Introduction	Clustering	Julia	k-means in Julia

Optimization Algorithms for Machine Learning

Stefano Gualandi

Università di Pavia, Dipartimento di Matematica

email: stefano.gualandi@unipv.it
twitter: @famo2spaghi
blog: http://stegua.github.com
web: http://matematica.unipv.it/gualandi/opt4ml

Julia 000000000 k-means in Julia

Supervised Learning vs. Unsupervised Learning

Definition 1 (Supervised Learning)

Supervised Learning is the task of learning (inferring) a function *f* that maps input vectors to their corresponding target vectors, by using a dataset containing a given set of pairs of (*input*, *output*) samples. Examples:

- REGRESSION: the output vectors take one or more continuous values.
- CLASSIFICATION: the output vectors take one value of a finite number of discrete categories. Special case: binary classification.

Clustering

Julia 000000000 k-means in Julia

Supervised Learning vs. Unsupervised Learning

Definition 2 (Unsupervised Learning)

Unsupervised Learning is the task of learning (inferring) a function f that maps input vectors to their corresponding target vectors, but without any a priori knowledge about the correct mapping. Examples:

- CLUSTERING: The goal of clustering is to group or partition the input vectors (if possible) into *k* groups or clusters, with the vectors in each group close to each other. In this case, the input vectors represents usually features of objects.
- DENSITY ESTIMATION: The goal is to project the data from a high dimensional space down to two or three dimensions, usually for the purpose of *visualization*.

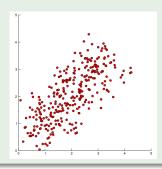
Julia 000000000 k-means in Julia

Unsupervised Learning: Clustering

Suppose we have *n* vectors: $\mathbf{x}_1, \ldots, \mathbf{x}_n$, where each $\mathbf{x}_i \in \mathbb{R}^d$.

The goal of clustering is to group or partition the vectors (if possible) into k groups or clusters (with $k \ll n$), with the vectors in each group close to each other.

Example 3 (Clustering n = 300 points in \mathbb{R}^2 , into k = 3 clusters)



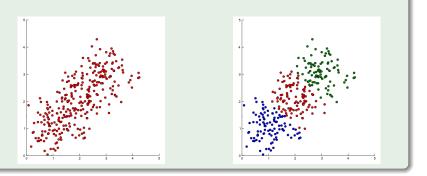
Julia 000000000 k-means in Julia

Unsupervised Learning: Clustering

Suppose we have *n* vectors: $\mathbf{x}_1, \ldots, \mathbf{x}_n$, where each $\mathbf{x}_i \in \mathbb{R}^d$.

The goal of clustering is to group or partition the vectors (if possible) into k groups or clusters (with $k \ll n$), with the vectors in each group close to each other.

Example 3 (Clustering n = 300 points in \mathbb{R}^2 , into k = 3 clusters)



Introduction	Clustering	Julia	k-means in Julia
	○●○○○○○○○	00000000	000000
Specifying the	Cluster Assignmer	its	

To specify a clustering or assignment of the *n* vectors, we used the labels $1, \ldots, k$ and a vector *c* of *n* elements, with the convention that $c_i = j$ means that the *i*-th vector belong to the *j*-th cluster.

Introduction	Clustering	Julia	k-means in Julia
00	00000000	00000000	000000
Specifying the	Cluster Assignm	ents	

To specify a clustering or assignment of the *n* vectors, we used the labels $1, \ldots, k$ and a vector *c* of *n* elements, with the convention that $c_i = j$ means that the *i*-th vector belong to the *j*-th cluster.

Example 4 (Cluster Assignment)

Suppose we have n = 5 vectors and k = 3 groups. If we are given the assignment vector c = [3, 1, 1, 1, 2], this means that we have the following 3 groups:

$$G_1 = \{2,3,4\}, \quad G_2 = \{5\}, \quad G_3 = \{1\}$$

More compactly, we can write the grouping

$$G_j = \{i \mid c_i = j\}.$$

Clustering ○○●○○○○○○○ Julia 000000000 k-means in Julia

A cluster objective

How can we evaluate a given choice of clustering?

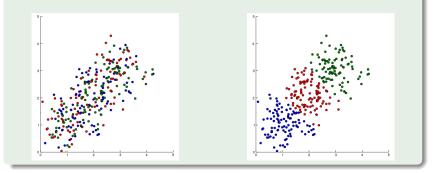
Clustering

Julia 000000000 k-means in Julia

A cluster objective

How can we evaluate a given choice of clustering?

