Optimization Algorithms for Machine Learning

\author{
Stefano Gualandi
 Università di Pavia, Dipartimento di Matematica
 ```
email: stefano.gualandi@unipv.it
 twitter: @famo2spaghi
 blog: http://stegua.github.com
 web: http://matematica.unipv.it/gualandi/opt4ml

```
}

\section*{Supervised Learning vs. Unsupervised Learning}

\section*{Definition 1 (Supervised Learning)}

Supervised Learning is the task of learning (inferring) a function \(f\) that maps input vectors to their corresponding target vectors, by using a dataset containing a given set of pairs of (input, output) samples. Examples:
- Regression: the output vectors take one or more continuous values.
- Classification: the output vectors take one value of a finite number of discrete categories. Special case: binary classification.

\section*{Supervised Learning vs. Unsupervised Learning}

\section*{Definition 2 (Unsupervised Learning)}

Unsupervised Learning is the task of learning (inferring) a function \(f\) that maps input vectors to their corresponding target vectors, but without any a priori knowledge about the correct mapping. Examples:
- Clustering: The goal of clustering is to group or partition the input vectors (if possible) into \(k\) groups or clusters, with the vectors in each group close to each other. In this case, the input vectors represents usually features of objects.
- Density Estimation: The goal is to project the data from a high dimensional space down to two or three dimensions, usually for the purpose of visualization.

\section*{Unsupervised Learning: Clustering}

Suppose we have \(n\) vectors: \(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\), where each \(\boldsymbol{x}_{i} \in \mathbb{R}^{d}\).
The goal of clustering is to group or partition the vectors (if possible) into \(k\) groups or clusters (with \(k \ll n\) ), with the vectors in each group close to each other.

\section*{Example 3 (Clustering \(n=300\) points in \(\mathbb{R}^{2}\), into \(k=3\) clusters)}


\section*{Unsupervised Learning: Clustering}

Suppose we have \(n\) vectors: \(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\), where each \(\boldsymbol{x}_{i} \in \mathbb{R}^{d}\).
The goal of clustering is to group or partition the vectors (if possible) into \(k\) groups or clusters (with \(k \ll n\) ), with the vectors in each group close to each other.

Example 3 (Clustering \(n=300\) points in \(\mathbb{R}^{2}\), into \(k=3\) clusters)



\section*{Specifying the Cluster Assignments}

To specify a clustering or assignment of the \(n\) vectors, we used the labels \(1, \ldots, k\) and a vector \(c\) of \(n\) elements, with the convention that \(c_{i}=j\) means that the \(i\)-th vector belong to the \(j\)-th cluster.

\section*{Specifying the Cluster Assignments}

To specify a clustering or assignment of the \(n\) vectors, we used the labels \(1, \ldots, k\) and a vector \(c\) of \(n\) elements, with the convention that \(c_{i}=j\) means that the \(i\)-th vector belong to the \(j\)-th cluster.

\section*{Example 4 (Cluster Assignment)}

Suppose we have \(n=5\) vectors and \(k=3\) groups. If we are given the assignment vector \(c=[3,1,1,1,2]\), this means that we have the following 3 groups:
\[
G_{1}=\{2,3,4\}, \quad G_{2}=\{5\}, \quad G_{3}=\{1\}
\]

More compactly, we can write the grouping
\[
G_{j}=\left\{i \mid c_{i}=j\right\}
\]

\section*{A cluster objective}

How can we evaluate a given choice of clustering?

\section*{A cluster objective}

How can we evaluate a given choice of clustering?

Example 5 (Clustering \(n=300\) points in \(\mathbb{R}^{2}\), into \(k=3\) clusters)



\section*{Group Representatives}

How can we evaluate a given choice of clustering?

\section*{Group Representatives}

How can we evaluate a given choice of clustering?

