PDEs for multiphase advanced materials

Cortona, Arezzo, Italy

Existence for the steady problem of a mixture of two power-law fluids ${ }^{1}$

Hermenegildo Borges de Oliveira

FCT - Universidade do Algarve \& CMAF - Universidade de Lisboa w3.ualg.pt/ ~holivei holivei@ualg.pt

September 17-21, 2012

- Isothermal flows of viscous incompressible (and homogeneous) fluids in stationary regime:
- Conservation of mass

$$
\begin{equation*}
\operatorname{div} \mathbf{u}=0 \quad \text { in } \Omega \subset \mathbb{R}^{N}, \tag{1}
\end{equation*}
$$

- Conservation of linear momentum

$$
\begin{equation*}
\operatorname{div}(\mathbf{u} \otimes \mathbf{u})=\mathbf{f}-\nabla p+\operatorname{div} \mathbf{S} \text { in } \Omega ; \tag{2}
\end{equation*}
$$

- Deviatoric part of the Cauchy stress tensor

$$
\begin{equation*}
\mathbf{S}=\left(\mu_{1}|\mathbf{D}|^{\gamma-2}+\mu_{2}|\mathbf{D}|^{q(x)-2}\right) \mathbf{D}, \quad \mathbf{D}=\frac{1}{2}\left(\nabla \mathbf{u}+\nabla \mathbf{u}^{T}\right) ; \tag{3}
\end{equation*}
$$

- Boundary conditions

$$
\begin{equation*}
\mathbf{u}=\mathbf{0} \quad \text { on } \quad \partial \Omega . \tag{4}
\end{equation*}
$$

- Unknowns: $\mathbf{u} \in \mathbb{R}^{N}$ - velocity field; $p \in \mathbb{R}^{N}$ - pressure;
- Problem data: $\mathbf{f} \in \mathbb{R}^{N}$;
- Remark: Dimensions of interest in the applications are $N=2, N=3$
- The simplest model of Fluid Mech. is the Newtonian fluid: Stokes (1845)

$$
\mathbf{S}=2 \mu \mathbf{D}, \quad \mu=\text { Const. }>0
$$

- Examples: water solutions, gasoline, vegetal and mineral oils, ...;
- Inadequate to model fluids that exhibit varying viscosities;
- Real fluids: μ may depend on temperature, shear rate $|\mathbf{D}|$, time, pressure;
- The simplest model of Fluid Mech. is the Newtonian fluid: Stokes (1845)

$$
\mathbf{S}=2 \mu \mathbf{D}, \quad \mu=\text { Const } .>0
$$

- Examples: water solutions, gasoline, vegetal and mineral oils, ...;
- Inadequate to model fluids that exhibit varying viscosities;
- Real fluids: μ may depend on temperature, shear rate |D|, time, pressure;
- Ostwald (1925) - de Waele (1923) simplest non-Newtonian model:

- Examples: Bingham toothpaste, mayonnaise; Pseudo-plastic milk fluids, varnishes, shampoo, blood; Dilatant polar ice, volcano lava, wet sand.
- The viscosity depends on the shear stress (generalized Newtonian fluids);
- Proposed for modeling pseudo-plastic fluids; it has been used also for dilatant;
- Fails at high shear rates where the viscosity must ultimately be a constant;
- The simplest model of Fluid Mech. is the Newtonian fluid: Stokes (1845)

$$
\mathbf{S}=2 \mu \mathbf{D}, \quad \mu=\text { Const. }>0
$$

- Examples: water solutions, gasoline, vegetal and mineral oils, ...;
- Inadequate to model fluids that exhibit varying viscosities;
- Real fluids: μ may depend on temperature, shear rate |D|, time, pressure;
- Ostwald (1925) - de Waele (1923) simplest non-Newtonian model:

$$
\mathbf{S}=\mu|\mathbf{D}|^{n-1} \mathbf{D} \equiv \mu|\mathbf{D}|^{\gamma-2} \mathbf{D} \Rightarrow\left\{\begin{array}{lll}
\text { Bingham (1921) } & n=0 & \Leftrightarrow \gamma=1 \\
\text { pseudo-plastic } & 0<n<1 & \Leftrightarrow 1<\gamma<2 \\
\text { Newtonian } & n=1 & \Leftrightarrow \gamma=2 \\
\text { dilatant } & n>1 & \Leftrightarrow \gamma>2
\end{array}\right.
$$

- Examples: Bingham toothpaste, mayonnaise; Pseudo-plastic milk fluids, varnishes, shampoo, blood; Dilatant polar ice, volcano lava, wet sand.
- The viscosity depends on the shear stress (generalized Newtonian fluids);
- Proposed for modeling pseudo-plastic fluids; it has been used also for dilatant;
- Fails at high shear rates where the viscosity must ultimately be a constant;
- The Sisko (1958) model: rectifies the failure of the Ostwald-de Waele

$$
\mathbf{S}=\left(\mu_{1}+\mu_{2}|\mathbf{D}|^{\gamma-2}\right) \mathbf{D}
$$

- It was originally proposed for high shear-rate measurements on some comercial greases (mixtures of petroleum with thickening agents).
- Cannot be cataloged into a single class.
- Ability to achieve a wide range of viscosity in a fraction of millisecond.
- The viscosity can be changed by applying an electric or magnetic field, or by changes in the temperature.
- Cannot be cataloged into a single class.
- Ability to achieve a wide range of viscosity in a fraction of millisecond.
- The viscosity can be changed by applying an electric or magnetic field, or by changes in the temperature.
- Electro-rheological fluids:

$$
\mathbf{S}=\left(\mu_{1}+\mu_{2}|\mathbf{D}|^{q(\mathbf{E})-2}\right) \mathbf{D}, \quad \mathbf{E} \text { - electric field; }
$$

- Typical ERF: suspensions dispersed with some polymeric colloids (see e.g. Electrorheological fluids: The Non-aqueous Suspensions by Hao (2005));
- Cannot be cataloged into a single class.
- Ability to achieve a wide range of viscosity in a fraction of millisecond.
- The viscosity can be changed by applying an electric or magnetic field, or by changes in the temperature.
- Electro-rheological fluids:

$$
\mathbf{S}=\left(\mu_{1}+\mu_{2}|\mathbf{D}|^{q(\mathbf{E})-2}\right) \mathbf{D}, \quad \mathbf{E}-\text { electric field; }
$$

- Typical ERF: suspensions dispersed with some polymeric colloids (see e.g. Electrorheological fluids: The Non-aqueous Suspensions by Hao (2005));
- Magneto-rheological fluids:

$$
\mathbf{S}=\left(\mu_{1}+\mu_{2}|\mathbf{D}|^{q(\mathbf{B})-2}\right) \mathbf{D}, \quad \mathbf{B}-\text { magnetic field; }
$$

- Typical MRF: made of very small solid particles that are suspended in a liquid (see e.g. Magnetorheological fluids by Henrie and Carlson (2002)).
- Cannot be cataloged into a single class.
- Ability to achieve a wide range of viscosity in a fraction of millisecond.
- The viscosity can be changed by applying an electric or magnetic field, or by changes in the temperature.
- Electro-rheological fluids:

$$
\mathbf{S}=\left(\mu_{1}+\mu_{2}|\mathbf{D}|^{q(\mathbf{E})-2}\right) \mathbf{D}, \quad \mathbf{E}-\text { electric field; }
$$

- Typical ERF: suspensions dispersed with some polymeric colloids (see e.g. Electrorheological fluids: The Non-aqueous Suspensions by Hao (2005));
- Magneto-rheological fluids:

$$
\mathbf{S}=\left(\mu_{1}+\mu_{2}|\mathbf{D}|^{q(\mathbf{B})-2}\right) \mathbf{D}, \quad \mathbf{B}-\text { magnetic field; }
$$

- Typical MRF: made of very small solid particles that are suspended in a liquid (see e.g. Magnetorheological fluids by Henrie and Carlson (2002)).
- Thermo-rheological fluids:

$$
\mathbf{S}=\left(\mu_{1}+\mu_{2}|\mathbf{D}|^{q(\theta)-2}\right) \mathbf{D}, \quad \theta \text { - temperature }
$$