Example 5 (Clustering n = 300 points in \mathbb{R}^2 , into k = 3 clusters)



Clustering

Julia 000000000 k-means in Julia

Group Representatives

How can we evaluate a given choice of clustering?

Julia 000000000 k-means in Julia

Group Representatives

How can we evaluate a given choice of clustering?

Within each cluster we select a

group representative *n*-vector denoted by: z_1, \ldots, z_k

The representative can be any vector of \mathbb{R}^d .

DESIDERATA: each representative is as close as possible to the vector in its associated group. We want to keep as small as possible the quantities:

$$||\boldsymbol{x}_i - \boldsymbol{z}_{c_i}||$$

Introduction	Clustering	Julia	k-means in Julia
	000000000		
A Cluster Obje	ctive		

Using the clustering representative, we can write a single function that measure the quality of a given clustering c with given representative z_i :

$$L(\boldsymbol{c},\boldsymbol{z}) = \frac{1}{n} \sum_{i=1}^{n} ||\boldsymbol{x}_i - \boldsymbol{z}_{c_i}||^2$$

which is the mean square distance from the vectors to their associated representatives. **NOTE:** other objective functions could be used.

OPTIMAL CLUSTERING: a choice of group assignment c_1, \ldots, c_n and group representatives z_1, \ldots, z_k that minimize the objective L(c, z).

Clustering ○○○○●○○○○ Julia 000000000 k-means in Julia

Optimal clustering with fixed representatives

In general, exact clustering is NP-Hard, already for k = 2.

Clustering ○○○○●○○○○ Julia 000000000 k-means in Julia

Optimal clustering with fixed representatives

In general, exact clustering is NP-Hard, already for k = 2. (... and hence, no hope for efficient scalable exact algorithms!)

Julia 000000000 k-means in Julia

Optimal clustering with fixed representatives

In general, exact clustering is NP-Hard, already for k = 2. (... and hence, no hope for efficient scalable exact algorithms!)

However, given the representatives z_1, \ldots, z_k , we can find the assignment vector c that achieve the smallest possible value of L(x, c, z).

The choice of c_i only affects the term

$$\frac{1}{n}\left|\left|\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{z}_{c_{\boldsymbol{i}}}\right|\right|^{2}$$

k-means in Julia

Optimal clustering with fixed representatives

In general, exact clustering is NP-Hard, already for k = 2. (... and hence, no hope for efficient scalable exact algorithms!)

However, given the representatives z_1, \ldots, z_k , we can find the assignment vector c that achieve the smallest possible value of L(x, c, z).

The choice of c_i only affects the term

$$\frac{1}{n}||\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{z}_{c_{\boldsymbol{i}}}||^2$$

and, hence, we can select

$$c_i = j^* = \operatorname{argmin}_{j=1,\dots,k} ||\boldsymbol{x}_i - \boldsymbol{z}_j|| \tag{1}$$

Introduction Clustering Julia k-means in Julia

Optimal clustering with fixed assignments

If we fix the assignment of points to the clusters, then it is possible to find the representatives that minimize the objective L(c, z). If we re-arrange the objective using the groups we obtain:

$$L(\mathbf{z}) = \frac{1}{n} \sum_{j=1}^{k} \sum_{i \in G_j} ||\mathbf{x}_i - \mathbf{z}_j||^2$$

Note that we want to find the representative z_j that minimized the *j*-th term. Thus we should choose the vector $z_j \in \mathbb{R}^d$ that minimize the mean square distance to the vectors in groups *j*, that is, the average (or *mean*, or *centroid*):

$$z_j = \frac{1}{|G_j|} \sum_{i \in G_j} \boldsymbol{x}_i \tag{2}$$

Introduction	Clustering ○○○○○○●○○	Julia oooooooo	k-means in Julia
Main Idea			

1 How to compute z_1, \ldots, z_k given c:

$$z_j = rac{1}{|\mathcal{G}_j|} \sum_{i \in \mathcal{G}_j} oldsymbol{x}_i$$

2 How to compute c given z_1, \ldots, z_k :

$$c_i = j^* = \operatorname{argmin}_{j=1,\dots,k} ||\boldsymbol{x}_i - \boldsymbol{z}_j||$$

We start with any assignment of points to k clusters, and then we iterate until convergence.

Introduction	Clustering ○○○○○○●○○	Julia oooooooo	k-means in Julia
Main Idea			

1 How to compute z_1, \ldots, z_k given c:

$$z_j = rac{1}{|\mathcal{G}_j|} \sum_{i \in \mathcal{G}_j} oldsymbol{x}_i$$

2 How to compute c given z_1, \ldots, z_k :

$$c_i = j^* = \operatorname{argmin}_{j=1,\dots,k} ||\boldsymbol{x}_i - \boldsymbol{z}_j||$$

We start with any assignment of points to k clusters, and then we iterate until convergence.