Within each cluster we select a
group representative \(n\)-vector denoted by: \(\quad \boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{k}\)
The representative can be any vector of \(\mathbb{R}^{d}\).
DESIDERATA: each representative is as close as possible to the vector in its associated group. We want to keep as small as possible the quantities:
\[
\left\|x_{i}-z_{c_{i}}\right\|
\]

\section*{A Cluster Objective}

Using the clustering representative, we can write a single function that measure the quality of a given clustering \(\boldsymbol{c}\) with given representative \(\boldsymbol{z}_{i}\) :
\[
L(\boldsymbol{c}, \boldsymbol{z})=\frac{1}{n} \sum_{i=1}^{n}\left\|\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{z}_{c_{i}}\right\|^{2}
\]
which is the mean square distance from the vectors to their associated representatives. NOTE: other objective functions could be used.

OPTIMAL CLUSTERING: a choice of group assignment \(c_{1}, \ldots, c_{n}\) and group representatives \(z_{1}, \ldots, \boldsymbol{z}_{k}\) that minimize the objective \(L(\boldsymbol{c}, \boldsymbol{z})\).

\section*{Optimal clustering with fixed representatives}

In general, exact clustering is NP-Hard, already for \(k=2\).

\section*{Optimal clustering with fixed representatives}

In general, exact clustering is NP-Hard, already for \(k=2\). (... and hence, no hope for efficient scalable exact algorithms!)

\section*{Optimal clustering with fixed representatives}

In general, exact clustering is NP-Hard, already for \(k=2\). (... and hence, no hope for efficient scalable exact algorithms!)

However, given the representatives \(\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{k}\), we can find the assignment vector \(\boldsymbol{c}\) that achieve the smallest possible value of \(L(\boldsymbol{x}, \boldsymbol{c}, \boldsymbol{z})\).

The choice of \(c_{i}\) only affects the term
\[
\frac{1}{n}\left\|\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{z}_{c_{i}}\right\|^{2}
\]

\section*{Optimal clustering with fixed representatives}

In general, exact clustering is NP-Hard, already for \(k=2\). (... and hence, no hope for efficient scalable exact algorithms!)

However, given the representatives \(\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{k}\), we can find the assignment vector \(\boldsymbol{c}\) that achieve the smallest possible value of \(L(\boldsymbol{x}, \boldsymbol{c}, \boldsymbol{z})\).

The choice of \(c_{i}\) only affects the term
\[
\frac{1}{n}\left\|x_{i}-z_{c_{i}}\right\|^{2}
\]
and, hence, we can select
\[
\begin{equation*}
c_{i}=j^{*}=\operatorname{argmin}_{j=1, \ldots, k}\left\|\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{z}_{j}\right\| \tag{1}
\end{equation*}
\]

\section*{Optimal clustering with fixed assignments}

If we fix the assignment of points to the clusters, then it is possible to find the representatives that minimize the objective \(L(\boldsymbol{c}, \boldsymbol{z})\). If we re-arrange the objective using the groups we obtain:
\[
L(z)=\frac{1}{n} \sum_{j=1}^{k} \sum_{i \in G_{j}}\left\|\boldsymbol{x}_{i}-\boldsymbol{z}_{j}\right\|^{2}
\]

Note that we want to find the representative \(\boldsymbol{z}_{\boldsymbol{j}}\) that minimized the \(j\)-th term. Thus we should choose the vector \(\boldsymbol{z}_{j} \in \mathbb{R}^{d}\) that minimize the mean square distance to the vectors in groups \(j\), that is, the average (or mean, or centroid):
\[
\begin{equation*}
z_{j}=\frac{1}{\left|G_{j}\right|} \sum_{i \in G_{j}} x_{i} \tag{2}
\end{equation*}
\]

\section*{Main Idea}

Since we know:
(1) How to compute \(\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{k}\) given \(\boldsymbol{c}\) :
\[
z_{j}=\frac{1}{\left|G_{j}\right|} \sum_{i \in G_{j}} \boldsymbol{x}_{i}
\]
(2) How to compute \(\boldsymbol{c}\) given \(\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{k}\) :
\[
c_{i}=j^{*}=\operatorname{argmin}_{j=1, \ldots, k}\left\|\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{z}_{\boldsymbol{j}}\right\|
\]

We start with any assignment of points to \(k\) clusters, and then we iterate until convergence.

