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Description of Problem Pα, β

∂2
t w− α∆∂tw− β∆w + ∂tu = f on [0, T]× Ω (1)

∂tu−∆u + γ(u) + g(u) 3 ∂tw on [0, T]× Ω (2)

∂nw = 0 , ∂nu = 0 on [0, T]× ∂Ω (3)

w(0, ·) = w0 , ∂tw(0, ·) = v0 , u(0, ·) = u0 on Ω . (4)

• Ω ⊆ R3 is a bounded smooth domain, T > 0 a finite time;
• u is the phase variable;
• w is the thermal displacement: if θ is the temperature, then by

definition

w(t, x) = w0(x) +

∫ t

0
θ(s, x) ds for (t, x) ∈ [0, T]× Ω ;

• α, β > 0 are parameters, γ ⊆ R2 is a maximal monotone graph, g
a Lipschitz–continuous function on R, f a given source term.
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• Let

φ : R −→ [0, +∞] be a proper l.s.c. convex function,

φ(0) = 0 , ∂φ = γ ,

and let G be a smooth function s.t. G′ = g. If we define the free
energy

ψ(θ, u) =

∫
Ω

{
1
2
|∇u|2 + φ(u) + G(u)− 1

2
θ2 − θu

}
,

then the equation (2) follows from

∂tu + duψ(θ, u) = 0 .

• The equation (1) expresses the energetic balance

∂t (θ + u) + div q = f ,

where θ + u = −dθψ(θ, u) is the enthalpy and q the thermal flux.
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Some examples for the bulk potential φ+ G:
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• the Caginalp “double well” potential

φ(u) + G(u) = (1− u2)2 , u ∈ R ;
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• the logaritmic potential, defined on (−1, 1) by

γ(u) = log(1 + u)− log(1− u) , g(u) = −2u ;
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• the “double obstacle” potential, s.t.

γ = ∂I[−1, 1] , g(u) = −2u .
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Some constitutive assumptions for the thermal flux q, according to
the Green and Naghdi’s theory, in the linearized versions:

• Type I (Fourier)
q = −α∇∂tw , α > 0

• Type II (Gurtin–Pipkin)

q = −β∇w , β > 0

• Type III
q = −α∇∂tw− β∇w , α , β > 0 .

In this work, we consider:

Problem Pα, β Type III

Limit as β ↘ 0 Type I

Limit as α↘ 0 Type II
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Study of Problem Pα, β

Set
V = H1(Ω) , H = L2(Ω) ,

W =
{

v ∈ H2(Ω) : ∂nv = 0 on ∂Ω
}
.

Problem Pα, β . Finding (w, u, ξ) which satisfies, for all v ∈ V and a.a.
t ∈ [0, T],

w ∈W2, 1 (0, T; V′) ∩W1,∞ (0, T; H) ∩H1 (0, T; V)

u ∈ H1 (0, T; V′) ∩ C0 ([0, T]; H) ∩ L2 (0, T; V)

ξ ∈ L2([0, T]× Ω) , u ∈ D(γ) and ξ ∈ γ(u) a.e.〈
∂2

t w(t), v
〉

+ α (∇∂tw(t) + β∇w(t), ∇v)H + 〈∂tu(t), v〉 = 〈f (t), v〉

〈∂tu(t), v〉+ (∇u(t), ∇v)H + (ξ(t) + g(u)(t), v)H = (∂tw(t), v)H .
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We assume
f ∈ L2 (0, T; V′) + L1 (0, T; H) (5)

w0 ∈ V , v0 ∈ H , u0 ∈ H , φ(u0) ∈ L1(Ω) . (6)

Theorem (Existence and uniqueness for Problem Pα, β)

Under the assumptions (5)–(6), Problem Pα, β admits a unique solution.