QUESTION 1: How can we select an initial assignment vector *c*?

Introduction	Clustering ○○○○○○●○○	Julia oooooooo	k-means in Julia
Main Idea			

1 How to compute z_1, \ldots, z_k given c:

$$z_j = rac{1}{|\mathcal{G}_j|} \sum_{i \in \mathcal{G}_j} oldsymbol{x}_i$$

2 How to compute c given z_1, \ldots, z_k :

$$c_i = j^* = \operatorname{argmin}_{j=1,\dots,k} ||\boldsymbol{x}_i - \boldsymbol{z}_j||$$

We start with any assignment of points to k clusters, and then we iterate until convergence.

QUESTION 1: How can we select an initial assignment vector *c*? **QUESTION 2**: When can we stop?

Introduction	Clustering ○○○○○○●○○	Julia oooooooo	k-means in Julia
Main Idea			

1 How to compute z_1, \ldots, z_k given c:

$$z_j = rac{1}{|\mathcal{G}_j|} \sum_{i \in \mathcal{G}_j} oldsymbol{x}_i$$

2 How to compute c given z_1, \ldots, z_k :

$$c_i = j^* = \operatorname{argmin}_{j=1,\dots,k} ||\boldsymbol{x}_i - \boldsymbol{z}_j||$$

We start with any assignment of points to k clusters, and then we iterate until convergence.

QUESTION 1: How can we select an initial assignment vector c?QUESTION 2: When can we stop?QUESTION 3: How to choose k?

Iulia

k-means in Julia

The Lloyd Algorithm, aka k-means algorithm

Algorithm 1: *k*-means algorithm

Data: $\mathbf{X} = \mathbf{x}_1, \dots, \mathbf{x}_n$ input vectors

Data: k number of clusters

Result: *c* clustering assignment

Result: z_1, \ldots, z_k clustering representatives

- 1 $\boldsymbol{c} \leftarrow \text{RANDOMASSIGNMENT}(\boldsymbol{X}, k);$
- **2** for $i \leftarrow 1$ to maximizer do

$$c_0 \leftarrow c;$$

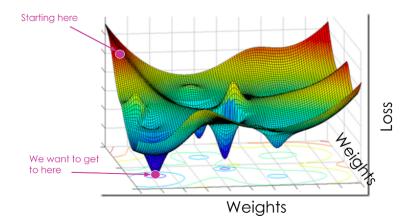
- 4 $z_1, \ldots, z_k \leftarrow \text{BestRepresentatives}(\boldsymbol{X}, \boldsymbol{c});$ 5 $\boldsymbol{c} \leftarrow \text{BestAssignment}(\boldsymbol{X}, \boldsymbol{z}_1, \ldots, \boldsymbol{z}_k);$

8 return $c, (z_1, ..., z_k)$

 Introduction
 Clustering
 Julia
 k-means in Julia

 000000000
 000000000
 00000000
 0000000

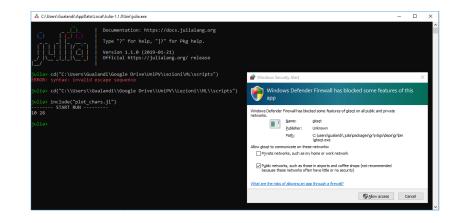
 Loss Function Landascape (micro-example)



Clustering

Julia ●00000000 k-means in Julia

Julia: Editor + Shell



Introduction		Clustering		Julia ⊙●○○○○○○○	k-means in Julia
	-	 ~	_		

Motivating Julia: Summing Numbers

Multple Dispatch: Run the right code at the right time!

Introduction	Clustering	Julia	k-means in Julia
		00000000	
Motivating Julia	a: Summing Nu	mbers	

Multple Dispatch: Run the right code at the right time!

Multiple Dispatch is the selection of a function implementation based on the types of each argument of the function.

Introduction	Clustering	Julia ○●○○○○○○○	k-means in Juli 000000
Motivating Julia	a: Summing Num	nbers	

Multple Dispatch: Run the right code at the right time!

Multiple Dispatch is the selection of a function implementation based on the types of each argument of the function.