\section*{Main Idea}

Since we know:
(1) How to compute \(\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{k}\) given \(\boldsymbol{c}\) :
\[
z_{j}=\frac{1}{\left|G_{j}\right|} \sum_{i \in G_{j}} \boldsymbol{x}_{i}
\]
(2) How to compute \(\boldsymbol{c}\) given \(\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{k}\) :
\[
c_{i}=j^{*}=\operatorname{argmin}_{j=1, \ldots, k}\left\|\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{z}_{\boldsymbol{j}}\right\|
\]

We start with any assignment of points to \(k\) clusters, and then we iterate until convergence.

QUESTION 1: How can we select an initial assignment vector \(\boldsymbol{c}\) ?

\section*{Main Idea}

Since we know:
(1) How to compute \(\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{k}\) given \(\boldsymbol{c}\) :
\[
z_{j}=\frac{1}{\left|G_{j}\right|} \sum_{i \in G_{j}} \boldsymbol{x}_{i}
\]
(2) How to compute \(\boldsymbol{c}\) given \(\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{k}\) :
\[
c_{i}=j^{*}=\operatorname{argmin}_{j=1, \ldots, k}\left\|\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{z}_{\boldsymbol{j}}\right\|
\]

We start with any assignment of points to \(k\) clusters, and then we iterate until convergence.

QUESTION 1: How can we select an initial assignment vector \(\boldsymbol{c}\) ?
QUESTION 2: When can we stop?

\section*{Main Idea}

Since we know:
(1) How to compute \(\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{k}\) given \(\boldsymbol{c}\) :
\[
z_{j}=\frac{1}{\left|G_{j}\right|} \sum_{i \in G_{j}} \boldsymbol{x}_{i}
\]
(2) How to compute \(\boldsymbol{c}\) given \(\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{k}\) :
\[
c_{i}=j^{*}=\operatorname{argmin}_{j=1, \ldots, k}\left\|\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{z}_{\boldsymbol{j}}\right\|
\]

We start with any assignment of points to \(k\) clusters, and then we iterate until convergence.

QUESTION 1: How can we select an initial assignment vector \(\boldsymbol{c}\) ?
QUESTION 2: When can we stop?
QUESTION 3: How to choose \(k\) ?

\section*{The Lloyd Algorithm, aka k-means algorithm}

\section*{Algorithm 1: \(k\)-means algorithm}

Data: \(\boldsymbol{X}=\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\) input vectors
Data: \(k\) number of clusters
Result: c clustering assignment
Result: \(\boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{k}\) clustering representatives
\(1 \boldsymbol{c} \leftarrow\) RandomAssignment \((\boldsymbol{X}, k)\);
2 for \(i \leftarrow 1\) to maxiter do
\(3 \mid c_{0} \leftarrow c\);
\(4 \quad \boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{k} \leftarrow \operatorname{BestRepresentatives}(\boldsymbol{X}, \boldsymbol{c})\);
\(5 \quad \boldsymbol{c} \leftarrow \operatorname{BestAssignment}\left(\boldsymbol{X}, \boldsymbol{z}_{1}, \ldots, \boldsymbol{z}_{k}\right)\);
\(6 \quad\) if \(\boldsymbol{c}_{0}=\boldsymbol{c}\) then
7 break;

8 return \(c,\left(z_{1}, \ldots, z_{k}\right)\)

\section*{Loss Function Landascape (micro-example)}


\section*{Julia: Editor + Shell}

\section*{\(\therefore\) C:UUsers(Gualandi\AppData\Loca\\ulia-1.1.0 bin\julia.exe}

Documentation: https://docs.julialang.org
Type "?" for help, "]?" for Pkg help.
-
julia> cd("C:\Users\Gualandi\Google Drive\UniPV\Lezioni\ML\scripts")
ERROR: syntax: invalid escape sequence
julia> cd("C:\\Users\\Gualandi\\Google Drive\\UniPV\\Lezioni\\ML\\scripts")
julia> include("plot_chars.j1")
------- START RUN
Windows Defender Firewal has blocked some features of gksqt on al publiz and private
\(10 \quad 28\)
julia>
networks.


