On Bayesian Nonparametric
Estimation of Smooth
Hazard Rates with a View to
Seismic Hazard Assessment

Luca La Rocca
University of Modena and Reggio Emilia
larocca.luca@unimore.it

Research Report 38-05 http://www.cei.unimore.it

1

Seismic hazard assessment (counting process framework)

N(t) counts the "strong" earthquakes up to time t in a given (Italian) seismogenic zone

2

The **geophysical risk** λ is the instantaneous conditional expected number of events per time unit (formally, the stochastic intensity of N with respect to its observed history)

Assuming exchangeable inter-event times T_1, T_2, \ldots is not uncommon, usually in combination with of a parametric model; this gives

$$\lambda(t) = \hat{\rho} \left(t - S_{N(t)} \right)$$

where S_i is the time of the i-th event and $\hat{\rho}$ is the posterior pointwise expected hazard rate of the unknown inter-event time distribution

The nonparametric point of view has the advantage of giving a time-varying (possibly non-monotone) geophysical risk assessment without imposing any functional form on λ

Prior hazard rate proposal

$$\rho(t) = \xi_0 k_0(t) + \sum_{j=1}^{\infty} \xi_j k(t - \sigma_j), \quad t \ge 0$$

- $\xi_0, \xi_1, \xi_2, \dots$ are i.i.d. and positive
- $\sigma_j = \tau_1 + \cdots + \tau_j$ for $j \ge 1$
- ullet au_1, au_2,\dots are i.i.d. with exponential law
- ullet ξ and au are independent
- k is a probability density on \mathbb{R}
- \bullet k_0 is a positive function on \mathbb{R}_+ which is integrable in a neighbourhood of zero

4

Theorem 1 If $\mathbb{E}[\xi_0] < \infty$ & $\mathbb{P}\{\xi_0 = 0\} < 1$, the trajectories of ρ are a.s. well-defined and non-defective hazard rates:

$$\exists t > 0 : \int_0^t \rho(s)ds < \infty \quad \& \quad \int_0^\infty \rho(s)ds = \infty.$$

Remark. In particular, this shows that the construction is **valid** if ξ_0 follows a gamma distribution (conjugate choice)

Theorem 2 Let both k_0 and k be r times continuously differentiable on their domains. Furthermore, let $k^{(i)}$, the i-th derivative of k, be integrable on $\mathbb R$ and such that $k^{(i)}(x) \downarrow 0$, as $x \to -\infty$. Then, a.s. the trajectories of ρ are r times continuously differentiable on $\mathbb R_+$.

Remark. For example, if k is a zero mean normal probability density, the construction gives infinitely \mathbf{smooth} hazard rates

5

The proposed hazard rate construction can be interpreted in terms of countably many (defective) **competing hazard sources**; this gives insight into the prior distribution. . .

...and leads to a **straightforward MCMC approximation** of the posterior distribution.

A time-scale equivariant procedure is given to express **weak prior opinions** as follows:

ullet a prior pointwise expected hazard rate is imposed by suitably choosing k_0 , so that

$$\mathbb{E}[\rho(t)] \equiv r_0$$

where \emph{r}_{0} is given by prior knowledge

• prior variability is controlled by letting

$$\sqrt{\lim_{t \to \infty} \mathbb{V}ar[\rho(t)]} = Hr_0$$

where H should be "big enough"

prior oscillations are controlled by letting

$$T_{\infty}\sqrt{\lim_{t\to\infty}\mathbb{E}[\rho'(t)^2]}=2(Hr_0)M_{\infty}$$

where T_{∞} is a time-horizon of interest and M_{∞} is a prior guess of the number of extremes in $[0,T_{\infty}]$

7

Posterior Hazard Rate

Pointwise expected value together with 2.5% and 97.5% quantiles (95% credible interval)

Solid lines refer to proposed prior, dashed lines to non-informative conjugate gamma prior for exponential inter-event times

The first 46 inter-event times (exact) are marked with X, the last one (right censored) is marked with ${\sf O}$

8

References

- Dykstra R.L. and Laud P. (1981) The Annals of Statistics, 9, 356–367.
- Padgett W.J. and Wei L.J. (1981)
 Communications in Statistics, Part A,
 Theory and Methods, 10, 49–63.
- Lo A.Y. and Weng C.S. (1989) Annals of the Institute of Statistical Mathematics, 41, 227–245.
- Ishwaran H. and James L.F. (2004) Journal of the American Statistical Association, 99, 175–190.

6

ç