Example 6 (Summing Numbers)

In Julia, we have several different **types** for representing numbers: Int8, Int16, Int32, Int64, Float8, Float16, Float32, Float64, ... With a high level programming language, with **dynamic types**, we can simply write:

julia> plus(x, y) = x + y

and then run:

```
julia> plus(1, 1), plus(1.0, 1.0), plus(1, 1.0)
```

However, at assembly level, different operations are performed!

Introduction	Clustering	Julia	k-means in Julia
	000000000	○○●○○○○○○	000000
Motivating .	Julia: Summing I	Numbers	

We can simulate what happens at assembly level with the following code:

Introduction	Clustering	Julia	k-means in Julia
	000000000	○○●○○○○○○	000000
Motivating Ju	lia: Summing l	Numbers	

We can simulate what happens at assembly level with the following code:

julia> add(x::Int64, y::Int64) = x + y

Introduction	Clustering	Julia	k-means in Julia
		0000000	
Motivating .	Julia: Summing N	Numbers	

We can simulate what happens at assembly level with the following code:

```
julia> add(x::Int64, y::Int64) = x + y
```

```
julia> vaddsd(x::Float64, y::Float64) = x + y
```

Introduction	Clustering	Julia	k-means in Julia
		0000000	
Motivating	Julia: Summing N	lumbers	

We can simulate what happens at assembly level with the following code:

```
julia> add(x::Int64, y::Int64) = x + y
```

```
julia> vaddsd(x::Float64, y::Float64) = x + y
```

```
julia> vcvtsi2sd(x::Int64) = float(x)
```

Introd	uction	Clustering	Julia ○○●○○○○○○	k-means in Julia 000000
M	otivating Juli	a: Summing	Numbers	
	Example 7 (Summ	ing Numbers (con't	:))	
	We can simulate w	hat happens at ass	embly level with the follow	ing code:
	julia> add(x	::Int64, y::Int6	(4) = x + y	

```
julia> vaddsd(x::Float64, y::Float64) = x + y
```

```
julia> vcvtsi2sd(x::Int64) = float(x)
```

Using these functions, we can define:

```
julia> plus(x::Int64, y::Int64) = add(x, y)
julia> plus(x::Float64, y::Float64) = vaddsd(x, y)
julia> plus(x::Int64, y::Float64) = vaddsd(vcvtsi2sd(x), y)
julia> plus(x::Float64, y::Int64) = plus(y, x)
```

VADDSD: Vector ADD Scalar Double-precision, VCVTSI2SD: Vector Convert Doubleword (Scalar) Integer to Scalar Double Precision Floating-Point value

Introduction	Clustering	Julia	k-means in Julia
		0000000	
Julia Just-in-tin	ne compilation 1/	′4	

```
julia> @code_native plus(1,1)
        .text
; @ summing.jl:9 within 'plus'
        pushq %rbp
        movq %rsp, %rbp
   @ summing.jl:4 within 'add'
;
    @ int.jl:53 within '+'
;
        leag (%rcx,%rdx), %rax
;
                %rbp
        popq
        retq
              (%rax,%rax)
        nopw
```

;

Introduction	Clustering	Julia ○○○○●○○○○	k-means in Julia
Julia Just-in-tir	ne compilation 2/	4	

```
julia> @code_native plus(1.0,1.0)
        .text
    @ summing.jl:10 within 'plus'
;
        pushq %rbp
        movq %rsp, %rbp
     @ summing.jl:5 within 'vaddsd'
;
      @ float.jl:395 within '+'
;
        vaddsd %xmm1, %xmm0, %xmm0
;
                %rbp
        popq
        retq
              (%rax,%rax)
        nopw
```

;

```
    Introduction
    Clustering
    Julia
    k-means in Julia

    OO
    Julia Just-in-time compilation 3/4
    00000
    00000
```

```
julia> @code_native plus(1.0,1)
        .text
   @ summing.jl:12 within 'plus'
;
        pushq %rbp
        movq %rsp, %rbp
    @ summing.jl:12 within 'plus' @ summing.jl:11
;
     @ summing.jl:6 within 'vcvtsi2sd'
;
      @ float.jl:271 within 'float'
;
       @ float.jl:256 within 'Type' @ float.jl:60
                        %rdx, %xmm1, %xmm1
        vcvtsi2sdg
;
   @ summing.jl:12 within 'plus' @ float.jl:395
٠
         vaddsd %xmm0, %xmm1, %xmm0
    @ summing.jl:12 within 'plus'
;
                %rbp
        popq
        retq
        nop
;
```

