On Bayesian Nonparametric Estimation of Smooth

Hazard Rates with a View to Seismic Hazard Assessment

Luca La Rocca
University of Modena and Reggio Emilia larocca.luca@unimore.it

Research Report 38-05 http://www.cei.unimore.it

Prior hazard rate proposal
$\rho(t)=\xi_{0} k_{0}(t)+\sum_{j=1}^{\infty} \xi_{j} k\left(t-\sigma_{j}\right), \quad t \geq 0$

- $\xi_{0}, \xi_{1}, \xi_{2}, \ldots$ are i.i.d. and positive
- $\sigma_{j}=\tau_{1}+\cdots+\tau_{j}$ for $j \geq 1$
- $\tau_{1}, \tau_{2}, \ldots$ are i.i.d. with exponential law
- ξ and τ are independent
- k is a probability density on \mathbb{R}
- k_{0} is a positive function on \mathbb{R}_{+}which is integrable in a neighbourhood of zero

Theorem 1 If $\mathbb{E}\left[\xi_{0}\right]<\infty \& \mathbb{P}\left\{\xi_{0}=0\right\}<1$, the trajectories of ρ are a.s. well-defined and non-defective hazard rates:
$\exists t>0: \int_{0}^{t} \rho(s) d s<\infty \quad \& \quad \int_{0}^{\infty} \rho(s) d s=\infty$.
Remark. In particular, this shows that the construction is valid if ξ_{0} follows a gamma distribution (conjugate choice)

Theorem 2 Let both k_{0} and k be r times continuously differentiable on their domains. Furthermore, let $k^{(i)}$, the i-th derivative of k, be integrable on \mathbb{R} and such that $k^{(i)}(x) \downarrow 0$, as $x \rightarrow-\infty$. Then, a.s. the trajectories of ρ are r times continuously differentiable on \mathbb{R}_{+}.

Remark. For example, if k is a zero mean normal probability density, the construction gives infinitely smooth hazard rates

$$
5
$$

The proposed hazard rate construction can be interpreted in terms of countably many (defective) competing hazard sources; this gives insight into the prior distribution. . .

and leads to a straightforward MCMC
approximation of the posterior distribution.

A time-scale equivariant procedure is given to express weak prior opinions as follows:

- a prior pointwise expected hazard rate is imposed by suitably choosing k_{0}, so that

$$
\mathbb{E}[\rho(t)] \equiv r_{0}
$$

where r_{0} is given by prior knowledge

- prior variability is controlled by letting

$$
\sqrt{\lim _{t \rightarrow \infty} \operatorname{Var}[\rho(t)]}=H r_{0}
$$

where H should be "big enough"

- prior oscillations are controlled by letting

$$
T_{\infty} \sqrt{\lim _{t \rightarrow \infty} \mathbb{E}\left[\rho^{\prime}(t)^{2}\right]}=2\left(H r_{0}\right) M_{\infty}
$$

where T_{∞} is a time-horizon of interest and M_{∞} is a prior guess of the number of extremes in $\left[0, T_{\infty}\right]$

7

Pointwise expected value together with 2.5% and 97.5% quantiles (95% credible interval)

Solid lines refer to proposed prior, dashed lines to non-informative conjugate gamma prior for exponential inter-event times

The first 46 inter-event times (exact) are marked with X , the last one (right censored) is marked with O

8

References

- Dykstra R.L. and Laud P. (1981) The Annals of Statistics, 9, 356-367.
- Padgett W.J. and Wei L.J. (1981) Communications in Statistics, Part A, Theory and Methods, 10, 49-63.
- Lo A.Y. and Weng C.S. (1989)

Annals of the Institute of Statistical Mathematics, 41, 227-245.

- Ishwaran H. and James L.F. (2004) Journal of the American Statistical

Association, 99, 175-190.
he nonparametric point of view has the advantage of giving a time-varying (possibly non-monotone) geophysical risk assessment without imposing any functional form on λ

The geophysical risk λ is the instantaneous conditional expected number of events per time unit (formally, the stochastic intensity of N with respect to its observed history)

Assuming exchangeable inter-event times

 T_{1}, T_{2}, \ldots is not uncommon, usually in combination with of a parametric model; this gives$$
\lambda(t)=\hat{\rho}\left(t-S_{N(t)}\right)
$$

where S_{i} is the time of the i-th event and $\hat{\rho}$ is the posterior pointwise expected hazard rate of the unknown inter-event time distribution

