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Nematic liquid crystals

liquid crystals are materials consisting molecules having rod or
disc-like shapes

over tiny temperature ranges multiple phase transitions from
solid to liquid occur

in these transitions anisotropic properties are important

if the molecules are elongated, usually a nematic phase arises
(think of a bunch of toothsticks)



Nematic liquid crystals

Nematic liquid crystal film on glycerin surface



Frank’s free energy and dissipativity
The direction of the molecules can be represented by an order
parameter n ∈ S

n−1

We introduce Frank’s free energy

σF (n, ∇n) =
1

2
K1(∇·n)2+

1

2
K2 (n · (∇ ∧ n))2+
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K3 (n ∧ (∇ ∧ n))2 .
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We assume dissipativity:

ΠV + ΠS =
d

dt

∫

V
(1

2ρv · v + σF ) dV +

∫

V
D dV

dove D ≥ 0.



The resulting system

After some computations we obtain [F.-H. Lin, C. Liu ’95, ‘96]:















ρu̇ − ν∆u + ∇p = −(∇n)T∆n + ρF

∇ · u = 0

ṅ = ∆n − f(n)
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ρu̇ − ν∆u + ∇p = −(∇n)T∆n + ρF

∇ · u = 0

ṅ = ∆n − f(n)

The constraint n ∈ S
n−1 can be relaxed:

F
.
=

1

4ǫ2
(|n|2 − 1)2 f(n)

.
= ∇nF =

1

ǫ2
(|n|2 − 1)n.

We finally get...
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∂tu + (u · ∇)u − ν∆u + ∇p = −∇dt∆d + g(t)

∇ · u = 0

∂td + (u · ∇)d = ∆d − f(d)

|d| ≤ 1

in Ω × (0, ∞)

u(x, 0) = u0, d(x, 0) = d0 per x ∈ Ω

u(x, t) = 0, d(x, t) = h(x, t) su ∂Ω × (0, ∞)



Known results

no-slip + Dirichlet, autonomous: [F.-H. Lin & C. Liu ‘95, ‘96],
[S. Shkoller ‘01], [F. Guillén-Gonzáles et al. ‘09], [H. Wu ‘10]

no-slip + Dirichlet, variable density: [F. Jiang & Z. Tan ‘09],
[X.-G. Liu & Z.-Y. Zhang ‘09]

no-slip + Dirichlet non-autonomous, convergence to
stationary states: [M. Grasselli, H. Wu ‘11, preprint]

free-slip + Neumann: [C. Liu & J. Shen ‘01], [E. Feireisl,
E. Rocca & G. Schimperna ‘11–non-isothermal case]

Ω = R3, autonomous: [J. Fan & T. Ozawa ‘09], [X. Hu &
D. Wang ‘10]

numerical approximation: [C. Liu & N.J. Walkington ‘00, ‘02],
[P. Lin & C. Liu ‘06]



Overview

We will consider

a non-autonomous bulk force g(t)

no-slip B.C. on u

non-autonomous Dirichlet B.C. on the director d.

Our results:

existence (if n = 2, 3) and uniqueness of solutions (for n = 2
only)

global attractor under general non-autonomous
(“non-compact”) forcing terms

exponential attractors in the case of periodic forcing terms



Weak solutions

Definition

Let T > 0. A couple (u, d) is a weak solution if
(u, d) ∈ L2(0, T ;V × H2), (∂tu, ∂td) ∈ Lp(0, T ;V∗) × L2(0, T ;L2)
(with p = 2 if n = 2 and p = 4/3 if n = 3), if it satisfies the B.C.
and the initial datum and if:

〈∂tu, v〉 + 〈(u · ∇)u, v〉 + ν (∇u, ∇v) + (∆d, ∇dv) = 〈g(t), v〉
∀v ∈ V, a.e. in (0, T )

∂td(t) + (u(t) · ∇)d(t) = ∆d(t) − f(d(t)) e |d(x, t)| ≤ 1 q.o.

Definition

The solution is strong if, in addition,
(u, d) ∈ L2(0, T ; (H ∩ H2) × H3). In this case it satisfies the
system a.e.