- Are being used: nanometer-sized particles dispersed in liquids (see e.g. Nanofluids: Science and Technology by Das, Choi, Yu and Pradeep (2007)).
- Cannot be cataloged into a single class.
- Ability to achieve a wide range of viscosity in a fraction of millisecond.
- The viscosity can be changed by applying an electric or magnetic field, or by changes in the temperature.
- Electro-rheological fluids:

$$
\mathbf{S}=\left(\mu_{1}+\mu_{2}|\mathbf{D}|^{q(\mathbf{E})-2}\right) \mathbf{D}, \quad \mathbf{E}-\text { electric field; }
$$

- Typical ERF: suspensions dispersed with some polymeric colloids (see e.g. Electrorheological fluids: The Non-aqueous Suspensions by Hao (2005));
- Magneto-rheological fluids:

$$
\mathbf{S}=\left(\mu_{1}+\mu_{2}|\mathbf{D}|^{q(\mathbf{B})-2}\right) \mathbf{D}, \quad \mathbf{B}-\text { magnetic field; }
$$

- Typical MRF: made of very small solid particles that are suspended in a liquid (see e.g. Magnetorheological fluids by Henrie and Carlson (2002)).
- Thermo-rheological fluids:

$$
\mathbf{S}=\left(\mu_{1}+\mu_{2}|\mathbf{D}|^{q(\theta)-2}\right) \mathbf{D}, \quad \theta-\text { temperature }
$$

- Are being used: nanometer-sized particles dispersed in liquids (see e.g. Nanofluids: Science and Technology by Das, Choi, Yu and Pradeep (2007)).
- Applications: automobile industry, e.g. clutches (ERF) and shock absorbers (MRF), and modeling e.g. the cooling process of volcano lava flow (TRF).
- Trembling Sisko model:

$$
\begin{equation*}
\mathbf{S}=\left(\mu_{1}+\mu_{2}|\mathbf{D}|^{q(\mathbf{x})-2}\right) \mathbf{D} . \tag{5}
\end{equation*}
$$

${ }^{2}$ In the linear viscoelastic regime the stress responses to successive deformations are additive.

- Trembling Sisko model:

$$
\begin{equation*}
\mathbf{S}=\left(\mu_{1}+\mu_{2}|\mathbf{D}|^{q(x)-2}\right) \mathbf{D} \tag{5}
\end{equation*}
$$

- Superposition of a sustaining power-law with a trembling one:

$$
\begin{equation*}
\mathbf{S}=\left(\mu_{1}|\mathbf{D}|^{\gamma-2}+\mu_{2}|\mathbf{D}|^{q(x)-2}\right) \mathbf{D} . \tag{6}
\end{equation*}
$$

${ }^{2}$ In the linear viscoelastic regime the stress responses to successive deformations are additive.

- Trembling Sisko model:

$$
\begin{equation*}
\mathbf{S}=\left(\mu_{1}+\mu_{2}|\mathbf{D}|^{q(x)-2}\right) \mathbf{D} \tag{5}
\end{equation*}
$$

- Superposition of a sustaining power-law with a trembling one:

$$
\begin{equation*}
\mathbf{S}=\left(\mu_{1}|\mathbf{D}|^{\gamma-2}+\mu_{2}|\mathbf{D}|^{q(x)-2}\right) \mathbf{D} . \tag{6}
\end{equation*}
$$

- Justification of the model:
- The object of superposition of generalized fluids is to produce flow patterns similar to those of practical interest;
- The best example are polymer solutions in which the polymer segments tend to repel each other, since they prefer contact the solvent molecules rather then among themselves (see e.g. Rheophysics by P. Oswald (2009));
- Superposition of fluids is justified, in the light of theoretical mechanics, as a powerful tool to replace the Boltzman superposition principle ${ }^{2}$ in the case of materials with nonlinear behavior (see e.g. Nonlinear vsicoelasticity by J.M. Dealy (2009)).
- Sisko's model has been checked experimentally to fit accurately the viscosity data of many mixtures (see e.g. An introduction to rheology by Barnes, Hutton and Walters (1993));

[^0]- $\mathcal{P}(\Omega)$ the set of all measurable functions $q: \Omega \rightarrow[1, \infty]$;
- $\mathrm{L}^{q(\cdot)}(\Omega)$ the space of all functions $f \in \mathcal{P}(\Omega)$ such that
$A_{q(\cdot)}(f):=\int_{\Omega}|f(x)|^{q(x)} d x<\infty, \quad\|f\|_{L^{q(\cdot)}(\Omega)}:=\inf \left\{\kappa>0: A_{q(\cdot)}\left(\frac{f}{\kappa}\right) \leq 1\right\} ;$
- $W^{1, q(\cdot)}(\Omega):=\left\{f \in \mathrm{~L}^{q(\cdot)}(\Omega): \mathrm{D}^{\alpha} f \in \mathrm{~L}^{q(\cdot)}(\Omega), 0 \leq|\alpha| \leq 1\right\}$;
- Inherit almost properties of classical Lebesgue and Sobolev spaces, provided

$$
\begin{equation*}
1<\alpha:=\operatorname{ess} \inf q(\cdot) \leq q(\cdot) \leq \operatorname{ess} \sup q(\cdot):=\beta<\infty ; \tag{7}
\end{equation*}
$$

- Orlicz-Sobolev space with zero boundary values:

$$
\left.W_{0}^{1, q(\cdot)}(\Omega):=\overline{\left\{f \in W^{1, q(\cdot)}(\Omega): \operatorname{supp} f \subset \subset \Omega\right.}\right\}^{\|\cdot\|_{w^{1, q} \cdot(\cdot)}(\Omega)}
$$

- One problem:

$$
C_{0}^{\infty}(\Omega) \text { is not necessarily dense in } W_{0}^{1, q(\cdot)}(\Omega)
$$

- The closure of $\mathrm{C}_{0}^{\infty}(\Omega)$ in $\mathrm{W}^{\mathbf{1 , q}(\cdot)}(\Omega)$ is strictly contained in $\mathrm{W}_{0}^{1, q(\cdot)}(\Omega)$;
- A necessary condition for the equality is the globally log-H continuity for $g=\frac{1}{q}$ (locally log-H continuous $+\log -\mathrm{H}$ decay):

$$
\begin{equation*}
|g(\mathbf{x})-g(\mathbf{y})| \leq \frac{C_{1}}{\ln (e+1 /|\mathbf{x}-\mathbf{y}|)}, \quad\left|g(\mathbf{x})-q_{\infty}\right| \leq \frac{C_{2}}{\ln (e+|\mathbf{x}|)} \quad \forall \mathbf{x}, \mathbf{y} \in \Omega \tag{8}
\end{equation*}
$$

- Spaces of Fluid Mechanics
- $\mathcal{V}:=\left\{\mathbf{v} \in \mathbf{C}_{0}^{\infty}(\Omega): \operatorname{div} \mathbf{v}=0\right\}$;
- $\mathbf{V}_{\gamma}:=$ closure of \mathcal{V} in $\mathbf{W}^{1, \gamma}(\Omega)$. The power-law index $\gamma=$ Const.;
- $\mathbf{V}_{q(\cdot)}:=$ closure of \mathcal{V} in $\mathbf{W}^{1, q(\cdot)}(\Omega)$. Requires (8);
- $\mathbf{W}_{q(\cdot)}:=$ closure of \mathcal{V} in the $\|\mathbf{D}(\mathbf{v})\|_{\mathrm{Lq}^{(\cdot)}(\Omega)^{-}}$norm.
- Spaces of Fluid Mechanics
- $\mathcal{V}:=\left\{\mathbf{v} \in \mathbf{C}_{0}^{\infty}(\Omega): \operatorname{div} \mathbf{v}=0\right\}$;
- $\mathbf{V}_{\gamma}:=$ closure of \mathcal{V} in $\mathbf{W}^{\mathbf{1}, \gamma}(\Omega)$. The power-law index $\gamma=$ Const.;
- $\mathbf{V}_{\boldsymbol{q}(\cdot)}:=$ closure of \mathcal{V} in $\mathbf{W}^{\mathbf{1 , q}(\cdot)}(\Omega)$. Requires (8);
- $\mathbf{W}_{\boldsymbol{q}(\cdot)}:=$ closure of \mathcal{V} in the $\|\mathbf{D}(\mathbf{v})\|_{\mathbf{L q}^{(\cdot)}(\Omega)}$ - norm.

