accounting for models with thermal memory effects, are provided
by the following alternative constitutive relations:

q(t) = −
∫ t

−∞
k(t− s)∇θ(s) ds− k0∇θ(t) (Coleman–Gurtin, [24]),(2.34)

q(t) = −
∫ t

−∞
k(t− s)∇θ(s) ds (Gurtin–Pipkin, [43]).(2.35)

In both cases, k is a known function of time of suitable regularity; in (2.35) k is
supposed smooth and such that k(0) > 0; in (2.34), instead, the regularity requests on
k are in general lower, but we need that k0 > 0 and, moreover, that for some α > 0,
and for all v ∈ L2(0, T ),

(2.36)

∫ t

0

k0v
2(s) ds+

∫ t

0

(k ∗ v)(s)v(s) ds ≥ α

∫ t

0

v2(s) ds for all t ∈]0, T [.

This positivity assumption on the kernel k ensures that, if the past history of the
temperature is known up to the instant t = 0, substituting (2.34) into the diffu-
sion relation (2.1), we obtain a parabolic heat equation with one more convolution
term; in the Gurtin-Pipkin case, instead, since no global positivity is supposed for k,
one could check (see [25]) that the resulting heat-like equation, rewritten in terms of
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the time-integral of θ, assumes a hyperbolic character (see also the paper [44] for a
thermodynamical survey on hyperbolic heat propagation phenomena). For a further
discussion and mathematical results on these models, we refer to [12, 25, 26, 27] and
again to [68, 29, 28] (for the phase-conserved case).

We conclude this discussion on the physical framework, by briefly presenting the
phase-relaxation model [85], which can be seen as an intermediate situation between
the Stefan and phase-field ones (also from a historical point of view; indeed, it is
preceding to the phase-field); this model couples the standard heat equation (2.11)
with the relation

(2.37) µ∂t
χ+A(χ)− 4c2

ν
χ 3 cθ in Q

(compare with (2.23)); here, A is a maximal monotone graph in R×R and the other
terms are as in (2.23). In particular, two physically relevant choices are A = ∂I[−1,1],
with c2 = 0 (corresponding to a gradient flow problem for the true Stefan model)
and A(χ) = 4c2ν

−1χ3, accounting for a phase-field equation with negligible spatial
diffusion of phase.

It also makes sense to couple the heat equation with a time-stationary phase-
diffusion dynamics (think of µ2 very small or see an accurate thermodynamical justi-
fication in [71]) of the form (compare again with (2.23))

(2.38) −c1ν∆χ+
4c2
ν

(χ3 − χ) = cθ in Q.

This model has been studied in [71] and [27] (in the thermal memory case).
We finally remark that the interest of this last model, as well as of the phase-

relaxation one, is also due to the fact that they can be seen in a natural way as
singular limits of the true phase-field system for vanishing µ and, respectively, c1.
Later, we shall perform these analyses in the case of transmission systems, which is
much more delicate due to the resulting discontinuity of coefficients.

2.2 Known results

We present here a short overview of some more or less classical results concerning the
physical models discussed in the previous section. As before, we advance no claim
of completeness; we only wish to provide a list of basic results and some references,
which should turn out to be useful as elements of background and comparison for the
new problems which we will present in the sequel.

2.2.1 Results on the Stefan problem

Due to its stricter connexions with the phase-field models, we only refer here to the
weak formulation (w.S.p.); for an overview of the (important!) results about (s.S.p.),
we refer to the monograph [64] and to the papers by Caffarelli [18] and Athanasopoulos,
Caffarelli and Salsa [2, 3, 4], which are especially concerned with the smoothness of the
phase interface S under suitable assumptions on data. With respect to the formulation
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(2.11), (2.13), here we prefer to give the mathematically precise statement of (w.S.p.)
in terms of θ and of a new variable, that is the enthalpy e, defined as e := θ + λχ

(indeed these are the natural variables for the weak Stefan problem; look for instance
at the Cauchy condition below). Hence, we can introduce the following (f and k are
as in the previous section)

Problem 2.2.1 (ST). Given a maximal monotone graph β ⊂ R × R and an initial
value e0 : Ω→ R, we look for a couple of sufficiently regular functions (θ, e) : Q→ R,
satisfying the following system of equations

∂te− div(k∇θ) = f a.e. in Q,(2.39)

θ ∈ β(e) a.e. in Q,(2.40)

e(0) = e0 a.e. in Ω,(2.41)

along with suitable (for instance, Dirichlet or Neumann) boundary conditions.

We remark that, if the enthalpy e is defined exactly as above, it easily results that
the graph β corresponding to the α of (2.12) (“physical case”) is given by

(2.42) β(s) =


s+ λ if s < −λ,
0 if |s| ≤ λ,
s− λ if s > λ.

Apart from the first results of Kamenostskaja and Oleinik quoted in the previous
subsection, the first to address the problem through modern subdifferential techniques
and to obtain significant results in a variational setting was Damlamian [32] in 1977.
Now we briefly present his approach which fits very well the convex analysis machinery
described in Section 1.2.

We begin by specifying in some detail the variational framework. First of all, let
us choose (for example) third-type boundary conditions in the form

(2.43) (k∇θ) · n + pθ = g on ∂Ω×]0, T [,

where it is p ∈ L∞(∂Ω×]0, T [), with p > p0 > 0 a.e., and g ∈ L2(0, T ;H1/2(∂Ω)),
so that we can restate Problem (ST) in the Hilbert triplet V = H1(Ω), H = L2(Ω),
V ′ = H1(Ω)′, where V is endowed with the scalar product (clearly equivalent to the
standard one)

(2.44) ((v, w)) :=

∫
Ω

k∇v · ∇w dx+

∫
∂Ω

pvw dx for v, w ∈ V .

We also denote by F : V → V ′ the Riesz operator associated to the above scalar
product (cf. Subsec. 1.1.3).

In order to handle (ST), it is necessary to reinterpret the constitutive relation (2.40)
in an abstract form; for this purpose, we need to assume a coercivity property on the
graph β, which seems essential for the solution of all this kind of problems (and which
fortunately is verified in the physical case (2.42)). Hence, we introduce a notation:
here and for the rest of the dissertation, given a maximal monotone graph β ⊂ R×R
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such that 0 ∈ β(0), we shall name convex primitive of β the function j : R→ R∞ such
that β = ∂j, and, furthermore, j(0) = min{j} = 0 (it is clear that such a function can
always be constructed). Now, in this case, we require precisely that

(2.45) lim inf
r→∞

j(r)

|r|2
= m > 0.

We also point out (compare with Theorem 1.2.17) that the above condition ensures
the surjectivity of α (and it is actually stronger).

We now want to reinterpret assumption (2.40) in the framework of the Hilbert
space V ′ (and not of H, where this operation would have been immediate referring to
the results of Section 1.2.3). For this purpose, we define a new convex functional on
V ′, that is

(2.46) JV ′(w) :=


∫

Ω

j(w(x)) dx if w ∈ L2(Ω) and j(w) ∈ L1(Ω),

+∞ otherwise,

We remark that this definition is similar to that of (1.47) in Section 1.2.3; however,
since here w is allowed to vary in V ′, it is a priori not obvious why the functional
JV ′ should be l.s.c. (indeed, the topology of V ′ is less fine than that of H). We recall
that this is true, instead, for JH := (JV ′)|H . The crucial hypothesis which guarantees
the lower semicontinuity of JV ′ is precisely (2.45), as it is proved in a more general
framework in Subsec. 3.2.3 (Prop. 3.2.5) below.

We can now state Damlamian’s result in its precise mathematical version (in-
deed, in the original paper, more elaborate boundary conditions are required; here, we
present a somehow simplified statement, in whose proof, anyway, all the main ideas
are still present).

Theorem 2.2.2 (Damlamian). If it is f ∈ L2(0, T ;V ′) and e0 ∈ H, with j(e0) ∈
L1(Ω), then there exists a unique couple (θ, e) of real-valued functions on Q of the
regularity

e ∈ H1(0, T ;V ′) ∩ L∞(0, T ;H),(2.47)

θ ∈ L2(0, T ;V ),(2.48)

such that (2.40–2.41) hold, as well as the following weaker form of (2.39)

(2.49) ∂te+ Fθ = f in V ′ for a.e. t ∈]0, T [.

Moreover, if β is Lipschitz continuous, f ∈ L2(0, T ;H), and θ0 := β(e0) ∈ V (θ0 is
well-defined since β is now single-valued), then we have the additional regularity

(2.50) θ ∈ L∞(0, T ;V ) ∩H1(0, T ;H).

Proof. We only give here a short idea of the existence part of the proof; indeed,
later we shall insist on similar techniques in a greater detail. Denoting by ∂V ′JV ′ the
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subdifferential of JV ′ as a monotone operator of V ′ (identified here with its dual), we
consider the auxiliary abstract system in the space V ′

(2.51)


∂te+ w = f a.e. in ]0, T [,
w ∈ ∂V ′JV ′(e) a.e. in ]0, T [,
e(0) = e0 ( ∈ D(JV ′)).

Owing for instance to [14, Theorem 3.6, pages 72–73], it has a unique solution e ∈
H1(0, T ;V ′), such that

(2.52) JV ′(e) ∈ L∞(0, T ).

Setting now θ := F−1(w), we see that (2.49) and (2.48) are immediate, while it remains
to prove the second of (2.47) and (2.40). For this purpose, we observe that, owing to
the results of Subsec. 3.2.4 (to which we refer, here and below, for further details on
the mathematical background), the second of (2.51) is equivalent to

(2.53) e ∈ ∂V,V ′J∗V ′(θ).

Here ∂V,V ′J∗V ′ denotes the subdifferential of J∗V ′ , which is now seen as a monotone
graph in V × V ′: indeed, we have come back to the identification of H with H ′.
Now, it is easy to see that (2.40) follows by calculating explicitely J∗V ′ and recalling
Theorem 1.2.22, once observed that, by (2.46), the effective domain of JV ′ is contained
in H. The second of (2.47) is now a consequence of the coercivity property (2.45) (see
again Subsec. 3.2.4 below) and of (2.52).

Finally, to prove the additional regularity (2.50), we set γ := β−1 and approxi-
mate it with its Yosida-regularization γε; if we write the regularized form of (2.49) as
∂tγε(θ)+Fθ = f , we see that this equation can be easily solved by means of standard
techniques of resolution for evolution equations with Lipschitz nonlinearities. Now,
defining βε := γ−1

ε , it is not difficult to get some a priori estimates (see [32] for the
complete procedure), exploiting the Lipschitz continuity of β, which permit to pass to
the limit “inside” βε.

The above result can taken as a starting point for the resolution of various types of
generalized Stefan-like problems. For instance, one could wonder if the coercivity as-
sumption (2.45) could be dropped; indeed, with a more delicate procedure (see the
references in [32]), we can weaken it to

(2.54) lim inf
r→∞

j(r)

|r|
= m > 0

(see also [10]); if β is completely arbitrary, the problem seems no longer solvable (at
least with Hilbert space techniques) in the general case, unless some compatibility
hypotheses are assumed; for instance, in [33], it is shown that (ST) is solvable for
every monotone graph β, provided that

(2.55) p−1g ∈ β(h) a.e. on Σ, for some h ∈ L2(Σ);

the proof requires in this case a careful approximation of the graph β, which is per-
formed in order to recover some more coercivity from the boundary term.
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Another kind of troubles arises when pure Neumann conditions are assumed (p ≡
0); infact, in this case the problem is no more coercive, so that, endowing now V with
its usual scalar product (and denoting again by F the associated Riesz operator), it
is easy to see that (2.49) should be modified as

(2.56) ∂te+ Fθ = f + θ in V ′, for a.e. t ∈]0, T [.

It is natural to try to solve this equation through a Banach fixed point argument;
anyway, this works only provided that β is Lipschitz [32]. In the general case, it seems
that strong compatibility conditions on data must be assumed; for instance, Kenmochi
[46] is able to treat the case of D(β) bounded, under nonresonance conditions on data

(2.57)
1

|Ω|

(∫
Ω

e0 dx+

∫ t

0

∫
Ω

f dx ds+

∫ t

0

∫
Γ

g dHN−1 ds

)
∈ intD(β);

for other related results, see also the references of the quoted paper.
Finally, we conclude by observing that the weak Stefan problem can also be at-

tacked by L1–semigroup techniques [62, 16]; indeed, the operator −∆β(·) turns out
to be m-accretive [9] in the space L1(Ω). Here, we do not discuss this approach since
it has no connexions with the object of the next chapters; we just observe that in
this framework an hypothesis like (2.45) is no longer required; anyway, less regular
solutions will correspondently be obtained.

2.2.2 The phase-field model: existence and uniqueness of so-
lutions

In this section, we present an approach to the parabolic phase-field system which is
based on a Faedo-Galerkin approximation scheme; indeed, this method, which is alter-
native to the finite-differences argument which will be employed in the next chapter
for a more general problem, can be considered almost classical [53], since all the non-
linearities exhibited by the system are of rather standard types (monotone or even
Lipschitzian). Nevertheless, we want to present also this approach in order to provide
an element of comparison for the less elementary results of the sequel; moreover, the
contents of this section will be useful also for the case of transmission problems, since
the proofs of several estimates are simpler in this less general framework.

We begin by recalling again some basic hypotheses: let Ω ⊂ RN be a smooth (say,
C2), bounded and connected domain, T < +∞ a fixed final time. Set H = L2(Ω)
and V = H1(Ω) on account of Neumann boundary conditions (the Dirichlet case is
analogous and even simpler) and also Q := Ω×]0, T [, Qt := Ω×]0, t[, Σ := ∂Ω×]0, T [,
Σt := ∂Ω×]0, t[ for t ∈]0, T ]. Assume also that α ⊂ R × R is a maximal monotone
graph such that 0 ∈ α(0) and name j its convex primitive (see Subsection 2.2.1).
Suppose also that

f ∈ L2(0, T ;V ′),(2.58)

θ0 ∈ H, χ
0 ∈ V, χ

0 ∈ D(j) a.e. in Ω, with j(χ0) ∈ L1(Ω),(2.59)

γ ∈ C1(R,R) with γ′ ∈ L∞(2.60)

λ ∈ C2(R,R) with λ′, λ′′ ∈ L∞(2.61)

µ, ν > 0 fixed constants.(2.62)
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Since we have little regularity on data, the phase-field equations will be addressed
in a variational framework; thus, we have to introduce the operator

(2.63) A : V → V ′, 〈Av, z〉 :=

∫
Ω

∇v · ∇z dx for v, z ∈ V .

We can now state the existence and uniqueness result for the phase field system

Theorem 2.2.3. Assuming (2.58–2.62), there exists a triplet (θ, χ, ξ) of regularity

θ ∈ L2(0, T ;V ) ∩H1(0, T ;V ′)(⊂ C0([0, T ];H), by Prop. 1.1.14 (a)),(2.64)

χ ∈ C0([0, T ];V ) ∩H1(0, T ;H) ∩ L2(0, T ;H2(Ω))(2.65)

ξ ∈ L2(0, T ;H),(2.66)

satisfying the following generalized phase-field system

∂t(θ + λ(χ)) + Aθ = f in V ′, a.e. in ]0, T [,(2.67)

µ∂t
χ− ν∆χ+ ξ + γ(χ) = λ′(χ)θ a.e. in Q,(2.68)

ξ ∈ α(χ) a.e. in Q,(2.69)

∂n
χ = 0 on Σ, in sense of traces,(2.70)

θ(·, 0) = θ0, χ(·, 0) = χ
0 a.e. in Ω.(2.71)

Moreover, we have uniqueness of solutions if λ is linear (λ(r) = `r for all r ∈ R,
so that λ′′ = 0); in the general case, uniqueness is ensured between the solutions also
fulfilling either

θ ∈ L1(0, T ;L∞(Ω)), or,(2.72)

only in dimension N = 3, θ ∈ L∞(0, T ;L3(Ω)).(2.73)

Proof of uniqueness. Suppose to have a couple of solutions, say (θ̂, χ̂, ξ̂) and (θ̌, χ̌, ξ̌)
to (2.67–2.71). Adding θ to both hands sides of (2.67) and calling F the Riesz operator
of V (which is now endowed with the standard scalar product), we can rewrite that
equation as

(2.74) ∂t(θ + λ(χ)) + Fθ = f + θ in V ′, a.e. in ]0, T [,

Set now θ := θ̂ − θ̌, χ := χ̂− χ̌ and ξ := ξ̂ − ξ̌; substitute first (θ̂, χ̂, ξ̂), then (θ̌, χ̌, ξ̌),
into equation (2.74) and take the difference; multiply it by F−1(θ+λ(χ̂)−λ(χ̌)); then,
integrate over ]0, t[, t ≤ T . Exploiting the usual properties of the Riesz operator (see
Subsec. 1.1.3), it follows

1

2
‖θ(t) + (λ(χ̂)− λ(χ̌))(t)‖2∗ + ‖θ‖2L2(0,t;H)(2.75)

=

∫ t

0

(
θ,F−1(θ + λ(χ̂)− λ(χ̌))

)
ds−

∫ t

0

(
θ, λ(χ̂)− λ(χ̌)

)
ds =: I1 + I2
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We now estimate the integrals on the right hand side. We have (σ and Cσ are, here
and below, as in (1.25))

I1 ≤ ‖θ‖L2(0,T ;V ′)‖θ + λ(χ̂)− λ(χ̌)‖L2(0,T ;V ′)(2.76)

≤ σ‖θ‖2L2(0,T ;H) + Cσ‖θ + λ(χ̂)− λ(χ̌)‖2L2(0,T ;V ′),

I2 ≤
1

2
‖θ‖2L2(0,T ;H) +

‖λ′‖2L∞(R)

2
‖χ‖2L2(0,T ;H).(2.77)

Let us now put first (θ̂, χ̂, ξ̂), then (θ̌, χ̌, ξ̌) into equation (2.68), take the difference and
multiply it by χ. Proceeding in a similar way as before and exploiting the monotonicity
of α, we infer (Cγ > 0 below depending only on γ)

µ

2
‖χ(t)‖2H + ν‖∇χ‖2L2(0,t;H) ≤ Cγ‖χ‖2L2(0,t;H) +

∫ t

0

∫
Ω

λ′(χ̂)θχ dx ds(2.78)

+

∫ t

0

∫
Ω

(λ′(χ̂)− λ′(χ̌)) θ̌χ dx ds =: Cγ‖χ‖2L2(0,t;H) + I3 + I4.

Thanks to the boundedness of λ′ and to (1.24), we immediately have

(2.79) I3 ≤
1

4
‖θ‖2L2(0,t;H) + C‖χ‖2L2(0,t;H),

(here and below, C > 0 is a constant only depending on data) while the estimate of
I4 is more delicate; indeed, in case λ is linear, we have I4 = 0; otherwise,

(2.80) I4 ≤ ‖λ′′‖L∞(R)

∫ t

0

∫
Ω

|θ̌|χ2 dx ds.

In any case, we sum together (2.75) and (2.78): if (2.72) holds, then we conclude
by means of simple considerations based on the Gronwall inequality; in the case of
(2.73), instead, thanks to the three-dimensional Sobolev embedding H1 ⊂ L6 (see
Theorem 1.1.2), we have

(2.81) I4 ≤ C‖θ̌‖L∞(0,t;L3(Ω))‖χ‖L2(0,t;H)‖χ‖L2(0,t;V ) ≤ σ‖χ‖2L2(0,t;V ) + Cσ‖χ‖2L2(0,t;H),

and the uniqueness follows again from the Gronwall lemma.

Proof of existence. First of all, we introduce a double approximation of the phase-
field system, through the substitution of the graph α with its Yosida-regularization
αε, joint with a Faedo-Galerkin scheme. Since we need a particular family of allowable
test functions (see [53]), we consider the following eigenvalue problem

(2.82)

{
vn ∈ V
Avn = λnvn in V ′,

where the eigenvalues λn are ordered in an increasing sequence and counted according
to their respective multiplicities, so that we can assume that their associated eigenvec-
tors vn form an orthonormal basis of H and an orthogonal system of V ; if we define
Vn := span{v1, . . . , vn} and V∞ := ∪∞n=1Vn, we get that V∞ is dense in V .
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For every n ∈ N, we now look for a couple of functions

(2.83) θn =
n∑

j=1

ajn(t)vj, χn =
n∑

j=1

bjn(t)vj,

where ajn and bjn are real-valued functions of time, solving the following finite-
dimensional approximation of system (2.67–2.68), which we state in a variational form
in order to avoid use of projection operators:∫

Ω

∂t(θ
n + λ(χn))v dx+

∫
Ω

∇θn · ∇v dx =

∫
Ω

f v dx(2.84)

µ

∫
Ω

∂t
χnv dx+ ν

∫
Ω

∇χn · ∇v dx =

∫
Ω

(λ′(χn)θn − αε(χ
n)− γ(χn))v dx(2.85)

holding for any v ∈ Vn and a.e. t ∈]0, T [.
Moreover, choosing successively v = vh, for h = 1, . . . , n in (2.84–2.85), taking into

account the substitution of α with αε, and using the expression (2.83) of the unknowns,
we are able to interpret the previous system as a system of vectorial ODE’s

(2.86)

{
a′ + Λna = f − λ̃′(b)b′

µb′ + νΛnb + α̃ε(b) + γ̃(b) = λ̃′(b)a.

Here, (a,b) are the vectors (ahn(t), bhn(t))h=1,...,n, Λn the diagonal matrix of the first

n eigenvalues of (2.82), fh := 〈f, vh〉 and λ̃′, α̃ε, γ̃ are Lipschitz continuous functions of
the unknowns deriving from λ′, αε, γ, respectively. To solve the above system, we also
have to adapt the Cauchy conditions (2.71) to it; thus, we approximate (θ0, χ0) with
a sequence

(2.87) (θ0,n, χ0,n) ⊂ V 2
n , with (θ0,n, χ0,n)→ (θ0, χ0) in V 2,

that is, for some ajn,0, bjn,0 ∈ Rn,

(2.88) (θ0,n, χ0,n) =

(
n∑

j=1

ajn,0vj,
n∑

j=1

bjn,0vj

)
.

Moreover, thanks to the quadratic growth of jε and to (2.87), we can also assume

(2.89)

∫
Ω

jε(χ0,n) dx ≤ 1 +

∫
Ω

jε(χ0) dx

at least for n sufficiently large (indeed, depending on ε), jε being here the convex
primitive of αε.

We are now ready to solve system (2.86); with this aim, we first have to rewrite it
in a normal form. So, it is sufficient to derive b′ in terms of (a,b) from the second
equation and to substitute it into the right hand side of the first equation. Unfortu-
nately, we see that the right hand sides of the resulting system are Lipschitz continuous
functions of the unknowns a,b only locally; so, Cauchy’s theorem only guarantees ex-
istence and uniqueness of a local solution. This means that, for any ε, n, we can
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find a small final time tn (depending also on ε), such that the system (2.86), with
the initial values (2.88), has a solution defined on [0, tn], of the natural regularity
(θn, χn) ∈ C1(0, tn;Vn)2.

A priori estimation. We derive an a priori estimate for the solutions of the approx-
imation of system (2.67–2.68); this will allow us to pass to the limit first for n → ∞
and then for ε→ 0. As before, C > 0 will denote a constant independent of ε, n, and
also of tn. For this reason, the limit solutions will turn out to have a global character,
being defined in the whole interval [0, T ]. Hence, for the sake of simplicity, we shall
directly perform the next computations with T in place of tn as a final referring time.

Multiply (2.84) by θn and (2.85) by ∂t
χn. Summing together the resulting relations,

integrating them over Qt, t ≤ T , noting that two terms cancel, and performing stan-
dard integrations by parts, also with the aid of (1.25) we infer the following (Cγ, σ, Cσ

are as before)

1

2
‖θn(t)‖2H + ‖∇θn‖2L2(0,T ;H) + µ‖∂t

χn‖2L2(0,T ;H) +
ν

2
‖∇χn(t)‖2H(2.90)

+

∫
Ω

jε(χ
n(t)) dx ≤ 1

2
‖θ0,n‖2H +

ν

2
‖∇χ0,n‖2H +

∫
Ω

jε(χ0,n) dx

+ Cσ‖f‖2L2(0,t;V ′) + σ‖θn‖2L2(0,t;V ) + CσCγ‖χn‖2L2(0,t;H) + σ‖∂t
χn‖2L2(0,t;H).

From this relation, using also the Gronwall inequality and the properties (2.87) and
(2.89) of the initial data, it is immediate to deduce the priori bounds corresponding
to the following convergences (holding up to the extraction of subsequences):

θn → θε in L∞(0, T ;H)-weak∗ and in L2(0, T ;V )–weak,(2.91)

χn → χε in L∞(0, T ;V )-weak∗ and in H1(0, T ;H)–weak,(2.92)

whence, on account of the Aubin compactness theorem (see [82, Cor. 4, Sec. 8]), we
also infer:

(2.93) χn → χε in C0([0, T ];H)-strong.

Thanks to the Lipschitz continuity of λ′, αε, this immediately entails

λ′(χn)→ λ′(χε) in C0([0, T ];H)-strong,(2.94)

αε(χ
n)→ αε(χ

ε) in C0([0, T ];H)-strong,(2.95)

γ(χn)→ γ(χε) in C0([0, T ];H)-strong,(2.96)

and, also on account of the Sobolev immersion theorem,

λ′(χn)∂t
χn → λ′(χε)∂t

χε in L2(0, T ;Lp(Ω))-weak,(2.97)

λ′(χn)θn → λ′(χε)θε in L∞(0, T ;Lq(Ω))-weak∗,(2.98)

for some exponents p, q > 2 depending on the space dimension.
All these convergences are enough to pass to the limit in equations (2.84–2.85), so

that we get the system

∂t(θ
ε + λ(χε)) + Aθε = f in V ′(2.99)

µ∂t
χε + νAχε + αε(χ

ε) + γ(χε) = λ′(χε)θε in V ′.(2.100)
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Now, it remains to pass to the limit with ε; here, the procedure is the same as before for
what concerns (2.91–2.94) and (2.96–2.98), while, to pass to the limit in the nonlinear
term αε(χ

ε), we have to use the monotonicity argument of Prop. 1.3.8 and precisely
with (χε, χ) in place of (xn, x), (αε, α) in place of (An,A), and αε(χε) in place of yn.

To determine what corresponds to y, we have to deduce a weak convergence for
αε(χε), which, together with the strong convergence (2.93), will guarantee (1.61) and
the possibility to pass to the limit.

To get this, it is enough to test equation (2.100) by αε(χε): using the Gauss-Green
formula, the monotonicity of αε, and the Young inequality (1.25), we easily derive the
boundedness

(2.101) ‖αε(χε)‖L2(0,T ;H) ≤ C,

which allows to identify by extraction of a subsequence the desired value y and to pass
to the limit in the system (2.99–2.100).

Now the proof of the existence part of Theorem 2.2.3 is complete, except for the
C0([0, T ];V ) regularity of χ; to obtain this, we first observe that, by comparison in
(2.100), Aχε is bounded in L2(0, T ;H), so that we can apply to equation (2.68) the
abstract regularity Theorem 1.1.16.

2.2.3 The phase-field model: regularity

Let us present the regularity theorem for system (2.67–2.71), which naturally holds
under stronger assumptions on data.

Theorem 2.2.4. Suppose that, besides (2.58–2.62), also the additional hypotheses

(2.102) f ∈ L1(0, T ;H) +W 1,1(0, T ;V ′), θ0 ∈ V

are fulfilled. Then, any solution of (2.67–2.71) satisfies also

(2.103) θ ∈ C0([0, T ];V ) ∩H1(0, T ;H) ∩ L2(0, T ;H2(Ω))

and equation (2.67) actually holds a.e. in Q, together with the Neumann condition
for θ: ∂nθ = 0 on Σ. Also, notice that in this case, owing to the Sobolev immersion
theorem (Theorem 1.1.2), (2.72) is verified in dimension 3, so that now the solution
comes out to be unique.

Finally, if we assume we are in 3 space dimensions and also suppose that

χ
0 ∈ H2(Ω), with ∂n

χ
0 = 0 on Γ,(2.104)

there exists ξ0 ∈ H, such that ξ0 ∈ α(χ0) a.e. in Ω,(2.105)

then we get the further regularity for the phase variable

(2.106) χ ∈ W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;H2(Ω)).
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Proof. It is based on further a priori estimates for the solutions of the Faedo-
Galerkin approximate problem; since, as we have seen, the basic regularity provided
by Theorem 2.2.3 is enough to pass to the limit, for the sake of simplicity, we just
perform the estimates in a formal way on the solutions of the original problem. Nat-
urally, in this framework, some passages could be unjustified; in that case, we shall
give a remark about the correct procedure.