Existence and uniqueness

Theorem

Let n = 2, 3, if

g ∈ L2(0, T ;V∗)

h ∈ L2(0, T ;H3/2(∂Ω))

∂th ∈ L2(0, T ;H−1/2(∂Ω)), |h| ≤ 1a.e. on ∂Ω × (0, T )

u0 ∈ H

d0 ∈ H1, |d0| ≤ 1a.e. in Ω,

then there exists a weak solution

Theorem

For n = 2 this solution is also unique. If the data are regular, it is
also a strong solution



Sketch of proof (existence)

Lifting of the non-autonomous boundary data for d

Schauder theorem on the approximating Galerkin scheme

C(0, T ;Vm)

L2(0, T ;H2) ∩ L∞(0, T ;H1)

H1(0, T ;Vm)

u d



The general theory

Definition

A family {U(t, τ)}, t > τ , U(t, τ) : X → X is a process if

U(t, s)U(s, τ) = U(t, τ) ∀t, s ≥ 0, ∀τ ∈ R

U(τ, τ) = I ∀τ ∈ R

Definition

A set K ⊂ X is uniformly (w.r.t. σ ∈ Σ) attracting for the process
{Uσ(t, τ)}, if ∀τ ∈ R and ∀B bounded:

lim
t→∞

sup
σ∈Σ

distX (Uσ(t, τ)B, K ) = 0
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Definition

A closed set AΣ ⊂ X is the global attractor of {Uσ(t, τ)} if:

AΣ is uniformly (w.r.t. σ ∈ Σ) attracting

AΣ is contained in every other closed uniformly attracting set

Definition

{Uσ(t, τ)} has uniformly compact ω-limit if ∀τ ∈ R and ∀B
bounded:

Bt =
⋃

σ∈Σ

⋃

s≥t

Uσ(s, τ)B

is bounded for all t and if limt→∞ α(Bt) = 0.
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The general theory

Theorem (S. Lu et al. ‘05)

Let {Uσ(t, τ)} be a process (X × Σ, X )-weakly continuous having
uniformly compact ω-limit. Let B0 be bounded and uniformly
weakly attracting. Then the extended semigroup has the global
attractor A = ω(B0 × Σ) which is compact (in the weak topology).
Moreover

ΠXA = AΣ is the uniform attractor of {Uσ(t, τ)}
(in the strong topology!)

ΠΣA = Σ

A =
⋃

σ∈Σ Kσ(0) × {σ}



Normal functions

Definition

f ∈ L2
loc(R;E ) is normal if ∀ǫ > 0 ∃η > 0:

sup
t∈R

∫ t+η

t
|ϕ(s)|2E ds ≤ ǫ.

L2
n(R;E ) will be the space of E-valued normal functions

In general, the translation hull of normal functions is non-compact
Example: the translation hull of

f (t) =
∑

n

enχ[n,n+1](t), {en} basis for E

is non-compact in Lp
loc(0, ∞;E )



Attractors

Theorem

Let n = 2 and

g ∈ L2
n(R, V∗)

h ∈ L2
n(R, H3/2(∂Ω))

∂th ∈ L2
n(R, H−1/2(∂Ω))

Then the compact, uniform (w.r.t. (g, h) ∈ Hw (g) × Hw (h)) in
H × H1) attractor exists. In particular, it attracts bounded subsets
of H × H1 in H × H1 uniformly (w.r.t. (g, h) ∈ Hw (g) × Hw (h))



Exponential attractors

Definition

A compact set M ⊂ X is an exponential attractor for the
semigroup {S(t)} if it has finite fractal dimension, it is positively
invariant and it attracts bounded subsets exponentially fast:

distX (S(t)B, M) ≤ Q(|B|X )e
−αt , t ≥ 0, α > 0, Q monotonic.

Definition

Let X1 ⋐ X . S has the smoothing property on B if ∃C(B) > 0:

|Su − Sv |X1 ≤ C |u − v |X ∀u, v ∈ B.

Theorem (M. Efendiev, A. Miranville, S. Zelik ‘00)

If S has the smoothing property and SOδ(B) ⊂ B, then there
exists an exponential attractor MS in the X1-topology for the
discrete semigroup.
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Quasi-periodic functions

Definition

Let (α1, . . . , αk) be incommensurable and let φ : Rk → Ξ be
continuous and 2π-periodic in every argument. Then σ(s)

.
= φ(αs)

is a Ξ-valued quasi-periodic function

The translation hull of a quasi-periodic function is homomorphic to
T

k .

Theorem

Let g, h and ∂th be L2, H5/2(∂Ω)− and H1/2(∂Ω)-valued
quasi-periodic functions. Then there exists an exponential
attractor M for the extended semigroup {S(t)} on H × H1 × T

k .
Moreover, Π1M is the uniform exponential attractor (w.r.t.
θ ∈ T

k) for the process and Π2M = T
k .
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Further developments

Estimate of the fractal dimension of the global attractor

Study of more general Ericksen-Leslie-type models

Numerics

Reduced equations for moving singularities
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