Definition

Let Ω be a bounded domain of \mathbb{R}^{N}, with $N \geq 2$. Assume that $\mathbf{f} \in \mathbf{L}^{1}(\Omega), \gamma$ is a constant such that $1<\gamma<\infty$ and $q \in \mathcal{P}(\Omega)$ is a variable exponent satisfying to (7). A vector field \mathbf{u} is a (very) weak solution to the problem (1)-(3), if:

- $\mathbf{u} \in \mathbf{W}_{\boldsymbol{q}(\cdot)} \cap \mathbf{V}_{\gamma}$;
- For every $\varphi \in \mathbf{W}_{\boldsymbol{q}(\cdot)} \cap \mathbf{V}_{\gamma}$ (For every $\varphi \in \mathcal{V}$)

$$
\int_{\Omega}\left(\mu_{1}|\mathbf{D}(\mathbf{u})|^{\gamma-2}+\mu_{2}|\mathbf{D}(\mathbf{u})|^{q(x)-2}-\mathbf{u} \otimes \mathbf{u}\right): \mathbf{D}(\varphi) d \mathbf{x}=\int_{\Omega} \mathbf{f} \cdot \varphi d \mathbf{x}
$$

- Spaces of Fluid Mechanics
- $\mathcal{V}:=\left\{\mathbf{v} \in \mathbf{C}_{0}^{\infty}(\Omega): \operatorname{div} \mathbf{v}=0\right\}$;
- $\mathbf{V}_{\gamma}:=$ closure of \mathcal{V} in $\mathbf{W}^{\mathbf{1}, \gamma}(\Omega)$. The power-law index $\gamma=$ Const.;
- $\mathbf{V}_{\boldsymbol{q}(\cdot)}:=$ closure of \mathcal{V} in $\mathbf{W}^{1, \boldsymbol{q}(\cdot)}(\Omega)$. Requires (8);
- $\mathbf{W}_{\boldsymbol{q}(\cdot)}:=$ closure of \mathcal{V} in the $\|\mathbf{D}(\mathbf{v})\|_{\mathbf{L q}^{(\cdot)}(\Omega)}$ - norm.

Definition

Let Ω be a bounded domain of \mathbb{R}^{N}, with $N \geq 2$. Assume that $\mathbf{f} \in \mathbf{L}^{1}(\Omega), \gamma$ is a constant such that $1<\gamma<\infty$ and $q \in \mathcal{P}(\Omega)$ is a variable exponent satisfying to (7). A vector field \mathbf{u} is a (very) weak solution to the problem (1)-(3), if:

- $\mathbf{u} \in \mathbf{W}_{\boldsymbol{q}(\cdot)} \cap \mathbf{V}_{\gamma}$;
- For every $\varphi \in \mathbf{W}_{\boldsymbol{q}(\cdot)} \cap \mathbf{V}_{\gamma}$ (For every $\varphi \in \mathcal{V}$)

$$
\int_{\Omega}\left(\mu_{1}|\mathbf{D}(\mathbf{u})|^{\gamma-2}+\mu_{2}|\mathbf{D}(\mathbf{u})|^{q(\mathbf{x})-2}-\mathbf{u} \otimes \mathbf{u}\right): \mathbf{D}(\varphi) d \mathbf{x}=\int_{\Omega} \mathbf{f} \cdot \varphi d \mathbf{x}
$$

- Remark: Note that if $\alpha \geq \gamma$, then $\mathbf{W}_{q(\cdot)} \hookrightarrow \mathbf{V}_{\gamma}$ and therefore it is enough to look for weak solutions in the class $\mathbf{W}_{\boldsymbol{q}(\cdot)}$ and if $\gamma \geq \beta$, then $\mathbf{V}_{\gamma} \hookrightarrow \mathbf{W}_{q(\cdot)}$ and therefore it is enough to look for weak solutions in the class \mathbf{V}_{γ}.
- Navier-Stokes : Hopf (1951) (Leray (1934) for the Cauchy problem).
- Ladyzhenskaya (1967), Lions (1969): $\mathbf{f} \in \mathbf{V}_{\gamma}^{\prime}$ and

$$
\begin{equation*}
\gamma \geq \frac{3 N}{N+2} . \tag{9}
\end{equation*}
$$

- Ladyzhenskaya: $\mathbf{S}=\left(\mu_{1}+\mu_{2}|\mathbf{D}|^{\gamma-2}\right) \mathbf{D}$ and $N=3$, and Lions: $\mathbf{S}=\mu|\mathbf{D}|^{\gamma-2} \mathbf{D}$
- Proof: Theory of monotone operators together with compactness arguments,
- The lower bound: $\gamma \geq \frac{3 N}{N+2} \Rightarrow \mathbf{u} \otimes \mathbf{u}: \mathbf{D}(\varphi) \in \mathbf{L}^{1}(\Omega)$ for $\mathbf{u}, \varphi \in \mathbf{V}_{\gamma}$.
- Navier-Stokes : Hopf (1951) (Leray (1934) for the Cauchy problem).
- Ladyzhenskaya (1967), Lions (1969): $\mathbf{f} \in \mathbf{V}_{\gamma}^{\prime}$ and

$$
\begin{equation*}
\gamma \geq \frac{3 N}{N+2} \tag{9}
\end{equation*}
$$

- Ladyzhenskaya: $\mathbf{S}=\left(\mu_{1}+\mu_{2}|\mathbf{D}|^{\gamma-2}\right) \mathbf{D}$ and $N=3$, and Lions: $\mathbf{S}=\mu|\mathbf{D}|^{\gamma-2} \mathbf{D}$
- Proof: Theory of monotone operators together with compactness arguments,
- The lower bound: $\gamma \geq \frac{3 N}{N+2} \Rightarrow \mathbf{u} \otimes \mathbf{u}: \mathbf{D}(\varphi) \in \mathbf{L}^{1}(\Omega)$ for $\mathbf{u}, \varphi \in \mathbf{V}_{\gamma}$.
- Frehse, Málek and Steinhauer (1997): $\mathbf{f} \in \mathbf{L}^{\gamma^{\prime}}(\Omega)$; Rüžička (1997): $\mathbf{f} \in \mathbf{V}_{\gamma}^{\prime}$,

$$
\begin{equation*}
\gamma \geq \frac{2 N}{N+1} . \tag{10}
\end{equation*}
$$

- Proof: In addition, it was used the L^{∞}-truncation method.
- The lower bound: $\gamma \geq \frac{2 N}{N+1} \Rightarrow(\mathbf{u} \cdot \nabla) \mathbf{u} \cdot \varphi \in \mathbf{L}^{1}(\Omega)$ for $\mathbf{u} \in \mathbf{V}_{\gamma}$ and $\varphi \in \mathcal{V}$.
- Frehse, Málek and Steinhauer (2003): $\mathbf{f} \in \mathbf{L}^{\gamma^{\prime}}(\Omega)$ and

$$
\begin{equation*}
\gamma>\frac{2 N}{N+2} . \tag{11}
\end{equation*}
$$

- Proof: It was used the Lipschitz-truncation method instead.
- The lower bound: $\gamma \geq \frac{2 N}{N+2} \Rightarrow \mathbf{u} \otimes \mathbf{u}: \mathbf{D}(\varphi) \in \mathbf{L}^{1}(\Omega)$ for $\mathbf{u} \in \mathbf{V}_{\gamma}$ and $\varphi \in \mathcal{V}$.
- The strict inequality $\gamma>\frac{2 N}{N+2}$ is due to $\mathbf{V}_{\gamma} \hookrightarrow \hookrightarrow \mathbf{L}^{2}(\Omega)$.
- Navier-Stokes : Hopf (1951) (Leray (1934) for the Cauchy problem).
- Ladyzhenskaya (1967), Lions (1969): $\mathbf{f} \in \mathbf{V}_{\gamma}^{\prime}$ and