Regularity of θ. Split f as f = f1 + f2, with f1 ∈ W 1,1(0, T ;V ′) and f2 ∈
L1(0, T ;H). Multiply (2.67) by ∂tθ: integrating over Qt the resulting relation, we
easily infer

‖∂tθ‖2L2(0,t;H) +
1

2
‖∇θ(t)‖2H(2.107)

=
1

2
‖∇θ0‖2H −

∫ t

0

∫
Ω

λ′(χ)∂t
χ∂tθ dx ds+

∫ t

0

〈f1, ∂tθ〉 ds

+

∫ t

0

∫
Ω

f2∂tθ dx ds =: I1 + I2 + I3.

Now, we estimate the three integrals on the right hand side. As for I1, it is enough
to recall the boundedness of λ′, use (1.25) and control the L2-norm of ∂t

χ by means
of the previously obtained estimates; for the second term, through an integration by
parts, we obtain:

I2 = −
∫ t

0

〈∂tf1, θ〉 ds+ 〈f1(t), θ(t)〉 − 〈f1(0), θ0〉(2.108)

≤
∫ t

0

‖∂tf1‖V ′ (‖θ‖H + ‖∇θ‖H) ds+ σ‖θ(t)‖2V ′ + Cσ‖f1‖2L∞(0,t;V ′) + C

(also on account of the regularity of data), while the third one simply reads

(2.109) I3 ≤
∫ t

0

‖f2‖H‖∂tθ‖H ds;

so, owing to these estimations of I1, I2, I3, it is easy to see that the first part of the
thesis follows now from the Gronwall lemma in the form of Prop. 1.1.15, by also
exploiting Theorem 1.1.16 to get the C0–regularity.

Regularity of χ. Let us formally differentiate relation (2.68) (observe that it can
happen that β is not differentiable; this is not a problem, since we should reason on
βε). We simply get

(2.110) µ∂tt
χ− ν∆∂t

χ+ β′(χ)∂t
χ+ γ′(χ)∂t

χ = λ′′(χ)∂t
χθ + λ′(χ)∂tθ.

Multiplying the above relation by ∂t
χ, integrating as before, we infer

µ

2
‖∂t

χ(t)‖2H + ν‖∇∂t
χ‖2L2(0,t;H) +

∫ t

0

∫
Ω

β′(χ)(∂t
χ)2 dx ds(2.111)

=
µ

2
‖∂t

χ(0)‖2H −
∫ t

0

∫
Ω

γ′(χ)(∂t
χ)2 dx ds+

∫ t

0

∫
Ω

λ′′(χ)(∂t
χ)2θ dx ds

+

∫ t

0

∫
Ω

λ′(χ)∂t
χ∂tθ dx ds =:

µ

2
‖∂t

χ(0)‖2H + I4 + I5 + I6.
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We now forget for a while of the term with ∂t
χ(0) on the right hand side and we

estimate the integrals. As for I4 and I6, it is enough to exploit (1.25) and recall the
boundedness of γ′, λ′ and the L2(Q)-estimate for ∂t

χ. I5 needs instead a more accurate
treatment:

I5 ≤ C

∫ t

0

‖∂t
χ‖H‖∂t

χ‖L4(Ω)‖θ‖L4(Ω) ds ≤ σ

∫ t

0

‖∇∂t
χ‖2H ds+ Cσ

∫ t

0

‖∂t
χ‖2H ds,

where Cσ, which has the same meaning as in (1.25), depends now on the L∞(0, T ;V )-
norm of θ and we have used the 3-dimensional immersion V ⊂ L4.

This is enough to control all the terms on the right hand side, with the exception of
∂t
χ(0); first of all, we observe that here ∂t

χ is not continuous; hence, in this framework
such a term does not make sense; however, if this estimate were performed at the level
of the Faedo-Galerkin approximation, its meaning would have been guaranteed by
χ ∈ C1([0, tn], Vn).

Anyway, we go on in a formal way, by substituting t = 0 into equation (2.68) and
deriving

(2.112) ∂t
χ(0) = µ−1 (ν∆χ0 − ξ0 − γ(χ0) + λ′(χ0)θ0) ,

which is an element of H by virtue of the boundedness of λ′ and by the supplementary
hypotheses (2.104–2.105). This permits to control also the remaining term on the right
hand side of (2.111) and to conclude the proof of Theorem 2.2.4 (again, an application
of the Gronwall lemma is required).



Chapter 3

Resolution of the phase-field
system

We present in this chapter a natural abstract framework for the previously discussed
phase-field system; we shall prove in a more general setting some existence, uniqueness
and regularity results, corresponding to the Theorems 2.2.3 and 2.2.4 of the previous
chapter. In particular, in the first section, we introduce the abstract formulation, and
we prove some related existence, uniqueness, and regularity theorems; in the second
one we first retrieve as a particular case the results about the concrete phase-field sys-
tem of the last chapter (indeed only under the hypothesis of a linear latent heat); then,
we see that the abstract machinery can be adapted also to the case of transmission
problems between fluids with different thermodynamical characteristics, at least under
some compatibility or growth conditions on the involved thermodynamical potentials.
As a final application, we eventually discuss another kind of transmission problems
for the phase-field model, which are related to a diffusion dynamics of a concentrated
capacity type. The results of this chapter are in course of publication in the paper
[79], save for the last section (discussing the concentrated capacity problem) whose
contents are essentially included in [77].

3.1 An abstract approach

3.1.1 The mathematical problem

We put ourselves at once in the abstract setting of Subsec. 1.1.3. So, let us suppose
to have two Hilbert spaces V,H, with V densely and compactly embedded into H, in
order that (V,H, V ′) form a Hilbert triplet, and denote with (·, ·) the scalar product
of H and with 〈·, ·〉 the duality pairing between V ′ and V . Moreover, take some T > 0
as an arbitrary final time.

Here are the minimal regularity hypotheses which the data of the abstract problem

50
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are required to satisfy:

α, λ0, C0, C1, C2, ρ, µ > 0 fixed constants(3.1)

P,L,M,Λ ∈ L(H) symmetric operators(3.2)

A,B ∈ L(V, V ′) symmetric operators(3.3)

f ∈ L2(0, T ;V ′)(3.4)

(Ph, h) ≥ ρ‖h‖2H for all h ∈ H(3.5)

(Mh, h) ≥ µ‖h‖2H for all h ∈ H(3.6)

〈Av, v〉 ≥ α‖v‖2V − λ0‖v‖2H for every v ∈ V(3.7)

〈Bv, v〉 ≥ α‖v‖2V − λ0‖v‖2H for every v ∈ V .(3.8)

We also suppose

(3.9) γ : V → H, nonlinear demicontinuous operator

(recall Def. 1.2.12 (a)), enjoying the following boundedness and coerciveness assump-
tions:

‖γ(v)‖2H ≤ C1 + C2‖v‖2V for all v ∈ V(3.10)

(γ(w)− γ(v), w − v) ≥ −C0‖w − v‖2H −
α

2
‖w − v‖2V for all v, w ∈ V .(3.11)

The norms of L and Λ in the space L(H) will be denoted by ` and λ respectively.
Let us also be given a function

(3.12) J : V → [0,+∞] convex, lower semicontinuous and proper

On account of Remark 1.2.6, it is natural to consider the subdifferential of J as an
operator from V to V ′. We repeat the definition also with the purpose of specifying
the notation which will be used throughout this chapter: if v ∈ V , w ∈ V ′, we set

(3.13) w ∈ ∂V,V ′J(v) ⇐⇒ for all z ∈ D(J), it is 〈w, z − v〉 ≤ J(z)− J(v).

We also assume that

(3.14) 0 ∈ D(∂V,V ′J), 0 ∈ ∂V,V ′J(0),

(compare with (2.59); in that case, indeed, we stated the problem in a H-setting
instead that in the (V, V ′)-one).

Finally, here are our basic assumptions on the initial data:

θ0 ∈ H,(3.15)

χ
0 ∈ D(J).(3.16)

We are now ready to introduce the main abstract problem:
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Problem 3.1.1 (aP). We look for a triplet of functions (θ, χ, w) satisfying the fol-
lowing regularity properties

θ ∈ L2(0, T ;V ) ∩ C0([0, T ];H),(3.17)

Pθ ∈ H1(0, T ;V ′) ∩ C0([0, T ];H),(3.18)

χ ∈ L∞(0, T ;V ) ∩H1(0, T ;H),(3.19)

w ∈ L2(0, T ;V ′)(3.20)

and such that the equations

(Pθ)′ + Λχ′ + Aθ = f in V ′,(3.21)

Mχ′ +Bχ+ w + γ(χ) = Lθ in V ′,(3.22)

χ ∈ D(∂V,V ′J) and w ∈ ∂V,V ′J(χ)(3.23)

hold for almost every t ∈ [0, T ].
Moreover we require the following Cauchy initial conditions:

θ(0) = θ0,(3.24)

χ(0) = χ
0.(3.25)

We now state our related existence and uniqueness result (corresponding to The-
orem 2.2.3):

Theorem 3.1.2. There exists a unique solution to Problem (aP), also fulfilling

(3.26) J(χ) ∈ L∞(0, T ).

We also have two simple regularity theorems, which are the analogous of the θ and
χ-parts of Theorem 2.2.4, respectively:

Theorem 3.1.3. Under the following additional assumptions:

f ∈ L2(0, T ;H) +H1(0, T ;V ′),(3.27)

θ0 ∈ V,(3.28)

any solution to Problem (aP) satisfies also:

(3.29) θ ∈ C0(0, T ;V ) ∩H1(0, T ;H),

whence (3.21) can be rewritten in the more usual form

(3.30) Pθ′ + Λχ′ + Aθ = f in V ′.

Theorem 3.1.4. If, in addition to the former hypotheses, we have:

Bχ0 ∈ H,(3.31)

χ
0 ∈ D(∂V,V ′J),(3.32)

there exists w0 ∈ H ∩ ∂V,V ′J(χ0),(3.33)

any solution to Problem (aP) also fulfills:

χ ∈ H1(0, T ;V ) ∩W 1,∞(0, T ;H),(3.34)

w ∈ L∞(0, T ;V ′).(3.35)



resolution of the phase-field system 53

3.1.2 Approximation and a priori estimates

We address Problem (aP) through a backward finite difference approximation scheme,
and, with such a construction in mind, for any n ∈ N, we subdivide the interval [0, T ]
into n parts by setting τ := T/n. We also approximate the heat source term in the
following way:

(3.36) f i :=
1

τ

∫ iτ

(i−1)τ

f(s) ds, for i = 1, . . . , n,

so that we can introduce

Problem 3.1.5 (aPτ ). For every i = 1, . . . , n, find (θi, χi, wi), with θi, χi ∈ V ,
wi ∈ V ′, such that the following equations hold:

P

(
θi − θi−1

τ

)
+ Λ

(
χi − χi−1

τ

)
+ Aθi = f i in V ′,(3.37)

M

(
χi − χi−1

τ

)
+Bχi + wi + γ(χi) = Lθi in V ′,(3.38)

χi ∈ D(∂V,V ′J) and wi ∈ ∂V,V ′J(χi),(3.39)

where we also restate the Cauchy initial conditions in the form:

(3.40) θ0 = θ0, χ0 = χ
0.

The proof of the existence of a solution to the previous problem relies on the
surjectivity properties of coercive monotone operators. Actually, we can define Am :
V 2 → (V ′)2, as
(3.41)

Am(θ, χ) :=

(
Pθ

τ
+ Aθ +

Λχ

τ
,m

Mχ

τ
+mBχ+m∂V,V ′J(χ) +mγ(χ)−mLθ

)
,

where m is a positive constant to be chosen later. Clearly, Am is a multi-valued
operator, since such is ∂V,V ′J ; we now see that it is also maximal monotone and that its
domain is V ×D(∂V,V ′J). With this purpose, we can splitAm asAm = Bm+(Am−Bm),
where

(3.42) Bm(θ, χ) :=

(
Pθ

2τ
,m∂V,V ′J(χ)

)
is clearly maximal monotone with domain V × D(∂V,V ′J), while Am − Bm, at least
for τ sufficiently small, is monotone, single-valued and hemicontinuous (recall again
Def. 1.2.12; in particular, here Am − Bm is demicontinuous and this is a stronger
property) with domain V 2 (to verify the monotonicity of Am−Bm, the same procedure
we are now going to apply to Am can be followed). The maximality of Am is now a
consequence of Theorem 1.2.18 (cf. also [14, Cor. 2.7, pp. 36–37] and the subsequent
observation).
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Moreover, given (θ, χ) ∈ V × D(∂V,V ′J) and (ζ, ξ) ∈ Am(θ, χ) (with w denoting
the element of ∂V,V ′J(χ) corresponding to ξ), we deduce from (3.5–3.8) that

(V ′)2〈(ζ, ξ), (θ, χ)〉V 2 ≥ ρ

τ
‖θ‖2H + α‖θ‖2V − λ0‖θ‖2H +

1

τ
(Λχ, θ)(3.43)

+m
µ

τ
‖χ‖2H +mα‖χ‖2V −mλ0‖χ‖2H +m〈w, χ〉

−m(Lθ, χ) +m(γ(χ)− γ(0), χ− 0) +m(γ(0), χ− 0).

Working now on the last two terms of the previous relation with the aid of (3.10–3.11)
and owing to the monotonicity of ∂V,V ′J and to (3.14), we easily derive the following
coerciveness property:

(V ′)2〈A0
m(θ, χ), (θ, χ)〉V 2 ≥ α‖θ‖2V +

(
ρ

2τ
− `2m

2
− λ0

)
‖θ‖2H(3.44)

+
mα

2
‖χ‖2V +

(
2mµ− λ2ρ−1

2τ
−m(C0 + λ0 + 1)

)
‖χ‖2H −

m

2
‖γ(0)‖2H

(here A0
m(θ, χ) denotes the element of minimum norm in the set Am(θ, χ), recall

Subsec. 1.2.2), which actually permits to solve Problem (aPτ ).
Indeed, choose m = λ2µ−1ρ−1: since (aPτ ) can be rewritten in the form

(3.45)

(
f i +

Pθi−1

τ
+

Λχi−1

τ
,m

Mχi−1

τ

)
∈ Am(θi, χi),

for i = 1, . . . , n, and proceeding by induction on i, owing for instance to [14, Cor. 2.4,
page 31], at least for τ sufficiently small we can find a solution for it satisfying also
the Cauchy conditions (3.40).

In order to remove the approximation, we now derive some a priori estimates for
such a solution; in the following computations, relations (1.24–1.25) will be repeatedly
used, with natural choices of the parameter σ, without further warning.

First a priori estimate. Multiply equation (3.37) by τθi; summing the results for
i = 1, . . . ,m, with m ≤ n, observing also that (σ is as in (1.24))

(3.46) τ〈f i, θi〉 =

∫ iτ

(i−1)τ

〈f(s), θi〉 ds ≤ 1

2σ

∫ iτ

(i−1)τ

‖f(s)‖2V ′ ds+
στ

2
‖θi‖2V

and owing to the symmetry of operators P,A, to (3.5), and to the elementary relation

(3.47)
m∑

i=1

ai(ai − ai−1) =
1

2

[
a2

m +
m∑

i=1

(ai − ai−1)
2 − a2

0

]
for a0, . . . , am ∈ R

(adapted in the natural way to symmetric bilinear forms), we get at once:

ρ

2
‖θm‖2H +

m∑
i=1

ρ

2
‖θi − θi−1‖2H + τ

m∑
i=1

〈Aθi, θi〉 ≤
‖P‖L(H)

2
‖θ0‖2H(3.48)

+
στ

2

m∑
i=1

‖θi‖2V +
1

2σ

∫ mτ

0

‖f(t)‖2V ′ dt−
m∑

i=1

(θi,Λ(χi − χi−1)).
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Test now equation (3.38) with χi − χi−1 and sum again the results for i = 1, . . . ,m,
m ≤ n. Using the definition of subdifferential, recalling also (3.3), (3.6), (3.47), and
proceeding as for the “heat” equation, we easily derive

µτ
m∑

i=1

∥∥∥∥χi − χi−1

τ

∥∥∥∥2

H

+
1

2
〈Bχm, χm〉(3.49)

+
1

2

m∑
i=1

〈Bχi −Bχi−1, χi − χi−1〉+ J(χm)

≤ 1

2
〈Bχ0, χ0〉+ J(χ0) +

m∑
i=1

(Lθi, χi − χi−1)−
m∑

i=1

〈γ(χi), χi − χi−1〉.

Adding now relation (3.49) to (3.48), choosing σ = α and recalling the coercivity
assumptions (3.7), (3.8) and the property (3.10), it is not difficult to obtain, for τ
sufficiently small,

ρ

2
‖θm‖2H +

ατ

2

m∑
i=1

‖θi‖2V + µτ
m∑

i=1

∥∥∥∥χi − χi−1

τ

∥∥∥∥2

H

+
α

2
‖χm‖2V + J(χm)(3.50)

+
ρτ 2

2

m∑
i=1

∥∥∥∥θi − θi−1

τ

∥∥∥∥2

H

+
ατ 2

2

∥∥∥∥χi − χi−1

τ

∥∥∥∥2

V

≤
‖P‖L(H)

2
‖θ0‖2H +

(
λ2 + `2

µ
+ λ0

)
τ

m∑
i=1

‖θi‖2H

+
1

2α
‖f‖2L2(0,mτ ;V ′) +

1

2
〈Bχ0, χ0〉+ J(χ0) +

λ0

2
‖χm‖2H

+

(
3µτ

4
+
λ0τ

2

2

) m∑
i=1

∥∥∥∥χi − χi−1

τ

∥∥∥∥2

H

+
T

µ
C1 +

τ

µ
C2

m∑
i=1

‖χi‖2V .

In order to estimate the ‖χm‖H–term in the right hand side, take equation (3.38)
again and multiply it by τχi; sum on i and recall the symmetry of M . Thanks to
(3.47), it follows

µ

2
‖χm‖2H +

µ

2

m∑
i=1

‖χi − χi−1‖2H + ατ
m∑

i=1

‖χi‖2V + τ
m∑

i=1

〈wi, χi〉(3.51)

≤
‖M‖L(H)

2
‖χ0‖2H − τ

m∑
i=1

(γ(χi), χi) + τ

m∑
i=1

(Lθi, χi) + λ0τ

m∑
i=1

‖χi‖2H

≤
‖M‖L(H)

2
‖χ0‖2H +

T

2
C1 +

C2

2
τ

m∑
i=1

‖χi‖2V

+ (1 + λ0)τ
m∑

i=1

‖χi‖2H +
`2

2
τ

m∑
i=1

‖θi‖2H .

Taking the sum of the previous relation times 2λ0/µ with (3.50), recalling also (3.14)
and applying the Gronwall inequality in its discrete formulation, given by Prop. 1.1.17,
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it is easy to derive the following estimates:

‖θm‖H ≤ C for all n ∈ N and m ≤ n,(3.52)

τ

n∑
i=1

‖θi‖2V ≤ C for all n ∈ N,(3.53)

‖χm‖V ≤ C for all n ∈ N and m ≤ n,(3.54)

τ

n∑
i=1

∥∥∥∥χi − χi−1

τ

∥∥∥∥2

H

≤ C for all n ∈ N,(3.55)

τ 2

n∑
i=1

∥∥∥∥θi − θi−1

τ

∥∥∥∥2

H

≤ C for all n ∈ N,(3.56)

τ 2

n∑
i=1

∥∥∥∥χi − χi−1

τ

∥∥∥∥2

V

≤ C for all n ∈ N(3.57)

J(χm) ≤ C for all n ∈ N and m ≤ n.(3.58)

Here and in the following, C > 0 is a constant allowed to vary from row to row,
but supposed to depend only on the data ρ, µ, α, λ0, C0, C1, C2, θ0, χ0, f, J(χ0) and, in
particular, not on τ .

In view of a limit procedure, we now introduce some interpolating functions ob-
tained from the θi, χi, wi, f i. First, we define the stair function

(3.59) θτ (t) := θi for t ∈](i− 1)τ, iτ ], i = 1, . . . , n

and in the same way we construct χτ , wτ , fτ . Moreover, we also need a piecewise linear
interpolation of the solutions, which is introduced as

(3.60) θ̂τ (t) := θi−1 +
θi − θi−1

τ
(t− (i− 1)τ) for t ∈ [(i− 1)τ, iτ ], i = 1, . . . , n

(and the definition of χ̂τ is analogous). Observe that the above definitions imply:

(3.61) ‖θ̂τ − θτ‖L∞(0,T ;H) ≤ τ 1/2‖θ̂′τ‖L2(0,T ;H)

and similar relations with H and V (or V ′) or θ and χ interchanged. Moreover, we
have that

‖θ̂τ − θτ‖2L2(0,T ;H) =
n∑

i=1

∫ iτ

(i−1)τ

∥∥∥∥θi − θi−1 − θi − θi−1

τ
(t− (i− 1)τ)

∥∥∥∥2

H

dt(3.62)

=
τ 3

3

n∑
i=1

∥∥∥∥θi − θi−1

τ

∥∥∥∥2

H

=
τ 2

3
‖θ̂′τ‖2L2(0,T ;H) ≤

2

3
‖θτ‖2L2(0,T ;H)

(as before, θ can be exchanged with χ andH with V or V ′). Finally, recalling definition
(3.36), standard arguments permit to see that

(3.63) fτ → f in L2(0, T ;V ′)–strong.
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So, we conclude by rewriting estimates (3.52–3.58) in terms of the interpolating
functions:

‖θτ‖L∞(0,T ;H) ≤ C,(3.64)

‖θτ‖L2(0,T ;V ) ≤ C,(3.65)

‖χτ‖L∞(0,T ;V ) ≤ C,(3.66)

‖χ̂′τ‖L2(0,T ;H) ≤ C,(3.67)

τ 1/2‖θ̂′τ‖L2(0,T ;H) ≤ C,(3.68)

τ 1/2‖χ̂′τ‖L2(0,T ;V ) ≤ C,(3.69)

‖J(χτ )‖L∞(0,T ) ≤ C.(3.70)

Moreover, from (3.66), (3.62) (with χ in place of θ) and (3.67), it immediately results
that

(3.71) ‖χ̂τ‖H1(0,T ;H) ≤ C.

The following supplementary estimates hold under the additional regularity hypotheses
stated in Theorems 3.1.3 and 3.1.4 respectively.

Second a priori estimate. Multiply (3.37) by θi − θi−1 and sum as usual for i =
1, . . . ,m; m ≤ n. Owing to (3.27), it is possible to split f = f1 + f2, with f1 ∈
L2(0, T ;H) and f2 ∈ H1(0, T ;V ′). Defining also f i

1 and f i
2 in the natural way imitating

(3.36), observe now that

(f i
1, θ

i − θi−1) =
1

τ

∫ iτ

(i−1)τ

(f1(s), θ
i − θi−1) ds(3.72)

≤ 1

ρ

∫ iτ

(i−1)τ

‖f1(s)‖2H ds+
ρτ

4

∥∥∥∥θi − θi−1

τ

∥∥∥∥2

H

.

Moreover, we have

(3.73)
m∑

i=1

〈f i
2, θ

i − θi−1〉 = 〈fm
2 , θ

m〉+
m∑

i=2

〈f i−1
2 − f i

2, θ
i−1〉 − 〈f 1

2 , θ
0〉,

where the second term on the right hand side reads

m∑
i=2

〈f i−1
2 − f i

2, θ
i−1〉 =

m∑
i=2

∫ iτ

(i−1)τ

〈
f2(s− τ)− f2(s)

τ
, θi−1

〉
ds(3.74)

≤ 1

2

m∑
i=2

∫ iτ

(i−1)τ

∥∥∥∥f2(s− τ)− f2(s)

τ

∥∥∥∥2

V ′
ds+

τ

2

m∑
i=2

‖θi−1‖2V

≤ C3 + C3

∫ mτ

τ

‖f ′2‖2V ′ ds+
τ

2

m∑
i=2

‖θi−1‖2V
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for some positive constant C3, while we manage the first term by

〈fm
2 , θ

m〉 =
1

τ

∫ mτ

(m−1)τ

〈f2(s), θ
m〉 ds ≤ 1

ατ

∫ mτ

(m−1)τ

‖f2(s)‖2V ′ ds+
α

4
‖θm‖2V(3.75)

≤ 1

α
‖f2‖2L∞(0,T ;V ′) +

α

4
‖θm‖2V

and the third one in an identical way. So, collecting (3.72–3.75), we get after easy
computations (notice that the first term in the following relation also accounts for
two quantities derived from the right hand side of (3.37) through Young’s inequality
(1.24)):

ρτ

2

m∑
i=1

∥∥∥∥θi − θi−1

τ

∥∥∥∥2

H

+
1

2
〈Aθm, θm〉+ 1

2

m∑
i=1

〈A(θi − θi−1), θi − θi−1〉(3.76)

≤ 1

2
〈Aθ0, θ0〉+ 1

ρ
‖f1‖2L2(0,mτ ;H) +

λ2τ

ρ

m∑
i=1

∥∥∥∥χi − χi−1

τ

∥∥∥∥2

H

+ C3

+ C3‖f2‖2H1(0,T ;V ′) +
τ

2

m∑
i=1

‖θi‖2V +
2

α
‖f2‖2L∞(0,T ;V ′) +

α

4
‖θm‖2V +

α

4
‖θ0‖2V ,

whence, recalling the regularity hypothesis (3.28) on the initial datum, the coercivity
of A and relations (3.64–3.65), (3.67), we can derive other two a priori estimates, which
we prefer to write at once in terms of the interpolating functions:

‖θ̂′τ‖L2(0,T ;H) ≤ C,(3.77)

‖θτ‖L∞(0,T ;V ) ≤ C.(3.78)

Third a priori estimate. Write equation (3.38) for the index i; write it also for the
index i− 1 and take the difference; multiply it by (χi − χi−1)τ−1 and sum for i from
2 to m ≤ n. Owing to (3.6), to the symmetry of M , to the monotonicity of operator
∂V,V ′J and to the elementary relation (3.47), we easily infer:

µ

2

∥∥∥∥χm − χm−1

τ

∥∥∥∥2

H

+
µ

2

m∑
i=2

∥∥∥∥χi − χi−1

τ
−
χi−1 − χi−2

τ

∥∥∥∥2

H

(3.79)

+ τ
m∑

i=2

〈
B
χi − χi−1

τ
,
χi − χi−1

τ

〉
+

1

τ

m∑
i=2

(γ(χi)− γ(χi−1), χi − χi−1)

≤
‖M‖L(H)

2

∥∥∥∥χ1 − χ0

τ

∥∥∥∥2

H

+
m∑

i=2

(
L(θi − θi−1),

χi − χi−1

τ

)
.

Observe now that the last two terms on the left hand side can be split by using (3.8)
and (3.11); by splitting also the mixed–unknowns term, it is immediate to get the
relation

(3.80)
µ

2

∥∥∥∥χm − χm−1

τ

∥∥∥∥2

H

+
ατ

2

m∑
i=2

∥∥∥∥χi − χi−1

τ

∥∥∥∥2

V

≤ C4 +
‖M‖L(H)

2

∥∥∥∥χ1 − χ0

τ

∥∥∥∥2

H

,
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where C4 is a positive constant only depending on the bounds (3.67) and (3.77). Now,
in order to estimate the (χ1 − χ0)τ−1–term, let us write equation (3.38) for i = 1
and multiply it by (χ1−χ0)τ−1. Owing to (3.6) and to the supplementary hypothesis
(3.31–3.33) (whose notation is used below), it follows

µ

∥∥∥∥χ1 − χ0

τ

∥∥∥∥2

H

+
1

τ
〈Bχ1 −Bχ0, χ1 − χ0〉+ 1

τ
〈w1 − w0, χ1 − χ0〉(3.81)

+
1

τ
(γ(χ1)− γ(χ0), χ1 − χ0) =

(
Lθ1,

χ1 − χ0

τ

)
− 1

τ
(Bχ0, χ1 − χ0)

− 1

τ
(w0, χ1 − χ0)− 1

τ
(γ(χ0), χ1 − χ0).

