BV functions and variational models in plasticity (Maria Giovanna Mora, Enrico Vitali - Pavia)

BV functions and variational models in plasticity (Maria Giovanna Mora, Enrico Vitali - Pavia)

The course consists in two main parts:

- Basic properties of the space BV of functions with bounded variation and of the space $B D$ of functions with bounded deformation.

BV functions and variational models in plasticity (Maria Giovanna Mora, Enrico Vitali - Pavia)

The course consists in two main parts:

- Basic properties of the space BV of functions with bounded variation and of the space $B D$ of functions with bounded deformation.
- Analysis of a variational model in plasticity (in the functional framework introduced in the first part).

A sketch of the main motivating problem

$\Omega \subset \mathbb{R}^{3}\left(\mathbb{R}^{n}\right.$ in general): material body

A sketch of the main motivating problem

$\Omega \subset \mathbb{R}^{3}$ (\mathbb{R}^{n} in general): material body
$\varphi: \Omega \rightarrow \mathbb{R}^{3}$ deformation; $u=\varphi$ - id displacement

A sketch of the main motivating problem

$\Omega \subset \mathbb{R}^{3}$ (\mathbb{R}^{n} in general): material body
$\varphi: \Omega \rightarrow \mathbb{R}^{3}$ deformation; $u=\varphi$ - id displacement

+ B.C. (u prescribed on Γ_{0} and external force prescribed on the complement)

Key objects:

Key objects:

- $E u=\frac{1}{2}\left(\nabla u+(\nabla u)^{T}\right) \in M_{\text {sym }}^{n \times n}$: linearized strain;

Key objects:

- $E u=\frac{1}{2}\left(\nabla u+(\nabla u)^{T}\right) \in M_{\text {sym }}^{n \times n}$: linearized strain;
- $\sigma \in M_{\text {sym }}^{n \times n}$: stress

Key objects:

- $E u=\frac{1}{2}\left(\nabla u+(\nabla u)^{T}\right) \in M_{\text {sym }}^{n \times n}$: linearized strain;
- $\sigma \in M_{\text {sym }}^{n \times n}$: stress
- (linear elasticity) $\sigma=\mathbb{C} E u \quad$ (\mathbb{C} elasticity tensor)

Key objects:

- $E u=\frac{1}{2}\left(\nabla u+(\nabla u)^{T}\right) \in M_{\text {sym }}^{n \times n}$: linearized strain;
- $\sigma \in M_{\text {sym }}^{n \times n}$: stress
- (linear elasticity) $\sigma=\mathbb{C} E u \quad$ (\mathbb{C} elasticity tensor)
- (Hencky's plasticity) the stress cannot go beyond a fixed threshold, i.e. it is confined in a given subset of $M_{\text {sym }}^{n \times n}$:

$$
\sigma \in \mathbb{K} \in M_{s y m}^{n \times n}
$$

Key objects:

- $E u=\frac{1}{2}\left(\nabla u+(\nabla u)^{T}\right) \in M_{\text {sym }}^{n \times n}$: linearized strain;
- $\sigma \in M_{\text {sym }}^{n \times n}$: stress
- (linear elasticity) $\sigma=\mathbb{C E u}$ (\mathbb{C} elasticity tensor)
- (Hencky's plasticity) the stress cannot go beyond a fixed threshold, i.e. it is confined in a given subset of $M_{\text {sym }}^{n \times n}$:

$$
\sigma \in \mathbb{K} \in M_{s y m}^{n \times n}=M_{D}^{n \times n} \oplus \mathbb{R} /
$$

where $M_{D}^{n \times n}$ is the space of trace free $n \times n$ matrices.

Key objects:

- $E u=\frac{1}{2}\left(\nabla u+(\nabla u)^{T}\right) \in M_{\text {sym }}^{n \times n}$: linearized strain;
- $\sigma \in M_{\text {sym }}^{n \times n}$: stress
- (linear elasticity) $\sigma=\mathbb{C E u}$ (\mathbb{C} elasticity tensor)
- (Hencky's plasticity) the stress cannot go beyond a fixed threshold, i.e. it is confined in a given subset of $M_{\text {sym }}^{n \times n}$:

$$
\sigma \in \mathbb{K} \in M_{s y m}^{n \times n}=M_{D}^{n \times n} \oplus \mathbb{R} /
$$

where $M_{D}^{n \times n}$ is the space of trace free $n \times n$ matrices.
Assumption: $\mathbb{K}=K+\mathbb{R} I$, with K convex, compact neighbourhood of 0 in $M_{D}^{n \times n}$.