$$
\begin{equation*}
\gamma \geq \frac{3 N}{N+2} \tag{9}
\end{equation*}
$$

- Ladyzhenskaya: $\mathbf{S}=\left(\mu_{1}+\mu_{2}|\mathbf{D}|^{\gamma-2}\right) \mathbf{D}$ and $N=3$, and Lions: $\mathbf{S}=\mu|\mathbf{D}|^{\gamma-2} \mathbf{D}$
- Proof: Theory of monotone operators together with compactness arguments,
- The lower bound: $\gamma \geq \frac{3 N}{N+2} \Rightarrow \mathbf{u} \otimes \mathbf{u}: \mathbf{D}(\varphi) \in \mathbf{L}^{1}(\Omega)$ for $\mathbf{u}, \varphi \in \mathbf{V}_{\gamma}$.
- Frehse, Málek and Steinhauer (1997): $\mathbf{f} \in \mathbf{L}^{\gamma^{\prime}}(\Omega)$; Rüžička (1997): $\mathbf{f} \in \mathbf{V}_{\gamma}^{\prime}$,

$$
\begin{equation*}
\gamma \geq \frac{2 N}{N+1} . \tag{10}
\end{equation*}
$$

- Proof: In addition, it was used the L^{∞}-truncation method.
- The lower bound: $\gamma \geq \frac{2 N}{N+1} \Rightarrow(\mathbf{u} \cdot \nabla) \mathbf{u} \cdot \varphi \in \mathbf{L}^{1}(\Omega)$ for $\mathbf{u} \in \mathbf{V}_{\gamma}$ and $\varphi \in \mathcal{V}$.
- Frehse, Málek and Steinhauer (2003): $\mathbf{f} \in \mathbf{L}^{\gamma^{\prime}}(\Omega)$ and

$$
\begin{equation*}
\gamma>\frac{2 N}{N+2} \tag{11}
\end{equation*}
$$

- Proof: It was used the Lipschitz-truncation method instead.
- The lower bound: $\gamma \geq \frac{2 N}{N+2} \Rightarrow \mathbf{u} \otimes \mathbf{u}: \mathbf{D}(\varphi) \in \mathbf{L}^{1}(\Omega)$ for $\mathbf{u} \in \mathbf{V}_{\gamma}$ and $\varphi \in \mathcal{V}$.
- The strict inequality $\gamma>\frac{2 N}{N+2}$ is due to $\mathbf{V}_{\gamma} \hookrightarrow \hookrightarrow \mathbf{L}^{2}(\Omega)$.
- Open problem: $1<\gamma \leq \frac{2 N}{N+2}$ and $N>2$.
- Rüžič̌a (2000): $\mathbf{f} \in \mathbf{V}_{\alpha}^{\prime}$ and

$$
\begin{equation*}
\alpha \geq \frac{3 N}{N+2} \tag{12}
\end{equation*}
$$

- The test functions $\varphi \in \mathbf{W}_{\boldsymbol{q}(\cdot)}$.
- Proof: follows the approach of Ladyzhenskaya-Lions and uses $\mathbf{W}_{\boldsymbol{q}(\cdot)} \hookrightarrow \mathbf{V}_{\alpha}$.
- Rüžič̌a (2000): $\mathbf{f} \in \mathbf{V}_{\alpha}^{\prime}$ and

$$
\begin{equation*}
\alpha \geq \frac{3 N}{N+2} . \tag{12}
\end{equation*}
$$

- The test functions $\varphi \in \mathbf{W}_{q(\cdot)}$.
- Proof: follows the approach of Ladyzhenskaya-Lions and uses $\mathbf{W}_{q(\cdot)} \hookrightarrow \mathbf{V}_{\alpha}$.
- Huber (2011): $\mathbf{f} \in\left(\mathbf{W}_{0}^{1, q(\cdot)}(\Omega)\right)^{\prime}$ and

$$
\begin{equation*}
\alpha \geq \frac{2 N}{N+1} . \tag{13}
\end{equation*}
$$

- The solution $\mathbf{u} \in \mathbf{V}_{\boldsymbol{q}(\cdot)}$ (requires (8)) and the test function $\varphi \in \mathcal{V}$;
- Proof: combines Bogowski (1979) results on divergence problems in Orlicz-Sobolev spaces with the L^{∞}-truncation method.
- Rüžička (2000): $\mathbf{f} \in \mathbf{V}_{\alpha}^{\prime}$ and

$$
\begin{equation*}
\alpha \geq \frac{3 N}{N+2} . \tag{12}
\end{equation*}
$$

- The test functions $\varphi \in \mathbf{W}_{q(\cdot)}$.
- Proof: follows the approach of Ladyzhenskaya-Lions and uses $\mathbf{W}_{q(\cdot)} \hookrightarrow \mathbf{V}_{\alpha}$.
- Huber (2011): $\mathbf{f} \in\left(\mathbf{W}_{0}^{1, q(\cdot)}(\Omega)\right)^{\prime}$ and

$$
\begin{equation*}
\alpha \geq \frac{2 N}{N+1} . \tag{13}
\end{equation*}
$$

- The solution $\mathbf{u} \in \mathbf{V}_{\boldsymbol{q}(\cdot)}$ (requires (8)) and the test function $\varphi \in \mathcal{V}$;
- Proof: combines Bogowski (1979) results on divergence problems in Orlicz-Sobolev spaces with the L^{∞}-truncation method.
- Diening, Málek and Steinhauer (2008): the same assumptions of Huber,

$$
\begin{equation*}
\alpha>\frac{2 N}{N+2} \tag{14}
\end{equation*}
$$

- The solutions satisfies to the energy relation:

$$
\begin{equation*}
\int_{\Omega}(\mathbf{S}(\mathbf{D}(\mathbf{u}))-\mathbf{u} \otimes \mathbf{u}): \mathbf{D}(\varphi) d \mathbf{x}=\int_{\Omega} p \operatorname{div} \varphi d \mathbf{x}+\int_{\Omega} \mathbf{f} \cdot \varphi d \mathbf{x} \quad \forall \varphi \in \mathbf{W}_{0}^{\mathbf{1}, \infty}(\Omega) \tag{15}
\end{equation*}
$$

- Proof: uses Lipschitz-truncations of functions in Orlicz-Sobolev spaces.

Theorem

Let Ω be a bounded domain in $\mathbb{R}^{N}, N \geq 2$, with a Lipschitz-continuous boundary $\partial \Omega$. Assume that $1<\gamma<\infty, q \in \mathcal{P}(\Omega)$ satisfies to (7) and $\mathbf{f} \in\left(\mathbf{V}_{\gamma} \cap \mathbf{W}_{q(\cdot)}\right)^{\prime}$. Then, if

$$
\min \{\gamma, \alpha\} \geq \frac{3 N}{N+2},
$$

there exists a weak solution to the problem (1)-(3).

Theorem

Let Ω be a bounded domain in $\mathbb{R}^{N}, N \geq 2$, with a Lipschitz-continuous boundary $\partial \Omega$. Assume that $1<\gamma<\infty, q \in \mathcal{P}(\Omega)$ satisfies to (7) and $\mathbf{f} \in\left(\mathbf{V}_{\gamma} \cap \mathbf{W}_{q(\cdot)}\right)^{\prime}$. Then, if

$$
\min \{\gamma, \alpha\} \geq \frac{3 N}{N+2},
$$

there exists a weak solution to the problem (1)-(3).

Proof.
The proof combines the results of Ladyzhenskaya and Lions for the constant power-law index γ with the existence result of Rüžička for the variable power-law index q.