Assumptions (3.8), (3.10–3.11), estimate (3.64) and the monotonicity of ∂V,V ′J ensure
now the boundedness of the (χ1 − χ0)τ−1–term in (3.79), whence we derive our final
“abstract” estimates:

‖χ̂′τ‖L∞(0,T ;H) ≤ C,(3.82)

‖χ̂′τ‖L2(0,T ;V ) ≤ C.(3.83)

3.1.3 Proof of the abstract results

Proof of Theorem 3.1.2. Existence. Referring to the weaker regularity hypothe-
ses of Theorem 3.1.2, we now complete the proof of the existence of a solution to the
abstract Problem (aP). First, observe that estimates (3.64–3.66) and (3.71) immedi-
ately entail the following convergences:

θτ → θ in L∞(0, T ;H)–weak∗ ∩ L2(0, T ;V )–weak,(3.84)

χ
τ → χ in L∞(0, T ;V )–weak∗,(3.85)

χ̂
τ → χ in H1(0, T ;H)-weak,(3.86)

holding at least for suitable subsequences. From (3.66), (3.61) (with V and χ in place
of H and θ) and (3.69), we derive also

(3.87) χ̂
τ → χ in L∞(0, T ;V )–weak∗,

whence, owing to the compactness result [82, Sec. 8, Cor. 4], we deduce also

(3.88) χ̂
τ → χ in C0([0, T ];H)–strong,

while we have not enough regularity to obtain a strong convergence for the θ.
Let us remark anyway that (3.64), (3.61) and (3.68) yield

(3.89) θ̂τ → θ in L∞(0, T ;H)–weak∗;

moreover, thanks to the symmetry of P , it follows

(3.90) P θ̂τ → Pθ in L∞(0, T ;H)–weak∗.
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Besides, equation (3.37) and the above convergences entail that

(3.91) (P θ̂τ )
′ = P θ̂′τ = −Λχ̂

′
τ − Aθτ + fτ

is bounded in L2(0, T ;V ′). It easily follows that

(3.92) (P θ̂τ )
′ → T in L2(0, T ;V ′)–weak

for some function T ; relation (3.90) permits to see that T = (Pθ)′. So, passing to the
limit in (3.91), we get back (3.21).

The above procedure allows to recover easily the regularity requests (3.17–3.19),
save for the continuity of θ and Pθ (at present, it is only possible to say that θ, Pθ ∈
L∞(0, T ;H)); the 1-dimensional continuous embedding H1 ⊂ C0, together with (3.86)
and (3.40), yields anyway the Cauchy condition (3.25), and, similarly, from (3.92) and
(3.40), we infer that (Pθ)(0) = Pθ0 ∈ H.

Notice now that equation (3.21) with the above deduced Cauchy condition can be
rewritten as

(3.93)

{
(Pθ)′ + Aθ = f − Λχ′ ∈ L2(0, T ;V ′)
(Pθ)(0) = Pθ0 ∈ H

and consequently we can apply [21, Remark 6.4, page 209], obtaining that it is actually
P 1/2θ ∈ C0([0, T ];H), whence, since P in our simpler case is an isomorphism, it follows
that both Pθ and θ lie in C0([0, T ];H). Condition (3.24) makes now sense and can be
recovered from (3.93).

Relations (3.20) and (3.22–3.23), as well as (3.26), anyway, cannot be obtained yet,
since the nonlinearities in (3.22) require some

Strong convergence. Thanks to assumption (3.10) and to estimate (3.66), we ob-
tain that, at least for subsequences,

(3.94) γ(χτ )→ g in L∞(0, T ;H)–weak∗,

for some function g ∈ L∞(0, T ;H), whence, looking back to equation (3.38), we derive
also that, for some function w,

(3.95) wτ → w in L2(0, T ;V ′)–weak,

which guarantees (3.20).
Equation (3.38), with the introduction of the interpolating functions and the sub-

traction of the same term Bχ from both hands sides, can now be rewritten as:

(3.96) B(χτ − χ) = −wτ + Lθτ −Bχ−Mχ̂′
τ − γ(χτ ),

which is a relation in L2(0, T ;V ′). Test it with χτ −χ and integrate in time between 0
and T . Recalling (3.8), and using the definition of subdifferential in the form of (3.13),
it follows:

α

∫ T

0

‖χτ (s)− χ(s)‖2V ds ≤
∫ T

0

(J(χ(s))− J(χτ (s))) ds(3.97)

+ λ0

∫ T

0

‖χτ (s)− χ(s)‖2H ds+

∫ T

0

(Lθτ (s), χτ (s)− χ(s)) ds

−
∫ T

0

〈Bχ(s), χτ (s)− χ(s)〉 ds−
∫ T

0

(Mχ̂′
τ (s) + γ(χτ ), χτ (s)− χ(s)) ds.
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For v ∈ L2(0, T ;V ), we can introduce the ]0, T [–extension of J , as

(3.98) JT (v) :=


∫ T

0

J(v(s)) ds if J(v) ∈ L1(0, T )

+∞ otherwise

On account of Theorem 1.2.23, JT is a convex, lower semicontinuous and proper
functional on L2(0, T ;V ), whence, thanks also to (3.85),

(3.99) lim sup
τ→0

(JT (χ)− JT (χτ )) ≤ 0.

Recalling (3.84–3.86) and (3.88), looking back at equation (3.97) and observing
that (3.62) (with χ in place of θ), (3.88) and (3.67) also entail

(3.100) ‖χτ − χ‖L2(0,T ;H) ≤ ‖χτ − χ̂τ‖L2(0,T ;H) + ‖χ̂τ − χ‖L2(0,T ;H) → 0,

we can conclude that

(3.101) lim sup
τ→0

∫ T

0

‖χτ (s)− χ(s)‖2V ds ≤ 0,

that is

(3.102) χ
τ → χ in L2(0, T ;V )–strong.

End of proof. It is easy to see that the last convergence and the demicontinuity of
γ entail:

(3.103) γ(χτ )→ γ(χ) in L2(0, T ;H)–weak

at least for subsequences. It follows that g = γ(χ) (compare with (3.94)) and that
equation (3.22) holds. Moreover, (3.95), (3.102) and Prop. 1.3.8 imply the validity of
the constitutive relation (3.23). Finally, (3.26) is an immediate consequence of (3.102)
and estimate (3.70), if we exploit the semicontinuity of J . This completes the proof
of the existence part of Theorem 3.1.2.

Proof of Theorem 3.1.3. Estimates (3.77–3.78) easily entail, after passing to the
limit, that

θ ∈ H1(0, T ;H) ∩ L∞(0, T ;V ),

whence equation (3.21) can be rewritten in the form (3.30). Moreover, proceeding by
comparison, we get that Aθ ∈ L2(0, T ;H) + H1(0, T ;V ′), whence assumption (3.7)
and Theorem 1.1.16 allow us to conclude that θ ∈ C0([0, T ];V ), as desired.

Proof of Theorem 3.1.4. Recalling our third a priori estimate, we observe that
χ ∈ W 1,∞(0, T ;H) thanks to (3.82) and (3.86) and that χ ∈ H1(0, T ;V ) thanks to
(3.83) and (3.87), while (3.35) follows now by comparison from equation (3.22).
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Remark 3.1.6. Under the regularity hypotheses of Theorem 3.1.3, subtracting equa-
tion (3.30) from (3.37) (written in terms of the interpolating functions) and testing
the result by θτ − θ, it could be proved with standard techniques that

(3.104) θτ → θ in L2(0, T ;V )–strong.

However, this convergence will not be needed in the following and we omit the (simple)
details of its proof.

Uniqueness. It concludes the proof of Theorem 3.1.2. Naturally, it will follow also
the uniqueness of the solution of (aP) under the stronger regularity hypotheses of
Theorems 3.1.3–3.1.4.

Let us suppose to have two solutions of (aP), denoted with (θ̂, χ̂, ŵ) and (θ̌, χ̌, w̌)
respectively. Substitute them successively into equations (3.21–3.22) and take the
difference; setting θ := θ̂ − θ̌, χ := χ̂− χ̌, w := ŵ − w̌, we obtain:

(Pθ)′ + Λχ′ + Aθ = 0(3.105)

Mχ′ +Bχ+ w + γ(χ̂)− γ(χ̌) = Lθ.(3.106)

Define now ω := Pθ + Λχ and R := A + λ0I as an operator from V to V ′. I
denotes here the embedding function of V into H. Observe that, owing to assumption
(3.7), it follows

(3.107) α‖v‖2V ≤ 〈Rv, v〉 ≤ ‖A‖L(V,V ′)‖v‖2V + λ0‖v‖2H
for any v ∈ V , so that, if we set a(v, z) := 〈Rv, z〉 for v, z ∈ V , a( , ) turns out
to be a scalar product on V equivalent to the original one; moreover R is the Riesz
operator associated to a( , ). On account of the machinery of Subsec. 1.1.3, this leads
to introduce also the dual scalar product on V ′ as

(3.108) a∗(v∗, z∗) := a(R−1v∗,R−1z∗) = 〈v∗,R−1z∗〉 = 〈z∗,R−1v∗〉,

for v∗, z∗ ∈ V ′.
Equation (3.105), with the new notation, assumes the form:

(3.109) ω′ +Rθ = λ0θ.

Now, multiply it by R−1ω ∈ H1(0, T ;V ) and integrate the result between 0 and
t ∈]0, T ]; managing separately its three terms, we first get∫ t

0

〈ω′,R−1ω〉 ds =

∫ t

0

a∗(ω
′, ω) ds =

1

2
a∗(ω(t), ω(t))(3.110)

≥ α‖R−1ω(t)‖2V ≥
α

‖R‖2L(V,V ′)

‖ω(t)‖2V ′

(notice that ω ∈ H1(0, T ;V ′), whence a∗(ω, ω) ∈ W 1,1(0, T ) and the use of the fun-
damental theorem of calculus is then justified). The second term of (3.109), after
multiplication and integration, reads∫ t

0

〈Rθ,R−1ω〉 ds =

∫ t

0

〈ω, θ〉 ds =

∫ t

0

(Pθ, θ) ds+

∫ t

0

(Λχ, θ) ds(3.111)

≥ ρ

2
‖θ‖2L2(0,t;H) −

λ2

2ρ
‖χ‖2L2(0,t;H),
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since it is also ω ∈ C0([0, T ];H). Finally, the right hand side term in (3.109), for
arbitrary σ > 0, gives

(3.112)

∫ t

0

(λ0θ,R−1ω) ds ≤ σ‖θ‖2L2(0,t;V ′) +
λ2

0‖R−1‖2L(V ′,V )

4σ
‖ω‖2L2(0,t;V ′).

Multiply now (3.106) by χ and integrate in time as before. Owing to (3.11) and
to the monotonicity of ∂V,V ′J , it follows

(3.113)
µ

2
‖χ(t)‖2H +

α

2
‖χ‖2L2(0,t;V ) ≤

(
λ0 + C0 +

1

2

)
‖χ‖2L2(0,t;H) +

`2

2
‖θ‖2L2(0,t;H).

Summing together the equation resulting from (3.110–3.112) and relation (3.113) times
m > 0 (to be chosen), owing also to the continuity of the transpose embedding
H ⊂ V ′, it is immediate to get, for some positive constant C5 depending only on
α,R,M, ρ, λ0, C0, `,

‖ω(t)‖2V ′ + ‖θ‖2L2(0,t;H) +m‖χ(t)‖2H +m‖χ‖2L2(0,t;V )(3.114)

≤ C5‖χ‖2L2(0,t;H) + σC5‖θ‖2L2(0,t;H)

+ σ−1C5‖ω‖2L2(0,t;V ′) +mC5‖χ‖2L2(0,t;H) +mC5‖θ‖2L2(0,t;H),

so that, choosing m and σ sufficiently small (for instance, m = σ = (4C5)
−1), through

an application of the Gronwall lemma, we easily derive ω = χ = θ = 0, whence γ(χ̂) =
γ(χ̌). Substituting into equation (3.106), we obtain also w = 0, which completes the
proof of Theorem 3.1.2.

3.2 Applications to the phase-field system

In this section, we apply the previously developed abstract machinery to solve the
“physical” phase field systems in two different situations: as a first example, we re-
trieve the existence, uniqueness and regularity results of Subsec. 2.2.2 concerning the
standard model of heat diffusion within a substance with change of phase (in the case
of a linear latent heat λ) from the abstract theorems of Subsec. 3.1.1. Also in this
simple case, anyway, the procedure is not completely trivial; indeed, some difficulties
arise from the different functional setting of the abstract theorems, essentially working
on the duality (V, V ′), while the proof of Theorem 2.2.3 was based on a “concrete”
approach in the space L2(Ω), providing the equations of the problem directly in the
strong sense. Hence, in this framework, we have obtained a weaker solution and con-
sequently it is necessary to exploit some machinery (we shall mainly refer to the work
[10]) in order to derive a physical interpretation.

We chose to present in some detail also this “alternative” approach, which is indeed
more complicated than the direct one, for two main reasons: first, it serves as a
comparison with the procedure of Subsecs. 2.2.2–2.2.3, which gives concordant results;
second, it prepares the study of the transmission problem, which is based on a similar,
but more delicate argument.
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3.2.1 An alternative approach to the phase-field system

In this subsection, we discuss the existence of solutions to system (2.67–2.71) by means
of the abstract approach. Since the related results have already be obtained by a direct
analysis, we just show here some details of the abstract method, and in particular, we
limit ourselves to present the regularity framework provided by Theorem 3.1.3. Hence,
let us first recall that the Cauchy conditions (3.24–3.25) are now required with the
data θ0 and χ0 lying in H1(Ω), which we choose as the abstract space V (while we set
H := L2(Ω)); moreover, we suppose that

(3.115) χ
0(x) ∈ D(j) for a.e. x ∈ Ω, with j(χ0) ∈ L1(Ω),

and we add the usual homogeneous Neumann boundary conditions ∂nθ = ∂n
χ = 0 on

∂Ω×]0, T [. This corresponds precisely to the framework of Theorem 2.2.3, with the
further regularity for θ provided by hypothesis (2.102) of Theorem 2.2.4. So, what we
expect to obtain in this setting is a solution (θ, χ, ξ) enjoying precisely the properties
(2.65–2.66) and (2.103).

So, let us address the notation of the abstract theorems (some ambiguity will arise
as far as the constants µ, λ are concerned; however, the procedure should not be
misleading). With this aim, also accounting for a linear latent heat λ(r) = λr with
λ > 0, given h ∈ H and v, z ∈ V , we can set:

(Ph)(x) := h(x), (Mh)(x) := µh(x)(3.116)

(Λh)(x) = (Lh)(x) := λh(x)(3.117)

〈Av, z〉 :=

∫
Ω

∇v(x) · ∇z(x) dx(3.118)

〈Bv, z〉 :=

∫
Ω

ν(x)∇v(x) · ∇z(x) dx,(3.119)

so that, as it is immediate to verify, the above introduced functionals and operators
fit assumptions (3.2–3.8), while (3.9–3.11) are trivially satisfied by virtue of (2.60).

Moreover, for v ∈ H, we define,

(3.120) JH(v) :=


∫

Ω

j(v(x)) dx if j(v) ∈ L1(Ω)

+∞ otherwise.

We recall (see Theorem 1.2.22 (b)) that JH is a convex, lower semicontinuous and
proper function on H; we define the functional J of (3.12) as the restriction of JH to
V ; since the topology of V is finer than H’s one, it is immediate to verify that J is
still l.s.c.; furthermore, it evidently satisfies (3.14).

Now, almost all the assertions of Theorem 2.2.3 can be easily deduced from The-
orems 3.1.2–3.1.3; in particular, the derivation of equation (2.67) and of the related
Neumann condition for θ from the abstract formulation, although not completely im-
mediate, can be performed with rather standard techniques. However, the constitutive
relation (2.69) and the regularity property (2.66), which are clearly linked together,
cannot be derived yet; moreover, at present, we are only able to obtain L∞ (instead
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of C0) in (2.65). In fact, we can conclude from Theorem 3.1.2 that w ∈ ∂V,V ′J(χ)
and it is not obvious (nor true in the general case) that this implies (2.66) and (2.69).
We now briefly outline a possible way to recover these relations: first of all, replace
in the formulation of the problem the operator α with its Yosida approximate αε and
modify the definitions of JH and J by substituting therein α with αε (call Jε

H and Jε,
respectively, the new functionals).

Applying now Theorem 3.1.3 to the regularized problem, we obtain a solution, that
we denote as (θε, χε, ξε). Moreover, the analogous of relation (3.23) reads here

(3.121) ξε ∈ ∂V,V ′Jε(χε) a.e. in [0, T ],

and, due to the Lipschitz continuity of αε and to [10, Prop. 2.9], we deduce that
ξε ∈ L2(0, T ;H1(Ω)) and ξε ∈ ∂HJ

ε
H(χε), which means ξε(x, t) ∈ αε(χε(x, t)) for a.e.

x ∈ Ω, t ∈ [0, T ]. Here ∂HJ
ε
H denotes the subdifferential of Jε

H as a maximal monotone
graph in H ×H.

It is now possible to multiply the Yosida-regularization of (2.68) by ξε = αε(χε);
thus, exploiting monotonicity and reasoning by comparison, it is a standard matter to
infer that, for some function ξ, it is (for subsequences)

ξε → ξ in L2(Ω×]0, T [)–weak,(3.122)

div(ν∇χε)→ div(ν∇χ) in L2(Ω×]0, T [)–weak.(3.123)

Notice indeed that the constant C in our abstract a priori estimates depends only on
the data, which are not modified by the introduction of the Yosida approximation,
with the exception of J(χ0); anyway, it is Jε(χ0) ≤ J(χ0) (see Prop. 1.2.16 (b)), so
that this dependence does not give troubles.

Now, to prove the convergence of (θε, χε) to some (θ, χ) solving (2.67–2.68), just
adapt the τ–limit procedure already performed for the abstract problem. Also, (2.69)
easily follows from the monotonicity argument of Prop. 1.3.8, and, finally, the C0 in
(2.65) is again a consequence of the result of [7] reported as Theorem 1.1.16.

3.2.2 Formulation of the transmission problem

In this subsection, we wish to present in some detail the mathematical statement
and outline the technique of resolution of the transmission problem for the phase-field
model; the proofs of the related results will be carried out up to the end of this chapter.

We start by describing the physical situation: referring to the previous subsections
for most of the notation, we suppose that the domain Ω ⊂ RN is subdivided by a
smooth interface Γ into two subregions Ω1, Ω2 of Lipschitz regularity (naturally, we
cannot ask more), where are assumed to lie two different and possibly inhomogeneous
substances, whose thermal diffusion properties are still described by equations similar
to (2.67–2.69). Moreover, transmission conditions for both variables θ and χ are
assumed on the common boundary Γ.

The main difficulty of the problem, which is also the main difference with respect
to the previous case, lies now in the discontinuity of data; in fact, in this setting all
coefficients do depend on the domain, and, in particular, the most relevant trouble
is due to the presence of two thermodynamical potentials, corresponding to different
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graphs α1 and α2 in the phase-field equations relative to the two substances. Indeed, in
this setting, we have to work with great care on the constitutive relation corresponding
to (2.69); we see that, in order that the problem be solvable, some further conditions
on the graphs α1, α2 need to be assumed. In particular, we are able to treat two
different cases: compatibility conditions (i.e., α1, α2 must be not too different) and
growth conditions (their inverse graphs must be coercive); we emphasize that only in
the second case we address the problem by the abstract method; in the compatibility
one, an approach similar to that of Subsec. 2.2.2 seems preferable. Hence, in that
case, we do not repeat the whole argument and we limit ourselves to develop in detail
the only different (and troublesome) estimate, referring to that subsection for more
details.

To start with the mathematical formulation of the problem, we need to introduce
a notation which will turn out to be very useful in this setting and will be implicitely
kept throughout all the remainder of the dissertation. So, for any function v ∈ Lp(Ω)
(1 ≤ p ≤ +∞), we set vi := v|Ωi

; conversely, given v1 ∈ Lp(Ω1) and v2 ∈ Lp(Ω2), we
denote by v ∈ Lp(Ω) the function coinciding with vi in Ωi, i = 1, 2. Naturally, this
construction cannot be arbitrarily extended to spaces different from the Lp; anyway,
given v ∈ H1(Ω), it is mathematically justified to write vi ∈ H1(Ωi) to denote its
restrictions to the sets Ωi, and, given wi ∈ H1(Ωi)

′, it is possible to “glue” them
by setting 〈w, v〉 := 〈w1, v1〉 + 〈w2, v2〉 for all v ∈ H1(Ω). Clearly, we obtain that
w ∈ H1(Ω)′

Let us now state the transmission system, which is (compare with (2.67–2.69)):

ρi∂tθi + λi∂t
χ

i − div(κi∇θi) = φi a.e. in Ωi×]0, T [,(3.124)

µi∂t
χ

i − div(νi∇χi) + wi + γi(χi) = `iθi a.e. in Ωi×]0, T [,(3.125)

wi ∈ αi(χi), a.e. in Ωi×]0, T [(3.126)

(here, and in the rest of the dissertation, the index i will be always supposed to
assume the values 1, 2). As for the hypotheses on the data, we point out that they are
very similar to the corresponding assumptions for the one-domain problem (in some
case, we could just substitute Ω with Ωi or add the subscript i); however, in that
setting, some coefficients were supposed equal to one; here we manage the system in
full generality, instead. Hence, we require ρi, λi, κi, µi, νi, and `i be strictly positive
constants, γi : R → R be Lipschitz continuous functions, φi source terms satisfying
φi ∈ L2(0, T ;L2(Ωi)), and αi be maximal monotone graphs with 0 ∈ αi(0). As usual,
we take ji as convex primitives of αi.

Moreover, we choose, as before, V = H1(Ω) and H = L2(Ω), and, given θ0 ∈ H
and χ0 ∈ V verifying the relation

(3.127) χ
0,i(x) ∈ D(ji) for a.e. x ∈ Ωi, with ji(χ0,i) ∈ L1(Ω)

(which is naturally the analogous of (3.16) and (3.115)), we can require the Cauchy
conditions in the habitual form (3.24–3.25).

To obtain a well-posed problem, we add homogeneous Neumann boundary condi-
tions for the χ (i.e. ∂n

χ = 0 on ∂Ω×]0, T [) and third-type ones for the temperature:
taken p ∈ L∞(Σ), and

(3.128) g ∈ L2(0, T ;H−1/2(∂Ω)),
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we require

(3.129) (κ∇θ) · n + pθ = g on ∂Ω×]0, T [;

in a variational setting, this leads to introduce a generalized source datum as follows:
for v ∈ V , t ∈]0, T [, we define

(3.130) 〈f(t), v〉 :=

∫
Ω

φ(t)v dx+ 〈g(t), v〉,

so that the regularity request (3.4) is clearly fulfilled.
Moreover, we state the compatibility and transmission relations at the interface:

θ1 = θ2 and χ
1 = χ

2 on Γ×]0, T [(3.131)

(κ1∇θ1) · n = (κ2∇θ2) · n on Γ×]0, T [(3.132)

(ν1∇χ1) · n = (ν2∇χ2) · n on Γ×]0, T [,(3.133)

where n denotes the normal unit vector to Γ pointing (e.g.) outwards Ω1. As we
have already remarked in the Introduction, while assumption (3.132) is standard,
accounting for the diffusion of heat across Γ, the corresponding hypothesis (3.133)
concerning the order parameter χ can be physically justified by observing that the
diffusion coefficient νi is proportional to the interfacial energy of the substance in Ωi;
with relation (3.133), we mean that no source of interfacial energy is present on the
common boundary.

We now discuss the first case when existence and uniqueness of solutions to the
transmission system are assured, i.e. that of growth conditions:

(GC) For some m > 0, we have that

(3.134) lim inf
|r|→∞

j∗i (r)

|r|2∗
≥ 2m > 0, for i = 1, 2,

where j∗i is the convex conjugate function to ji (cf. Subsection 1.2.1).

Here (and this notation will be kept for the rest of the thesis), supposing N ≥ 3
(the cases N = 1, 2 are clearly simpler and require only minor adjustments), we have
denoted as 2∗ := 2N/(N+2) and 2∗ := 2N/(N−2) the Sobolev embedding exponents,
i.e. the best ones verifying V ⊂ L2∗(Ω) and L2∗(Ω) ⊂ V ′ (recall Theorem 1.1.2).
We point out that condition (3.134) entails in particular that D(ji) = D(αi) = R
for i = 1, 2 (see [14, Remarque 2.3, page 43]) and it is slightly stronger than the
corresponding assumption (2.29) of the paper [10].

Moreover, comparing (3.134) with hypothesis (2.45) related to the Stefan problem
(ST), we observe that it is exactly the opposite: a lower bound is imposed to the growth
of j∗i and not to that of ji; here, anyway, the role played by the αi’s is different, since
they do not appear under the Laplace operator.

As we have already mentioned before, the graphs αi satisfy assumption (3.134)
when the constitutive relation (3.126) is governed by a double-well type potential, but
not in the case of the relaxed Stefan problem which cannot be managed by these means
(actually, the choice αi(x) = c2x

3, as stated in the introduction, requires N < 4; in a
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greater spatial dimension, we can take αi(x) = c2|x|kx for some small k > 0, which
seems easily justifiable also from the physical point of view). In this case, the only
way to treat the problem seems that of assuming the αi’s be not too different, i.e. the
following compatibility conditions:

(CC) We have that

(3.135) D(α1) = D(α2) =: D;

moreover,

(3.136)

{
|y1| ≤ Cα,1(1 + |y2|)
|y2| ≤ Cα,2(1 + |y1|)

for every x ∈ intD and for every y1 ∈ α1(x), y2 ∈ α2(x); Cα,1, Cα,2 ≥ 1 being constants
independent of x, y1, y2.

Under either of the conditions (GC), (CC), we need to introduce the elliptic operator
(v, w ∈ V )

(3.137) A : V → V ′, 〈Av,w〉 :=

∫
Ω

κ∇v · ∇w dx+

∫
Γ

pvw dHN−1,

which allows to state in the mathematically precise form the existence and unique-
ness result for the transmission problem, collecting all the regularity instances of the
“abstract” Theorems 3.1.2–3.1.4:

Theorem 3.2.1. Under the above listed regularity assumptions and either of condi-
tions (GC) or (CC), there exists a unique triplet of functions (θ, χ, w) of regularity

θ ∈ L2(0, T ;H1(Ω)) ∩ C0([0, T ];L2(Ω))(3.138)

ρθ ∈ H1(0, T ;H1(Ω)′) ∩ C0([0, T ];L2(Ω))(3.139)

χ ∈ L∞(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)),(3.140)

which satisfy equations (3.125–3.126) together with

(3.141) ∂t(ρθ) + λ∂t
χ+ Aθ = f in H1(Ω)′ for a.e. t ∈ [0, T ]

and also fulfill the Cauchy conditions (3.24–3.25) and the Neumann boundary ones
∂n
χ = 0 and (3.133) (in the appropriate trace spaces).
Moreover, in the (GC) case, we have

(3.142) w ∈ L2·2∗(0, T ;L2∗(Ω)),

while, when (CC) are assumed instead, the regularity of w is given by

(3.143) w ∈ L2(0, T ;H).

If, in addition, it is g ∈ H1(0, T ;H−1/2(∂Ω)) and θ0 ∈ H1(Ω), then the following
ulterior regularity is fulfilled

(3.144) θ ∈ C0([0, T ];H1(Ω)) ∩H1(0, T ;L2(Ω)),
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whence (3.141) holds in its more usual form (3.124) and we also get back the remaining
boundary conditions for θ (3.129) and (3.132) (in sense of traces).

Finally, if ν∇χ0 ∈ H(div,Ω) (that is, if div(ν∇χ0) ∈ L2(Ω)) and there exist
w0,i ∈ L2(Ωi) such that

(3.145) χ
0,i ∈ D(αi) and w0,i ∈ αi(χ0,i) for a.e. x ∈ Ωi,

then we have also

χ ∈ H1(0, T ;H1(Ω)) ∩W 1,∞(0, T ;L2(Ω)),(3.146)

w ∈ L∞(0, T ;L2∗(Ω)).(3.147)

The proof of this result is postponed to the final subsection of this chapter, while
we now develop some further theoretical background.

3.2.3 Further monotone operators techniques

Our aim is now to extend the construction of the paper [10] to our setting concerning
the transmission problems, in case that the growth conditions (GC) are imposed. Since
we refer to that work again in the following, we try and use, when possible, a similar
terminology.

First of all, here and in the sequel, we assume to be 1 < p <∞ and q = p/(p− 1)
its conjugate exponent; moreover, the notation (·, ·) will now be used indifferently to
denote the scalar product of H or the duality pairing between Lp and Lq.

