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What is Machine Learning?
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Example 1: Classification Problem
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x ∈ X : Input data y ∈ Y : Output/Target

GOAL: Find a function

f : X → Y

that maps each input to the correct target.
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Training Set and Data Set

Let us take Y = {−1, 1}, with y = 1 means YES, and y = −1 means NO.

x1 = x2 = x3 = x4 = x5 =

y1 = 1 y2 = 1 y3 = −1 y4 = 1 y5 = −1

1 Use the Training Set ⇒ run learning algorithm ⇒ get

f : X → Y
2 Use a Test Set to validate f :

f
(

x6 =
)

= −1 f
(

x7 =
)

= 1
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Open Question: More Data implies better Predictions?
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Example 2: Prostate Cancer

Goal: To predict the log of Prostate Specific Antigen (PSA)
(lpsa) from a number of measurement including:

log-cancer-volume (lcavol)
log prostate weight (lweight)
age
log of benign prostatic hyperplasia amount (lbph)
seminal vesicle invasion (svi)
log of capsular penetratio (lcp)
Gleason score (gleason)
percentage of Gleason score 4 or 5 (pgg45)
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Example 2: Regression

Goal: To predict the log of Prostate Specific Antigen (PSA)
(lpsa) from a number of measurement including:

log-cancer-volume (lcavol)
log prostate weight (lweight)
age
log of benign prostatic hyperplasia amount (lbph)
seminal vesicle invasion (svi)
log of capsular penetratio (lcp)
Gleason score (gleason)
percentage of Gleason score 4 or 5 (pgg45)

Note: In this case, the outcome of the prediction is a quanti-
tative measure. This is a Regression Problem.
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Example 3: DNA Expression Microarrays

Data: DNA stands for deoxyribonucleic acid, and is the basic material that
makes up human chromosomes. DNA microarrays measures the expres-
sion of a gene in a cell by measuring the amount of mRNA (messanger
ribonucleic acid) present for that gene.
A gene expression dataset collects together the expression values from a se-
ries of DNA microarray experiments, with each column representing an ex-
periments. There are several thousands rows representing individual genes,
and tens of columns representing samples.
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Example 3: DNA Expression Microarrays

Each color represents the expression level of each gene in the
target, relative to the reference sample. Positive values (red)
indicate higher expressions in the target versus the reference,
and vice versa for negative values (green).
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100 randoms rows (out of
6830) representing genes

64 columns representing
samples

We can think of each column
as a vector of 6830 real values
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Example 3: Clustering

Goal: The challenge here is to understand how the genes and
samples are organized. Typical questions include:

1 Which samples are most similar to each other, in terms of
their expression profiles across genes?

2 Which genes are most similar to each other, in terms of
their expressions profiles across samples?

3 Do certain genes show very high (or low) expression for
certain cancer samples?

Note: This is an example of Unsupervised Learning: we can
think of the samples as points in 6830-dimensional space, which
we want to CLUSTER together in some way.
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Informal definition

“Machine Learning is the field
of study that gives computers
the ability to learn without

being explicitly programmed”
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Nature: Demo

VIDEO CLIP
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Formal definition

Definition 1 (Mitchell, 1997)
A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if its
performance at tasks in T , as measured by P, improves with
experience E .

Example 2
A handwriting recognition learning problem:

Task T : recognizing and classifying handwritten words within
images
Performance measure P: percent of words correctly
classified
Training experience E : a dataset of handwritten words with
given classifications
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Self-driving cars

Example 3
A robot driving learning problem:

Task T : driving on public streets using vision sensors
Performance measure P: average distance traveled before
an error (as judged by human operator)
Training experience E : a sequence of images and steering
commands recorded while observing a human driver
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Supervised Learning vs. Unsupervised Learning

Definition 4 (Supervised Learning)
Supervised Learning is the task of learning (inferring) a function
f that maps input vectors to their corresponding target vectors, by
using a dataset containing a given set of pairs of (input, output)
samples. Examples:

Regression: the output vectors take one or more
continuous values.

Classification: the output vectors take one value of a
finite number of discrete categories. Special case: binary
classification.
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Supervised Learning vs. Unsupervised Learning

Definition 5 (Unsupervised Learning)
Unsupervised Learning is the task of learning (inferring) a
function f that maps input vectors to their corresponding target
vectors, but without any a priori knowledge about the correct
mapping. Examples:

Clustering: The goal of clustering is to group or partition
the input vectors (if possible) into k groups or clusters, with
the vectors in each group close to each other. In this case, the
input vectors represents usually features of objects.

Density Estimation: The goal is to project the data from
a high dimensional space down to two or three dimensions,
usually for the purpose of visualization.
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Regression Example: Curve Fitting

Example 6
We are given a training set containing m observations, written
x = (x1, . . . , xm), together with corresponding observations of the
output values, denoted y = (yi , . . . , ym). Consider the training set
of m data points randomly sampled in the range [0..1], and the
corresponding target values obtained as

yi = sin(2πxi) +N (0, 0.02)
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Regression Example: Curve Fitting

Learning Model
We want to fit the data using a polynomial function of the form:

f (x; w) = w0 + w1x1 + w2x2 + · · ·+ wpxp =
p∑

j=0
wjx j

where p is the order of the polynomial. The polynomial coefficients
wi are collectively denoted by the vector w .

