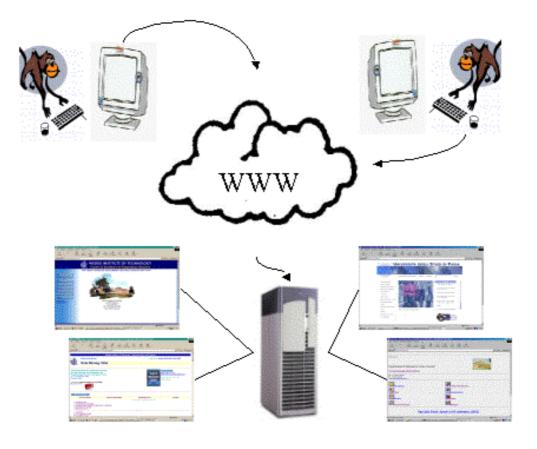
DATA MINING 2002 Bologna—Italy, September 25–27, 2002

Probabilistic Modelling for Clickstream Analysis

Lilla Di Scala & Luca La Rocca University of Pavia—Italy

Site-centric clickstream data



Common Log Format includes:

- surfer's IP address
- URL of accessed file
- date of request

Data pre-processing

- pruning of irrelevant requests (e.g. files containing images)
- surfers' identification (e.g. by means of cookies)
- sessions' identification (e.g. based on inter-click times)

Surfer Identifier Date of Request Page Accessed

e74c4561668c7fc5 e74c4561668c7fc5	NA 08JUN98:11:30:07	external home
e74c4561668c7fc5	08JUN98:11:30:28	program
e74c4561668c7fc5	08JUN98:11:33:14	login
e74c4561668c7fc5	08JUN98:11:33:47	logpost
e74c4561668c7fc5	NA	external
e708dc4eb6d6f919	NA	external
e708dc4eb6d6f919	17JUN98:16:58:07	program
e708dc4eb6d6f919	17JUN98:16:59:53	addcart
e708dc4eb6d6f919	17JUN98:17:00:48	product
e708dc4eb6d6f919	17JUN98:17:02:01	freeze
e708dc4eb6d6f919	NA	external
e708dc4eb6d6f919	17JUN98:17:09:53	download
e708dc4eb6d6f919	17JUN98:17:10:25	shelf
e708dc4eb6d6f919	NA	external

A couple of interesting issues

- Which page will be requested next? (The answer can help develop an efficient serverside caching mechanism)
- How many different surfing styles? (The answer can help profile surfers, perhaps for marketing purposes)

We shall denote by

X_t^k

the t^{th} page visited by surfer k.

Modelling surfing behaviour

Surfing behaviour of surfer k described by

$$\mathcal{P}(X_{t+1}^k = i_{t+1} | X_t^k = i_t, \dots, X_1 = i_1)$$

which we assume given by

$$P^{c}(i_{t-m+1},\ldots,i_{t};i_{t+1})$$

transition probabilities for surfers belonging to class c, whose members have memory m.

The resulting likelihood is

$$L(P,\pi) = \sum_{c} \pi_{c} \cdot \prod_{t} P^{c}(\ldots; i_{t})$$

where π_c is the population-weight of class c.

Surfers' memory (I)

Within a single class of surfers, we focus our attention on determining their memory:

- m = 0 is Independence (MC0)
- m = 1 is Markov Chain (MC1)
- m > 1 is High-order Chain (MC#)

In the last case, parsimonious modelling is welcome and we suggest using the **MTDg** model (Raftery, 1985):

$$P(i_{t-m+1}, \dots, i_t; i_{t+1}) = \sum_{l=1}^{m} \lambda_l Q_l(i_{t-l+1}; i_{t+1})$$

where $\lambda_l \geq$ 0, $\sum_l \lambda_l =$ 1 and each Q_l is a stochastic matrix.

This reduces to **MTD** when there is a single

$$Q = Q_l, \forall l$$

Surfers' memory (II)

- MC# models can be estimated by ML, that is by counting transitions.
- MTDg models can be estimated by ML, via numerical optimization: Matlab (R) code for Berchtold's (2001) algorithm is freely available on-line (Statlib SW Library, Carnagie Mellon University).
- **Best** model can be chosen by information criteria (models are not nested):

 $BIC = -2\log L(\hat{P}) + K \cdot \log N$

should be preferred to

 $AIC = -2\log L(\hat{P}) + K$

following Katz (1981); N is the number of likelihood components, K the actual number of transition probabilities.