As a particular case of the construction of convex integrals performed in Sub-
sec. 1.2.3, given v ∈ Lp(Ω), we can set
(3.148)

Jp(v) :=


∫

Ω1

j1(v1(x)) dx+

∫
Ω2

j2(v2(x)) dx if ji(vi) ∈ L1(Ωi) for i = 1, 2,

+∞ otherwise

and we also define JV as the restriction of JH := J2 to V . Since j1, j2 are convex, Jp

is a convex function on Lp(Ω) and consequently JV is convex on V . Moreover, Jp and
JV are proper functions since, for instance, JV (0) = Jp(0) = 0 and they are l.s.c. by
the results of Subsec. 1.2.3. In analogy with [10], we also define, for vi ∈ Lp(Ωi),

(3.149) Ji,p(vi) :=


∫

Ωi

ji(vi(x)) dx if ji(vi) ∈ L1(Ωi)

+∞ otherwise,

which are as well convex, lower semicontinuous and proper functions on Lp(Ωi). In
the course of this subsection, ∂p,qJp will denote the subdifferential of Jp as a graph
in Lp(Ω)× Lq(Ω) and ∂p,qJi,p will be the subdifferential of Ji,p in Lp(Ωi)× Lq(Ωi); in
particular, for p = q = 2, we write, accordingly with [10], ∂HJH and ∂HJi,H instead of
∂2,2J2 and ∂2,2Ji,2. We also recall that, for any ui ∈ Lq(Ωi), vi ∈ Lp(Ωi),

vi ∈ D(∂p,qJi,p) and ui ∈ ∂p,qJi,p(vi) ⇐⇒(3.150)

vi(x) ∈ D(αi) and ui(x) ∈ αi(vi(x)) a.e. in Ωi;
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moreover, Theorem 1.2.22 entails that

(3.151) J∗i,p(vi) =


∫

Ωi

j∗i (vi(x)) dx if j∗i (vi) ∈ L1(Ωi)

+∞ otherwise,

for vi ∈ Lq(Ωi). We now extend this characterization of convex conjugate functions
and of subdifferentials to the transmission case. The following two properties are easy
consequences of Theorem 1.2.22, as well. However, we report them as propositions,
since they will result useful in a while.

Proposition 3.2.2. For v ∈ Lq(Ω), we have that:

(3.152) J∗p (v) :=


2∑

i=1

∫
Ωi

j∗i (vi(x)) dx =
2∑

i=1

J∗i,p(vi) if j∗i (vi) ∈ L1(Ωi)

+∞ otherwise.

Proposition 3.2.3. Let v ∈ Lp(Ω), u ∈ Lq(Ω). Then v ∈ D(∂p,qJp) and u ∈ ∂p,qJp(v)
if and only if vi ∈ D(∂p,qJi,p) and ui ∈ ∂p,qJi,p(vi).

Our purpose is now that of passing from the (V, V ′)-setting, where we have proved
the results of Subection 3.1.1, to the H-one, which is more suitable for the physical
interpretation of these results, and in particular is required in order to recover the
constitutive relation (3.126). The following theorem, which is the cornerstone of this
procedure, provides an extension of [10, Lemma 2.4] (and of the procedure we have
exploited to recover the results of Subsec. 2.2.2 from the abstract approach).

Theorem 3.2.4. Let 2∗ ≤ p ≤ 2∗, q the conjugate exponent to p (i.e. p−1 + q−1 = 1),
v ∈ V , w ∈ Lq(Ω). Then, w ∈ ∂V,V ′JV (v) if and only if w ∈ ∂p,qJp(v).

Proof. First of all, it is immediate to see that ∂p,qJp(v) ⊂ ∂V,V ′JV (v) (just apply
the definition; observe that here we exploit that p ≤ 2∗). To show the converse
inclusion, take z ∈ Lp(Ω) and w ∈ ∂V,V ′JV (v) and consider the family of singular
perturbation elliptic problems in Ωi:

(3.153)

 zn
i ∈ H1(Ωi)∫
Ωi

zn
i ki dx+

1

n

∫
Ωi

∇zn
i · ∇ki dx =

∫
Ωi

ziki dx for all ki ∈ H1(Ωi).

Indeed, since zi ∈ Lp(Ωi) ⊂ V ′ (and here it is necessary that p ≥ 2∗) we have that
zn

i ∈ H1(Ωi) and zn
i → zi in H1(Ωi)

′–strong [26, Appendix]. Moreover, we claim that

(3.154) zn
i → zi in Lp–strong.

To prove this, take ki = |zn
i |p−1sgn(zn

i ) in the equation in (3.153); thanks to the Young
inequality, it is easy to obtain the estimate corresponding to zn

i → zi in Lp(Ωi)–weak,
while the strong convergence follows from the uniform convexity of Lp and [9, Prop.
1.4, page 14].
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We now choose a nondecreasing cutoff function h ∈ D(R) such that 0 ≤ h ≤ 1,
h(y) = 0 for y ≤ 1 and h(y) = 1 for y ≥ 2 and we set

(3.155) hn(x) : Ω→ R, hn(x) := h(nd(x,Γ)),

where d(x,Γ) is the Euclidean distance function from Γ.
As before, we denote with zn the L2-function whose restriction to Ωi coincides

with zn
i . It is clear that in general zn 6∈ H1(Ω); however, since d(x,Γ) is a Lipschitz

continuous function, hnzn is a sequence in H1(Ω). We now prove that

(3.156) hnzn → z in Lp(Ω)–weak.

Indeed, thanks to (3.154), it is enough to show that hnzn − zn tends to 0 in Lp–weak.
Thus, observe that∣∣∣∣∫

Ω

(hnzn − zn)(x)t(x) dx

∣∣∣∣ =

∣∣∣∣∫
En

(hnzn − zn)(x)t(x) dx

∣∣∣∣(3.157)

≤ ‖(hnzn − zn)‖Lp(En)‖t‖Lq(En),

where it is chosen t(x) ∈ Lq(Ω) and we have set En := {x ∈ Ω : d(x,Γ) ≤ 2n−1}. Now,
the first term on the right hand side is clearly bounded thanks to (3.154), while the
second tends to 0, as desired.

According to the notation of the previous subsection, we indicate by αε
i the Yosida

regularization of αi and by jε
i its convex primitive. Moreover, we define Jε

i,p, J
ε
p , ∂p,qJ

ε
p ,

and so on, in the natural ways.
Thanks to the Lipschitz continuity of αε

i , we have that αε
i (z

n
i ) ∈ H1(Ωi) ⊂ Lq(Ωi),

whence the relation

(3.158) jε
i (z

n
i (x))− jε

i (zi(x)) ≤ αε
i (z

n
i (x))(zn

i (x)− zi(x)) a.e. in Ωi

can be integrated in Ωi and, owing to (3.153), with ki = αε
i (z

n
i ), entails

(3.159) Jε
i,p(z

n
i )−Jε

i,p(zi) ≤ −
1

n

∫
Ωi

∇zn
i ·∇αε

i (z
n
i ) dx = − 1

n

∫
Ωi

(αε
i )
′(zn

i )|∇zn
i |2 dx ≤ 0.

On the other hand, it is |hn
i (x)zn

i (x)| ≤ |zn
i (x)| for every x ∈ Ωi, whence, being

min jε
i = jε

i (0) = 0, we have

(3.160) Jε
i,p(h

n
i z

n
i ) ≤ Jε

i,p(z
n
i ) ≤ Jε

i,p(zi) ≤ Ji,p(zi)

thanks also to the well-known monotonicity properties of the Yosida approximation.
Applying the monotone convergence theorem, we finally get

(3.161) Ji,p(h
n
i z

n
i ) ≤ Ji,p(zi) for all n ∈ N.

Now, due to the convexity and lower semicontinuity of the functionals Ji,p with
respect to the Lp-topology and to (3.156), we obtain that

Jp(z) =
2∑

i=1

Ji,p(zi) ≤
2∑

i=1

lim inf
n→∞

Ji,p(h
n
i z

n
i ) ≤ lim inf

n→∞

2∑
i=1

Ji,p(h
n
i z

n
i )(3.162)

≤ lim sup
n→∞

2∑
i=1

Ji,p(h
n
i z

n
i ) ≤

2∑
i=1

Ji,p(zi) = Jp(z).
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Since
∑2

i=1 Ji,p(h
n
i z

n
i ) = JV (hnzn), this implies that Jp(z) = limn→∞ JV (hnzn).

Finally, from the previous relation and from (3.156) again, we infer

(3.163)

∫
Ω

w(z − v) dx←
∫

Ω

w(hnzn − v) dx ≤ JV (hnzn)− JV (v)→ Jp(z)− Jp(v).

Since this holds for any z ∈ Lp(Ω), we deduce that w ∈ ∂p,qJp(v), as desired.

We now introduce a new convex functional, setting for w ∈ V ′:

(3.164) J∗,V ′(w) :=


2∑

i=1

∫
Ωi

j∗i (wi(x)) dx if w ∈ L2∗(Ω) and j∗i (wi) ∈ L1(Ωi)

+∞ otherwise,

which is nothing else that the (+∞)-extension of J2∗ = J∗2∗ to the larger space V ′.
What is not obvious from the definition, being actually a consequence of the coercivity
assumption (3.134), is the following

Proposition 3.2.5. J∗,V ′ is lower semicontinuous with respect to the V ′–topology.

Proof. Let {wn} ⊂ D(J∗,V ′) such that wn → w in V ′. It is not restrictive, in
view of the proof of the lower semicontinuity, to assume that J∗,V ′(wn) ≤ C6 for some
C6 > 0 and for all n ∈ N. From (3.134), it follows that there exists R > 0 such that
j∗i (r) > m|r|2∗ for all |r| ≥ R and i = 1, 2, whence∫

Ωi

|wn
i (x)|2∗ dx =

∫
{|wn

i |≥R}
|wn

i (x)|2∗ dx+

∫
{|wn

i |<R}
|wn

i (x)|2∗ dx(3.165)

≤ m−1

∫
{|wn

i |≥R}
j∗i (w

n
i (x)) dx+R2∗|Ωi| ≤ m−1C6 +R2∗|Ωi|.

Possibly extracting a subsequence, we now deduce that wn
i → wi in L2∗–weak; then,

J∗,V ′(w) =
2∑

i=1

∫
Ωi

j∗i (wi) dx ≤
2∑

i=1

lim inf
n→∞

∫
Ωi

j∗i (w
n
i ) dx(3.166)

≤ lim inf
n→∞

2∑
i=1

∫
Ωi

j∗i (w
n
i ) dx = lim inf

n→∞
J∗,V ′(wn).

The following simple result is actually the final step in our convex analysis machinery.

Proposition 3.2.6. It is J∗∗,V ′ = JV and, owing to the previous proposition and to the
Fenchel-Moreau theorem, J∗,V ′ = J∗V .

Proof. By definition of biconjugate function, recalling also Prop. 3.2.2, for any
v ∈ V we have that

JV (v) = J∗∗2∗ (v) = sup
z∈L2∗

{∫
Ω

zv dx−
2∑

i=1

∫
Ωi

j∗i (zi(x)) dx

}
= J∗∗,V ′(v)

(observe that J∗,V ′ coincides with J∗2∗ on its effective domain).
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3.2.4 Existence and uniqueness of solutions to the transmis-
sion problem

Proof of Theorem 3.2.1. We begin by discussing the case of the growth conditions
(GC), since it exploits the convex analysis instruments which we have introduced just
above; we remark again that the case of (CC) has its natural variational setting in
the space H; thus, we shall refer to Subsection 2.2.2 for most of the related resolution
procedure.

First of all, we observe that, in order to adapt the transmission problem to the
abstract framework, it is possible to proceed essentially as in (3.116–3.119), keeping
here into account the more general assumptions on coefficients, of course (some of
them were assumed equal to one in the one-substance setting). Under this notation,
equations (3.141) and (3.125), together with the boundary and transmission conditions
(3.129), (3.131–3.133), and ∂n

χ = 0 on Σ, have their variational formulations in (3.21–
3.22); so, Theorem 3.1.2 yields the existence of a solution for such a weak statement
and also assures the regularities (3.138–3.140) and the Cauchy conditions (3.24–3.25).

Now, we have to recover (3.126) and (3.142) from the abstract relation (3.23). First
of all, observe that, owing for instance to [36, Prop. I.5.1, page 21], we have

(3.167) 〈w(t), χ(t)〉 = JV (χ(t)) + J∗V (w(t)) a.e. in [0, T ],

while, recalling also estimate (3.26), we infer

(3.168) ‖J∗V (w)‖L2(0,T ) ≤ ‖JV (χ)‖L2(0,T ) + ‖w‖L2(0,T ;V ′)‖χ‖L∞(0,T ;V ) < +∞.

Hence, owing to Prop. 3.2.5 and to Prop. 3.2.6, we deduce from the previous relation
that w(t) ∈ D(J∗,V ′) ⊂ L2∗(Ω) for a.e. t ∈ [0, T ]; furthermore, applying Theorem 3.2.4
with the choice of p = 2∗, we derive that w(t) ∈ ∂2∗,2∗J2∗(χ(t)) a.e. in [0, T ] and, by
Prop. 3.2.3, wi(t) ∈ ∂2∗,2∗Ji,2∗(χi(t)) a.e.; relation (3.126) follows now from (3.150).

Anyway, some more effort is still needed in order to recover (3.142). Imitating the
proof of Prop. 3.2.5, we deduce that, for some constant C7 > 0 independent of w,

‖wi‖2·2∗L2·2∗ (0,T ;L2∗ (Ω)) =

∫ T

0

(∫
Ωi

|wi(x, t)|2∗ dx
)2

dt(3.169)

≤
∫ T

0

(
R2∗|Ωi|+m−1

∫
Ωi

j∗i (wi(x, t)) dx

)2

dt

≤ C7

(
1 + ‖J∗,V ′(w)‖2L2(0,T )

)
= C7

(
1 + ‖J∗V (w)‖2L2(0,T )

)
< +∞,

as we see from (3.168). Moreover, proceeding by comparison in the variational equiv-
alent (3.22) of (3.125), we immediately get that

(3.170) Bχ = div(ν∇χ) ∈ L2(0, T ;L2∗(Ω)),

whence (3.125) holds in the strong sense and ∂n
χ = 0 and (3.133) follow in the

appropriate trace spaces (for the related trace theorems, see for instance [54]).
Moreover, supposing θ0 ∈ V and g ∈ H1(0, T ;H−1/2(∂Ω)), we can apply Theo-

rem 3.1.3, which immediately provides (3.144) and, with some more (standard) ma-
chinery, also the related Neumann-like conditions for θ (3.129), (3.132).
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Finally, if ν∇χ0 ∈ H(div,Ω) and (3.145) holds, then it is possible to exploit The-
orem 3.1.4, which gives (3.146) as well as

(3.171) w ∈ L∞(0, T ;V ′).

Now, recalling (3.167), with a procedure similar to (3.168), it is immediate to infer
that J∗V (w) ∈ L∞(0, T ), whence also (3.147) follows easily, so concluding the proof of
Theorem 3.2.1 in the (GC) setting.

We finally come to the case of the compatibility conditions (CC). Indeed, here we do
not refer to the abstract approach developed in Section 3.1, but we choose instead
to try and repeat the procedure which we used in Subsec. 2.2.2 for the case of a
single domain. Apart from the different notation, the main difference is that the
abstract approach is stated in the space V ′ (as in the case of the Stefan problem
(ST)); here, instead, we essentially perform the whole analysis in the space H; this
will immediately permit to retrieve the constitutive relation (3.126) in the physical
sense, but only provided that we are still able to perform all the apriori estimates as
in Subsection 2.2.2. Unfortunately, under this kind of discontinuity of the coefficients,
we can still derive the estimates related to the functions θ, χ, but not that of α(χ)
(which, by monotonicity, was almost straightforward in that case).

Then, suppose to have approximated the transmission problem through the Yosida-
regularization of both graphs α1, α2 (call αε

1, α
ε
2 the approximated operators) and

to have studied this formulation through a Faedo-Galerkin approximation scheme,
exactly as in Subsection 2.2.2, actually getting a solution which we name by (θε, χε, ξε).
Nevertheless, in this procedure it should have been necessary to use some more care in
performing the computation, essentially due to the discontinuity of ρ, λ, ` (in particular
we should have retrieved different regularities for θ and ρθ, as in the abstract case).

At this point, it is possible to repeat the a priori estimate of that Subsection
(no difficulties arise at this point due to the discontinuity of coefficients), obtaining
the same kind of bounds for θε and χε as in (2.91–2.92). Now, according to our
conventional notation, we can set αε(χε) = αi,ε(χ

ε
i ) in the domain Ωi. Observe that it

is no longer true that αε(χε) belongs to H1(Ω); hence, it cannot used as a test function
for the phase-field equation. Consequently, we are forced to perform another type of
estimate, which is preceeded by a preliminary lemma, extending condition (CC) to
the Yosida-approximate graphs.

Lemma 3.2.7. The compatibility assumption (3.136) holds also for the graphs αε
i in

the form:

(3.172)
|αε

1(x)| ≤ Cα,1(1 + |αε
2(x)|)

|αε
2(x)| ≤ Cα,2(1 + |αε

1(x)|)

}
for all x ∈ R and ε > 0.

Proof. We prove for instance the first relation for x ≥ 0. For the present, we
suppose also D = D(α1) = D(α2) open. Let z ≥ 0; if yi ∈ αi(z), thanks to (3.136),
we get

z + εy1 ≤ z + Cα,1ε(1 + y2),

whence, taking the inverse functions, we derive

(3.173) Jε
1(x) ≥ J

Cα,1ε
2 (x− Cα,1ε)
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for every x ≥ Cα,1ε. Jε
i denotes here the resolvent of operator αi; that is, Jε

i =
(Id + εαi)

−1. The monotonicity of the αi and hypothesis 0 ∈ αi(0) furthermore,
permit to extend easily the validity of the previous relation to every point x > 0.

Using the definition of Yosida approximation, we immediately deduce:

αε
1(x) =

x− Jε
1(x)

ε
≤ x− JCα,1ε

2 (x− Cα,1ε)

ε
(3.174)

= Cα,1α
Cα,1ε
2 (x− Cα,1ε) + Cα,1 ≤ Cα,1(1 + αε

2(x)),(3.175)

as required, where the last inequality is a consequence of the monotonicity of αε
2(x)

with respect both to x and to ε (here we have exploited that Cα,1 > 1).
Finally, we observe that the same procedure can be applied with minor modifi-

cations also in the case of D not open. For instance, if D = [x−, x+] and αi(x+) =
[bi,+∞[, recalling that any maximal monotone graph (in our case αi) in R×R is con-
structed as the maximal monotone extension of a monotone (single-valued) function
from R to R (call it, say, αi), we still have that b1 ≤ Cα,1(1+ b2) and b2 ≤ Cα,2(1+ b1);
αi, in fact, must be continuous on the left in x+. So, (3.173) can be proved again for
all x ≥ 0 using exactly the same procedure as before.

We present in the form of a Lemma the required estimate concerning the functions ξε
i .

Lemma 3.2.8. We have that, for some L2-functions ξ1, ξ2, the following convergences
are satisfied at least for subsequences

αε
1(χ

ε
1) ⇀ ξ1 in L2(Q1)-weak,(3.176)

αε
2(χ

ε
2) ⇀ ξ2 in L2(Q2)-weak.(3.177)

Proof. Take v = αε
1(χ

ε)+αε
2(χ

ε) (that is v1 = αε
1(χ

ε
1)+αε

2(χ
ε
1) and v2 = αε

1(χ
ε
2)+

αε
2(χ

ε
2)) as a test function in equation (3.125), which is possible thanks to the Lipschitz

continuity of the Yosida approximates. Integrating in [0, t] and observing that the
monotonicity of the α’s and αi(0) 3 0 entail αε

1(χ
ε)αε

2(χ
ε) ≥ 0 for a.e. x ∈ Q and that,

for instance,

(3.178)

∫
Ω1

∇χε
1 · ∇αε

2(χ
ε
1) dx =

∫
Ω1

(αε
2)
′(χε

1)∇χε
1 · ∇χε

1 dx ≥ 0,

it is a straightforward computation to obtain

µ1

[∫
Ω1

(jε
1(χ

ε
1(t)) + jε

2(χ
ε
1(t))) dx

]
+ µ2

[∫
Ω2

(jε
1(χ

ε
2(t)) + jε

2(χ
ε
2(t))) dx

]
(3.179)

+

∫ t

0

∫
Ω1

(αε
1(χ

ε
1))

2 dx dt+

∫ t

0

∫
Ω2

(αε
2(χ

ε
2))

2 dx dt

≤ µ1

[∫
Ω1

(jε
1(χ1,0) + jε

2(χ1,0)) dx

]
+ µ2

[∫
Ω2

(jε
1(χ2,0) + jε

2(χ2,0)) dx

]
+ Cσ + σ

[
‖αε

1(χ
ε
1)‖2L2(Ω1×]0,t[) + ‖αε

2(χ
ε
1)‖2L2(Ω1×]0,t[)

]
+ σ

[
‖αε

1(χ
ε
2)‖2L2(Ω2×]0,t[) + ‖αε

2(χ
ε
2)‖2L2(Ω2×]0,t[)

]
,
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where σ > 0 is arbitrary and Cσ has the same role as in (1.24), depending only on the
norms of θε and χε in L2(Q), which have already been estimated, and on the Lipschitz
constant of γ. Move now to the left hand side the last two terms, which are negligible
for σ sufficiently small, thanks also to condition (3.172); observe also that∫

Ω+
1

jε
2(χ1,0(x)) dx =

∫
Ω+

1

∫ χ
1,0(x)

0

αε
2(s) ds dx(3.180)

≤
∫

Ω+
1

∫ χ
1,0(x)

0

Cα,2(1 + αε
1(s)) ds dx

≤ Cα,2‖χ1,0‖L1(Ω+
1 ) + Cα,2

∫
Ω+

1

jε
1(χ1,0(x)) dx,

where we have set Ω+
1 := {x ∈ Ω1 : χ1,0(x) ≥ 0}, and that analogous relations still

hold with the interchange of 1 and 2 as indexes, of Cα,1 and Cα,2, or with Ω1\Ω+
1 in

place of Ω+
1 ; this completes the proof of the lemma.

Now, the proof of Theorem 3.2.1 in the (CC) case is easily concluded, by passing to
the limit with respect to ε → 0 and using as usual the monotonicity argument of
Prop. 1.3.8 in the space L2(Q).

Remark 3.2.9. 1) Recalling (3.170) and the second of (3.140), it should be possible
to derive the continuity of χ in some better space than L2(Ω); for instance, if ν has a
C1(Ω)-regularity and Ω is of C2 class, then it follows χ ∈ L2(0, T ;W 2,2∗(Ω)), whence,
using some (rather fine) interpolation results [11, Cor. 3.12.3, page 74 and Theorem
6.4.5, page 152], we can deduce

(3.181) χ ∈ C0([0, T ];W 1,2∗(Ω)).

2) A comparison of the physical hypotheses of the above discussed applications with
the corresponding abstract ones immediately suggests the possibility of choosing more
general functions γ (or γi, respectively) in the concrete frameworks. For instance, if a
suitably regular direction field x is assigned in Ω, one possibility for the first problem
could be γ(v) = ∇v · x, accounting for the presence of a convection phenomenon for
the phase field.

3) We point out that it should be possible to weaken the hypothesis (3.27) of The-
orem 3.1.3, by replacing it with

(3.182) f ∈ L1(0, T ;H) +W 1,1(0, T ;V ′).

This kind of condition would give rise to some technical complications in the derivation
of the a priori estimates; in particular, an application of the Gronwall lemma in the
form of Prop. 1.1.15 is required, precisely as in Subsection 2.2.2.

4) It should be interesting to establish if Theorem 3.2.1 remains valid when we
substitute the coerciveness assumption (3.134) with the following weaker one

(3.183) lim inf
|r|→∞

j∗i (r)

|r|
≥ 2m > 0, for i = 1, 2,
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which is the equivalent of (2.29) of [10]. Indeed, we do not know if the related procedure
of [10] for the deduction of the constitutive relation in the physical sense could be
extended to the transmission case.

3.3 Concentrated capacities

In this final section, we present a further physical application of the abstract results
developed in the first part of the chapter. In particular, we are going to study a new
kind of transmission problem for the phase-field model, where the related statement
is actually addressed to a different thermodynamical setting, which we now outline.
Maintaining indeed the usual notations for the space and time coordinates, in the new
framework we suppose in addition that the domain Ω2 consists of a very thin layer
adjoining to Γ. This layer is still filled with a fluid obeying to the phase-field model,
where anyway the thermal and phase conductivities are assumed to be very large at
least in the normal direction to Γ. As it has been studied in the case of the weak
Stefan problem first by Fasano, Primicerio and Rubinstein [38] and more recently by
Magenes [56, 57, 58, 59, 60, 61], and by Savaré and Visintin [76] (who give also a
description of the behaviour of the solutions as the conductivity increases), in this
setting the heat equation in Ω2 is very well approximated by an analogous relation
defined on the boundary Γ, where indeed a more source term is present, which is left
as a trace of the original transmission condition. It is this phenomenon to be named
as a concentrated capacity.

Since we are dealing instead with the phase-field model, we had to decide whether
to study a model presenting a concentrated capacity also for the unknown χ, or to
choose a different approximation for the phase diffusion equation on the layer Ω2. We
preferred to deal with a concentrated capacity also for the χ, which corresponds to a
blow-up of the coefficient ν2 of (3.125) (which should now be substituted with a suitably
regular tensor field) in the normal direction to Γ, since in this setting the resulting
equations really provide an extension of the boundary Stefan problem which has been
asymptotically derived and studied in the above quoted papers. Hence, this choice
seemed to us to be the most relevant also from the physical point of view; naturally
other possible behaviours of the phase-field equation could be object of investigation,
as well.

We can now state the precise hypotheses of the concentrated capacity problem,
which are very similar indeed to those of the standard transmission case, save for the
different space coordinates and analytical setting. First of all, we introduce, as usual,
the Hilbert triplet where the variational version of the problem will be stated and we
then give some related comments. We choose

(3.184) H := L2(Ω1)× L2(Γ), V := {v ∈ H1(Ω1) : v|Γ ∈ H1(Γ)},

where V is naturally equipped with the graph norm. As far as notation is concerned,
the generic element v ∈ H will be indicated by the couple (v1, vΓ); it is clear that, if
v ∈ V in addition, then vΓ really turns out to be the trace on Γ of v1. Only in this
case, we shall sometimes identify v with v1 and see it as a true function on Ω1 instead
that as an ordered couple.
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We point out that, in this setting, it could be not completely obvious that (V,H, V ′)
actually form a Hilbert triplet; hence, we give an idea of how to prove this fact. We
first notice that the continuity (and compactness) of the inclusion V ⊂ H is clear; the
less trivial point is the density, indeed. Then, to show it, choose (u1, uΓ) ∈ H and take
first a sequence

(3.185) (w1,n) ⊂ H1
0 (Ω1) such that w1,n → u1 in L2(Ω1).

Correspondently, pick also a sequence

(3.186) (uΓ,n) ⊂ H1(Γ) such that uΓ,n → uΓ in L2(Γ).

Now, since Ω1 has only the Lipschitz regularity, we have to proceed by localization.
Thus, by means of a partition of unity and a (Lipschitz continuous) system of local
charts, we reduce the problem to the case of Ω1 = RN

+ and Γ = RN−1×{0}. Also, in the
new coordinates, we can assume that both the approximating and the approximated
functions have a compact support.

Denoting now as eN the inner normal unit vector to Ω1 at the generic point y ∈ Γ
(i.e., the N -th vector of the canonical basis of RN), we construct, for δ > 0, the set
Ωδ := RN−1×]0, δ[, and the sequence (vn) given by

(3.187) vn : Ω1/n → R, vn(x) := uΓ,n(y) for x = y + teN , y ∈ Γ, 0 < t < 1/n.

It is easy to prove that (vn) ⊂ H1(Ω1/n) and that (vn)|Γ = uΓ,n.
Now, by regularization of vn and trivial extension (to the whole Ω1), we can easily

construct a sequence (z1,n) ⊂ H1(Ω1) satisfying the following:

z1,n → 0 in L2(Ω1),(3.188)

(z1,n)|Γ = uΓ,n.(3.189)

By virtue of (3.185) and (3.188–3.189), setting u1,n := w1,n + z1,n it is now easy to
verify directly that the sequence (un) given by un := (u1,n, uΓ,n) fulfils (un) ⊂ V and
un → u in H, as desired (naturally, this procedure should be performed by also coming
back to the old coordinates).

Although the Sobolev spaces on boundaries have already been briefly introduced
in Subsec. 1.1.2, we prefer to specify here some more machinery concerning differential
operators on manifolds; for the sake of simplicity, we state the related definitions in the
usual RN -coordinates; we could also proceed by local charts as in [6], but this approach
would be perhaps less intuitive. So, let us consider a suitably regular real-valued
function f on Γ. Extending it in some smooth way to a small neighbourhood of Γ,
and still denoting by f the extension, we define the boundary i-th partial derivative as

(3.190) δif := ∂if − (∇f · n)ni.

