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The proportional hazards model

It is a well known model for regression in survival analysis, introduced by
Cox (1972), in which

T1, . . . , TN are the survival times of interest

x1, . . . , xN are the corresponding vectors of covariates

the unknown distribution of Ti is described through its hazard rate

ρi(t) = lim
h↓0

1

h
P(t ≤ Ti ≤ t + h | Ti ≥ t), t ∈ R+, i = 1 . . . N

and it is assumed that this can be factored as

ρi = e<β,xi>ρ#, i = 1 . . . N

where e is the basis of the natural logarithms and 〈·, ·〉 denotes the ordinary
scalar product, say in Rp.
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Analysis of the proportional hazards model

Interest lies in estimating both

• the vector of regression parameters β

• and the so-called baseline hazard rate ρ#

from possibly right censored observations, that is having observed an event
of the form

{T1 = t1, T2 > t2}

where, for simplicity, the case N = 2 has been considered. It is assumed
that the censoring mechanism be non-informative.
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Bayesian analysis of the proportional hazards model

First, a joint prior distribution on β and ρ# needs to be elicitated.

This can be done by building a stochastic process ρ# such that

ρ# ≥ 0,
∫ t

0
ρ#(s)ds < ∞,

∫ ∞

0
ρ#(s)ds = ∞

together with a random vector β on a suitable probability space.

Then, the corresponding posterior distribution has to be computed.

The Bayes formula based on the standard likelihood

L (t | o, x; ρ#, β) =
N∏

i=1

[
e<β,xi>ρ#(ti)

]oi exp
{
−e<β,xi>

∫ ti

0
ρ#(s) ds

}

where oi = 1, if ti is exact, and oi = 0, if ti is right censored,
can be approximated by means of ad hoc MCMC techniques.
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Proportional hazards without the hazard rate

An alternative definition of the proportional hazards model is given by the
formula

logΣi(t) = e<β,xi> logΣ#(t), t ∈ R+

which relates the unknown survival function Σi of the i−th survival time to
the baseline survival function Σ#.

Note that the above formula does not require the hazard rate to be defined.

• Kalbfleisch (1978) built − logΣ# as a gamma process and estimated β

by maximizing its marginal likelihood

• Hjort (1990) built −
∫
[0,·] Σ

−1
#−(t)Σ#(dt) as a beta process and suggested

simulation techniques alternatively to the empirical Bayes approach
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Building the prior hazard rate

An infinitely smooth possibility (La Rocca, 2003) is to take

ρ#(t) = q[1 − K(t)]ξ0 +
∞∑

j=1
ξjk(t − σj), t ∈ R+

where

ξ0, ξ1, ξ2, . . .
i.i.d.∼ G(a, b), a > 0, b > 0 independently of σ1, σ2, . . .

σj = τ1 + · · · + τj, j ≥ 1 with τ1, τ2, . . .
i.i.d.∼ E(q), q > 0

k is a zero mean normal density on R with standard deviation q−1

and finally K(y) =
∫ y
−∞ k(x)dx, y ∈ R.

See also Dykstra & Laud (1981), Lo & Weng (1989) and James (2003).
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The treatment/placebo scenario

It is a simple important case of the proportional hazards model, in which

xi ∈ {0,1}

for all i = 1 . . . N . The main goal is determining whether the hazard ratio

ζ = eβ

is significantly different from one. In this case, the conjugate choice

ρ# ⊥⊥ ζ ∼ G(c, d)

is possible, which helps the implementation of a Gibbs-type MCMC solution.

When no specific prior information is available, condition

P{ζ < 1} = P{ζ > 1}

can be imposed in order to help fixing the values of c and d.
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The leukemia remission times

A well known dataset has been analyzed, in order to validate the suggested
approach.

Data consist of 21 treatment/placebo pairs of leukemia remission times,
with 12 right censored observations in the group of treated patients, clearly
showing a shorter remission for patients receiving placebo.

The hyperparameters a, b and q have been chosen by setting

qt(n) = 10

E[ρ#(s)] ≡
∑n

i=1 I{oi=1,xi=0}
∑n

i=1 tiI{xi=0}
, s ∈ R+

Std[ρ#(s)]

E[ρ#(s)]
→ 1, as s → ∞

and an ad hoc MCMC solution has been implemented in R.
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Estimation of the regression coefficient

The posterior expected value of β is found to be

β̂ = 1.26

which compared with the available estimates

β̂

Cox (1972) 1.65

Kalbfleish (1978) 1.46–1.61

Laud et al. (1998) 1.62–1.71

Ibrahim et al. (2001) 1.59

clearly shows that the suggested approach is conservative.
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