Publisher:
Publisher: Unkrown
Path: \(\quad \begin{aligned} & \text { C:lusersigualandil julia lackages lor ivivosideps lor bin } \\ & \text { lgkqt.exe }\end{aligned}\)
Allow gksct to communicate on these networks:
\(\square\) Private networks, such as my home or work network
\(\square\) Public networks, such as those \(n\) airports and coffee shops (not recommended because these networks ofien have little or no security)

\section*{Motivating Julia: Summing Numbers}

Multple Dispatch: Run the right code at the right time!

\section*{Motivating Julia: Summing Numbers}

\section*{Multple Dispatch: Run the right code at the right time!}

Multiple Dispatch is the selection of a function implementation based on the types of each argument of the function.

\section*{Motivating Julia: Summing Numbers}

\section*{Multple Dispatch: Run the right code at the right time!}

Multiple Dispatch is the selection of a function implementation based on the types of each argument of the function.

\section*{Example 6 (Summing Numbers)}

In Julia, we have several different types for representing numbers:
Int8, Int16, Int32, Int64, Float8, Float16, Float32, Float64, With a high level programming language, with dynamic types, we can simply write:
\[
\text { julia> plus }(x, y)=x+y
\]
and then run:
julia> plus(1, 1), plus(1.0, 1.0), plus(1, 1.0)

However, at assembly level, different operations are performed!

\section*{Motivating Julia: Summing Numbers}

Example 7 (Summing Numbers (con't))
We can simulate what happens at assembly level with the following code:

\section*{Motivating Julia: Summing Numbers}

\section*{Example 7 (Summing Numbers (con't))}

We can simulate what happens at assembly level with the following code:
\[
\text { julia> add(x::Int64, y::Int64) }=x+y
\]

\section*{Motivating Julia: Summing Numbers}

\section*{Example 7 (Summing Numbers (con't))}

We can simulate what happens at assembly level with the following code:
```

julia> add(x::Int64, y::Int64) = x + y
julia> vaddsd(x::Float64, y::Float64) = x + y

```

\section*{Motivating Julia: Summing Numbers}

\section*{Example 7 (Summing Numbers (con't))}

We can simulate what happens at assembly level with the following code:
```

julia> add(x::Int64, y::Int64) = x + y
julia> vaddsd(x::Float64, y::Float64) = x + y
julia> vcvtsi2sd(x::Int64) = float(x)

```

\section*{Motivating Julia: Summing Numbers}

\section*{Example 7 (Summing Numbers (con't))}

We can simulate what happens at assembly level with the following code:
```

julia> add(x::Int64, y::Int64) = x + y
julia> vaddsd(x::Float64, y::Float64) = x + y
julia> vcvtsi2sd(x::Int64) = float(x)

```

Using these functions, we can define:
```

julia> plus(x::Int64, y::Int64) = add(x, y)
julia> plus(x::Float64, y::Float64) = vaddsd(x, y)
julia> plus(x::Int64, y::Float64) = vaddsd(vcvtsi2sd(x), y)
julia> plus(x::Float64, y::Int64) = plus(y, x)

```

VADDSD: Vector ADD Scalar Double-precision, VCVTSI2SD: Vector Convert Doubleword (Scalar) Integer to Scalar Double Precision Floating-Point value

\section*{Julia Just-in-time compilation 1/4}
```

julia> @code_native plus(1,1)
.text
; @ summing.jl:9 within 'plus'
pushq %rbp
movq %rsp, %rbp
@ summing.jl:4 within 'add'
@ int.jl:53 within '+'
leaq (%rcx,%rdx), %rax
popq %rbp
retq
nopw (%rax,%rax)

```
;

\section*{Julia Just-in-time compilation 2/4}
```

julia> @code_native plus(1.0,1.0)
.text
; @ summing.jl:10 within 'plus'
pushq %rbp
movq %rsp, %rbp
@ summing.jl:5 within 'vaddsd'
@ float.jl:395 within '+'
vaddsd %xmm1, %xmm0, %xmm0
popq %rbp
retq
nopw (%rax,%rax)

```
;