Introduction	Clustering	Julia	k-means in Julia
		000000000	
lulia lu	st-in-time compilation	u 4/4	

```
julia> @code_native g(10)
        .text
; @ summing.jl:20 within 'g'
       pushq %rbp
       movq %rsp, %rbp
;
  @ summing.jl:21 within 'g'
;
   @ summing.jl:17 within 'f'
    @ int.jl:54 within '*'
;
        imulq $9765625, %rcx, %rax # imm = 0x9502F9
;
   @ int.jl:52 within 'f'
;
       addg $-2441406, %rax
                                      \# imm = 0xFFDABF42
;
   @ summing.jl:23 within 'g'
;
               %rbp
       popq
       retq
              %cs:(%rax,%rax)
       nopw
```

Clustering

Julia ○○○○○○●○ k-means in Julia

Motivating Julia: Unrolling loops

Example 8 (Unrolling loops)

Consider what happens if we make a fixed number of iterations on an integer arguments:

```
# 10 iterations of F8k) ? 5*k - 1 on integers
f(x) = 5*x - 1
function g(k)
for i = 1:10
    k = f(k)
end
return k
end
```

Introduction	Clustering	Julia ○○○○○○○●	k-means in Julia 000000
Julia Just-	in-time compilati	on 4/4	
pu mo im	de_native g(10) shq %rbp vq %rsp, %rbp ulq \$9765625, %rcx, dq \$-2441406, %rax pq %rbp		

Because the compiler knows that integer addition and multiplication are associative and that multiplication distributes over addition, it can optimize the entire loop down to just a multiply and an add.

Indeed, if f(k) = 5k - 1, it is true that the tenfold iterate

%cs:(%rax,%rax)

retq

nopw

 $f^{(10)}(k) = -2441406 + 9765625k$

Introduction	Clustering	Julia 00000000	k-means in Julia ●○○○○○
Exercise 1:	<i>k</i> -means in \mathbb{R}^2		

using Plots, Random, Distributions, LinearAlgebra

```
function MakeData(N, K)
 M = N/K
  Ls = Array{Float64,1}[]
  for k = 1:K
    for i = 1:M
      push!(Ls, [k,k]+0.5*randn(2))
    end
  end
  return Ls
end
function RandomAssign(X, k)
  unif = DiscreteUniform(1, k)
  return [rand(unif) for x in X]
end
k = 3
X = MakeData(300, k)
C = RandomAssign(X, k)
```

```
Julia
Introduction
                      Clustering
                                                                    k-means in Julia
                                                                    00000
 Exercise 1: k-means in \mathbb{R}^2
    Partition(X,C)=[[X[i] for i=1:length(X) if C[i] == j]
                       for j=1:maximum(C)]
    function PlotSingleCluster(X, C, n)
      clusters = Partition(X, C)
      CL = [:red, :blue, :green]
      plot(legend=false, grid=false, size=(500,500),
            xlims=(0,5), ylims=(0,5))
      for j = 1:maximum(C)
        scatter!([c[1] for c in clusters[j]],
                  [c[2] for c in clusters[j]], c=CL[j])
      end
      p = plot!(legend=false, grid=false, size=(500,500),
                 xlims=(0,5), ylims=(0,5))
      #png(p, "single$(n)")
    end
    k = 3
    X = MakeData(300, k)
    C = RandomAssign(X, k)
```

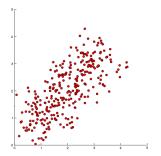
Introduction	Clustering	Julia	k-means in Julia
00	000000000	00000000	000000
Evercise 1.	Useful function		

```
julia> length([4,6,7,8,9,3])
6
julia> sum([4,6,7,8,9,3])
37
julia> maximum([4,6,7,8,9,3])
9
julia> findmin([4,6,7,8,9,3])
(3, 6)
julia> norm([1,1,1,1])
2.0
julia> norm([2,1]-[1,0])
1.4142135623730951
```

Clustering

Julia 000000000 k-means in Julia ○○○●○○

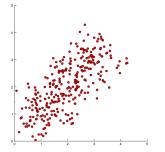
Exercise 1: Possible results

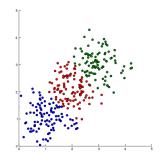


Clustering

Julia 0000000000 k-means in Julia ○○○●○○

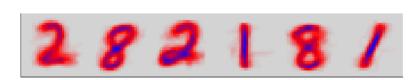
Exercise 1: Possible results





 Introduction
 Clustering
 Julia
 k-means in Julia

 Exercise 2:
 k-means using MNSIT digits



 Introduction
 Clustering
 Julia
 k-means in Julia

 00
 000000000
 000000000
 0000000

 Exercise 3: using the whole dataset...

07/32792683068935901