This constraint on the stress breaks the linear stress-strain dependence: a "singular part" (plastic part) appears in the strain (this corresponds to the failure regions in the material):

This constraint on the stress breaks the linear stress-strain dependence: a "singular part" (plastic part) appears in the strain (this corresponds to the failure regions in the material):

$$
\begin{array}{ll}
E u=e+p, & e: \text { elastic part of } E u \\
& p: \text { plastic part of } E u .
\end{array}
$$

This constraint on the stress breaks the linear stress-strain dependence: a "singular part" (plastic part) appears in the strain (this corresponds to the failure regions in the material):

$$
\begin{array}{ll}
E u=e+p, & e: \text { elastic part of } E u \\
& p: \text { plastic part of } E u .
\end{array}
$$

The variational approach involves the energy functional

$$
F(u)=\frac{1}{2} \int_{\Omega} Q(e) \mathrm{d} x+\int_{\Omega} H(p) \mathrm{d} x+\int_{\partial \Omega \backslash \Gamma_{0}} g(x) u(x) \mathrm{d} \mathscr{H}^{n-1}
$$

where:
Q : positive definite quadratic form (elastic energy $\mathbb{C e}: e$)
H : positively 1-homogeneous convex function. (H is the support function of K).

$$
F(u)=\frac{1}{2} \int_{\Omega} Q(e) \mathrm{d} x+\int_{\Omega} H(p) \mathrm{d} x+\int_{\partial \Omega \backslash \Gamma_{0}} g(x) u(x) \mathrm{d} \mathscr{H}^{n-1}
$$

Key fact: since H has linear growth, the minimization problem for F has, in general, no solution in Sobolev spaces; in the natural weak formulation, plastic deformations are allowed to take measure values. This agrees with the points of view of mechanics: shear deformations concentrates, and shear bands can be thought of as sharp discontinuities of the displacement.

This naturally leads to the space of functions with bounded deformation

$$
B D(\Omega)=\left\{u \in L^{1}\left(\Omega ; \mathbb{R}^{n}\right): E u\right. \text { bounded }
$$

$$
\text { (matrix-valued) Radon measure\} }
$$

This naturally leads to the space of functions with bounded deformation

$$
\begin{aligned}
B D(\Omega)=\left\{u \in L^{1}\left(\Omega ; \mathbb{R}^{n}\right):\right. & E u \text { bounded } \\
& \text { (matrix-valued) Radon measure }\}
\end{aligned}
$$

Thus, it looks quite natural the 'preliminary' study of the space of functions with bounded variation:
$B V(\Omega)=\left\{u \in L^{1}\left(\Omega ; \mathbb{R}^{n}\right): \nabla u\right.$ bounded
(matrix-valued) Radon measure\}

This naturally leads to the space of functions with bounded deformation

$$
\begin{aligned}
B D(\Omega)=\left\{u \in L^{1}\left(\Omega ; \mathbb{R}^{n}\right):\right. & E u \text { bounded } \\
& \text { (matrix-valued) Radon measure }\}
\end{aligned}
$$

Thus, it looks quite natural the 'preliminary' study of the space of functions with bounded variation:
$B V(\Omega)=\left\{u \in L^{1}\left(\Omega ; \mathbb{R}^{n}\right): \nabla u\right.$ bounded (matrix-valued) Radon measure\}

On the other hand, we point out the a wide classical literature makes the space $B V$ a relevant functional space in modern variational analysis.

A more advanced step [maybe it will be only sketched] is the analysis of the evolution of the previous model, in the quasi-static setting.

A more advanced step [maybe it will be only sketched] is the analysis of the evolution of the previous model, in the quasi-static setting. For each given time discretization \mathscr{T}^{k} of an interval $[0, T]$

$$
0=t_{k}^{k}<t_{1}^{k}<\ldots<t_{k}^{k}=T \quad\left(\max \left|t_{i}^{k}-t_{i-1}^{k}\right| \xrightarrow{k} 0\right)
$$

we define a piecewise-constant evolution by minimizing iteratively

$$
\frac{1}{2} \int_{\Omega} Q(e) \mathrm{d} x+\int_{\Omega} H\left(p-p_{i-1}^{k}\right) \mathrm{d} x+\int_{\partial \Omega \backslash \Gamma_{0}} g\left(t_{i}^{k}, x\right) u(x) \mathrm{d} \mathscr{H}^{n-1}
$$

(with respect to the triple (u, e, p)).

A more advanced step [maybe it will be only sketched] is the analysis of the evolution of the previous model, in the quasi-static setting. For each given time discretization \mathscr{T}^{k} of an interval $[0, T]$

$$
0=t_{k}^{k}<t_{1}^{k}<\ldots<t_{k}^{k}=T \quad\left(\max \left|t_{i}^{k}-t_{i-1}^{k}\right| \xrightarrow{k} 0\right)
$$

we define a piecewise-constant evolution by minimizing iteratively

$$
\frac{1}{2} \int_{\Omega} Q(e) \mathrm{d} x+\int_{\Omega} H\left(p-p_{i-1}^{k}\right) \mathrm{d} x+\int_{\partial \Omega \backslash \Gamma_{0}} g\left(t_{i}^{k}, x\right) u(x) \mathrm{d} \mathscr{H}^{n-1}
$$

(with respect to the triple (u, e, p)).
The relevant result is now passing to the limit (as $k \rightarrow \infty$) in order to get a time-continuous evolution.

Background: standard measure theory and functional analysis; basic results on Sobolev spaces.

Background: standard measure theory and functional analysis; basic results on Sobolev spaces.

Sede: Pavia
Orario: 28 - 32 ore, 4 ore/settimana (eventualmente $2+2$ matt. + pom.) 15 aprile - 15 giugno (approssimativamente)