\section*{Julia Just-in-time compilation 3/4}
```

julia> @code_native plus(1.0,1)
.text
; @ summing.jl:12 within 'plus'
pushq %rbp
movq %rsp, %rbp
@ summing.jl:12 within 'plus' @ summing.jl:11
@ summing.jl:6 within 'vcvtsi2sd'
@ float.jl:271 within 'float'
@ float.jl:256 within 'Type' @ float.jl:60
vcvtsi2sdq %rdx, %xmm1, %xmm1
;
; @ summing.jl:12 within 'plus' @ float.jl:395
vaddsd %xmm0, %xmm1, %xmm0
@ summing.jl:12 within 'plus'
popq %rbp
retq
nop

```

\section*{Julia Just-in-time compilation 4/4}
```

julia> @code_native g(10)
.text
; @ summing.jl:20 within 'g'
pushq $\%$ rbp
movq \%rsp, \%rbp
; @ summing.jl:21 within 'g'
; @ summing.jl:17 within 'f'
; @ int.jl:54 within '*'
imulq $\$ 9765625, \% r c x, \% r a x \quad \#$ imm $=0 x 9502 \mathrm{~F} 9$
;
; @ int.jl:52 within 'f'
addq $\$-2441406$, $\%$ rax \quad imm $=0 x F F D A B F 42$
;
; @ summing.jl:23 within 'g'
popq $\%$ rbp
retq
nopw $\%$ cs: $(\%$ rax,$\%$ rax $)$

```

\section*{Motivating Julia: Unrolling loops}

\section*{Example 8 (Unrolling loops)}

Consider what happens if we make a fixed number of iterations on an integer arguments:
```


10 iterations of F8k) ? 5*k - 1 on integers

f(x) = 5*x - 1
function g(k)
for i = 1:10
k = f(k)
end
return k
end

```

\section*{Julia Just-in-time compilation 4/4}
```

julia> @code_native g(10)
pushq %rbp
movq %rsp, %rbp
imulq \$9765625, %rcx, %rax \# imm = 0x9502F9
addq \$-2441406,%rax \# imm = 0xFFDABF42
popq %rbp
retq
nopw %cs:(%rax,%rax)

```

Because the compiler knows that integer addition and multiplication are associative and that multiplication distributes over addition, it can optimize the entire loop down to just a multiply and an add.

Indeed, if \(f(k)=5 k-1\), it is true that the tenfold iterate
\[
f^{(10)}(k)=-2441406+9765625 k
\]

\section*{Exercise 1: \(k\)-means in \(\mathbb{R}^{2}\)}
```

using Plots, Random, Distributions, LinearAlgebra
function MakeData(N, K)
M = N/K
Ls = Array{Float64,1}[]
for k = 1:K
for i = 1:M
push!(Ls, [k,k]+0.5*randn(2))
end
end
return Ls
end
function RandomAssign(X, k)
unif = DiscreteUniform(1, k)
return [rand(unif) for x in X]
end
k = 3
X = MakeData(300, k)
C = RandomAssign(X, k)

```

\section*{Exercise 1: \(k\)-means in \(\mathbb{R}^{2}\)}
```

Partition(X,C)=[[X[i] for i=1:length(X) if C[i] == j]
for j=1:maximum(C)]
function PlotSingleCluster(X, C, n)
clusters = Partition(X, C)
CL = [:red, :blue, :green]
plot(legend=false, grid=false, size=(500,500),
xlims=(0,5), ylims=(0,5))
for j = 1:maximum(C)
scatter!([c[1] for c in clusters[j]],
[c[2] for c in clusters[j]], c=CL[j])
end
p = plot!(legend=false, grid=false, size=(500,500),
xlims=(0,5), ylims=(0,5))
\#png(p, "single\$(n)")
end
k = 3
X = MakeData(300, k)
C = RandomAssign(X, k)

```

\section*{Exercise 1: Useful function}
```

julia> length([4,6,7,8,9,3])
6
julia> sum([4,6,7,8,9,3])
37
julia> maximum([4,6,7,8,9,3])
9
julia> findmin([4,6,7,8,9,3])
(3, 6)
julia> norm([1,1,1,1])
2.0
julia> norm([2,1]-[1,0])
1.4142135623730951

```

\section*{Exercise 1: Possible results}


\section*{Exercise 1: Possible results}


\[
282181
\]

\section*{Exercise 3: using the whole dataset...}

\section*{07132792685068955401}```