Theorem

Let Ω be a bounded domain in $\mathbb{R}^{N}, N \geq 2$, with a Lipschitz-continuous boundary $\partial \Omega$. Assume that $1<\gamma<\infty, q \in \mathcal{P}(\Omega)$ satisfies to (7) and $\mathbf{f} \in\left(\mathbf{V}_{\gamma} \cap \mathbf{W}_{q(\cdot)}\right)^{\prime}$. Then, if

$$
\min \{\gamma, \alpha\} \geq \frac{3 N}{N+2},
$$

there exists a weak solution to the problem (1)-(3).

Proof.
The proof combines the results of Ladyzhenskaya and Lions for the constant power-law index γ with the existence result of Rüžička for the variable power-law index q.

Remarks

- If $\gamma=2$, it extends the existence result established by Ladyzhenskaya (1967) to the case of a variable exponent q;
- Since $\mathbf{V}_{q(\cdot)} \varsubsetneqq \mathbf{W}_{q(\cdot)}$, this result is obtained in a larger class.

Theorem

Let Ω be a bounded domain in $\mathbb{R}^{N}, N \geq 2$, with a Lipschitz-continuous boundary $\partial \Omega$. Assume that $q \in \mathcal{P}(\Omega)$ satisfies to (7) and $\mathbf{f} \in\left(\mathbf{V}_{\gamma} \cap \mathbf{W}_{q(\cdot)}\right)^{\prime}$. Then, if for any $\delta>0$

$$
\begin{equation*}
\gamma \geq \max \left\{\frac{2 N}{N+2}+\delta, \beta\right\} \tag{16}
\end{equation*}
$$

there exists a very weak solution to the problem (1)-(3).

- For the trembling Sisko model we have existence of very weak solutions

$$
\begin{equation*}
\mathbf{S}=\left(\mu_{1}+\mu_{2}|\mathbf{D}|^{q(\mathrm{x})-2}\right) \mathbf{D} \quad \text { for } 1<\alpha \leq \beta \leq 2 . \tag{17}
\end{equation*}
$$

Theorem

Let Ω be a bounded domain in $\mathbb{R}^{N}, N \geq 2$, with a Lipschitz-continuous boundary $\partial \Omega$. Assume that $q \in \mathcal{P}(\Omega)$ satisfies to (7) and $\mathbf{f} \in\left(\mathbf{V}_{\gamma} \cap \mathbf{W}_{q(\cdot)}\right)^{\prime}$. Then, if for any $\delta>0$

$$
\begin{equation*}
\gamma \geq \max \left\{\frac{2 N}{N+2}+\delta, \beta\right\} \tag{16}
\end{equation*}
$$

there exists a very weak solution to the problem (1)-(3).

- For the trembling Sisko model we have existence of very weak solutions

$$
\begin{equation*}
\mathbf{S}=\left(\mu_{1}+\mu_{2}|\mathbf{D}|^{q(\mathrm{x})-2}\right) \mathbf{D} \quad \text { for } 1<\alpha \leq \beta \leq 2 . \tag{17}
\end{equation*}
$$

- In order to make the proof as transparent as possible, we shall assume that

$$
\begin{equation*}
\mathbf{f}=-\operatorname{div} \mathbf{F}, \quad \mathbf{F} \in \mathbb{M}_{\text {sym }}^{N}, \quad \mathbf{F} \in \mathbf{L}^{q^{\prime}(\cdot)}(\Omega) . \tag{18}
\end{equation*}
$$

- The assumption (18) does not restrict the result's extent, because $\mathbf{f}=-\operatorname{div} \mathbf{F}$ and $\mathbf{F} \in \mathbf{L}^{\boldsymbol{q}^{\prime}(\cdot)}(\Omega)$ implies that $\mathbf{f} \in \mathbf{W}_{\boldsymbol{q}(\cdot)}^{\prime}$, and $\mathbf{W}_{\boldsymbol{q}(\cdot)}^{\prime} \hookrightarrow\left(\mathbf{V}_{\gamma} \cap \mathbf{W}_{q(\cdot)}\right)^{\prime}$.
- The assumption $\mathbf{F} \in \mathbb{M}_{\text {sym }}^{N}$ is made in order to avoid unnecessary calculus.
- Let $\Phi \in \mathrm{C}^{\infty}([0, \infty))$ be a non-increasing: $0 \leq \Phi \leq 1$ in $[0, \infty), \Phi \equiv 1$ in $[0,1], \Phi \equiv 0$ in $[2, \infty)$ and $0 \leq-\Phi^{\prime} \leq 2$. For $\epsilon>0$, we set

$$
\begin{equation*}
\Phi_{\epsilon}(s):=\Phi(\epsilon s), \quad s \in[0, \infty) . \tag{19}
\end{equation*}
$$

We consider the following regularized problem in Ω :

$$
\begin{equation*}
\operatorname{div} \mathbf{u}_{\epsilon}=0, \tag{20}
\end{equation*}
$$

$\operatorname{div}\left(\mathbf{u}_{\epsilon} \otimes \mathbf{u}_{\epsilon} \Phi_{\epsilon}\left(\left|\mathbf{u}_{\epsilon}\right|\right)\right)=\mathbf{f}-\nabla p_{\epsilon}+\operatorname{div}\left[\left(\mu_{1}\left|\mathbf{D}\left(\mathbf{u}_{\epsilon}\right)\right|^{\gamma-2}+\mu_{2}\left|\mathbf{D}\left(\mathbf{u}_{\epsilon}\right)\right|^{q(\mathbf{x})-2}\right) \mathbf{D}\left(\mathbf{u}_{\epsilon}\right)\right]$,

$$
\begin{equation*}
\mathbf{u}_{\epsilon}=\mathbf{0} \quad \text { on } \quad \partial \Omega . \tag{21}
\end{equation*}
$$

Proposition

... Then, for each $\epsilon>0$, there exists a weak solution $\mathbf{u}_{\epsilon} \in \mathbf{V}_{\gamma}$ to the problem (20)-(22). In addition, every weak solution satisfies to the following energy equality:

$$
\begin{equation*}
\int_{\Omega}\left(\mu_{1}\left|\mathbf{D}\left(\mathbf{u}_{\epsilon}\right)\right|^{\gamma}+\mu_{2}\left|\mathbf{D}\left(\mathbf{u}_{\epsilon}\right)\right|^{q(\mathbf{x})}\right) d \mathbf{x}=\int_{\Omega} \mathbf{F}: \mathbf{D}\left(\mathbf{u}_{\epsilon}\right) d \mathbf{x} . \tag{23}
\end{equation*}
$$

- The proof is based on Schauder's fixed point theorem.
- From (23), we can prove that

$$
\begin{equation*}
\int_{\Omega}\left(\left|\mathbf{D}\left(\mathbf{u}_{\epsilon}\right)\right|^{\gamma}+\left|\mathbf{D}\left(\mathbf{u}_{\epsilon}\right)\right|^{q(\mathbf{x})}\right) d \mathbf{x} \leq C \tag{24}
\end{equation*}
$$

- By Sobolev's inequality, and due to the definition of Φ_{ϵ}, we have

$$
\begin{equation*}
\left\|\mathbf{u}_{\epsilon} \otimes \mathbf{u}_{\epsilon} \Phi_{\epsilon}\left(\left|\mathbf{u}_{\epsilon}\right|\right)\right\|_{L^{\frac{\gamma^{*}}{2}}(\Omega)} \leq C \tag{25}
\end{equation*}
$$

