Società Italiana di Statistica XLII Riunione Scientifica Bari, 9-11 Giugno 2004

On Bayesian Analysis of the Proportional Hazards Model Sull'Analisi Bayesiana del Modello a Rischi Proporzionali

Luca La Rocca
Università di Modena e Reggio Emilia
Dipartimento di Scienze Sociali, Cognitive e Quantitative
Via G. Giglioli Valle 9, 42100 Reggio Emilia

The proportional hazards model

It is a well known model for regression in survival analysis, introduced by Cox (1972), in which
T_{1}, \ldots, T_{N} are the survival times of interest
x_{1}, \ldots, x_{N} are the corresponding vectors of covariates
the unknown distribution of T_{i} is described through its hazard rate

$$
\rho_{i}(t)=\lim _{h \downarrow 0} \frac{1}{h} \mathcal{P}\left(t \leq T_{i} \leq t+h \mid T_{i} \geq t\right), \quad t \in \mathbb{R}_{+}, \quad i=1 \ldots N
$$

and it is assumed that this can be factored as

$$
\rho_{i}=e^{<\beta, x_{i}>} \rho_{\star}, \quad i=1 \ldots N
$$

where e is the basis of the natural logarithms and $\langle\cdot, \cdot\rangle$ denotes the ordinary scalar product, say in \mathbb{R}^{p}.

Analysis of the proportional hazards model

Interest lies in estimating both

- the vector of regression parameters β
- and the so-called baseline hazard rate ρ_{\star}
from possibly right censored observations, that is having observed an event of the form

$$
\left\{T_{1}=t_{1}, T_{2}>t_{2}\right\}
$$

where, for simplicity, the case $N=2$ has been considered. It is assumed that the censoring mechanism be non-informative.

Bayesian analysis of the proportional hazards model

First, a joint prior distribution on β and ρ_{\star} needs to be elicitated.

This can be done by building a stochastic process ρ_{\star} such that

$$
\rho_{\star} \geq 0, \quad \int_{0}^{t} \rho_{\star}(s) d s<\infty, \quad \int_{0}^{\infty} \rho_{\star}(s) d s=\infty
$$

together with a random vector β on a suitable probability space.

Then, the corresponding posterior distribution has to be computed.

The Bayes formula based on the standard likelihood

$$
\mathscr{L}\left(t \mid o, x ; \rho_{\star}, \beta\right)=\prod_{i=1}^{N}\left[e^{<\beta, x_{i}>} \rho_{\star}\left(t_{i}\right)\right]^{o_{i}} \exp \left\{-e^{<\beta, x_{i}>} \int_{0}^{t_{i}} \rho_{\star}(s) d s\right\}
$$

where $o_{i}=1$, if t_{i} is exact, and $o_{i}=0$, if t_{i} is right censored, can be approximated by means of ad hoc MCMC techniques.

Proportional hazards without the hazard rate

An alternative definition of the proportional hazards model is given by the formula

$$
\log \Sigma_{i}(t)=e^{<\beta, x_{i}>} \log \Sigma_{\star}(t), \quad t \in \mathbb{R}_{+}
$$

which relates the unknown survival function Σ_{i} of the i-th survival time to the baseline survival function Σ_{\star}.

Note that the above formula does not require the hazard rate to be defined.

- Kalbfleisch (1978) built $-\log \Sigma_{\star}$ as a gamma process and estimated β by maximizing its marginal likelihood
- Hjort (1990) built $-\int_{[0, \cdot]} \Sigma_{\star-}^{-1}(t) \Sigma_{\star}(d t)$ as a beta process and suggested simulation techniques alternatively to the empirical Bayes approach

Building the prior hazard rate

An infinitely smooth possibility (La Rocca, 2003) is to take

$$
\rho_{\star}(t)=q[1-K(t)] \xi_{0}+\sum_{j=1}^{\infty} \xi_{j} k\left(t-\sigma_{j}\right), \quad t \in \mathbb{R}_{+}
$$

where
$\xi_{0}, \xi_{1}, \xi_{2}, \ldots \stackrel{i . i . d .}{\sim} \mathcal{G}(a, b), a>0, b>0$ independently of $\sigma_{1}, \sigma_{2}, \ldots$
$\sigma_{j}=\tau_{1}+\cdots+\tau_{j}, j \geq 1$ with $\tau_{1}, \tau_{2}, \ldots \stackrel{i . i . d .}{\sim} \mathcal{E}(q), q>0$
k is a zero mean normal density on \mathbb{R} with standard deviation q^{-1}
and finally $K(y)=\int_{-\infty}^{y} k(x) d x, y \in \mathbb{R}$.
See also Dykstra \& Laud (1981), Lo \& Weng (1989) and James (2003).

The treatment/placebo scenario

It is a simple important case of the proportional hazards model, in which

$$
x_{i} \in\{0,1\}
$$

for all $i=1 \ldots N$. The main goal is determining whether the hazard ratio

$$
\zeta=e^{\beta}
$$

is significantly different from one. In this case, the conjugate choice

$$
\rho_{\star} \Perp \zeta \sim \mathcal{G}(c, d)
$$

is possible, which helps the implementation of a Gibbs-type MCMC solution.

When no specific prior information is available, condition

$$
\mathbb{P}\{\zeta<1\}=\mathbb{P}\{\zeta>1\}
$$

can be imposed in order to help fixing the values of c and d.

Prior Comparison Plot

The Ieukemia remission times

A well known dataset has been analyzed, in order to validate the suggested approach.

Data consist of 21 treatment/placebo pairs of leukemia remission times, with 12 right censored observations in the group of treated patients, clearly showing a shorter remission for patients receiving placebo.

The hyperparameters a, b and q have been chosen by setting

$$
\begin{aligned}
q t(n) & =10 \\
\mathbb{E}\left[\rho_{\star}(s)\right] & \equiv \frac{\sum_{i=1}^{n} \mathbb{I}_{\left\{o_{i}=1, x_{i}=0\right\}}}{\sum_{i=1}^{n} t_{i} \mathbb{I}_{\left\{x_{i}=0\right\}}}, \quad s \in \mathbb{R}_{+} \\
\frac{\mathbb{S t d}\left[\rho_{\star}(s)\right]}{\mathbb{E}\left[\rho_{\star}(s)\right]} & \rightarrow 1, \quad \text { as } s \rightarrow \infty
\end{aligned}
$$

and an ad hoc MCMC solution has been implemented in R.

Prior To Posterior Plot

Estimation of the regression coefficient

The posterior expected value of β is found to be

$$
\widehat{\beta}=1.26
$$

which compared with the available estimates

$$
\begin{array}{rc}
& \widehat{\beta} \\
\text { Cox (1972) } & 1.65 \\
\text { Kalbfleish (1978) } & 1.46-1.61 \\
\text { Laud et al.(1998) } & 1.62-1.71 \\
\text { Ibrahim et al.(2001) } & 1.59
\end{array}
$$

clearly shows that the suggested approach is conservative.

Posterior Hazard Rate