NOTE: While the polynomial function f (x; w) is a nonlinear
function of x , it is a linear function of the coefficients w .
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Regression Example: Curve Fitting

Loss Function
The value of the coefficients will be determined (learned) by fitting
the polynomial to the training data.
This can be done by minimizing a loss function (or error function)
that measures the misfit between the function f (x,w), for a given
value of w , and the training set data points. A common loss
function is the following:

L(y , f (x; w)) = 1
2

m∑
j=1

(yj − f (xi ; w))2

L(w) = 1
2

m∑
j=1

(yj − ŷj)2

NOTE: This is the standard sum-of-square error function.
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Regression Example: Quadratic Loss

As model function f : X → Y we can start with the following
model:

yi = f (xi) = w0 + w1xi + ηi , ∀i = 1, . . . ,m

If m were equal to 2 and ηi = 0, then we can determine w0 and w1.

Since m >> 2 we can only consider the errors in our model

ηi = yi − f (xi) = yi − w0 − w2xi , ∀i = 1, . . . ,m

and try to MINIMIZE the them.
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Regression Example: Quadratic Loss
In matrix notation we can write

A =


1 x1
1 x2
. . .

1 xm

 ,

w = (w0,w1)T

and then

Aw =


1 x1
1 x2
. . .

1 xm

 ·
[
w0
w1

]
=


w0 + w1x1
w0 + w2x2
. . . . .

w0 + w1xm

 =


f (x1)
f (x2)
. .

f (xm)

 =


y1
y2
.
ym

 = y

And finally
η = y − Ac
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Regression Example: Quadratic Loss

Since we want to minimize a quadratic loss, we have to minimize
the following objective function:

L(w)2 =

min ||η||
2

2 = min

1
2

∑
i=1,...,m

η2
i

 (1)

= min

1
2

∑
i=1,...,m

(yi − Ai w)2

 (2)

= 1
2 min(y − Aw)T (y − Aw) (3)

Question: Which are the variables and which are the unknown?
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Regression Example: Quadratic Loss

Hence, we have to find

w∗ = argmin(y − Aw)T (y − Aw)

where w = (w0,w1)T are the unknown.

Since the problem is quadratic, it is enough to find the point

∇L(w) = 0

and to check if the Hessian is positive definite.

In this case, it is possible to prove that

w∗ = (ATA)−1AT y
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Julia

using Plots, Random, Distributions

Random.seed!(13)

function GenerateSamples(n)
d = Normal(0, 0.1)

X = [(1.0/n*i) for i in 0:n]
Y = [(sin(2*pi*x) + rand(d)) for x in X]

X0 = [i*1/1000 for i in 0:1000]

return X0, X, Y
end
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Julia

function PlotData(X0, X, Y, Yhat=[])
plot(X, Y, seriestype=:scatter, title="Curve Fitting",

label="Training (x, y)")

plot!(X0, [sin(2*pi*x) for x in X0], lw=2,
label="True model")

if length(Yhat) > 0
plot!(X0, Yhat, seriestype=:line, lw=2,

label="Fitted (x, y)")
end

end
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Julia

function LinearRegression(X, Y)
n = length(X)
A = ones(n, 2)
for i in 1:n

A[i,2] = X[i]
end
println(A)
w = inv(A’*A)*A’*Y
return w

end

function PredictLinear(X, w)
Yhat = [(w[1] + w[2]*x) for x in X]
return Yhat

end
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Julia: Exercise

EXERCISE 1: Generalized the Linear Regression to polynomial of
order p. What do you observe on the training and test set? How
do you measure the errors?
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Julia

println("--------- START ---------")

X0, X, Y = GenerateSamples(10)

w = LinearRegression(X, Y)
Yhat = PredictLinear(X0, w)
PlotData(X0, X, Y, Yhat)
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Regression Example: Regularization

In order to avoid over-fitting, that is, to obtain weight coefficients
with very large weights, the most used techniques is called
regularization, and involves adding a penalty term to the loss
function in order to discourage large coefficients.

The simplest penalty is the sum of squares of all coefficients

L̃(w) = 1
2

m∑
j=1

(yj − ŷj)2 + λ

2 ||w ||
2

where ||w ||2 = w2
0 + w2

1 + . . .w2
m. and the coefficient λ governs

the importance of the regularization term.
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Regression Example
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Regression Example: Order p = 9
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Regression Example: Order p = 9
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Regression Example: Order p = 9
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Regression Example: What we want really minimize?
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Pacchetti da installare in Julia

import Pkg
Pkg.add("Plots")
Pkg.add("Distributions")
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