- From (24)-(25), there exists $\epsilon_{m}>0$ such that $\epsilon_{m} \rightarrow 0$, as $m \rightarrow \infty$, and

$$
\begin{gather*}
\mathbf{u}_{\epsilon_{\boldsymbol{m}}} \rightarrow \mathbf{u} \quad \text { weakly in } \mathbf{V}_{\gamma}, \quad \text { as } m \rightarrow \infty, \tag{26}\\
\left|\mathbf{D}\left(\mathbf{u}_{\epsilon_{\boldsymbol{m}}}\right)\right|^{\gamma-2} \mathbf{D}\left(\mathbf{u}_{\epsilon_{\boldsymbol{m}}}\right) \rightarrow \mathbf{S}_{1} \quad \text { weakly in } \mathbf{L}^{\gamma^{\prime}}(\Omega), \quad \text { as } m \rightarrow \infty, \tag{27}\\
\left|\mathbf{D}\left(\mathbf{u}_{\epsilon_{\boldsymbol{m}}}\right)\right|^{q(\mathbf{x})-2} \mathbf{D}\left(\mathbf{u}_{\epsilon_{\boldsymbol{m}}}\right) \rightarrow \mathbf{S}_{2} \quad \text { weakly in } \mathbf{L}^{\gamma^{\prime}}(\Omega), \quad \text { as } m \rightarrow \infty, \tag{28}\\
\mathbf{u}_{\epsilon_{\boldsymbol{m}}} \otimes \mathbf{u}_{\epsilon_{\boldsymbol{m}}} \Phi_{\epsilon_{\boldsymbol{m}}}\left(\left|\mathbf{u}_{\epsilon_{\boldsymbol{m}}}\right|\right) \rightarrow \mathbf{G} \quad \text { weakly in } \mathbf{L}^{\frac{\gamma^{*}}{2}}(\Omega), \quad \text { as } m \rightarrow \infty \tag{29}
\end{gather*}
$$

- Using (27)-(29), we can pass to the limit $m \rightarrow \infty$ in
$\int_{\Omega}\left(\mu_{\mathbf{1}}\left|\mathbf{D}\left(\mathbf{u}_{\epsilon_{\boldsymbol{m}}}\right)\right|^{\gamma-2}+\mu_{2}\left|\mathbf{D}\left(\mathbf{u}_{\epsilon_{\boldsymbol{m}}}\right)\right|^{q(\mathbf{x})-2}\right) \mathbf{D}\left(\mathbf{u}_{\epsilon_{\boldsymbol{m}}}\right): \mathbf{D}(\varphi) d \mathbf{x}=\int_{\Omega}\left[\mathbf{u}_{\epsilon_{\boldsymbol{m}}} \otimes \mathbf{u}_{\epsilon_{\boldsymbol{m}}} \Phi_{\epsilon_{\boldsymbol{m}}}\left(\left|\mathbf{u}_{\epsilon_{\boldsymbol{m}}}\right|\right)+\mathbf{F}\right]: \mathbf{D}(\varphi)$
valid for all $\varphi \in \mathcal{V}$, to obtain

$$
\int_{\Omega}\left(\mu_{1} \mathbf{S}_{1}+\mu_{2} \mathbf{S}_{2}-\mathbf{G}-\mathbf{F}\right): \mathbf{D}(\varphi) d \mathbf{x}=0 \quad \forall \varphi \in \mathcal{V}
$$

- Due to (26), the application of Sobolev's compact imbedding theorem implies

$$
\begin{equation*}
\mathbf{u}_{\epsilon_{\boldsymbol{m}}} \rightarrow \mathbf{u} \quad \text { strongly in } \mathbf{L}^{\kappa}(\Omega), \quad \text { as } m \rightarrow \infty, \quad \text { for any } \kappa: 1 \leq \kappa<\gamma^{*} . \tag{32}
\end{equation*}
$$

- Since (16) implies $2<\gamma^{*}$, it follows from (32) that

$$
\begin{equation*}
\mathbf{u}_{\epsilon_{\boldsymbol{m}}} \rightarrow \mathbf{u} \quad \text { strongly in } \mathbf{L}^{2}(\Omega), \quad \text { as } m \rightarrow \infty . \tag{33}
\end{equation*}
$$

- Using (19)) and the result (33), we can prove that

$$
\begin{equation*}
\mathbf{u}_{\epsilon_{\boldsymbol{m}}} \otimes \mathbf{u}_{\epsilon_{\boldsymbol{m}}} \Phi_{\epsilon_{\boldsymbol{m}}}\left(\left|\mathbf{u}_{\epsilon_{\boldsymbol{m}}}\right|\right) \rightarrow \mathbf{u} \otimes \mathbf{u} \quad \text { strongly in } \mathbf{L}^{1}(\Omega), \quad \text { as } m \rightarrow \infty . \tag{34}
\end{equation*}
$$

- Then gathering the information of (29) and (34), we see that $\mathbf{G}=\mathbf{u} \otimes \mathbf{u}$
- Now in the limit $(m \rightarrow \infty)$ of the integral equation, we have

$$
\begin{equation*}
\int_{\Omega}\left(\mu_{1} \mathbf{S}_{1}+\mu_{2} \mathbf{S}_{2}-\mathbf{u} \otimes \mathbf{u}-\mathbf{F}\right): \mathbf{D}(\varphi) d \mathbf{x}=0 \quad \forall \varphi \in \mathcal{V} \tag{35}
\end{equation*}
$$

- Since we shall use test functions which are not divergence free, we first have to determine the approximative pressure from the weak formulation (30).
- First, let ω^{\prime} be a fixed but arbitrary open bounded subset of Ω such that

$$
\begin{equation*}
\omega^{\prime} \subset \subset \Omega \text { and } \partial \omega^{\prime} \text { is Lipschitz } \tag{36}
\end{equation*}
$$

- We use a version of de Rham's Theorem ${ }^{3}$ (Bogovskiii (1980) and Pileckas (1983)) to prove the existence of a unique function

$$
\begin{equation*}
p_{\epsilon_{\boldsymbol{m}}} \in \mathbf{L}^{r^{\prime}}\left(\omega^{\prime}\right), \quad 1<r \leq r_{0}:=\min \left\{\gamma^{\prime}, \frac{\gamma^{*}}{2}\right\}, \quad \text { with } \quad \int_{\omega^{\prime}} p_{\epsilon_{\boldsymbol{m}}} d \mathbf{x}=0 \tag{37}
\end{equation*}
$$

and such that (for all $\varphi \in \mathbf{W}_{0}^{1, r^{\prime}}\left(\omega^{\prime}\right)$)

$$
\begin{aligned}
& \int_{\omega^{\prime}}\left(\mu_{1}\left|\mathbf{D}\left(\mathbf{u}_{\epsilon_{\boldsymbol{m}}}\right)\right|^{\gamma-2}+\mu_{2}\left|\mathbf{D}\left(\mathbf{u}_{\epsilon_{\boldsymbol{m}}}\right)\right|^{q(\mathbf{x})-2}\right) \mathbf{D}\left(\mathbf{u}_{\epsilon_{\boldsymbol{m}}}\right): \mathbf{D}(\varphi) d \mathbf{x}= \\
& \int_{\omega^{\prime}} \mathbf{F}: \mathbf{D}(\varphi) d \mathbf{x}+\int_{\omega^{\prime}} \mathbf{u}_{\epsilon_{\boldsymbol{m}}} \otimes \mathbf{u}_{\epsilon_{\boldsymbol{m}}} \Phi_{\epsilon_{\boldsymbol{m}}}\left(\left|\mathbf{u}_{\epsilon_{\boldsymbol{m}}}\right|\right): \mathbf{D}(\varphi) d \mathbf{x}+\int_{\omega^{\prime}} p_{\epsilon_{\boldsymbol{m}}} \operatorname{div} \varphi d \mathbf{x}
\end{aligned}
$$

- Passing to the limit $m \rightarrow \infty$, we obtain (for all $\varphi \in \mathbf{W}_{0}^{1, r^{\prime}}\left(\omega^{\prime}\right)$)

$$
\begin{equation*}
\int_{\omega^{\prime}}\left(\mu_{1} \mathbf{S}_{1}+\mu_{2} \mathbf{S}_{2}-\mathbf{u} \otimes \mathbf{u}-\mathbf{F}\right): \mathbf{D}(\varphi) d \mathbf{x}=\int_{\omega^{\prime}} p_{0} \operatorname{div} \varphi d \mathbf{x} \tag{38}
\end{equation*}
$$