The tangential gradient of f is introduced in the following natural way:

(3.191) ∇Γf :=
N∑

i=1

δif ei = ∇f − (∇f · n)n,
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where ei is the canonical base of Rn, and the Laplace-Beltrami operator is given by:

(3.192) ∆Γf :=
N∑

i=1

δ2
i f.

Finally, for a vector valued function f on Γ, we set

(3.193) divΓ f :=
N∑

i=1

δifi.

It is not difficult to verify that all the above definitions do not depend on the chosen
extension (see also [63]).

We have now presented all the machinery which is needed in order to state the
mathematical problem. We begin by listing some hypotheses on data. First of all,
take α1, αΓ as maximal monotone graphs in R × R, satisfying as usual 0 ∈ α1(0),
0 ∈ αΓ(0), and choose initial values θ0, χ0 such that

(3.194) θ0 ∈ V, χ
0 ∈ V, with j1(χ1,0) ∈ L1(Ω1), jΓ(χΓ,0) ∈ L1(Γ),

with j1, jΓ standing for convex primitives of α1, αΓ, respectively. Moreover, we assume
f ∈ L2(0, T ;H) as a source term, γ1, γΓ Lipschitz continuous functions, and choose
positive parameters ρ1, ρΓ, λ1, λΓ, κ1, κΓ, µ1, µΓ, ν1, νΓ, `1, `Γ of the usual physical
meaning. Next, we suppose that the operators α1, αΓ fulfill either one of conditions
(CC), (GC). Notice that, as it should already be clear from the mathematical hy-
potheses assumed on data, we only address the regularity setting of Theorem 3.1.3;
indeed, almost no further difficulties arise for the sake of handling different regular-
ity hypotheses. Finally, by simplicity, we require homogeneous Neumann boundary
conditions for both θ and χ; thus, the introduction of the following abstract elliptic
operators K,N : V → V ′, given by

〈Kv,w〉 :=

∫
Ω1

κ1∇v1 · ∇w1 dx+

∫
Γ

κΓ∇ΓvΓ · ∇ΓwΓ dHN−1 for v, w ∈ V ,(3.195)

〈Nv,w〉 :=

∫
Ω1

ν1∇v1 · ∇w1 dx+

∫
Γ

νΓ∇ΓvΓ · ∇ΓwΓ dHN−1 for v, w ∈ V ,(3.196)

permits to state here the mathematical formulation of the problem.

Problem 3.3.1. We look for a triplet of functions (θ, χ, ξ), with

θ, χ ∈ L∞(0, T ;V ) ∩H1(0, T ;H),(3.197)

ξ ∈ L2(0, T ;H),(3.198)

satisfying the variational equalities

ρ∂tθ + λ∂t
χ+Kθ = f in V ′, a.e. in ]0, T [,(3.199)

µ∂t
χ+Nχ+ ξ + γ(χ) = `θ in V ′, a.e. in ]0, T [,(3.200)

ξ1 ∈ α1(χ1) a.e. in Ω1×]0, T [,(3.201)

ξΓ ∈ αΓ(χΓ) a.e. on Σ,(3.202)

as well as the initial conditions

(3.203) θ(0) = θ0, χ(0) = χ
0, in H.
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We point out that in the above statement, as in the standard transmission case,
we have used a compact notation for some product terms; for instance, the expression
ρ∂tθ should be intended as a couple (ρ1∂tθ1, ρΓ∂tθΓ) ∈ H, and so on.

Remark 3.3.2. It is worthwhile to try and write the equations of the concentrated
capacity system in the strong sense, owing to the regularities (3.197). With this aim,
we first choose a function v ∈ H1

0 (Ω1) (corresponding to the couple (v1, 0) ∈ V ) and
test by v the equation (3.199). Using standard techniques, we infer the strong relation

(3.204) ρ1∂tθ1 + λ1∂t
χ

1 − κ1∆θ1 = f1 a.e. in Ω1×]0, T [,

and, by comparison, the further regularity −∆θ1 ∈ L2(0, T ;L2(Ω1)). The same proce-
dure applied to (3.200) yields analogously

(3.205) µ1∂t
χ

1 − ν1∆χ1 + ξ1 − c1χ1 = `1θ1 a.e. in Ω1×]0, T [

and −∆χ1 ∈ L2(0, T ;L2(Ω1)). Furthermore, if we pick v ∈ H1
0,Γ(Ω1) instead, one

immediately derives the homogeneous Neumann boundary conditions

(3.206) ∂nθ = ∂n
χ = 0 on (∂Ω1 \ Γ)×]0, T [.

Now, let us test (3.199–3.200) (for instance) by a general test function v ∈ V . On
account of (3.204), we would like to derive

ρΓ∂tθΓ + λΓ∂t
χ

Γ − κΓ∆ΓθΓ = fΓ − κ1∂nθ1,(3.207)

µΓ∂t
χ

Γ − νΓ∆Γ
χ

Γ + ξΓ − cΓχΓ = `ΓθΓ − ν1∂n
χ

1,(3.208)

say, a.e. on Σ. However, the above expressions need to be furtherly detailed for two
reasons: first, due to the mixed boundary conditions for θ1, χ1 (homogeneous Neumann
– transmission), in general it is not true that the traces ∂nθ1, ∂n

χ
1 belong to L2(Σ) (we

can only say that they stay in L2(0, T ;H−1/2(Γ)), also on account of Prop. 1.1.8); so
(3.207–3.208) have to be intended in a correspondingly weaker sense (and in particular
not a.e. on Σ). Moreover, the use of the Gauss-Green formula for the Laplace-Beltrami
operators can now be done rigorously only as vΓ ∈ H1

0 (Γ) and not for the component vΓ

of the general test function v, since we have not enough regularity to derive the (N−2)-
dimensional Neumann boundary conditions ∂n′θΓ = 0, ∂n′χΓ = 0 in a strong sense (n′

denoting here the outer normal unit vector to Γ on its relative (N − 2)-dimensional
boundary Γ′). For this reason, system (3.204–3.208) is not precisely equivalent to
(3.199–3.200).

Resolution of Problem 3.3.1. It does not present further difficulties with re-
spect to the case of the standard transmission problem. Indeed, we still have to distin-
guish between the (GC)-setting, where we have to address the abstract framework of
Section 3.1 and the (CC)-one, where it is possible to proceed as in Subsecs. 2.2.2–2.2.3
(see also the paper [77]).



Chapter 4

Convergence results

This final chapter of the dissertation is devoted to the study of some mathematical
problems which can be derived as limit statements of the phase-field system under
suitable blow-out or, more generally, convergence hypotheses on coefficients; also the
convergence behaviour of solution is an object of our study. In general, we shall start
from the transmission system (3.124–3.126); then, every investigation will be carried
out by keeping essentially fixed the contribution of the equations in Ω1 and allowing
instead the Ω2-parts to change. Indeed, in any case, the main reason of mathematical
interest will lie in the analysis of the behaviour of the compatibility conditions between
the Ω1 and Ω2-coefficients under the chosen convergence assumptions.

4.1 Singular limits of the transmission problem

In this section, we study the behaviour of Problem (TP) under the blow-out of coeffi-
cients µ2 and ν2 and under a suitable variation of the graph α2. While the results of
Subsec. 4.1.2 have appeared in the paper [78], the rest of the contents of this Section
is new and still unpublished.

4.1.1 Introduction and preliminaries

Here we want to briefly resume in a self-contained way the hypotheses and notation
of the transmission problem for the phase field model: with this aim, we first recall
that Ω is a smooth bounded domain in RN , subdivided by the interface Γ into the
Lipschitz-regular subdomains Ω1 and Ω2, where two different substances are assumed
to lie. In all the remainder of the chapter, we shall refer to the transmission problem
of Subsec. 3.2.2 as (TPn); indeed, we are going to consider several perturbation of the
coefficients of the phase-field equation in Ω2; their convergence will take place as the
index n tends to ∞.

We recall the hypotheses of (TPn), which are, by simplicity, related to the inter-
mediate regularity Theorem 3.1.3. Fix, for the present, f ∈ L2(Q), and ρ1, ρ2, κ1,
κ2, λ1, λ2, µ1, µ2,n, ν1, ν2,n, c1, c2,n, `1, `2 as positive constants of the usual physical
meaning (as it can be controlled in the equations below); the notation is given accord-
ing to the perturbations of (TPn) in Ω2, while the coefficients in Ω1 in general do not
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vary with respect to n. Note that, for simplicity, we are supposing here γi(r) = −cir.
Also, consider two maximal monotone graphs α1,n and α2,n. Our conventional nota-
tion involving the index i = 1, 2 (i.e. fi = f|Ωi

, for instance) is extended to the case
of n-dependent functions this way: for example, µn will denote the piecewise constant
strictly positive function coinciding with µ1 (fixed) on Ω1 and with µ2,n (possibly vary-
ing with n) on Ω2; the same is intended for νn, cn, and αn (in the sense of an operator
depending also on the space variable), or for the solutions (θn, χn, ξn), and so on.

In the rest of the chapter we shall study several problems where some, or all, of
the coefficients µ2,n, ν2,n, α2,n, c2,n are allowed to vary with n, while the corresponding
parameters on Ω1, save at most the operator α1,n, are fixed.

Also, it is possible to allow a variation of the initial datum χ
0 in Ω; i.e., we choose

χ
1,0,n → χ

1,0 and χ2,0,n → χ
2,0; in some cases χ1,0,n will remain fixed and equal to χ1,0.

We can now recall the equations of (TPn) in a strong form, which is allowed by the
regularity of solutions provided by Theorem 3.1.3

ρ1∂tθ1,n + λ1∂t
χ

1,n − κ1∆θ1,n = f1 a.e. in Q1,(4.1)

ρ2∂tθ2,n + λ2∂t
χ

2,n − κ2∆θ2,n = f2 a.e. in Q2,(4.2)

µ1∂t
χ

1,n − ν1∆χ1,n + ξ1,n − c1χ1,n = `1θ1,n a.e. in Q1,(4.3)

µ2,n∂t
χ

2,n − ν2,n∆χ2,n + ξ2,n − c2,n
χ

2,n = `2θ2,n a.e. in Q2,(4.4)

ξ1,n ∈ α1(χ1,n) a.e. in Q1; ξ2,n ∈ α2,n(χ2,n) a.e. in Q2.(4.5)

We point out that the above system is complemented with the natural Cauchy condi-
tions of the form

(4.6) θn(0) = θ0, χ
n(0) = χ

0,n,

with homogeneous Neumann boundary conditions for χn (which, we recall, seem the
most appropriate under the thermodynamical viewpoint)

(4.7) ∂n
χ

n = 0 on ∂Ω×]0, T [,

and with third type conditions for the temperature, which precisely prescribe the heat
flux with respect to the exterior:

(4.8) (κ∇θn) · n + pθn = gn on ∂Ω×]0, T [,

where it is p > 0, and g ∈ L2(0, T ;H−1/2(∂Ω)) represents a source term concentrated
on the boundary.

Finally, there are the transmission conditions at the interface for both variables:

θ1,n = θ2,n on Σ, χ
1,n = χ

2,n on Σ,(4.9)

κ1∂nθ1,n = κ2∂nθ2,n on Σ,(4.10)

ν1∂n
χ

1,n = ν2,n∂n
χ

2,n on Σ.(4.11)

We recall that, due to the regularity of solutions, joining the contributions of Ω1 and
Ω2 and accounting for the transmission conditions (4.9–4.11), we could also rewrite the
equations of Problem (TPn) in an equivalent variational form. We finally repeat the
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regularity assumptions on data and the consequent regularity properties of solutions:
setting as usual V = H1(Ω) and H = L2(Ω) (we point out that Dirichlet boundary
conditions, also not homogeneous, could be assumed instead; all the subsequent results
should remain valid, with the usual modifications in the variational setting), we assume
that θ0 ∈ V , χ0,n ∈ V , and j1,n(χ1,0,n) ∈ L1(Ω1), j2,n(χ2,0,n) ∈ L1(Ω2), where j1,n (j2,n)
is the convex primitive of α1,n (α2,n, respectively). Moreover, we suppose either of the
following (CC), or (GC):

(CC) D(α1,n) = D(α2,n) =: Dn; moreover, for every n ∈ N there exists a positive
constant Cα,n, such that for every r ∈ R and y1 ∈ α1,n(r), y2 ∈ α2,n(r), it is

(4.12) |y1| ≤ Cα,n(1 + |y2|), |y2| ≤ Cα,n(1 + |y1|);

(GC) for some mn > 0 (possibly depending on n), we have that,

(4.13) lim inf
|r|→∞

j∗1,n(r)

r2
≥ mn, lim inf

|r|→∞

j∗2,n(r)

r2
≥ mn

for every n ∈ N.

We point out that, for the present, no uniformity in n is required in the above relations;
moreover, we remark that, due to the large number of estimates to be performed, in
this chapter the counter of the constants C1, C2, . . . will be restarted each subsection.
Under either (CC) or (GC), the solution (θn, χn, ξn) to (4.1–4.11) exists, is unique,
and satisfies the following regularity properties:

θn ∈ H1(0, T ;H) ∩ C0([0, T ];V ); − div(κ∇θ) ∈ L2(0, T ;H)(4.14)

χ
n ∈ H1(0, T ;H) ∩ C0([0, T ];V ); − div(ν∇θ) ∈ L2(0, T ;H)(4.15)

ξn ∈ L2(0, T ;H).(4.16)

We point out that the expression of condition (GC) reported here is slightly stron-
ger than the corresponding one of Subsection 3.2.2; hence, (4.16) yields some more
space regularity than (3.142) (of which it is a particular case); the above statement,
anyway, is sufficiently general for the sequel. We also emphasize that, in the following
subsections, further hypotheses on coefficients will be given, referring to the specific
convergence analysis to be performed time by time.

Here we conclude by presenting some further mathematical instruments which will
result useful in the sequel; we start by stating a general lemma concerning maximal
monotone operators, which justifies rigorously a formal monotonicity argument that
frequently occurs in the derivation of the a priori estimates for this kind of problems.

Lemma 4.1.1. Let β be a maximal monotone graph in R × R, V = H1(Ω) or V =
H1

0 (Ω), A : V → V ′ a weakly elliptic operator (recall (1.21)), u ∈ V such that Au ∈
L2(Ω), ζ ∈ L2(Ω) such that ζ ∈ β(u) a.e. in Ω. Then, we have that

(4.17)

∫
Ω

Auζ dx ≥ 0.
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Proof. Denoting by βε the Yosida-approximation of β and setting as usual H :=
L2(Ω), we consider the following elliptic problem

(4.18) uε + Auε + βε(uε) = u+ Au+ ζ in H.

It is well-known that such a problem admits a unique solution uε, satisfying uε ∈ V
and Auε ∈ H. Since βε is Lipschitz continuous, there are no difficulties in deriving the
natural apriori estimates for the above problem, leading to the following convergences,
which hold, for some v ∈ V , up to the extraction of subsequences (actually uniqueness
will guarantee them for the whole sequences):

uε → v in V –weak (and H–strong),(4.19)

Auε → Av in H–weak,(4.20)

βε(uε)→ η in H–weak.(4.21)

Then, we see that the limit functions satisfy v + Av + η = u + Au + ζ; if we show
that η ∈ β(v) a.e. in Ω, we can conclude, by monotonicity, that v = u and ζ = η. The
procedure to obtain this equality exploits, as usual, Prop. 1.3.8. Denoting by (·, ·) the
scalar product in H, we easily deduce from (4.18)

(4.22) (βε(uε), uε) = (u+ Au+ ζ − uε − Auε, uε),

whence lim (βε(uε), uε) = (u + Au + ζ − v − Av, v) = (η, v), as desired. We finally
verify the required property. At the level ε > 0, we have

(4.23) 0 ≤
∫

Ω

Auεβε(uε) dx =

∫
Ω

(u+ Au+ ζ − uε − βε(uε))βε(uε) dx,

whence, passing to the supremum limit and exploiting semicontinuity, we infer

(4.24) 0 ≤
∫

Ω

(u+ Au+ ζ − u− ζ)ζ dx =

∫
Ω

Au ζ dx,

as desired.

We now state a series of results which will come out to be crucial in order to manage
some nontrivial boundary terms on Γ appearing in the apriori estimates performed in
the sequel; for the sake of clarity, also in the statement of these more “theoretical”
results we have preferred to keep our usual hypotheses and notations for the domains
Ωi, and the common boundary Γ. So, we introduce the space H1

∆,−1/2(Ωi) := {v ∈
H1(Ωi) : ∆v ∈ H−1/2(Ωi)} (where i = 1 or i = 2, as usual), which, of course, is
equipped with the graph norm; also, the constant c > 0 in the below statements may
vary from line to line, but is naturally independent of the functions appearing on the
left hand sides.

Proposition 4.1.2. Let u ∈ H1
∆,−1/2(Ωi); then, we have

(4.25) ‖∂nu‖H−1/2(∂Ωi) ≤ c(‖u‖H1(Ωi) + ‖∆u‖H−1/2(Ωi)).
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We do not give here the proof of the above proposition; notice indeed that it is
essentially a consequence of the density of the space C∞(Ω) in H1

∆,−1/2(Ω) (which
can be showed by slightly modifying the proof of the weaker property provided by
[42, Lemma 1.5.3.9, pp. 59–60]); in fact, all the terms of the generalized Gauss-Green
formula (1.8) make sense also for p = 2 and w ∈ L2(Ω1)

N with div w ∈ H−1/2(Ω1),
provided that we intend the integral on the right hand side as a duality.

By virtue of Prop. 1.1.8, we can deduce a consequence of the above property, which
will be effectively used in the sequel.

Corollary 4.1.3. Let u ∈ H1(Ωi) such that ∆u ∈ L2(Ωi) and ∂nu = 0 (in sense of
traces) on ∂Ωi \ Γ; then, we have

(4.26) ‖∂nu‖H−1/2(Γ) ≤ c(‖u‖H1(Ωi) + ‖∆u‖H−1/2(Ωi)).

Also, the above property will be used together with the following standard inter-
polation result [54, Prop. 1.2.3, page 19 and Th. 1.12.2, pages 71-72]

Lemma 4.1.4. Let v ∈ L2(Ω) and K > 0 such that ‖v‖L2(Ω) ≤ c and ‖v‖H−1(Ω) ≤ cK.
Then, we have that, ‖v‖H−η(Ω) ≤ cKη for every 0 ≤ η ≤ 1, η 6= 1/2, where the last c
is clearly independent of u,K, η.

4.1.2 Limit for µ2,n → 0

In this subsection, we let the parameter µ2,n tend to 0 as n→∞; a formal examination
of equations (4.1–4.4) then suggests that the limit problem should couple the standard
phase-field model in Ω1 with a time-stationary (in χ) phase-field model in Ω2. However,
since the time derivative of the χ appears also in the heat equation, a change of
unknowns, introducing the enthalpy e, will be needed in order to study the convergence
problem. Moreover, some supplementary hypotheses on α1, α2 will be assumed and
also some coefficients of the problem will be supposed continuous at the interface Γ.
The main mathematical interest of this analysis resides in the non-separability of the
contributions of the two domains in the weak formulation of the problem, which causes
the dependence on µ2 of some estimates to fall also upon the Ω1-components of the
solutions; this forces the solution of the limit problem to be regarded in a weaker sense,
also as the equations in Ω1 are concerned (even if they are formally invariant with n).

The results reported in this subsection are essentially contained in the paper [78];
other asymptotic analyses of problems similar to this one, but related to the simpler
case of a single substance, have been performed in the papers by Damlamian, Ken-
mochi, and Sato [34] and by Colli, Gilardi, and Grasselli [27] (in the case of the phase
field model with memory effects).

First of all, assume that ν2,n = ν2, α2,n = α2 and c2,n = c2 for all n ∈ N, while
suppose that µ2,n → 0 for n→∞. Also, define (as usual) the enthalpy en := ρθn+λχn;
in this setting, in order to guarantee regularity in space also to e, we are forced to
assume that

(4.27) ρ1 = ρ2 =: ρ and λ1 = λ2 =: λ.



convergence results 86

Furthermore, we set ω := ρ−1 and suppose that, for i = 1, 2, the (possibly multivalued)
operator

(4.28) δi : r 7→ αi(r) + (λ`iω − ci)r is (maximal) monotone in R× R

and denote it by δi. Then, accounting for (4.27–4.28), equations (4.1–4.4), together
with the transmission conditions (4.9–4.11), can be easily rewritten in the form

∂ten − div(k∇en) = f − div(h∇χn) a.e. in Q,(4.29)

µn∂t
χ

n − div(ν∇χn) + wn = `ωen a.e. in Q,(4.30)

w1,n ∈ δ1(χ1,n) a.e. in Q1, w2,n ∈ δ2(χ2,n) a.e. in Q2,(4.31)

where we also defined ki := κiω and hi := κiλω.
The above system, complemented with the Cauchy and boundary conditions (4.6–

4.8) rewritten in terms of the new unknowns and of the (naturally constructed) Cauchy
data e0,n, χ0,n, provides the suitable reformulation of Problem (TPn) for the asymptotic
analysis which we now start. First of all, referring to the new unknowns, we recall
some regularity hypotheses on the data of the approximating problems and specify
some others concerning the limit ones:

e0,n, χ0,n ∈ V(4.32)

e0 ∈ H(4.33)

χ
1,0 ∈ L2(Ω1)(4.34)

f ∈ L2(Q).(4.35)

As far as the dependence on n is concerned, the minimal convergence-boundedness
hypotheses on data are as below:

e0,n → e0 in H–strong(4.36)

χ
1,0,n → χ

1,0 in L2(Ω1)–strong(4.37)

µ
1/2
2,n
χ

2,0,n → 0 in L2(Ω2)–strong(4.38)

µ2,n‖θ0,n‖H1(Ω) ≤M(4.39)

µ
1/2
2,n‖χ0,n‖H1(Ω) ≤M(4.40)

‖φ1(χ1,0,n)‖L1(Ω1) ≤M(4.41)

µ2,n‖φ2(χ2,0,n)‖L1(Ω2) ≤M.(4.42)

In the above hypotheses, φi denotes the convex primitive of δi; moreover, the positive
constant M is naturally independent of n.

Setting V1 := H1(Ω1), V2 := H1(Ω2), and defining the abstract elliptic operators

K : V 2 → V ′, V ′〈K(v, u), w〉V :=

∫
Ω

k(x)∇v(x) · ∇w(x) dx(4.43)

+

∫
∂Ω

pω (v − λu)w dHN−1,

N : V → V ′, V ′〈N v, w〉V :=

∫
Ω

ν(x)∇v(x) · ∇w(x) dx,(4.44)

H : V → V ′, V ′〈Hv, w〉V :=

∫
Ω

h(x)∇v(x) · ∇w(x) dx,(4.45)
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for v, u ∈ V and w ∈ V ′, we can now state the mathematical formulation of the limit
problem, which is the following one:

Problem 4.1.5. Find

e ∈ H1(0, T ;V ′) ∩ L2(0, T ;V ) and(4.46)

χ ∈ L2(0, T ;V ) with χ
1 ∈ H1(0, T ;V ′

1)(4.47)

such that the following equations hold for a.e. t ∈]0, T [:

∂te+K(e, χ) = f̃ +Hχ in V ′,(4.48)

µ1∂t
χ

1 +Nχ+ w = ωe in V ′,(4.49)

χ
i ∈ D(δi) and wi ∈ δi(χi) a.e. in Qi.(4.50)

In the above statement, f̃ is a generalized source term also keeping into account the
contribution of g on the boundary; moreover, µ1∂t

χ
1 actually stands for its 0-extension

to the whole Q. Here is the corresponding convergence result for the solutions of the
transmission problem

Theorem 4.1.6. Under the boundedness-convergence hypotheses (4.36–4.42), we have
that Problem 4.1.5 admits a unique solution (e, χ) which is the limit of solutions of the
transmission system (4.29–4.31) in the following sense:

en → e in L∞(0, T ;H)–weak∗(4.51)

χ
1,n → χ

1 in L∞(0, T ;L2(Ω1))–weak∗(4.52)

en → e in L2(0, T ;V )–strong(4.53)

χ
n → χ in L2(0, T ;V )–strong(4.54)

wi,n → wi in L2(Qi)–weak.(4.55)

We also have the following additional convergences for the Ω2-part:

µ
1/2
2,n
χ

2,n → 0 in L∞(0, T ;V2)–weak∗(4.56)

µ2,n
χ

2,n → 0 in H1(0, T ;L2(Ω2))–weak.(4.57)

Moreover,

(4.58) −ν2∆χ2 + w2 = λχ2 a.e. in Q2,

and ∂n
χ

2 = 0 in the sense of traces on Σ2. Finally, we have the Cauchy conditions

e(0) = e0(4.59)

χ
1(0) = χ

1,0.(4.60)

We now perform the apriori estimates which are needed to obtain the required
convergence of solutions. Since the computations are very similar to those of Sub-
sec. 2.2.2, we shall only specify which test functions we choose, without operating
the calculations. Some remarks will be given about the delicate points, where the
supplementary hypotheses on coefficients become essential.

First of all, we recall a form of the Poincaré inequality that is useful to control
some terms in Ω2:
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Lemma 4.1.7. There exists a purely geometric constant CΩ such that, for any v ∈
H1(Ω), we have

(4.61) ‖v2‖2L2(Ω2) ≤ CΩ

(
‖∇v2‖2L2(Ω2) + ‖v1‖2H1(Ω1)

)
.

First estimate. We multiply equation (4.29) by en and equation (4.3) by mχn,
where m is a (sufficiently large) positive constant (to be chosen). Notice that the
property en ∈ L∞(0, T ;V ), which is essential in order it is an admissible test func-
tion, is guaranteed by (4.27). Integrating over Qt (for t ≤ T ) the obtained relations
and summing together, on account of the monotonicity of the δi’s and of the Young
inequality (1.24), it is not difficult to get the following estimates (K > 0 depending
only on data, and not of n, in particular):

‖en‖L∞(0,T ;H) ≤ K(4.62)

‖χn‖L2(0,T ;V ) ≤ K(4.63)

‖en‖L2(0,T ;V ) ≤ K(4.64)

µ
1/2
i,n ‖χi,n‖L∞(0,T ;L2(Ωi)) ≤ K.(4.65)

The only point concerning the computations which we wish to remark here is the
use of the Poincaré inequality which is necessary in the estimation of the norm
‖χ2,n‖L2(0,T ;L2(Ω2)) in terms of ‖∇χ2,n‖L2(0,T ;L2(Ω2)) and the Ω1-components.

Second estimate. Choose now ∂t
χ

n as a test function for equation (4.3). Proceed-
ing in the standard way, and exploiting (1.24), it is not difficult to derive the following
inequality (C2 > 0 depending again only on data)

‖µ1/2
n ∂t

χ
n‖2L2(Qt)

+ ‖ν1/2∇χn(t)‖2L2(Ω) +
2∑

i=1

∫
Ωi

φi(χi,n(t)) dx

≤ ‖ν1/2∇χ0,n‖2L2(Ω) +
2∑

i=1

∫
Ωi

φi(χi,0,n) dx

+
2∑

i=1

µi,n

2
‖∂t

χ
i,n‖2L2(0,t;L2(Ωi))

+ C2

2∑
i=1

µ−1
i,n‖ei,n‖2L2(0,t;L2(Ωi))

Notice now that we are forced to multiply the whole relation by µ2,n in order to control
by (4.62) the last term on the right hand side; indeed, due to the non-separability of
the equations in Ω1 and Ω2, the factor µ2 will fall also on the integrals on Ω1 on the
left hand side, preventing us from finding for them estimates independent of µ2; so,
what we get is

µ
1/2
2,n‖χ1,n‖H1(0,T ;L2(Ω1)) ≤ K,(4.66)

µ2,n‖χ2,n‖H1(0,T ;L2(Ω2)) ≤ K,(4.67)

µ
1/2
2,n‖χn‖L∞(0,T ;V ) ≤ K,(4.68)

µ2,n‖φi(χi,n)‖L∞(0,T ;L1(Ωi)) ≤ K.(4.69)
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Third estimate. Take ∂tθn = ω∂t(en − λχn) as a test function for (4.29) and inte-
grate over [0, t]. Proceeding as before, it is easy to derive (σ is as in (1.25))

ω‖∂ten‖2L2(0,t;H) +
min{κ1, κ2}

2
‖∇θn(t)‖2H ≤

max{κ1, κ2}
2

‖∇θ0,n‖2H
≤ Cσ‖f‖2L2(Qt)

+ σ‖∂ten‖2L2(0,t;H) + Cσ‖∂t
χ

n‖2L2(0,t;H),

whence, multiplying this relation by µ2
2,n, and recalling (4.66–4.67) and hypothesis

(4.39), we easily infer

µ2,n‖en‖H1(0,T ;H) ≤ K,(4.70)

µ2,n‖en‖L∞(0,T ;V ) ≤ K.(4.71)

Proof of Theorem 4.1.6. Estimates (4.62–4.65), (4.67–4.68) immediately provide
(4.51–4.52), (4.56–4.57), as well as the the additional weak convergence

(en, χn)→ (e, χ) in L2(0, T ;V )2–weak.(4.72)

We remark that the dependence on µ2,n gives rise to a lack of regularity in time which
forbids to get, at this level, any strong convergence. Consequently, at present we can
say nothing about the validity of relation (4.50). Now, rewriting the system (4.29–4.30)
together with the Neumann conditions (4.7–4.8) in the variational form

∂ten +K(en, χn) = f̃ +Hχn in V ′,(4.73)

µn∂t
χ

n +Nχn + wn = ωen in V ′(4.74)

and proceeding by comparison in (4.73), it is easy to get

(4.75) ∂ten → ∂te in L2(0, T ;V ′)–weak,

whence e ∈ H1(0, T ;V ′) and (4.48) holds in the required sense. Also, the usual
compactness theorems yield

en → e in C0([0, T ];H)–weak,(4.76)

en → e in L2(0, T ;H)–strong.(4.77)

Furthermore, owing to (4.76), we can recover from (4.36) and (4.6) the Cauchy condi-
tion (4.59).