Surfers' heterogeneity (I)

Setting m = 1, we concentrate on surfers' heterogeneity. Clickstream is thus modelled by a finite mixture of Markov chains.

Once the number of classes has been fixed, transition probabilities $P^c(i, j)$ and weights π_c can be estimated via the **EM algorithm**, which also inferentially classifies surfers.

Is an extra class needed?

- $\hat{P}, \hat{\pi}$ estimates
- $\hat{P}, \hat{\bar{\pi}}$ estimates with one more class
- increased goodness-of-fit measured by

$$W = -2\left\{\log L\left(\hat{P}, \hat{\pi}\right) - \log L\left(\hat{\hat{P}}, \hat{\bar{\pi}}\right)\right\}$$

which is the likelihood ratio statistic

Surfers' heterogeneity (II)

Distribution of W under the null hypothesis?

- no asymptotic theory: null hypothesis lies on the boundary of parameter space
- following Aitkin et al. (1981), distribution is simulated under the fitted model
- we increase the number of classes until the null hypothesis cannot be rejected

Simulated surfers pay a **geometric number** of sessions to the site: come-back-to-site probability is estimated by ML from real data.

Results of analysis (I)

We analysed data from the log-files of an anonymous European e-commerce site.

Attention focused on a limited set of pages: sampling the chain avoids lumpability issues.

Memory

A reduced model is also considered, in which "structural zeroes" are not parameters.

1

Model	Weeks	(full)	Weeks	(reduced)
MC0	1	2%	0	0%
MC1	47	98%	27	56%
MC2	0	0%	3	6%
MTD2	0	0%	2	4%
MTD3	0	0%	2	4%
MTD4	0	0%	2	4%
MTDg2	0	0%	7	15%
MTDg3	0	0%	4	9%
MTDg4	0	0%	1	2%
Total	48	100%	48	100%

The first lag of memory is by far the most important, in accordance with the entropy-based results of Pirolli & Pitkow (1999).

Results of analysis (II)

The MTDg's superior predictive power can be worth its increased complexity, especially if prior topological information is available.

Month	Year	Week 1	Week 2	Week 3	Week 4
January February March April May June July August September October November December January February March April May June	1998 1998 1998 1998 1998 1998 1998 1998	7 / 1 50 / 2 32 / 2 43 / 3 30 / 2 42 / 2 39 / 2 72 / 3 69 / 3 65 / 2 79 / 3 70 / 2 53 / 2 56 / 3 86 / 4 62 / 2 75 / 3 57 / 2	$\begin{array}{c} 18 \ / \ 1 \\ 40 \ / \ 2 \\ 54 \ / \ 2 \\ 40 \ / \ 2 \\ 30 \ / \ 2 \\ 31 \ / \ 2 \\ 59 \ / \ 1 \\ 43 \ / \ 3 \\ 82 \ / \ 3 \\ 73 \ / \ 2 \\ 74 \ / \ 2 \\ 81 \ / \ 3 \\ 73 \ / \ 2 \\ 101 \ / \ 2 \\ 98 \ / \ 3 \\ 89 \ / \ 3 \\ 98 \ / \ 2 \\ 86 \ / \ 4 \end{array}$	42 / 2 47 / 2 57 / 1 44 / 2 25 / 3 49 / 2 59 / 2 47 / 2 80 / 2 98 / 3 81 / 3 90 / 2 74 / 3 98 / 3 112 / 3 106 / 3 94 / 2 86 / 2	47 / 1 35 / 2 39 / 2 32 / 2 31 / 3 59 / 3 52 / 2 80 / 2 70 / 2 93 / 2 63 / 3 48 / 2 85 / 4 73 / 3 95 / 2 70 / 2 81 / 3 111 / 2

Heterogeneity

As time passes, the mean number of surfers per class roughly increases from 20 to 35.

Possible developments

- Letting m > 1, while considering more than one class, with m different for each class, might be a way to classify surfers (also) according to their memory.
- Since the **MTDg** model proved adequate for clickstream data, even if costly in terms of parameters, one could look for a more parsimonious version.