[^1]- Let ω be a fixed but arbitrary domain such that

$$
\begin{equation*}
\omega \subset \subset \omega^{\prime} \subset \subset \Omega \text { and } \partial \omega \text { is } C^{2} . \tag{39}
\end{equation*}
$$

- By Simader and Sohr (1996) and Wolf (2007), there exist unique functions

$$
\begin{equation*}
p_{\epsilon_{\boldsymbol{m}}}^{1} \in \mathrm{~A}^{\gamma^{\prime}}(\omega), \quad p_{\epsilon_{\boldsymbol{m}}}^{2} \in \mathrm{~A}^{\frac{\gamma^{*}}{2}}(\omega) \tag{40}
\end{equation*}
$$

where $\mathrm{A}^{s}(\omega):=\left\{a \in \mathrm{~L}^{s}(\omega): a=\triangle u, \quad u \in \mathrm{~W}_{0}^{2, s}(\omega)\right\}$ such that

$$
\begin{gather*}
\left\|p_{\epsilon_{\boldsymbol{m}}}^{1}\right\|_{L^{\gamma^{\prime}}(\omega)} \leq C_{1}\left\|\left|\mathbf{D}\left(\mathbf{u}_{\epsilon_{\boldsymbol{m}}}\right)\right|^{\gamma-2} \mathbf{D}\left(\mathbf{u}_{\epsilon_{\boldsymbol{m}}}\right)-\mathbf{S}_{1}\right\|_{\mathbf{L}^{\prime}(\omega)}+ \\
 \tag{41}\\
C_{2}\left\|\left|\mathbf{D}\left(\mathbf{u}_{\epsilon_{\boldsymbol{m}}}\right)\right|^{q(\mathbf{x})-2} \mathbf{D}\left(\mathbf{u}_{\epsilon_{\boldsymbol{m}}}\right)-\mathbf{S}_{2}\right\|_{\mathbf{L}^{\prime}(\omega)}, \tag{42}\\
\left\|p_{\epsilon_{\boldsymbol{m}}}^{2}\right\|_{L^{\frac{\gamma^{*}}{2}}(\omega)} \leq C_{3}\left\|\mathbf{u}_{\epsilon_{\boldsymbol{m}}} \otimes \mathbf{u}_{\epsilon_{\boldsymbol{m}}} \Phi_{\epsilon_{\boldsymbol{m}}}\left(\left|\mathbf{u}_{\epsilon_{\boldsymbol{m}}}\right|\right)-\mathbf{u} \otimes \mathbf{u}\right\|_{\mathrm{q}^{\frac{\gamma^{*}}{2}}(\omega)} .
\end{gather*}
$$

and

$$
p_{\epsilon_{\boldsymbol{m}}}-p_{0}=p_{\epsilon_{\boldsymbol{m}}}^{1}+p_{\epsilon_{\boldsymbol{m}}}^{2} .
$$

- Then
$\operatorname{div}\left(\left|\mathbf{D}\left(\mathbf{u}_{\epsilon_{\boldsymbol{m}}}\right)\right|^{\gamma-2} \mathbf{D}\left(\mathbf{u}_{\epsilon_{\boldsymbol{m}}}\right)-\mathbf{S}_{1}+\left|\mathbf{D}\left(\mathbf{u}_{\epsilon_{\boldsymbol{m}}}\right)\right|^{q(\mathrm{x})-2} \mathbf{D}\left(\mathbf{u}_{\epsilon_{\boldsymbol{m}}}\right)-\mathbf{S}_{2}\right)-$
in $\mathcal{D}^{\prime}(\omega)$.
$\operatorname{div}\left(\mathbf{u}_{\epsilon_{\boldsymbol{m}}} \otimes \mathbf{u}_{\epsilon_{\boldsymbol{m}}} \Phi_{\epsilon_{\boldsymbol{m}}}\left(\left|\mathbf{u}_{\epsilon_{\boldsymbol{m}}}\right|\right)-\mathbf{u} \otimes \mathbf{u}\right)=\nabla\left(p_{\epsilon_{\boldsymbol{m}}}^{1}+p_{\epsilon_{\boldsymbol{m}}}^{2}\right)$
- Using the Hardy-Littlewood maximal operator, we can prove that for all $m \in \mathbb{N}$ and all $j \in \mathbb{N}_{0}$ there exists $\lambda_{m, j} \in\left[2^{2^{j}}, 2^{j^{j+1}}\right)$ such that

$$
\begin{gather*}
\mathcal{L}_{N}\left(F_{m, j}\right) \leq 2^{-j} \lambda_{\boldsymbol{m}, j}^{-\kappa}\left\|\mathbf{w}_{\epsilon_{\boldsymbol{m}}}\right\|_{\mathbf{L}^{\kappa}\left(\mathbb{R}^{N}\right)}, \quad \text { for any } \kappa: 1 \leq \kappa<\gamma^{*}, \tag{44}\\
\mathcal{L}_{N}\left(G_{m, j}\right) \leq 2^{-j} \lambda_{\boldsymbol{m}, j}^{-\gamma}\left\|\nabla \mathbf{w}_{\epsilon_{\boldsymbol{m}}}\right\|_{\mathbf{L}^{\gamma}\left(\mathbb{R}^{\boldsymbol{N}}\right)}, \tag{45}
\end{gather*}
$$

where

$$
\begin{aligned}
& F_{m, j}:=\left\{\mathbf{x} \in \mathbb{R}^{N}: \mathcal{M}\left(\left|\mathbf{w}_{\epsilon_{\boldsymbol{m}}}\right|\right)(\mathbf{x})>2 \lambda_{m, j}\right\}, \\
& G_{m, j}:=\left\{\mathbf{x} \in \mathbb{R}^{N}: \mathcal{M}\left(\left|\nabla \mathbf{w}_{\epsilon_{\boldsymbol{m}}}\right|\right)(\mathbf{x})>2 \lambda_{m, j}\right\} . \\
& \mathcal{M}\left(\left|\mathbf{w}_{\epsilon_{\boldsymbol{m}}}\right|\right)(\mathbf{x}):=\sup _{0<R<\infty} \frac{1}{\mathcal{L}_{N}\left(B_{R}(\mathbf{x})\right)} \int_{B_{R}(\mathbf{x})}\left|\mathbf{w}_{\epsilon_{\boldsymbol{m}}}(\mathbf{y})\right| d \mathbf{y}, \\
& \mathcal{M}\left(\left|\nabla \mathbf{w}_{\epsilon_{\boldsymbol{m}}}\right|\right)(\mathbf{x}):=\sup _{0<R<\infty} \frac{1}{\mathcal{L}_{N}\left(B_{R}(\mathbf{x})\right)} \int_{B_{R}(\mathbf{x})}\left|\nabla \mathbf{w}_{\epsilon_{\boldsymbol{m}}}(\mathbf{y})\right| d \mathbf{y} \cdot s
\end{aligned}
$$

- Setting $R_{m, j}:=F_{m, j} \cup G_{m, j}$, we can prove that

$$
\begin{equation*}
\limsup _{m \rightarrow \infty} \mathcal{L}_{N}\left(R_{m, j}\right) \leq \limsup _{m \rightarrow \infty} C 2^{-j} \lambda_{m, j}^{-\gamma} \tag{46}
\end{equation*}
$$

- By Acerbi and Fusco (1988), there exists

$$
\begin{gather*}
\mathbf{z}_{m, j} \in \mathbf{W}^{1, \infty}\left(\mathbb{R}^{N}\right), \quad \mathbf{z}_{m, j}=\left\{\begin{array}{cc}
\mathbf{w}_{\epsilon_{\boldsymbol{m}}} & \text { in } \omega \backslash A_{m, j} \\
0 & \mathbb{R}^{N} \backslash \omega
\end{array}\right. \tag{47}\\
A_{m, j}:=\left\{\mathbf{x} \in \omega: \mathbf{z}_{m, j}(\mathbf{x}) \neq \mathbf{w}_{\epsilon_{\boldsymbol{m}}}(\mathbf{x})\right\} \tag{48}
\end{gather*}
$$

such that

$$
\begin{gather*}
\left\|\mathbf{z}_{m, j}\right\|_{\mathbf{L} \infty}(\omega) \leq 2 \lambda_{m, j} \tag{49}\\
\left\|\nabla \mathbf{z}_{m, j}\right\|_{\mathbf{L} \infty(\omega)} \leq C \lambda_{m, j}, \quad C=C(N, \omega) \tag{50}
\end{gather*}
$$