Let us now subtract (4.48) from (4.73); recalling (4.72) and testing the resulting
relation by en − e, with the aid of (1.24) and of the convergence hypotheses on the
initial data, after easy computations (exploiting (4.36) and (4.77)), we obtain

(4.78) ‖en(T )− e(T )‖2H + ‖∇(en − e)‖2L2(0,T ;H) ≤ R1,n + λ2‖∇(χn − χ)‖2L2(0,T ;H),

where R1,n is a numerical sequence tending to 0 an n tends to ∞.
We now see that a similar procedure works also for the phase field equation; first,

observe that, thanks to the regularity of Ω, there exists a “reflection-like” operator
R : V1 → V , that is a linear and continuous operator such that

(4.79) (Rv1)|Ω1 = v1 for all v1 ∈ V1.



convergence results 90

So, if we choose w1 ∈ D(0, T ;V1) and set w := Rw1, test (4.30) with w and integrate
over Q, we get

(4.80) µ1

∫ T

0

∫
Ω1

∂t
χ

1,nw1 dx ds ≤ C3‖w‖L2(0,T ;V ) ≤ C4‖w1‖L2(0,T ;V1),

where C3 depends only on the norms of w, ∇χ and e in L2(Q) and on the norm
of µ2,n∂t

χ
2,n in L2(Q2), which are all bounded, and C4 is C3 times the norm of the

operator R. We conclude, like before, that

(4.81) ∂t
χ

1,n → ∂t
χ

1 in L2(0, T ;V ′
1)–weak

and, recalling (4.72), thanks again to the Aubin theorem,

χ
1,n → χ

1 in L2(0, T ;L2(Ω1))–strong,(4.82)

χ
1,n → χ

1 in C0([0, T ];L2(Ω1))–weak.(4.83)

This is enough to pass to the limit in (4.30) and get back (4.49) in the specified sense.
Now, testing again equation (4.30) with v ∈ L2(0, T ;V ), integrating over [0, T ],

adding and subtracting some terms, we get

L2(0,T ;V ′
1)〈µ1∂t(χ1,n − χ1), v1〉L2(0,T ;V1) + µ2,n

∫ T

0

∫
Ω2

∂t
χ

2,nv2 dx ds

+
2∑

i=1

νi

∫ T

0

∫
Ωi

∇(χi,n − χi) · ∇vi dx ds+
2∑

i=1

∫ T

0

∫
Ωi

wi,nvi dx ds

= −L2(0,T ;V ′
1)〈µ1∂t

χ
1, v1〉L2(0,T ;V1) −

2∑
i=1

νi

∫ T

0

∫
Ωi

∇χi · ∇vi dx ds

+

∫ T

0

∫
Ω

`ω(en − e)v dx ds+

∫ T

0

∫
Ω

`ωev dx ds,(4.84)

In particular, for v = χ
n − χ, thanks also to (4.83), we get

µ1

2
‖χ1,n(T )− χ1(T )‖2L2(Ω1) +

µ2

2
‖χ2,n(T )‖2L2(Ω2) +

2∑
i=1

νi‖∇(χi,n − χi)‖2L2(0,T ;L2(Ωi))

= −L2(0,T ;V ′
1)〈µ1∂t

χ
1, χ1,n − χ1〉L2(0,T ;V1) −

2∑
i=1

∫ T

0

∫
Ωi

wi,n(χi,n − χi) dx ds

−
2∑

i=1

νi

∫ T

0

∫
Ωi

∇χi · ∇(χi,n − χi) dx ds

+

∫ T

0

∫
Ω

`ω(en − e)(χn − χ) dx ds+

∫ T

0

∫
Ω

`ωe(χn − χ) dx ds

+
µ1

2
‖χ1,0,n − χ1,0‖2L2(Ω1) +

µ2

2
‖χ2,0,n‖2L2(Ω2) + µ2

∫ T

0

∫
Ω2

∂t
χ

2,n
χ

2 dx ds.(4.85)
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Adding now the preceding relation to m times (4.78) (with m to be chosen suf-
ficiently small), recalling the convergences (4.57), (4.72), (4.77) and (4.82), and the
hypotheses (4.37–4.38), and taking the lim sup as n→∞ of the resulting equality, by
lower semicontinuity of φ (indeed of its L2-extension) it is easy to derive (4.53) and
also

‖∇χµ −∇χ‖L2(0,T ;H) → 0,

whence we deduce (4.54) by recalling (4.82) and the Poincaré inequality (4.61); fur-
thermore, relation (4.50) is, as before, a consequence of (4.54), (4.55) and Prop. 1.3.8.

Recalling (4.75) and (4.81), we get also the regularities (4.46–4.47); furthermore,
reasoning by comparison in (4.30), we get that

Dχ2,n → Dχ2 in L2(Q2)–weak,

so that (4.58) holds along with the related Neumann boundary condition on Γ2; this
concludes the proof of existence.

Proof of uniqueness. Let us suppose we have a pair of solutions (ê, χ̂, ŵ), (ě, χ̌, w̌)
to the system (4.48–4.50), (4.59–4.60). Set e := ê − ě, χ := χ̂ − χ̌, w := ŵ − w̌. The
constants C5, C6, C7 > 0 in the following computations only depend on data.

Substitute first (ê, χ̂) and then (ě, χ̌) in equation (4.48), take the difference and
test with e, easily obtaining for every t ∈ [0, T ] the inequality

(4.86) ‖e(t)‖2H + ‖∇e‖2L2(0,t;H) ≤ C5‖∇χ‖2L2(0,t;H).

Applying a similar procedure to equation (4.49) and taking into account the mono-
tonicity of δi, we get, for σ > 0 and for every t ∈ [0, T ],

(4.87) ‖χ1(t)‖2L2(Ω1) + ‖∇χi‖2L2(Qt)
≤ C6

(
Cσ‖e‖2L2(0,t;H) + σ‖χ‖2L2(0,t;H)

)
.

Now, take the sum of m times (4.86) with (4.87), with m > 0, as usual, to be
chosen later; exploiting (4.61), we derive

‖χ1(t)‖2L2(Ω1) + ‖∇χ‖2L2(Qt)
+m‖e(t)‖2H +m‖∇e‖2L2(0,t;H)(4.88)

≤ C7(Cσ‖e‖2L2(0,t;H) + σCΩ‖∇χ‖2L2(0,t;H)

+m‖∇χ‖2L2(0,t;H) + σ(1 + CΩ)‖χ1‖2L2(0,t;L2(Ω1))).

At this point, if we take m and σ sufficiently small, an application of the Gronwall
lemma allows us to complete the proof.

4.1.3 Limit for ν2,n → 0

We consider again a family of transmission problems, as described in Subsec. 4.1.1, and
we wish to study their behaviour as we let the interfacial energy coefficient relative to
the substance in Ω2, i.e. ν2,n, tend to 0, while we keep µ2,n = µ2, α2,n = α2, α1,n = α1,
c2,n = c2 fixed with respect to n. By formally observing the original equations, we
expect to get as a limit a transmission system coupling the phase-field model in Ω1

with the phase-relaxation one [85] in Ω2; moreover, due to the vanishing of the phase
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diffusion term in Ω2, a variation of the boundary conditions for χ is also expected to
occur.

We point out that, in the previous analysis, the convergence result did not depend
on the particular kind of conditions ((CC) or (GC)) ensuring the existence of the
solution to the approximating system; here, instead, since the spatial diffusion of χ

is varying, we are forced to confine the study to the case of (CC); for the growth
conditions setting, we think that the problem should be addressed by methods similar
to those of the subsequent Section 4.2, to which we refer.

First of all, we list some regularity-convergence assumptions on the initial data
which, naturally, complement those described in Subsec. 4.1.1:

χ
1,0,n → χ

1,0 in V –strong,(4.89)

ν
1/2
2,n
χ

2,0,n → 0 in V –strong,(4.90)

χ
2,0,n → χ

2,0 in L2(Ω2)–strong,(4.91) ∫
Ωi

ji(χi,0,n) dx ≤ C for all n ∈ N, i = 1, 2.(4.92)

Also, we have to introduce two new elliptic operators K and N1; while the first
definition is standard, we point out that it is the continuity of the restriction operator
V → H1(Ω1) which permits to construct N1:

K : V → V ′, V ′〈Kv, w〉V :=

∫
Ω

κ(x)∇v(x) · ∇w(x) dx+

∫
∂Ω

pvw dHN−1,(4.93)

N1 : V → V ′, V ′〈N1v, w〉V :=

∫
Ω1

ν1∇v1(x) · ∇w1(x) dx.(4.94)

The above assumptions are enough to state the precise mathematical formulation
of the limit problem and the corresponding convergence theorem:

Problem 4.1.8. We look for a triplet of functions (θ, χ, ξ), such that the following
regularity properties hold

θ ∈ H1(0, T ;H) ∩ C0([0, T ];V ), Kθ ∈ L2(Q),(4.95)

χ ∈ H1(0, T ;H), χ
1 ∈ C0([0, T ];V1), ∆χ1 ∈ L2(0, T ;L2(Ω1))(4.96)

ξ ∈ L2(Q)(4.97)

and that the equations below are satisfied:

ρ∂tθ + λ∂t
χ− div(κ∇θ) = f a.e. in Q,(4.98)

µ∂t
χ+N1

χ+ ξ − cχ = `θ in V ′ a.e. in ]0, T [,(4.99)

ξi ∈ αi(χi) a.e. in Qi(4.100)

together with the boundary condition (4.8) and the Cauchy ones θ(0) = θ0, χ(0) = χ
0.
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Theorem 4.1.9. Problem 4.1.8 admits a unique solution; moreover, the following
convergences are fulfilled:

θn → θ in L∞(0, T ;V )–weak∗,(4.101)

θn → θ in H1(0, T ;H)–weak,(4.102)

χ
n → χ in H1(0, T ;H)–weak,(4.103)

χ
2,n → χ

2 in L2(0, T ;L2(Ω2))–strong,(4.104)

χ
1,n → χ

1 in L∞(0, T ;V1)–weak∗,(4.105)

ν
1/2
2,n
χ

2,n → 0 in L∞(0, T ;V2)–weak∗,(4.106)

ν
1/2
2,n
χ

2,n → 0 in L2(0, T ;V2)–strong.(4.107)

Remark 4.1.10. We point out that, owing to the regularity of solutions, equation
(4.99) is equivalent to the following system, splitting the contributions of Ω1 and Ω2:

µ1∂t
χ

1 − ν1∆χ1 + ξ1 − c1χ1 = `1θ1 a.e. in Q1,(4.108)

µ2∂t
χ

2 + ξ2 − c2χ2 = `2θ2 a.e. in Q2,(4.109)

complemented with the Neumann condition ∂n
χ

1 = 0 in sense of traces on ∂Ω1×]0, T [.

We now start by deriving the apriori estimates on which the n-limit procedure is
based; since the arguments are rather standard, in the following we shall omit most of
the computations, proposing anyway to remark the delicate points.

First estimate. Test equations (4.1–4.2) by θ1,n and θ2,n respectively and sum to-
gether; integrate over ]0, t[, for t ≤ T and exploit the transmission conditions. Then,
it is easy to infer, for some constant C1 only depending on data,

(4.110) ‖θn(t)‖2H + ‖∇θn‖2L2(Qt)
≤ C1

(
‖∂t

χ
n‖2L2(Qt)

+ ‖θ‖2L2(Qt)
+ 1
)
.

Multiplying instead (4.3–4.4) by χ1,n + ∂t
χ

1,n and by χ2,n + ∂t
χ

2,n, respectively, inte-
grating over Qt, exploiting the monotonicity of αi and Young’s inequality, it is easy to
infer (with C1 possibly different from above, but still depending only on coefficients)

‖∂t
χ

n‖2L2(Qt)
+ ‖χn(t)‖2H + ν1‖∇χ1,n‖2L2(0,t;L2(Ω1)) + ν2,n‖∇χ2,n‖2L2(0,t;L2(Ω2))(4.111)

+ ν1‖∇χ1,n(t)‖2L2(Ω1) + ν2,n‖∇χ2,n(t)‖2L2(Ω2) +
2∑

i=1

∫
Ωi

ji(χi)(t) dx

≤ C1

(
Cσ‖θn‖2L2(Qt)

+
2∑

i=1

∫
Ωi

ji(χi,0,n) dx+ Cσ‖χn‖2L2(Qt)

)

+ C1

(
σ‖∂t

χ
n‖2L2(Qt)

+
2∑

i=1

νi‖∇χi,0,n‖2L2(Ωi)

)
Now, summing the previous two relations together and exploiting the standard Gron-
wall inequality, we can derive, up to the extraction of subsequences, the convergences
(4.103) and (4.105–4.106), as well as

θn → θ in L2(0, T ;V )–weak,(4.112)

θn → θ in L∞(0, T ;H)–weak∗.(4.113)
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Second estimate. Testing (4.1–4.2) with ∂tθ1,n and ∂tθ2,n, respectively, and per-
forming standard computations, on account of (4.103) it is easy to infer the validity
of convergences (4.101–4.102).

The procedure used up to now works both in the case of (CC) and of (GC); also, by
means of the usual compactness theorems, some strong convergences follow:

θn → θ in C0(0, T ;H)–strong,(4.114)

χ
1,n → χ

1 in C0(0, T ;L2(Ω1))–strong.(4.115)

Unfortunately, no strong convergence is available yet for χ2,n and again it will be
necessary to derive it through a direct approach. However, we have to manage the
terms ξi,n, before, and this is the purpose of the next estimate.

Third estimate. We perform a procedure similar to that of Lemma 3.2.8; however,
some more attention need to be paid, since here the approximating operators α1 and
α2 need not be Lipschitz continuous. Thus, we consider the test function ξ̃n defined
as ξ̃1,n := ξ1,n + α0

2(χ1,n) in Q1 and as ξ̃2,n := ξ2,n + α0
1(χ2,n) in Q2 (for the definition

of α0
1 and α0

2, we refer to Subsec. 1.2.2); on account of (CC), it is easy to verify

that ξ̃n ∈ L2(Q). Hence, multiplying (4.3) by ξ̃1,n and (4.4) by ξ̃2,n, we can apply

Lemma 4.1.1 to integrate by parts the term − div(νn∇χn) ξ̃n (note that no troubles
arise from the dependence on n of νn), so that, following the proof of Lemma 3.2.8, it
is easy to obtain, for subsequences,

(4.116) ξn → ξ in L2(0, T ;H)–weak.

By virtue of the monotonicity argument of Prop. 1.3.8, (4.115) and (4.116) are enough
to identify ξ1 ∈ α1(χ1). As far as ξ2 is concerned instead, for the present we have
no strong convergence for χ2,n and again such a property has to be checked directly.
The below argument, anyway, presents further difficulties with respect to case of the
previous subsection; indeed, no help can now be derived from the norm ‖∇χ2,n‖H , due
to the blow-out ν2,n → 0.

Strong convergence. First of all, owing to convergences (4.102–4.103) and (4.116)
and proceeding by comparison in equations (4.1–4.2), we easily derive

∆χ1,n → ∆χ1 in L2(0, T ;L2(Ω1))–weak,(4.117)

ν2,n∆χ2,n → 0 in L2(0, T ;L2(Ω2))–weak.(4.118)

In particular, this allows to recover relations (4.108–4.109); nothing, anyway, can be
said yet about the boundary conditions and the interpretation of ξ2. So, we proceed
with a change of unknowns, by setting now z2,n := e−c2µ−1

2 tχ
2,n. Notice that z2,n has

the same regularity as χ2,n. Moreover, computing the time derivative, it is easy to
verify that, in the new unknown, the equation (4.4) and the second of conditions (4.5)
become

µ2∂tz2,n − ν2,n∆z2,n + ξ2,ne
−c2µ−1

2 t = `2e
−c2µ−1

2 tθ2,n,(4.119)

ξ2,n ∈ β2(e
c2 µ−1

2 tz2,n) almost everywhere.(4.120)
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Moreover, z2,n still satisfies homogeneous Neumann boundary conditions on ∂Ω2 \ Γ
and transmission ones on Γ; in addition, thanks to (4.103), it is easy to check that

(4.121) z2,n → z2 := e−c2µ−1
2 tχ

2 in H1(0, T ;L2(Ω2))–weak.

Subtracting now the term µ2∂tz2 from both hand sides of (4.119) and testing the result
by z2,n − z2, integrating over ]0, t[ with t ≤ T , we infer

µ2

2
‖(z2,n − z2)(t)‖2L2(Ω2) − ν2,n

∫ t

0

∫
Ω2

∆z2,nz2,n dx ds(4.122)

=
µ2

2
‖χ2,0,n − χ2,0‖2L2(Ω2) − ν2,n

∫ t

0

∫
Ω2

∆z2,nz2 dx ds

+ `2

∫ t

0

∫
Ω2

e−c2µ−1
2 sθ2,n(z2,n − z2) dx ds− µ2

∫ t

0

∫
Ω2

∂tz2(z2,n − z2) dx ds

+

∫ t

0

∫
Ω2

ξ2,ne
−c2µ−1

2 s(z2 − z2,n) dx ds

We start by discussing the term with the Laplacean on the left hand side. Actu-
ally, we can integrate it by parts, but on account of the mixed boundary conditions
(homogeneous Neumann on ∂Ω\Γ and transmission on Γ), we also get a surface term:

− ν2,n

∫ t

0

∫
Ω2

∆z2,nz2,n dx ds(4.123)

= ν2,n

∫ t

0

∫
Ω2

|∇z2,n|2 dx ds− ν2,n

∫ t

0

〈∂nz2,n(s), z2,n(s)〉 ds

= ν2,n

∫ t

0

∫
Ω2

|∇z2,n|2 dx ds− ν2,n

∫ t

0

e−2c2µ−1
2 s〈∂n

χ
2,n(s), χ2,n(s)〉 ds.

Notice that the above duality is written in the correct functional spaces H−1/2(Γ),
H1/2(Γ) by virtue of Prop. 1.1.8. Now, the first term on the right hand side of the
preceding relation gives a nonnegative contribution; the second one, instead, must be
split and estimated by means of Lemma 4.1.3 this way:

ν2,n

∫ t

0

∣∣e−2c2µ−1
2 s〈∂n

χ
2,n(s), χ2,n(s)〉

∣∣ ds(4.124)

≤ C2ν2,n‖∂n
χ

2,n‖L2(0,t;H−1/2(Γ))‖χ1,n‖L2(0,t;H1(Ω1))

≤ C2ν2,n

(
‖χ2,n‖L2(0,t;H1(Ω2)) + ‖∆χ2,n‖L2(0,t;H−1/2(Ω2))

)
‖χ1,n‖L2(0,t;H1(Ω1))

We now observe that, from (4.106), (4.118) it immediately follows, for some constant
C > 0 not depending on n,

(4.125) ‖∆χ2,n‖L2(0,T ;H−1(Ω2)) ≤ Cν
−1/2
2,n , ‖∆χ2,n‖L2(0,T ;L2(Ω2)) ≤ Cν−1

2,n,

whence, using Lemma 4.1.4 with the choice of η = 1/2− δ with δ arbitrarily small (we
cannot take δ = 0 because the exponent η = 1/2 is not good for the quoted lemma),
we have that, for some C3(δ) > 0 independent of n,

(4.126) ν2,n

(
‖χ2,n‖L2(0,t;H1(Ω2)) + ‖∆χ2,n‖L2(0,t;H−1/2(Ω2))

)
≤ C3(δ)ν

1/4−δ/2
2,n
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for every δ ∈]0, 1/2[, where we remark that C3(δ) does not even depend on the choice of
t ∈ [0, T ]. Thus, the contribution of the boundary term in (4.123) is actually negligible
as n tends to ∞.

Let us now work with the right hand side of (4.122). Due to (4.91), (4.114), to

the continuity and boundedness of the function e−c2µ−1
2 t, and to the weak convergences

(4.121) and

(4.127) ν2,n∆z2,n → 0 in L2(0, T ;L2(Ω2))–weak

(which immediately follows from (4.118)), we are able to treat all the terms save the
lattest one, deserving a more careful analysis that we now perform.

First of all, by definition of subdifferential, recalling (4.120), we have

(4.128) ξ2,n(x, s)e−c2µ−1
2 s(z2 − z2,n)(x, s) ≤ e−2c2µ−1

2 s
(
j2(χ2(x, s))− j2(χ2,n(x, s))

)
almost everywhere in Ω2×]0, t[. Remarking that the evaluation operator

(4.129) δs : H1(0, t;L2(Ω2))→ L2(Ω2), δs : v 7→ v(s)

is linear and continuous for every s ∈ [0, t], using (4.103) and the semicontinuity of j2,
we infer

(4.130)

∫
Ω2

j2(χ2(x, s)) dx ≤ lim inf
n→∞

∫
Ω2

j2(χ2,n(x, s)) dx

for every s ∈ [0, t], whence, on account of the nonnegativity of j2 and of Fatou’s lemma,
it easily follows
(4.131)∫ t

0

e−2c2µ−1
2 s

∫
Ω2

j2(χ2(x, s)) dx ds ≤ lim inf
n→∞

∫ t

0

e−2c2µ−1
2 s

∫
Ω2

j2(χ2,n(x, s)) dx ds,

whence, comparing with (4.128), we can pass to the supremum limit for n → ∞ in
relation (4.122). Choosing now t = T and recalling (4.123), we immediately infer
(4.107), while, for general t, we have

(4.132) χ
2,n(t)→ χ(t) in H–strong, for every t ∈ [0, T ].

Now, this relation easily implies (4.104), provided that we recall (4.129) and exploit
the dominated convergence theorem. The proof of Theorem 4.1.9 is now complete,
since the Neumann condition ∂n

χ
1 = 0 on ∂Ω1×]0, T [ follows now by passing to the

limit in (4.11) in the suitable topology (H−1/2(Γ)); accounting for (4.108–4.109) this
permits to get back the variational form (4.99) of the limit phase-field equation.

Uniqueness. It can be proved in the standard way, by substituting a couple of so-
lutions in the system (4.98–4.100), taking the difference of the obtained relations and
multiplying it by the difference of solutions. We do not report the explicit computa-
tions, since they are even simpler than in the previous case; indeed, now we do not
have here the complications deriving from the use of Poincaré’s inequality.
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4.1.4 Limit for αn → α

Here, we give a convergence theorem for Problem (TPn), which is related to the case
where a variation is allowed for the monotone graph α2,n; indeed, unlike the previ-
ous two cases, we also allow the graph α1 to change, since no further difficulties are
provided by this choice. As for the rest, the n-setting is the usual one discussed in
Subsec. 4.1.1; thus, we start by listing the required convergence hypotheses on data
and coefficients; C1 > 0 below is a fixed constant independent of n.

αi,n, αi such that 0 ∈ αi,n(0), 0 ∈ αi(0), for i = 1, 2,(4.133)

ji,n, ji convex primitives of αi,n, αi, respectively,(4.134)

αi,n → αi in the sense of graphs in R× R,(4.135)

ji,n(r) ≤ ji(r) for all r ∈ R, n ∈ N, i = 1, 2(4.136)

χ
i,0,n ∈ V, χ

i,0,n(x) ∈ D(ji,n) a.e. in Ωi,(4.137) ∫
Ωi

ji,n(χi,0,n) dx ≤ C1 for i = 1, 2, n ∈ N.(4.138)

We point out that assumption (4.136) is fulfilled if, for instance, αi,n is the Yosida-
approximation of αi. Also, we require that the graphs α1,n, α2,n satisfy either one
of conditions (CC), (GC) of Subsec. 4.1.1 for every n ∈ N. Moreover, we need some
uniformity with respect to n. Namely, in the case of (CC), we assume that the constant
Cα,n in (4.12) does not depend on n; when (GC) are assumed instead, we require that
condition also for the limit graphs α1, α2.

We can now report the convergence theorem; notice that some distinctions are
present in the statement, depending on the occurrence of either (CC) or (GC).

Theorem 4.1.11. We have that the solution (θn, χn, ξn) of Problem (TPn) tends, for
n→∞, to a triplet of functions (θ, χ, ξ) in the following sense:

θn → θ in H1(0, T ;H)–weak and in L∞(0, T ;V )–weak∗,(4.139)

χ
n → χ in H1(0, T ;H)–weak and in L∞(0, T ;V )–weak∗,(4.140)

χ
n → χ in L2(0, T ;V )–strong.(4.141)

Depending on the conditions assumed on the αi,n’s, we also have the following conver-
gences of the nonlinear terms

ξn → ξ in L2(0, T ;V ′)–weak in the case of (GC),(4.142)

ξn → ξ in L2(0, T ;H)–weak in the case of (CC).(4.143)

Moreover, the following equations

ρ∂tθ + λ∂t
χ− div(κ∇θ) = f a.e. in Q;(4.144)

µ∂t
χ− div(ν∇χ) + ξ − cχ = `θ a.e. in Q;(4.145)

ξ1 ∈ α1(χ1) a.e. in Q1; ξ2 ∈ α2(χ2) a.e. in Q2.(4.146)

are fulfilled, as well as the initial conditions θ(0) = θ0, χ(0) = χ
0 and the Neumann

boundary ones ∂n
χ = 0, (κ∇θ) · n + pθ = g on ∂Ω×]0, T [.
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Proof. The argument is based as usual on some a priori estimates together with
a direct proof of a strong convergence property; naturally, since the limit problemt is
formally analogous to the original one, the only interesting part of the theorem is the
convergence one. Clearly, also the uniqueness of solutions for the limit statement has
already been showed.

First estimate. We proceed exactly as in the first estimate of the previous Sub-
section; the resulting computations are precisely as in (4.110–4.111), with only two
differences, which concern the substitutions of ν2,n with ν2 and of ji with ji,n in (4.111);
also, we observe that the terms related to the initial values are now bounded by virtue
of (4.138). Thus, the convergences (4.140) are easily proved, as well as the following
further estimates:

‖θn‖L2(0,T ;V ) ≤ C for every n ∈ N,(4.147)

‖θn‖L∞(0,T ;H) ≤ C for every n ∈ N,(4.148)

‖ji,n(χi,n)‖L∞(0,T ;L1(Ωi)) ≤ C for every n ∈ N, i = 1, 2.(4.149)

Second estimate. Proceeding exactly as in the second estimate of the previous
subsection, we immediately infer the convergence (4.139).

At this point, the procedure depends on the kind of conditions concerning α1 and α2

that are fulfilled. We first proceed in the (simpler, as usual) case of (CC). In this
framework, the natural convergence setting is the L2-one; consequently, we perform a
further apriori estimate as in the former case, by multiplying the phase-field equation
(4.3–4.4) by the test function ξ̃n, which is defined in a similar way as before, i.e., ξ̃1,n :=

ξ1,n +α0
2,n(χ1,n) and ξ̃2,n := ξ2,n +α0

1,n(χ2,n). By virtue of the n-uniformity of condition
(CC) Lemma 4.1.1 can be exploited and the convergences (4.143) follow. Now, thanks
to the graph convergence αi,n → αi, the monotonicity argument of Prop. 1.3.8 works,
since the strong convergence in L2 for the χn is guaranteed by (4.140) and the usual
compact embedding theorems.

