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The course consists in two main parts:

I Basic properties of the space BV of functions with bounded
variation and of the space BD of functions with bounded
deformation.

I Analysis of a variational model in plasticity (in the functional
framework introduced in the first part).
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A sketch of the main motivating problem

Ω

ϕ(Ω)
Γ0

ν g

Ω ⊂ R3 (Rn in general): material body

ϕ : Ω → R3 deformation; u = ϕ− id displacement

+ B.C. (u prescribed on Γ0 and external force prescribed on
the complement)
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Key objects:

I Eu =
1

2

(
∇u + (∇u)T

)
∈ Mn×n

sym : linearized strain;

I σ ∈ Mn×n
sym : stress

– (linear elasticity) σ = CEu (C elasticity tensor)
– (Hencky’s plasticity) the stress cannot go beyond a fixed

threshold, i.e. it is confined in a given subset of Mn×n
sym :

σ ∈ K ∈ Mn×n
sym = Mn×n

D ⊕ RI

where Mn×n
D is the space of trace free n × n matrices.

Assumption: K = K + RI , with K convex, compact neighbourhood
of 0 in Mn×n

D .
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This constraint on the stress breaks the linear stress-strain depen-
dence: a “singular part” (plastic part) appears in the strain (this
corresponds to the failure regions in the material):

Eu = e + p, e : elastic part of Eu

p : plastic part of Eu.

The variational approach involves the energy functional

F (u) =
1

2

∫
Ω

Q(e) dx +

∫
Ω

H(p) dx +

∫
∂Ω\Γ0

g(x)u(x)dH n−1

where:

Q : positive definite quadratic form
(elastic energy Ce : e)

H : positively 1-homogeneous convex function.
(H is the support function of K ).
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1

2

∫
Ω

Q(e) dx +

∫
Ω

H(p) dx +

∫
∂Ω\Γ0

g(x)u(x)dH n−1

Key fact: since H has linear growth, the minimization problem for
F has, in general, no solution in Sobolev spaces; in the natural
weak formulation, plastic deformations are allowed to take measure
values. This agrees with the points of view of mechanics: shear
deformations concentrates, and shear bands can be thought of as
sharp discontinuities of the displacement.



This naturally leads to the space of functions with bounded
deformation

BD(Ω) = {u ∈ L1(Ω; Rn) : Eu bounded
(matrix-valued) Radon measure}

Thus, it looks quite natural the ‘preliminary’ study of the space of
functions with bounded variation:

BV (Ω) = {u ∈ L1(Ω; Rn) : ∇u bounded
(matrix-valued) Radon measure}

On the other hand, we point out the a wide classical literature makes
the space BV a relevant functional space in modern variational
analysis.
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A more advanced step [maybe it will be only sketched] is the analysis
of the evolution of the previous model, in the quasi-static setting.

For each given time discretization T k of an interval [0,T ]

0 = tk
k < tk

1 < . . . < tk
k = T (max |tk

i − tk
i−1|

k→ 0)

we define a piecewise-constant evolution by minimizing iteratively

1

2

∫
Ω

Q(e) dx +

∫
Ω

H(p − pk
i−1) dx +

∫
∂Ω\Γ0

g(tk
i , x)u(x)dH n−1

(with respect to the triple (u, e, p)).
The relevant result is now passing to the limit (as k →∞) in order
to get a time-continuous evolution.
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Background: standard measure theory and functional analysis; basic
results on Sobolev spaces.

Sede: Pavia
Orario: 28-32 ore, 4 ore/settimana (eventualmente 2+2 matt.+pom.)

15 aprile – 15 giugno (approssimativamente)
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