- By Landes (1996),

$$
\begin{equation*}
A_{m, j} \subset \omega \cap R_{m, j} . \tag{51}
\end{equation*}
$$

- As a consequence,

$$
\begin{equation*}
\limsup _{m \rightarrow \infty} \mathcal{L}_{N}\left(A_{m, j}\right) \leq \limsup _{m \rightarrow \infty} C 2^{-j} \lambda_{m, j}^{-\gamma} \tag{52}
\end{equation*}
$$

- We can prove, successively, that for any $j \in \mathbb{N}_{0}$

$$
\begin{array}{r}
\mathbf{z}_{m, j} \rightarrow \mathbf{0} \quad \text { weakly in } \mathbf{W}_{0}^{1, \gamma}(\omega), \quad \text { as } m \rightarrow \infty \\
\mathbf{z}_{m, j} \rightarrow \mathbf{0} \text { strongly in } \mathbf{L}^{\kappa}(\omega), \quad \text { as } m \rightarrow \infty, \quad \text { for any } \kappa: 1 \leq \kappa<\gamma^{*}, \\
\mathbf{z}_{m, j} \rightarrow \mathbf{0} \text { strongly in } \mathbf{L}^{s}(\omega), \quad \text { as } m \rightarrow \infty, \quad \text { for any } s: 1 \leq s<\infty, \\
\mathbf{z}_{\boldsymbol{m}, j} \rightarrow \mathbf{0} \text { weakly in } \mathbf{W}_{0}^{1, s}(\omega), \quad \text { as } m \rightarrow \infty, \quad \text { for any } s: 1 \leq s<\infty \tag{55}
\end{array}
$$

- We prove that

$$
\begin{align*}
& \mu_{1} \int_{\omega}\left(\left|\mathbf{D}\left(\mathbf{u}_{\epsilon_{\boldsymbol{m}}}\right)\right|^{\gamma-2} \mathbf{D}\left(\mathbf{u}_{\epsilon_{m}}\right)-|\mathbf{D}(\mathbf{u})|^{\gamma-2} \mathbf{D}(\mathbf{u})\right): \mathbf{D}\left(\mathbf{z}_{m, j}\right) d \mathbf{x}+ \\
& \mu_{2} \int_{\omega}\left(\left|\mathbf{D}\left(\mathbf{u}_{\epsilon_{\boldsymbol{m}}}\right)\right|^{q(\mathbf{x})-2} \mathbf{D}\left(\mathbf{u}_{\epsilon_{\boldsymbol{m}}}\right)-|\mathbf{D}(\mathbf{u})|^{q(\mathbf{x})-2} \mathbf{D}(\mathbf{u})\right): \mathbf{D}\left(\mathbf{z}_{m, j}\right) d \mathbf{x}= \\
& \mu_{1} \int_{\omega}\left(\mathbf{S}_{1}-|\mathbf{D}(\mathbf{u})|^{\gamma-2} \mathbf{D}(\mathbf{u})\right): \mathbf{D}\left(\mathbf{z}_{m, j}\right) d \mathbf{x}+ \\
& \mu_{2} \int_{\omega}\left(\mathbf{S}_{2}-|\mathbf{D}(\mathbf{u})|^{q(x)-2} \mathbf{D}(\mathbf{u})\right): \mathbf{D}\left(\mathbf{z}_{m, j}\right) d \mathbf{x}+ \tag{56}\\
& \int_{\omega} p_{\epsilon_{\boldsymbol{m}}}^{1} \operatorname{div} \mathbf{z}_{m, j} d \mathbf{x}+ \\
& \left.\int_{\omega}\left(\mathbf{u}_{\epsilon_{\boldsymbol{m}}} \otimes \mathbf{u}_{\epsilon_{\boldsymbol{m}}} \Phi_{\epsilon_{\boldsymbol{m}}}| | \mathbf{u}_{\epsilon_{\boldsymbol{m}}} \mid\right)-\mathbf{u} \otimes \mathbf{u}+p_{\epsilon_{\boldsymbol{m}}}^{2} \mathbf{I}\right): \mathbf{D}\left(\mathbf{z}_{m, j}\right) d \mathbf{x} \\
& \left.:=J_{m, j}^{1}+J_{m, j}^{2}+J_{m, j}^{3}+J_{m, j}^{4} \leq C 2^{-\frac{j}{\gamma}} \text { (as } m \rightarrow \infty\right) .
\end{align*}
$$

- Using an argument of Dal Maso and Murat (1998), we start by proving, for any $\theta \in(0,1)$, that

$$
\begin{align*}
& \limsup _{m \rightarrow \infty} \int_{\omega} g_{\epsilon_{\boldsymbol{m}}}^{\theta} d \mathbf{x} \leq C_{1} 2^{-\theta \frac{j}{\gamma}}+C_{2} 2^{-\theta \frac{\dot{j}}{\gamma}-(1-\theta) j} \rightarrow 0(\text { as } j \rightarrow \infty) \tag{57}\\
& g_{\epsilon_{\boldsymbol{m}}}:=\left.\mu_{1}| | \mathbf{D}\left(\mathbf{u}_{\epsilon_{\boldsymbol{m}}}\right)\right|^{\gamma-2} \mathbf{D}\left(\mathbf{u}_{\epsilon_{\boldsymbol{m}}}\right)-|\mathbf{D}(\mathbf{u})|^{\gamma-2} \mathbf{D}(\mathbf{u}) \mid+ \\
&\left.\mu_{2}| | \mathbf{D}\left(\mathbf{u}_{\epsilon_{\boldsymbol{m}}}\right)\right|^{q(\mathbf{x})-2} \mathbf{D}\left(\mathbf{u}_{\epsilon_{\boldsymbol{m}}}\right)-|\mathbf{D}(\mathbf{u})|^{q(\mathbf{x})-2} \mathbf{D}(\mathbf{u}) \mid
\end{align*}
$$

- Then for any $\theta \in(0,1)$

$$
\limsup _{m \rightarrow \infty} \int_{\omega} g_{\epsilon_{\boldsymbol{m}}}^{\theta} d \mathbf{x}=0
$$

- Passing to a subsequence,

$$
\begin{equation*}
g_{\epsilon_{\boldsymbol{m}}} \rightarrow 0 \quad \text { a.e. in } \omega, \quad \text { as } m \rightarrow \infty \tag{58}
\end{equation*}
$$

- Using the monotonicity and continuity on $\mathbf{D}(\mathbf{u})$,

$$
\begin{equation*}
\mathbf{D}\left(\mathbf{u}_{\epsilon_{\boldsymbol{m}}}\right) \rightarrow \mathbf{D}(\mathbf{u}) \quad \text { a.e. in } \omega, \quad \text { as } m \rightarrow \infty . \tag{59}
\end{equation*}
$$

- Vitali's theorem allow us to conclude that $\mathbf{S}_{1}=|\mathbf{D}(\mathbf{u})|^{\gamma-2} \mathbf{D}(\mathbf{u})$ and $\mathbf{S}_{2}=|\mathbf{D}(\mathbf{u})|^{q(\mathbf{x})-2} \mathbf{D}(\mathbf{u})$.

[^0]: ${ }^{2}$ In the linear viscoelastic regime the stress responses to successive deformations are additive.

[^1]: ${ }^{3}$ de Rham (1931):g $=\nabla p$ for some p iff $\int_{n} \mathbf{g} \cdot \mathbf{v} d \mathbf{x d t}=0$ for all $\overline{\mathbf{v}}: \operatorname{div} \overline{\overline{\mathbf{v}}}=0$