Growth conditions case. Due to the usual troubles related to condition (GC),
we have to come back to the (V, V ′)-setting and to perform weaker estimates. As
in the previous chapter, a weaker solution will correspondently be obtained, and the
condition (GC) (only related to the limit graphs) will be exploited to interpret it in
the physical sense. The first step is then to establish a strong convergence in V of the
phase variable.

Strong convergence. We first introduce the elliptic operator N as

(4.150) N : V → V ′, V ′〈N v, w〉V :=

∫
Ω

ν(x)∇v(x) · ∇w(x) dx,

which allows to rewrite (4.3–4.4), together with the transmission conditions (4.9) and
(4.11), in the following compact form:

(4.151) µ∂t
χ

n +Nχn + ξn − cχn = `θn.

Then, subtracting the term Nχ from both hands sides, testing the resulting relation
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by χn − χ, and integrating in [0, T ], we easily derive

‖∇(χn − χ)‖2L2(0,t;H) =

∫ T

0

∫
Ω

(−µ∂t
χ

n + cχn + `θn) (χn − χ) dx dt

(4.152)

−
∫ T

0

〈Nχ, (χn − χ)〉 dt+
2∑

i=1

∫ T

0

∫
Ωi

ξi,n(χi − χi,n) dx dt

Notice now that, by virtue of the strong convergence χn → χ in L2(Q), which is a
consequence of (4.140), the first term on the right hand side tends to 0 (recall also
(4.115)), while the second one tends to 0 thanks to the second weak convergence in
(4.140). As for the last term, passing to the supremum limit, and due to the definition
of subdifferential, we get

lim sup
n→∞

2∑
i=1

∫ T

0

∫
Ωi

ξi,n(χi − χi,n) dx dt(4.153)

≤
2∑

i=1

lim sup
n→∞

∫ T

0

∫
Ωi

ji,n(χi) dx dt−
2∑

i=1

lim inf
n→∞

∫ T

0

∫
Ωi

ji,n(χi,n) dx dt

≤
2∑

i=1

lim sup
n→∞

∫ T

0

∫
Ωi

ji,n(χi) dx dt−
2∑

i=1

∫ T

0

∫
Ωi

ji(χi) dx dt,≤ 0

also owing to the Mosco-convergence ji,n → ji and to (4.136). Collecting now (4.152–
4.153), the strong convergence (4.141) follows.

End of proof. Since N is linear and continuous from V to V ′, proceeding by compar-
ison in equation (4.151), we easily get (4.142), so that, by the monotonicity argument
of Prop. 1.3.8 (applied in the duality (V, V ′)), we are able to identify the limit element
ξ. However, we cannot get, as before, the “physical” relation (4.146), but we only
obtain

ξ ∈ ∂V,V ′J|V (χ(t)) a.e. in ]0, T [

(the notation is as in Chapter 3). So, to get back (4.146), we have to take advantage of
(GC) and apply the procedure of Subsec. 3.2.4; moreover, (4.149) has to be exploited,
by observing that, by the semicontinuity properties of M-convergence, it entails

‖ji(χi)‖L∞(0,T ;L1(Ωi)) ≤ C for i = 1, 2.

Now the procedure is exactly the same as in Subsec. 3.2.4, to which we refer indeed
for more details.

Remark 4.1.12. Notice that, in this case, the growth condition was needed uniquely
as the limit graphs were concerned. So, the performed procedure continues holding,
with minor modifications, even if no conditions are supposed on the approximating
operators αi,n. Naturally, in this case the solution of (TPn) could not be interpreted
in the physical sense, but only in the abstract (V, V ′) framework of Chapter 3.
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4.2 Convergence to the Stefan problem

In this section, we address the question of the convergence of the Caginalp-Fix phase-
field model to the standard Stefan problem in its two-phase formulation [32], and, in
particular, we study two different physical situations related to this problem.

Our aim is that of performing an asymptotic study of equations (4.1–4.4), as the
coefficients µ2,n, ν2,n, c2,n decrease simultaneously to 0 and the operators αn suitably
tend to another monotone graph α. We prove that, if the αn are Lipschitz continuous,
and they converge to α in the graph sense, then the above problem converges to a
transmission system coupling the Stefan model in Ω1 and the phase-field one in Ω2.

Anyway, since this analysis results considerably more complicate than those of the
previous Section, we prefer to let it be preceeded by a study of the convergence of
the phase-field system to the weak Stefan problem in the simpler case of a the model
related to a single substance. We point out that the related convergence theorem,
which moves from the setting of Subsec. 2.2.2, provides only a slight extension of the
results of [34] concerning a similar problem (where it is assumed cn = 0 and αn = α
for all n ∈ N, anyway); we chose to present it essentially for the purpose of clarity.

Then, the transmission case is addressed, and we prove a convergence result for this
problem under very mild hypotheses on the limit operators (and, in particular, much
weaker than the usual (CC) or (GC), which are assumed on the approximating ones).
This is possible thanks to the different type of boundary behaviour at the interface
observed by the limit statement, where homogeneous Neumann conditions hold for
the phase variable on the whole boundary of Ω1.

In order to perform this program, following the approach of Visintin [85] and
Damlamian-Kenmochi-Sato [34], it has been necessary to rewrite the transmission
problem in another form equivalent to the original one; in particular, proceeding by
compactness methods (as we essentially do in the one-domain case), we were not able
to show the convergence of solutions under the most general hypotheses on the limit
monotone graphs. We finally point out that the results of this Section are essentially
contained in our paper [80]; some further physical details have been provided in [81].

4.2.1 Mathematical problems and main results

Under the usual hypotheses on Ω, T and the natural choices for V,H, we begin by
listing the hypotheses of the simpler one-domain problem, which slightly extend those
of Subsec. 2.2.2:

One-domain case. First of all, let us suppose

(4.154) ρ, λ, µn, νn, cn, `, p,m assigned strictly positive constants,

with µn, νn, cn depending on n ∈ N. We also assume

fn ∈ L2(0, T ;H)(4.155)

g ∈ L2(0, T ;H−1/2(∂Ω))(4.156)

αn ⊂ R× R maximal monotone graphs such that 0 ∈ αn(0).(4.157)

Correspondently, we construct a sequence jn of convex primitives of αn.
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As hypotheses on the initial data, we take:

θ0,n ∈ H, χ
0,n ∈ V,(4.158)

χ
0,n(x) ∈ D(jn) for a.e. x ∈ Ω, jn(χ0,n) ∈ L1(Ω);(4.159)

moreover, we define:

(4.160) e0,n := ρθ0,n + λχ0,n.

We also suppose that there are two disjoint and relatively open subsets ΓT and ΓN

of ∂Ω such that

(4.161) ΓN = ∂Ω \ ΓT and HN−1(ΓT) > 0.

This subdivision accounts for the choice of mixed Neumann-third type boundary
conditions for the temperature, with the third type ones holding on a set of positive
(N − 1)-dimensional measure in order to guarantee some coercivity. However, such
conditions become implicit in the statement of the problem, due to its variational
character; indeed, we put on the space V the scalar product (equivalent to the standard
one, owing to the second hypothesis of (4.161) and to p > 0)

(4.162) ((u, v)) :=

∫
Ω

κ∇u · ∇v dx+

∫
ΓT

puv dHN−1.

Moreover, we denote by 〈·, ·〉 the duality between V ′ and V and by F : V → V ′ the
Riesz operator associated to the above scalar product, as in Subsection 1.1.3; also, we
indicate by ((·, ·))∗ the dual scalar product on V ′, so that, for h ∈ H and v ∈ V , we
have:

(4.163) (h, v) = 〈h, v〉 = ((h,Fv))∗ = ((F−1h, v)).

Owing to this machinery, it is possible to introduce a generalized source term
Fn ∈ L2(0, T ;V ′) for the heat equation this way:

(4.164) 〈Fn, v〉 :=

∫
Ω

fnv dx+ −1/2,∂Ω〈g, v〉1/2,∂Ω for v ∈ V .

We are now ready to state our first problem in its precise variational formulation:

Problem 4.2.1 (Pn). We look for a triplet of suitably regular functions (θn, χn, ξn) :
Q→ R satisfying the following system of nonlinear evolution equations:

∂t(ρθn + λχn) + Fθn = Fn in V ′ for a.e. t ∈]0, T [(4.165)

µn∂t
χ

n − div(νn∇χn) + ξn − cnχn = `θn in Ω for a.e. t ∈]0, T [(4.166)

ξn ∈ αn(χn) in Ω for a.e. t ∈]0, T [(4.167)

(ρθn + λχn)(0) = e0,n in Ω(4.168)

χ
n(0) = χ

0,n in Ω(4.169)

∂n
χ

n = 0 on ∂Ω for a.e. t ∈]0, T [.(4.170)
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We recall an existence, uniqueness and regularity theorem for the previous problem,
which can be easily deduced from our results of Subsections 2.2.2–2.2.3.

Theorem 4.2.2. For any fixed n > 0, there exists a unique solution (θn, χn, ξn) of
Problem (Pn) such that

θn ∈ L2(0, T ;V ) ∩H1(0, T ;V ′)(⊂ C0([0, T ];H))(4.171)

χ
n ∈ C0([0, T ];V ) ∩H1(0, T ;H) ∩ L2(0, T ;H2(Ω))(4.172)

ξn ∈ L2(0, T ;H).(4.173)

We are now interested in the study of the asymptotic behaviour of (Pn) for van-
ishing parameters µn, νn, cn and varying data fn, αn, e0,n, χ0,n. Here are the precise
hypotheses we assume on them (C0 > 0 being a constant independent of n; we restart
again the counter of the constants C0, C1, . . .):

fn → f in L2(0, T ;H)–strong,(4.174)

µn, νn, cn → 0 for n→∞,(4.175)

cn/µn → 0 for n→∞,(4.176)

α ⊂ R× R maximal monotone graph such that 0 ∈ α(0),(4.177)

αn Lipschitz continuous for any n ∈ N,(4.178)

lim inf
|r|→∞

jn(r)

|r|2
> m > 0 for every n ∈ N,(4.179)

αn → α in sense of G-convergence in R× R,(4.180)

µ1/2
n
χ

0,n → 0 and ν1/2
n ∇χ0,n → 0 in H–strong,(4.181) ∫

Ω

jn(χ0,n) dx ≤ C0 for every n ∈ N,(4.182)

e0,n → e0 in H–strong, for some fixed e0 ∈ H.(4.183)

In view of the asymptotic procedure we are going to perform, it is now convenient
to introduce another unknown, that is the enthalpy en := ρθn + λχn; indeed, this
is a more natural variable for the limit statement, which assumes the following form
(notice that for suitable choices of the graph α it reduces to the weak formulation of the
Stefan problem; in particular, the existence and uniqueness results are the standard
ones discussed in Subsec. 2.2.1).

Problem 4.2.3 (P). We look for a triplet of functions (e, θ, χ), such that e = ρθ+λχ,
satisfying the regularities

e ∈ H1(0, T ;V ′) ∩ L∞(0, T ;H),(4.184)

θ ∈ L2(0, T ;V ) ∩ L∞(0, T ;H),(4.185)

χ ∈ L∞(0, T ;H),(4.186)

and such that the following equations hold for almost every t ∈]0, T [:

∂te+ Fθ = F in V ′,(4.187)

`θ(x) ∈ α(χ(x)) for a.e. x ∈ Ω,(4.188)
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where F is defined as Fn (4.164), but with f in place of fn. Moreover, we require the
limit Cauchy condition

(4.189) e(0) = e0.

Theorem 4.2.4. There exists a unique solution (e, θ, χ) of Problem (P), which is the
limit of the solutions (en, θn, χn) of Problems (Pn) in the following sense:

en → e in H1(0, T ;V ′)–weak and in L∞(0, T ;H)–weak∗,(4.190)

θn → θ in L2(0, T ;V )–weak and in L∞(0, T ;H)–weak∗,(4.191)

χ
n → χ in L∞(0, T ;H)–weak∗.(4.192)

Moreover, the following additional convergences hold:

µ1/2
n
χ

n → 0 in H1(0, T ;H)–weak,(4.193)

ν1/2
n ∇χn → 0 in L∞(0, T ;H)–weak∗,(4.194)

ξn → `θ in L2(0, T ;H)–weak.(4.195)

On account of the framework of Subsection 4.1.1, we now pass to the transmission
case; however, for the sake of generality, in the following the weaker regularity setting
for θ of the one-domain case is maintained.

Transmission case. Since some differences are present with respect to the setting
of Subsec. 4.1.1, we specify again the assumptions on the approximating data; indeed,
when possible, we try and use the same notations as in the one-domain case, in order
to unify the subsequent computations. Since the blow-out of coefficients occurs now
only in the domain Ω2, we can retain the hypotheses (4.155–4.156), (4.158), (4.161)
on data and the constructions (4.162) of the scalar product of V and (4.164) of the
abstract source term; instead, the other assumptions on coefficients need to be slightly
modified. In particular, instead of (4.157), we suppose that, for i = 1, 2,

(4.196) αi,n ⊂ R× R maximal monotone graphs such that 0 ∈ αi,n(0);

furthermore, (4.159) is substituted by
(4.197)

χ
i,0,n(x) ∈ D(ji,n) for a.e. x ∈ Ωi, with ji,n(χi,0,n) ∈ L1(Ωi), for i = 1, 2,

ji,n being the convex primitive of αi,n. Finally, in place of (4.154), we require that

ρ1, λ1, µ1, ν1, c1, `1, p, ρ2, λ2, µ2,n, ν2,n, c2,n, `2,mn,m(4.198)

are assigned strictly positive constants,

with µ2,n, ν2,n, c2,n,mn possibly depending on n ∈ N. Finally, we assume as usual that
the graphs αi,n verify one of assumptions (CC), (GC). In particular, as it will result
clear in the following, it is enough to consider here the case of (GC); we point out that
no uniformity is required in that condition with respect to n.

These modifications to the one-domain hypotheses are enough to state:
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Problem 4.2.5 (TPn). We look for a triplet of functions (θn, χn, ξn) : Q → R, of
suitable regularity properties, satisfying (4.165–4.166), (4.168–4.170), as well as the
constitutive relation

(4.199) wi,n ∈ αi,n(χi,n) in Ωi for a.e. t ∈]0, T [.

For the solution of (TPn), we naturally refer to Subsec. 4.1.1, whose hypotheses
are trivially satisfied. We now pass to the asymptotic study, and begin by presenting
the required convergence assumptions, which are

µ2,n, ν2,n, c2,n → 0 for n→∞,(4.200)

c2,n/µ2,n → 0 for n→∞,(4.201)

αi ⊂ R× R maximal monotone graphs such that 0 ∈ αi(0),(4.202)

α1,n Lipschitz continuous for any n ∈ N,(4.203)

α2,n Lipschitz continuous of Lipschitz constant Ln for any n ∈ N,(4.204)

lim
n→∞

Ln ν
1/4−δ/2
2,n = 0 for some (assigned) δ ∈]0, 1/2[,(4.205)

lim inf
|r|→∞

j2,n(r)

|r|2
≥ m for every n ∈ N,(4.206)

αi,n → αi in the sense of G-convergence in R× R,(4.207)

the sequence ji,n(r) is nondecreasing in n for every r ∈ R, i = 1, 2,(4.208)

Moreover, we retain assumption (4.174) as well as (4.183), while, finally, (4.181–4.182)
are modified in the following natural way

µ
1/2
2,n
χ

2,0,n → 0 and ν
1/2
2,n∇χ2,0,n → 0 in L2(Ω2)–strong,(4.209)

χ
1,0,n → χ

0,1 in H1(Ω1)–strong, for some (assigned) χ0,1 ∈ H1(Ω1),(4.210) ∫
Ωi
ji,n(χi,0,n) dx ≤ C0 for i = 1, 2 and for every n ∈ N.(4.211)

Remark 4.2.6. We observe that, at the level n < +∞, two growth hypotheses on the
functionals ji,n are required: (GC) (which in this framework is a consequence of (4.203–
4.204)) and (only regarding j2,n) (4.206); they account for a linear (or sublinear)
growth of operator α1,n and a linear one of both α2,n and (α2,n)−1. The main difference
is that (4.206) must hold with uniformity on n (actually, this is a standard assumptions
for Stefan-like problems [32], resulting essential in order to obtain a weak convergence
for χ2,n); in hypothesis (GC), instead, no uniformity is required on n (maybe it could
also be avoided by making an ulterior approximation of Yosida type on the graphs αn

and possibly modifying (4.205); anyway this procedure would bring further and boring
technical complications); actually, such a condition is no more necessary at the limit
step, due to the different form of the boundary conditions on Γ.

We are now able to write down our limit problem and the related convergence
theorem.

Problem 4.2.7 (TP). We look for a triplet of functions (e, θ, χ) (with e = ρθ+ λχ)
enjoying the regularity relations (4.184–4.186) and also

(4.212) χ
1 ∈ C0([0, T ];H1(Ω1)) ∩H1(0, T ;L2(Ω1)), −∆χ1 ∈ L2(Q1),



convergence results 105

and such that equation (4.187) holds, together with the Cauchy condition (4.189) and

`1θ1 ∈ µ1∂t
χ

1 − ν1∆χ1 + α1(χ1)− c1χ1 for a.e. (x, t) ∈ Ω1×]0, T [,(4.213)

`2θ2(x) ∈ α2(χ2(x)) for a.e. (x, t) ∈ Ω2×]0, T [,(4.214)

χ
1(0) = χ

0,1 in Ω1,(4.215)

∂n
χ

1 = 0 on ∂Ω1 for a.e. t ∈]0, T [.(4.216)

Theorem 4.2.8. There exists a unique solution (e, θ, χ) to Problem (TP). Moreover,
the convergences (4.190–4.192) hold, as well as

χ
1,n → χ

1 in L∞(0, T ;H1(Ω1))–weak∗ and H1(0, T ;L2(Ω1))–weak,(4.217)

µ
1/2
2,n
χ

2,n → 0 in H1(0, T ;L2(Ω2))–weak,(4.218)

ν
1/2
2,n∇χ2,n → 0 in L∞(0, T ;L2(Ω2))–weak∗.(4.219)

4.2.2 A priori estimates

In this subsection, we present some a priori estimates for the solutions of problems
(Pn) and (TPn); we try to carry on the computations in a form adaptable to both
cases, possibly remarking the differences, if any.

First estimate. Rewriting equation (4.165) in terms of en and θn, we get

(4.220) ∂ten + Fθn = Fn in V ′ for a.e. t ∈]0, T [.

Multiply this relation by F−1en, which is in both cases a H1(0, T ;V )-function thanks
to (4.171–4.172) and (3.139–3.140), respectively; integrating the result between 0 and
t ∈]0, T ], and integrating by parts the enthalpy term, owing also to (4.163) and (4.168),
we easily derive:

1

2
‖en(t)‖2V ′ +

∫ t

0

∫
Ω

ρ|θn|2 dx ds(4.221)

=
1

2
‖e0,n‖2V ′ +

∫ t

0

〈Fn,F−1en〉 ds−
∫ t

0

∫
Ω

λχnθn dx ds.

The second step is to multiply the phase-field equation (4.166) by χ
n (which be-

longs in both cases to C0([0, T ];V ) ∩ H1(0, T ;H)) and integrate the result in ]0, t[.
Integrating by parts in time the first two terms, recalling the Cauchy and Neumann
conditions (4.169–4.170) and the properties (4.157) and (4.196) (observe that it is also
used that αn(0) = α1,n(0) = α2,n(0) = 0), we infer

1

2

∫
Ω

µn|χn(t)|2 dx+

∫ t

0

∫
Ω

νn|∇χn|2 dx ds−
∫ t

0

∫
Ω

cn|χn|2 dx ds(4.222)

≤
∫ t

0

∫
Ω

`θn
χ

n dx ds+
1

2

∫
Ω

µn|χ0,n|2 dx.

Notice that in the above computations the “coefficients” (ρ, `, µ) are constant in the
one-body problem and depend on x in the other case.
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We now want to erase the two mixed-unknowns integral terms on the right hand
sides of (4.221) and (4.222). So, multiply (4.222) by λ`−1 in the one-body case and by
λ2`

−1
2 in the transmission one (this erases only the Ω2-parts of the integral terms; in Ω1

their sum can be split by means of (1.24) and controlled by the µ1‖χ1,n(t)‖2L2(Ω1)-term

on the left hand side; indeed, µ1 does not vanish with n); in both cases, sum the result
to (4.221).

Now, owing to the the definition of F , it is possible to split the heat source term by
inequality (1.24); recalling also the regularity hypotheses on the initial data (4.158),
and the limit ones (4.183) and (4.181) (alternatively (4.209–4.210)), we infer:

‖en(t)‖2V ′ + ‖θn‖2L2(0,t;H) + ‖µ1/2
n
χ

n(t)‖2H + ‖ν1/2
n ∇χn‖2L2(0,t;H)(4.223)

≤ C1

(
1 + ‖c1/2

n
χ

n‖2L2(0,t;H) + ‖en‖2L2(0,t;V ′)

)
,

where C1 is a positive constant independent of n. Recalling hypothesis (4.176) ((4.201)
for the transmission problem), an application of the Gronwall lemma allows us to derive
some apriori estimates (which will be explicitely reported at the end of the subsection)
from the previous calculation.

Second estimate. Multiply now (4.165) by θn and integrate in ]0, t[. Note now that
the regularity properties (3.138–3.139) of the solutions of (TPn) are precisely sufficient
to integrate by parts in time the product ∂t(ρθn)θn, so that we easily deduce:

1

2

∫
Ω

ρ|θn(t)|2 dx+ ‖θn‖2L2(0,t;V ) ≤
∫ t

0

∫
Ω

〈Fn, θn〉 ds(4.224)

+
1

2

∫
Ω

ρ|θ0,n|2 dx−
∫ t

0

∫
Ω

λ∂t
χ

nθn dx ds.

Testing instead (4.166) by ∂t
χ

n and integrating in ]0, t[, we have:∫ t

0

∫
Ω

µn|∂t
χ

n|2 dx ds+
1

2

∫
Ω

νn|∇χn(t)|2 dx+ Jn(χn(t))(4.225)

≤ 1

2

∫
Ω

νn|∇χ0,n|2 dx+ Jn(χ0,n) +

∫ t

0

∫
Ω

`∂t
χ

nθn dx ds

+
1

2

∫
Ω

cn|χn(t)|2 dx− 1

2

∫
Ω

cn|χ0,n|2 dx,

where we have set, for any v ∈ H,

(4.226) Jn(v) :=


∫

Ω

jn(v(x)) dx if jn(v) ∈ L1(Ω)

+∞ otherwise

for the one-body problem and

(4.227) Jn(v) :=


2∑

i=1

∫
Ωi

ji,n(vi(x)) dx if ji,n(vi) ∈ L1(Ωi) for i = 1, 2

+∞ otherwise
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for the transmission one (in the sequel we shall also meet the functional J whose
definition is analogous to the above one, but with the substitution of jn with j (convex
primitive of α) or that of j1,n, j2,n with j1, j2 (convex primitives of α1, α2, respectively),
depending on the physical situation).

Now we can use as before the trick of multiplying (4.225) by λ`−1 (for the first
problem) or λ2`

−1
2 (for the second) and we sum the result to (4.224). So, it is now

easy to see that hypotheses (4.176), (4.181–4.182) (for the first problem) or (4.201),
(4.209–4.211) (for the transmission one) on the Cauchy data and the apriori estimate
corresponding to (4.223) permit to control all the terms on the right hand sides of
(4.224) and (4.225) and to conclude.

Third estimate. This is the key estimate, holding only for the first problem, which
will allow us to pass to the limit in the nonlinear term αn(χn); this becomes possible
as we multiply (4.166) by αn(χn) (which is C0([0, T ];V ) owing to the Lipschitz conti-
nuity of αn) and integrate in ]0, t[ (unfortunately, this procedure is not possible in the
transmission case, since neither (CC) nor (GC) are now uniform in n):

µnJn(χn(t)) + νn

∫ t

0

∫
Ω

(αn)′(χn)|∇χn|2 dx ds+ ‖αn(χn)‖2L2(0,t;H)(4.228)

≤ µnJn(χ0,n) +

∫ t

0

∫
Ω

(cnχn + `θn)αn(χn) dx ds.

Now, the integral term on the left hand side is nonnegative due to the monotonicity of
αn, while the first term on the right hand side is bounded by (4.182) and the second
one can be split using (1.24) and controlled by means of the first two estimates. So,
we can finally deduce our

Conclusions. From (4.223) and (4.224–4.225), we immediately derive the following
block of estimates, which are valid for both problems; in the following, C2 is a positive
constant depending only on data:

‖en‖L∞(0,T ;V ′) ≤ C2(4.229)

‖θn‖L2(0,T ;V )∩L∞(0,T ;H) ≤ C2(4.230)

‖Jn(χn)‖L∞(0,T ) ≤ C2.(4.231)

In the one-domain case, we also have

‖µ1/2
n
χ

n‖H1(0,T ;H) ≤ C2(4.232)

‖ν1/2
n ∇χn‖L∞(0,T ;H) ≤ C2,(4.233)

and, as a consequence of (4.228),

(4.234) ‖αn(χn)‖L2(0,T ;H) ≤ C2.

In the transmission framework, the Ω1 and Ω2 components have to be split and sepa-
rately treated:

‖χ1,n‖L∞(0,T ;H1(Ω1))∩H1(0,T ;L2(Ω1)) ≤ C2(4.235)

‖µ1/2
2,n
χ

2,n‖H1(0,T ;L2(Ω2)) ≤ C2(4.236)

‖ν1/2
2,n∇χ2,n‖L2(0,T ;L2(Ω2)) ≤ C2.(4.237)
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Also, comparing equation (4.220) with hypothesis (4.174) and estimate (4.230), we
see that (4.229) can actually be improved to the bound

(4.238) ‖en‖H1(0,T ;V ′) ≤ C2,

which will be essential for the final convergence proofs.

4.2.3 Γ-convergence reformulation of (TPn)

In this section, we rewrite problem (TPn) in a more abstract form, suitable to the
limit procedure we are going to perform, which prepares it to be treated with vari-
ational convergence techniques for general monotone operators; for the theoretical
background, the material of [5] and [31] reported in Section 1.3 should be sufficient.

Reformulation of (TPn). First of all, we have to introduce some new functionals
on H; so, let us set, for v ∈ H,

Gn(v) :=


ν1

2

∫
Ω1

|∇v1|2 dx+
ν2,n

2

∫
Ω2

|∇v2|2 dx if v ∈ V

+∞ otherwise,
(4.239)

G(v) :=


ν1

2

∫
Ω1

|∇v1|2 dx if v1 ∈ H1(Ω1)

+∞ otherwise.
(4.240)

It is immediate to verify that Gn and G are convex, l.s.c. and proper with respect
to the L2(Ω)-topology.

In the following we will be concerned with the restatement of problems (TPn) and
(TP) in terms of the functionals (Jn + Gn) and (J + G) respectively. So, we observe
that the domain of (Jn + Gn) consists precisely of the H1(Ω)-functions v such that
j1,n(v1) ∈ L1(Ω1) and j2,n(v2) ∈ L1(Ω2); analogously, we have that v ∈ D(J+G) if and
only if v1 ∈ H1(Ω1), j1(v1) ∈ L1(Ω1) and j2(v2) ∈ L1(Ω2). Furthermore, also (Jn +Gn)
and (J +G) are convex, l.s.c. and proper functionals on H; we can characterize their
subdifferentials in the following way:

Theorem 4.2.9. (a) ∂(Jn+Gn) coincides with the operator Bn : H → 2H introduced
as follows: we define

(4.241) D(Bn) := {v ∈ H1(Ω) : div(νn∇v) ∈ H and ∂nv = 0 on ∂Ω};

moreover, for v ∈ D(Bn), w ∈ H, we set

w ∈ Bn(v) if and only if(4.242) 
w1 = −ν1∆v1 + α1,n(v1) in Ω1

w2 = −ν2,n∆v1 + α2,n(v2) in Ω2

ν1∂nv1 = ν2,n∂nv2 on Γ
∂nv = 0 on ∂Ω.

(b) Analogously, we have that ∂(J +G) = B, where

D(B) := {v ∈ L2(Ω) : v1 ∈ H1(Ω1), ∆v1 ∈ L2(Ω1), ∂nv1 = 0 on ∂Ω1(4.243)

and there exist ζi ∈ L2(Ωi) verifying ζi ∈ αi(vi) a.e. in Ωi for i = 1, 2}
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and, for v ∈ D(B), w ∈ H, we have put

w ∈ B(v) if and only if(4.244) 
w1 ∈ −ν1∆v1 + α1(v1) in Ω1

w2 ∈ α2(v2) in Ω2

∂nv1 = 0 on ∂Ω1.

Proof. First of all, it is easy to see that Bn (B) is a monotone operator contained
(in the sense of inclusion of graphs) into ∂(Jn + Gn) (∂(J + G), respectively): to see
this, for instance in the case of Bn (the other is similar), just take (v, w) ∈ Bn and
verify the definition of subdifferential; that is, show that, for any z ∈ D(Jn +Gn), it is

(4.245)

∫
Ω

w(z − v) dx ≤ Jn(z) +Gn(z)− Jn(v)−Gn(v).

The computations do not present difficulties; observe only that z ∈ D(Jn +Gn) entails
z ∈ V , which allows the use of the Gauss-Green formula.

The second (and more interesting) step is the proof of the maximalities of Bn and
B, which we perform separately in the two cases, beginning with the less difficult:

(b) Denoting with I the identity operator of H, we have to prove that R(I+B) = H;
that is, for every h ∈ H, we look for a solution v ∈ D(B) of the system

h1 ∈ −ν1∆v1 + α1(v1) + v1 in Ω1(4.246)

∂nv1 = 0 on ∂Ω1(4.247)

h2 ∈ α2(v2) + v2 in Ω2.(4.248)

Observing that the equations (4.246) and (4.248) of the system are actually de-coupled,
standard approximation techniques for elliptic problems with monotone nonlinearities
[17] easily permit to conclude.

(a) As before, taken h ∈ H and n ∈ N, we look for a solution of the elliptic system:

h1 = −ν1∆v1 + α1,n(v1) + v1 in Ω1(4.249)

h2 = −ν2,n∆v2 + α2,n(v2) + v2 in Ω2(4.250)

ν1∂nv1 = ν2,n∂nv2 on Γ(4.251)

∂nv = 0 on ∂Ω.(4.252)

In this case, the resolution of the system is not completely trivial; infact it presents
the usual troubles concerning space regularity, which have already been managed in
Subsec. 3.2.3 in the case of the parabolic transmission system. We briefly sketch here
the way of operating in the elliptic setting, referring to that subsection for more details
on the procedure.

First of all, denote as JV,n the restriction to V of the functional Jn. Clearly, JV,n is
convex, l.s.c., and proper, too. In the framework of the Hilbert triplet (V,H, V ′), it is
natural to see the subdifferential of JV,n as a maximal monotone operator from V to
2V ′

which we denote as ∂V,V ′JV,n. Also, it is not difficult to verify that every solution
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of system (4.249–4.252) is also a solution of the following more general and compact
formulation:

h = Dnv + q + v in V ′,(4.253)

q ∈ ∂V,V ′JV,n(v),(4.254)

where Dn : V → V ′ is the operator

(4.255) 〈Dnu, z〉 :=

∫
Ω

νn∇u · ∇z dx for u, z ∈ V .

Moreover, observe that (4.253) can be seen as an abstract equality in the space V ′

and solved therein with standard techniques. The crucial point is now to prove that
the obtained solution – call it v – is also a solution of (4.249–4.252). and this is
precisely the point where the results of Subsec. 3.2.3, and in particular Theorem 3.2.4,
are needed.

Let us now conjecture what still remains to do: consider problem (TPn) and set

(4.256) γn := −µn∂t
χ

n + cnχn + `θn.

Owing to part (a) of the previous theorem, relations (4.166), (4.199) and (4.170) of
(TPn) can be written in the equivalent abstract form (see also Remark 4.2.10 below):

(4.257) γn ∈ ∂(Jn +Gn)(χn) in H a.e. in ]0, T [.

Analogously, thanks to Theorem 4.2.9 (b), setting in (TP)

(4.258) γ :=

{
−µ1∂t

χ
1 + c1χ1 + `1θ1 in Ω1

`2θ2 in Ω2,

we see that (4.213–4.214) and (4.216) can be condensed as

(4.259) γ ∈ ∂(J +G)(χ) in H a.e. in ]0, T [.

Furthermore, we observe that estimates (4.235), (4.236), (4.230) and hypothesis
(4.201) imply, for suitable subsequences, that

(4.260) γn → γ in L2(0, T ;H)–weak.

In the next section, we shall essentially see that Prop. 1.3.8 can be applied to the
couple (χn, γn) ∈ ∂(Jn + Gn) (indeed some purely technical complications will arise,
due to the fact that it will be necessary to work in the space L2(0, T ;H) by extending
therein the functionals (Jn +Gn) and (J +G)); with this aim, it will be necessary to
verify the convergence (4.192) (easy), the semicontinuity property (1.61) (easy too)
and the G-convergence ∂(Jn +Gn)→ ∂(J +G) (more difficult).
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4.2.4 Conclusion of proofs and final remarks

Proof of Theorem 4.2.4. We first observe that (4.191) and the first of (4.190) are
easy consequences of estimates (4.230) and (4.238), while from (4.234) we derive that

(4.261) ξn → ξ in L2(0, T ;H)–weak,

for some function ξ ∈ L2(0, T ;H). Moreover, (4.193) and (4.194) follow from (4.232)
and (4.233) respectively. We point out that, here and in the following, all the conver-
gences in exam hold a priori up to the choice of subsequences; the uniqueness of the
solution to the limit formulation permits anyway to extend their validity to the whole
original sequences.

Now, recalling assumption (4.179), we can choose an R > 0 such that

(4.262)
jn(r)

|r|2
>
m

2
for every |r| > R and n ∈ N.

At this point, owing also to (4.231), we have, for a.e. t ∈]0, T [ and every n ∈ N,

(4.263) ‖χn(t)‖2H =

∫
{|χn(t)|≤R}

|χn(t)|2 dx+

∫
{|χn(t)|>R}

|χn(t)|2 dx ≤ R2|Ω|+ 2

m
C2,

whence we easily derive (4.192) and, recalling (4.191), also the second of (4.190).
At this point, regularities (4.184–4.186) are obtained; moreover the quoted conver-

gences and hypothesis (4.174) permit to pass to the limit in (4.165) and get (4.187);
also, from (4.190), (4.168) and (4.183), the Cauchy condition (4.189) follows.

Proceeding now by comparison in equation (4.166), we easily get

(4.264) div(νn∇χn)→ 0 in L2(0, T ;H)–weak,

so that, passing to the limit in (4.166) and recalling (4.261), we derive that w = `θ (in
H), whence also (4.195) follows; so, it only remains to show (4.188).

At this point, it is convenient to restate our convergence problem in the space
L2(0, T ;H); with this purpose, we give a general definition: given a convex, l.s.c. and
proper R∞-valued functional Ψ on a, say, Hilbert space X, we introduce (and denote)
its extension to L2(0, T ;X), as follows (v is taken in L2(0, T ;X)):

(4.265) ΨT (v) :=


∫ T

0

Ψ(v(t)) ds if Ψ(v) ∈ L1(0, T )

+∞ otherwise

In the sequel, when we speak of the functionals Jn,T , JT (and others), we shall always
refer to the above definition (in general with X = H).

Remark 4.2.10. We recall that, on account of Theorem 1.2.22, given a couple (u, v)
of L2(0, T ;X) functions, the following conditions are equivalent:

(a) u(t) ∈ ∂Ψ(v(t)) in X, for almost every t ∈]0, T [;

(b) u ∈ ∂ΨT (v) in L2(0, T ;X).

This permits for instance to reinterpret conditon (4.167) in the equivalent form ξn ∈
∂Jn,T (χn) (indeed, here we have two consecutive extensions: the first, in space, from
jn to Jn, the second from Jn to Jn,T ; in both cases, Theorem 1.2.22 can be applied).
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The following result is common to both our physical situations (the proofs anyway
will be different):

Lemma 4.2.11. Jn,T → JT in the sense of Mosco.

Proof. In the transmission framework it is immediate once observed that, owing
to (4.208), the family of functionals Jn,T is nondecreasing; therefore, Prop. 1.3.9 (a)
can be applied.

In the one-domain case, instead, we did not suppose any monotonicity (in n)
property for jn; so, we have to work a little bit more.

Owing to Theorem 1.3.7 ((c)⇒ (a)), it is enough to prove that, for every ε > 0
and for every v ∈ L2(0, T ;H), we have that (∂Jn,T )ε(v) → (∂JT )ε(v) strongly in
L2(0, T ;H). First, notice that assumption (4.180), and Theorem 1.3.7 ((b)⇒ (c)),
entail that, for every r ∈ R, it is

(4.266) (αn)ε(r)→ αε(r),

so that, using the characterization of Yosida regularizations of L2(0, T ;H)-extended
operators given again by Theorem 1.2.22 and owing also to the (1/ε)-Lipschitz con-
tinuity of (αn)ε and αε, we can apply the dominated convergence theorem to the
expression

(4.267) ‖(∂Jn,T )ε(v)− (∂JT )ε(v)‖2L2(0,T ;H) =

∫ T

0

∫
Ω

|(αn)ε(v)− αε(v)|2 dx dt,

so concluding the proof of the lemma.

Now, owing to (4.192), (4.195) and (4.180), recalling also Prop. 1.3.8, what remains
to do is to verify (1.61) with X = X ′ = L2(0, T ;H), y = ξ, yn = ξn, x = χ, xn = χ

n,
An = ∂Jn,T and A = ∂JT . So, first of all, observe that (4.190) and [82, Cor. 4,
Section 8] entail the following convergence, which is the only strong one available for
the solutions of (Pn):

(4.268) en → e in L2(0, T ;H−1/4(Ω))–strong.

At this point, we are ready to verify (1.61); using equation (4.166), we deduce:∫ T

0

(ξn, χn) dt = −1

2
‖µ1/2

n
χ

n(t)‖2H +
1

2
‖µ1/2

n
χ

0,n‖2H − ‖ν1/2
n ∇χn‖2L2(0,T ;H)(4.269)

+ ‖c1/2
n
χ

n‖2L2(0,T ;H) +

∫ T

0

∫
Ω

`θn

(
χ

n +
ρ

λ
θn

)
dx dt−

∫ T

0

∫
Ω

`ρ

λ
|θn|2 dx dt.

Passing now to the supremum limit in the previous computation, we notice that
the first and the third term on the right hand side are negative, while the second and
the fourth ones tend to vanish by virtue of (4.181) and (4.175), (4.192) respectively.
Finally, relation (4.268), the first of (4.191) and the semicontinuity properties of weak
convergence permit to manage also the two last terms on the right hand side, so that:

lim sup
n→∞

∫ T

0

(ξn(t), χn(t)) dt ≤
∫ T

0

∫
Ω

`θ
e

λ
dx ds−

∫ T

0

∫
Ω

`ρ

λ
|θ|2 dx ds(4.270)

=

∫ T

0

(`θ, χ) ds,
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as desired. Since the uniqueness of the solution to problem (P) is classical, the proof
of Theorem 4.2.4 is now complete.

Proof of Theorem 4.2.8. We begin by two preliminary lemmas, the first one ac-
counting for the limit behaviour of a singular perturbation problem with mixed bound-
ary conditions (see also [25, Appendix]); the second showing the M-convergence of the
functionals Gn to G.

We point out that this second result could be avoided by suitably modifying the
subsequent proof of Theorem 4.2.14; anyway, this approach, although probably longer,
permits to emphasize better the difficulties which our problem inherits from the lack
of linearity properties which is characteristic of Γ-convergence.

In the sequel, we shall denote by W0 := H1
0,Γ(Ω2) the space of H1(Ω2)-functions

vanishing on Γ in sense of traces. We recall (see also Subsec. 1.1.2) that, for any
ζ ∈ H1/2(Γ), there exists a function ψ =: Rζ ∈ H1(Ω2) extending ζ to Ω2; that is,
ψ|Γ = ζ in sense of traces and ‖ψ‖H1(Ω2) ≤ C3‖ζ‖H1/2(Γ) for some C3 > 0 (independent
of ζ). Since the extension operator R is a priori nonunique, we choose here ψ precisely
as the solution of the following elliptic problem with mixed boundary conditions

(4.271)


−∆ψ = 0 in Ω2

ψ = ζ on Γ
∂nψ = 0 on ∂Ω2\Γ.

Moreover, in order to state the next lemma, we have to introduce a new Hilbert
triplet, that is (W0, L

2(Ω2),W
′
0), where, on account of the Poincaré inequality, we can

choose for W0 the scalar product given by

(4.272) ((ω1, ω2))W0 :=

∫
Ω2

∇ω1 · ∇ω2 dx for ω1, ω2 ∈ W0,

while we put on L2(Ω2) the standard one, denoted as usual by (·, ·).
We also indicate by D the inverse Riesz operator from W ′

0 to W0; in particular, the
dual scalar product on W ′

0 can be defined as

((φ, z))W ′
0

:= W ′
0
〈φ,Dz〉W0 for all φ, z ∈ W ′

0(4.273)

=

∫
Ω2

φDz dx if, in addition, φ ∈ L2(Ω2).

Finally, we remark that, given φ ∈ L2(Ω2) and ω ∈ W0 such that ∆ω ∈ L2(Ω2) and
∂nω = 0 on ∂Ω2\Γ (this homogeneous Neumann condition is essential), we can write

(−∆ω,Dφ) =

∫
Ω2

−∆ωDφ dx =

∫
Ω2

∇ω · ∇(Dφ) dx(4.274)

= ((ω,Dφ))W0 = W ′
0
〈φ, ω〉W0 =

∫
Ω2

ωφ dx.

All this machinery permits to state our first preliminary
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Lemma 4.2.12. Given ζ ∈ L2(0, T ;H1/2(Γ)) and u2 ∈ L2(0, T ;L2(Ω2)), consider the
following singular perturbation problem:

(4.275)


u2,n − ν2,n∆u2,n = u2 in Ω2×]0, T [
u2,n = ζ on Γ×]0, T [
∂nu2,n = 0 on (∂Ω2\Γ)×]0, T [

Then, u2,n ∈ L2(0, T ;H1(Ω2)) for all n ∈ N and, as n → ∞, the following relations
hold:

u2,n → u2 in L2(0, T ;L2(Ω2))–strong,(4.276)

ν
1/2
2,n∇u2,n → 0 in L2(0, T ;L2(Ω2))–strong,(4.277)

ν
−1/2
2,n ‖u2,n − u2‖L2(0,T ;W ′

0) is bounded,(4.278)

ν
−ε/2
2,n ‖u2,n − u2‖L2(0,T ;H−ε(Ω2)) is bounded for every ε ∈]0, 1/2[.(4.279)

Proof. For the sake of simplicity, we drop the dependence on t and we prove the
lemma in the stationary case, only minor adjustments (i.e. integration in time of the
various terms) being required for the time dependent setting.

It is well-known that problem (4.275) can be rewritten as a variational equality in
the affine manifold Wζ := W0 +Rζ in the following way

(4.280)

{
u2,n ∈ Wζ∫

Ω2
((u2,n − u2)(v −Rζ) + ν2,n∇u2,n · ∇(v −Rζ)) dx = 0,

where the equation must hold for all v ∈ Wζ .
Choosing now v = u2,n in the preceding formula, by standard techniques, we infer:

1

2
‖u2,n‖2L2(Ω2) +

ν2,n

2
‖∇u2,n‖2L2(Ω2)(4.281)

≤ 1

2
‖u2‖2L2(Ω2) +

ν2,n

2
‖∇Rζ‖2L2(Ω2) + (u2,n − u2,Rζ),

whence, as a first step, we easily derive by boundedness the convergences (4.276–4.277)
in the weak topologies; at this point, we notice that the last two terms on the right
hand side of (4.281) tend to 0; consequently, we have

(4.282) lim sup
n→∞

[
‖u2,n‖2L2(Ω2) + ν2,n‖∇u2,n‖2L2(Ω2)

]
≤ ‖u2‖2L2(Ω2)

and, owing for instance to [9, Prop. 1.4, page 14], relations (4.276–4.277) follow now
in the strong topology.

In order to obtain (4.278), we multiply the first equation of (4.275) by D(u2,n−u2),
so that, invoking (4.271) and (4.273–4.274), we infer

‖u2,n − u2‖2W ′
0

= ν2,n

∫
Ω2

∆(u2,n −Rζ)D(u2,n − u2) dx(4.283)

= −ν2,n

∫
Ω2

(u2,n −Rζ) (u2,n − u2) dx

≤ ν2,n‖u2,n −Rζ‖L2(Ω2)‖u2,n − u2‖L2(Ω2) ≤ ν2,nC4,
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where C4 > 0 is a constant depending only on estimate (4.276).
Finally, we observe that (4.279) is a consequence of (4.276), (4.278) (notice that

(4.278) entails in particular the boundedness of ν
−1/2
2,n ‖u2,n − u2‖L2(0,T ;H−1(Ω2))) and of

Lemma 4.1.4.

We now consider the limit behaviour of functionals Gn,T for n → ∞, neglecting, as
before, the dependence on time.

Lemma 4.2.13. Gn,T → GT in the sense of Mosco.

Proof. It is given for Gn. Observing that the sequence Gn is nonincreasing,
owing to Prop. 1.3.9 (b), we can say that Gn → sc- inf Gn in the sense of Mosco,
where, by sc- inf Gn, we mean the lower semicontinous regularization (see [31, Chapter
3] or Subsec. 1.2.1) of the functional H := inf Gn.

Also, it is immediate to verify that H(v) for v ∈ H is given by (compare with
(4.240))

(4.284) H(v) :=


ν1

2

∫
Ω1

|∇v1|2 dx if v ∈ V = H1(Ω)

+∞ otherwise.

So, what remains to prove is that G = sc-H. For this purpose, we use the sequential
characterization of relaxed functionals [31, Prop. 3.6, page 29] (see also Prop. 1.2.1),
by requiring:

G(v) ≤ lim inf
n→∞

H(vn) for every vn → v in H–strong;(4.285)

for every u ∈ D(G), there exists un ⊂ D(H) such that(4.286)

un → u in H–strong and G(u) = limn→∞H(un).

Now, (4.285) can be easily checked by lower semicontinuity of norms with respect to
the weak convergence.

With regard to the proof of (4.286), if we define ζ := (u1)|Γ (in the sense of traces), it
is possible to take as un the original u1 in Ω1 and the function u2,n given by (4.275) in Ω2

(as for the extension to the time-dependent case, we remark that ζ ∈ L2(0, T ;H1/2(Γ)),
as it can be verified by recalling Remark 4.2.10, so that Lemma 4.2.12 can be actually
applied). The strong convergence un → u in L2(Ω) is now given by (4.276), while we
even have G(u) = H(un) for every n ∈ N, as desired.

We point out that, at this level, other approximating procedures could be used
for the construction of un, but we chose this one since we are going to repeat it in a
moment for the global functional (Jn,T +Gn,T ).

Theorem 4.2.14. (Jn,T +Gn,T )→ (JT +GT ) in the sense of Mosco.

Proof. Thanks to Lemma 4.2.11, to Lemma 4.2.13, and to Prop. 1.3.11 we have
that (JT +GT ) ≤ Γw-lim infn→∞(Jn,T +Gn,T ) (and we point out again that this could
be proved directly without passing through the M-convergences of Gn,T and Jn,T ); so,
it remains to show condition (1.60) of Prop. 1.3.5, i.e. that, for every u ∈ D(JT +GT ),
we can find a sequence (un) ⊂ L2(0, T ;H), with un ∈ D(Jn,T +Gn,T ) for every n ∈ N,
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such that un → u strongly in L2(0, T ;H) and lim infn→∞((JT + GT )(u) − (Jn,T +
Gn,T )(un)) ≥ 0.

Coming back again to the stationary case, we now choose un exactly as in the last
lemma; that is un := u1 in Ω1 and un := u2,n in Ω2, with u2,n given by (4.275) with
ζ := (u1)|Γ. So, we have

(J +G)(u)− (Jn +Gn)(un) =

∫
Ω1

j1(u1) dx−
∫

Ω1

j1,n(u1) dx(4.287)

− ν2,n

2

∫
Ω2

|∇u2,n|2 dx+

∫
Ω2

j2(u2) dx−
∫

Ω2

j2,n(u2,n) dx.

Now, owing to (4.208) (with i = 1), we immediately see that

(4.288)

∫
Ω1

j1(u1) dx−
∫

Ω1

j1,n(u1) dx ≥ 0;

moreover, we infer from (4.277) that

(4.289)
ν2,n

2

∫
Ω2

|∇u2,n|2 dx→ 0.

Finally, due again to relation (4.208) (with i = 2) and recalling (4.275) and the
definition of subdifferential, we deduce that∫

Ω2

j2(u2) dx−
∫

Ω2

j2,n(u2,n) dx ≥
∫

Ω2

j2,n(u2) dx−
∫

Ω2

j2,n(u2,n) dx(4.290)

≥
∫

Ω2

α2,n(u2,n)(u2 − u2,n) dx = −
∫

Ω2

α2,n(u2,n)(ν2,n∆u2,n) dx

= ν2,n

∫
Ω2

α′2,n(u2,n)|∇u2,n|2 dx− −1/2,Γ〈ν2,n∂nu2,n, α2,n(ζ)〉1/2,Γ.

Note that in the last passage we have exploited a generalized version of the Gauss-
Green formula [41, Coroll. 2.6, page 28] (recall also Theorem 1.1.6 (c)); moreover,
observe that in order that the last duality make sense, the homogeneous Neumann
condition in (4.275) was essential (cfr. Remark 1.1.9).

Now, the first term on the right hand side of the preceding expression is clearly
nonnegative thanks to the monotonicity of α2,n; moreover, owing to (4.204), (4.275),
(4.279) and to Cor. 4.1.3, we have, for some constants C5, C6, C7 > 0 and for δ as in
(4.205),

−−1/2,Γ〈ν2,n∂nu2,n, α2,n(ζ)〉1/2,Γ ≥ −‖α2,n(ζ)‖1/2,Γ‖ν2,n∂nu2,n‖−1/2,Γ(4.291)

≥ −C5‖α2,n(u1)‖H1(Ω1)

(
‖ν2,nu2,n‖H1(Ω2) + ‖ν2,n∆u2,n‖H−1/2(Ω2)

)
≥ −C6Ln‖u1‖H1(Ω1)

(
‖ν2,nu2,n‖H1(Ω2) + ‖u2,n − u2‖H−1/2+δ(Ω2)

)
≥ −C6Lnν

1/4−δ/2
2,n ‖u1‖H1(Ω1)

(
‖ν3/4+δ/2

2,n u2,n‖H1(Ω2) + C7

)
(actually C7 is the constant bounding (4.279) for the chosen exponent ε = 1/2− δ).
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Now, since u1 ∈ H1(Ω1) is fixed, recalling also (4.276–4.277) and exploiting (4.205),
we easily see that the preceding expression tends to 0; collecting now the information
of (4.288–4.291), the proof of Theorem 4.2.14 can be easily completed.

Proof of existence. First of all, it is possible to reason as in (4.263) in order to
deduce (4.186). Naturally, in this case, hypothesis (4.206) has to be exploited for the
Ω2-components; the boundedness on Ω1, instead, is guaranteed by (4.235), whence
also the convergence (4.217) and the related regularity (4.212) (with L∞ in place of
C0, anyway) follow. Now, (4.185) is a consequence of (4.230), and, coupled with
(4.238) and (4.186), entails (4.184). All this procedure also guarantees (4.190–4.192).
Furthermore, (4.218–4.219) are immediate consequences of (4.236–4.237). This allows
also to derive (4.189) and (4.215) from (4.168), (4.169), (4.183) and (4.210). Finally,
equation (4.187) is obtained from (4.165) as in the one-domain case.

As we already pointed out at the end of last section, the rest of the statement is
proved if we are able to apply Prop. 1.3.8 to operators ∂(Jn,T +Gn,T ) and ∂(JT +GT ).
Recalling the notation (4.256) and (4.258), we see that the evaluation of the scalar
product (in L2(0, T ;H)) (γn, χn) is analogous (and even simpler since here we have no
space diffusion terms) to the corresponding procedure (4.269–4.270) we used for the
one-domain problem (naturally, here it is necessary to separe the contributions of Ω1

and Ω2 and use for the first ones the strong convergence χ1,n → χ
1 in L2(0, T ;L2(Ω1)),

which is a consequence of (4.217)). We only point out one difference: here, the mixed
unknowns term is adjusted in the following way (compare with (4.270)):∫ T

0

∫
Ω

`θn
χ

n dx ds =
2∑

i=1

∫ T

0

∫
Ωi

`iθi,n
χ

i,n dx ds(4.292)

=
2∑

i=1

[∫ T

0

∫
Ωi

`i
λi

θi,nei,n dx ds−
∫ T

0

∫
Ωi

ρi`i
λi

|θi,n|2 dx ds
]
.

Now, if we define ζn as `iθi,n/λi in the domain Ωi for i = 1, 2 (and a limit ζ is
constructed from θ in an analogous way), it is well known that the first of (4.191)
entails that ζn → ζ weakly in L2(0, T ;H1/4(Ω)); thus, (4.268) permits to pass to the
limit in the first term on the right hand side, while the second one can be managed as
before through a semicontinuity argument. Finally, that the C0 in (4.212) is as usual
a consequence of Theorem 1.1.16.

Proof of uniqueness. Let us suppose to have a couple of solutions, say (ê, θ̂, χ̂) and
(ě, θ̌, χ̌) to (TP). Define also e := ê− ě, θ := θ̂ − θ̌, χ := χ̂− χ̌.

Now, write equation (4.187) for the two solutions, take the difference and multiply
it by F−1e; integrating in ]0, t[ and proceeding as in (4.221), we infer

(4.293)
1

2
‖e(t)‖2V ′ + ‖ρ1/2θ‖2L2(0,t;H) = −

∫ t

0

∫
Ω

λχθ dx ds.

Writing now (4.213) for the two solutions, taking the difference and testing it with χ1,
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working as above, we get

µ1

2
‖χ1(t)‖2L2(Ω1) + ν1‖∇χ1‖2L2(0,t;L2(Ω1))(4.294)

≤ c1‖χ1‖2L2(0,t;L2(Ω1)) +

∫ t

0

∫
Ω1

`1θ1
χ

1 dx ds.

Taking χ2 as a test function in (4.214) and proceeding as before, thanks to the mono-
tonicity of α2, we get

∫ t

0

∫
Ω2
θ2
χ

2 dx ds ≥ 0, so that, calculating (4.293)+(λ1`
−1
1 )(4.294)

and applying the Gronwall inequality, it is straightforward to conclude.

An application. We finally present in some detail the particular physical situation
which motivated this analysis. Take in (TP) α1(r) = r3 and α2(r) = ∂I[−1,1](r),
I[−1,1](r) denoting here the indicator function of [−1, 1], that is I[−1,1](r) = 0 for
r ∈ [−1, 1] and I[−1,1](r) = +∞ otherwise (we are assuming here that the solid state
is represented by χ = −1 instead of χ = 0).

Let also α1,n be the Yosida regularization of α1 of index n−1 and α2,n that of α2 of
index L−1

n , where Ln satisfies (4.205). Now the limit situation (TP) accounts for a heat
transmission problem between two fluids, of which one (Ω1) obeys to the Caginalp-Fix
phase field model with a double-well (Ginzburg-Landau) energy potential and the other
(Ω2) to the two-phase Stefan model. In the approximating framework (TPn), instead,
a heat diffusion dynamics of Caginalp-Fix type holds on both sides. We eventually
remark that the equations of (TPn) are coupled also by (implicit) phase transmission
conditions at the interface Γ, while those of (TP) are only coupled through (4.187),
which is a global variational equality in the whole Ω.
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[69] O. A. Oleinik, A method of solution of the general Stefan problem, Soviet Math.
Dokl., 1 (1960), 1350–1354.

[70] O. Penrose, P. C. Fife, Thermodynamically consistent models of phase-field type
for the kinetics of phase transitions, Physica D, 43 (1990), 44–62.

[71] P. I. Plotnikov, V. N. Starovoitov, The Stefan problem with surface tension as the
limit of a phase field model, Differential Equations, 29 (1993), 395–404.

[72] R. T. Rockafellar, Integrals which are convex functionals, Pacific J. Math., 24
(1968), 525–539.

[73] R. T. Rockafellar, Convex functions, monotone operators and variational inequal-
ities; theory and applications of monotone operators, A. Ghizzetti ed., Tipografia
Oderisi Editrice, Gubbio (Italy), 1969, 34–65.

[74] R. T. Rockafellar, Integrals which are convex functionals II, Pacific J. Math., 39
(1971), 439–469.

[75] W. Rudin, “Functional Analysis”, McGraw-Hill, New York, 1973.
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