The proof is based on
• the Faedo–Galerkin approximation scheme;
• the Yosida regularization of γ:

γε =
1
ε

{
Id− (Id + εγ)

−1
}
, 0 < ε ≤ 1 .
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Theorem (Regularity and strong solution)

If the hypotheses
f ∈ L2 (0, T; H) + L1 (0, T; V) (7)

w0 ∈W , v0 ∈ V , u0 ∈ V , φ(u0) ∈ L1(Ω) , (8)

hold, then the solution (w, u, ξ) of Problem Pα, β fulfills

w ∈W2, 1 (0, T; H) ∩W1 ,∞ (0, T; V) ∩H1 (0, T; W)

u ∈ H1 (0, T; H) ∩ C0 ([0, T]; V) ∩ L2 (0, T; W)

and, in particular, it is a strong solution, i.e., it satisfies the equations (1)–(4)
pointwise a.e.

The two results above hold true when Ω ⊆ RN, for all N ≥ 1.
On the other hand, the assumption N ≤ 3 will be exploited in the
sequel.
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Theorem (L∞ estimates)

Let γ0(s) denote the unique element of γ(s) having minimal modulus, for all
s ∈ R. In addition to (7)–(8), we assume

u0 ∈W , u0 ∈ D(γ) q.o., γ0(u0) ∈ H ; (9)

then, we have

u ∈W1,∞ (0, T; H) ∩H1 (0, T; V) ∩ L∞ (0, T; W)

and, in particular, u ∈ C0
(
[0, T]× Ω

)
. Furthermore, if the assumptions

f ∈ L∞ (0, T; H) + Lr (0, T; V) for some r > 4/3 (10)

γ0(u0) ∈ L∞(Ω) (11)

hold, then

∂tw ∈ L∞((0, T)× Ω) , ξ ∈ L∞((0, T)× Ω) .
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Limit as β ↘ 0

In this section α > 0 is fixed. We denote by (wβ , uβ , ξβ) the solution of
Problem Pα, β .

Question. We ask whether, as β ↘ 0, there is any convergence

(wβ , uβ , ξβ) −→ (w, u, ξ) ,

where (w, u, ξ) is a solution of Problem Pα:

∂2
t w− α∆∂tw + ∂tu = f on [0, T]× Ω

∂tu−∆u + ξ + g(u) = ∂tw on [0, T]× Ω

u ∈ D(γ) , ξ ∈ γ(u) a.e. on [0, T]× Ω

∂nw = 0 , ∂nu = 0 on [0, T]× ∂Ω

w(·, 0) = w0 , ∂tw(·, 0) = v0 , u(·, 0) = u0 on Ω .
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Theorem (First error estimate as β ↘ 0)

Under the assumptions (5)–(6), Problem Pα has a unique solution; that is,
there exists a unique triplet (w, u, ξ) fulfilling

w ∈W2, 1 (0, T; V′) ∩W1,∞ (0, T; H) ∩H1 (0, T; V)

u ∈ H1 (0, T; V′) ∩ C0 ([0, T]; H) ∩ L2 (0, T; V)

ξ ∈ L2([0, T]× Ω) , u ∈ D(γ) and ξ ∈ γ(u) a.e.〈
∂2

t w(t), v
〉

+ α (∇∂tw(t), ∇v)H + 〈∂tu(t), v〉 = 〈f (t), v〉

〈∂tu(t), v〉+ (∇u(t), ∇v)H + (ξ(t) + g(u)(t), v)H = (∂tw(t), v)H

for all v ∈ V and a.a. t ∈ [0, T]. Furthermore, there is a constant c
independent of β s.t.

‖wβ − w‖H1(0, T; H)∩L∞(0, T; V) + ‖uβ − u‖L∞(0, T; H)∩L2(0, T; V) ≤ cβ .
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We have better estimates on the convergence error when γ is a
single–valued, smooth function (e.g.: “double–well" or logarithmic
potential).

Theorem (Second error estimate as β ↘ 0)

Suppose that γ : D(γ) −→ R is a single–valued, locally
Lipschitz–continuous function, and that f and the initial data fulfill the
strongest hypotheses. Then, the estimate

‖wβ − w‖W1,∞(0, T; V)∩H1(0, T; W)+

‖uβ − u‖H1(0, T; H)∩L∞(0, T; V)∩L2(0, T; W) ≤ cβ ,

holds true, for some constant c independent of β.
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Limit as α↘ 0

Let us fix β > 0 once and for all. We denote by (wα, uα, ξα) the
solution of Problem Pα, β .

Question. As α↘ 0, we ask whether the convergence

(wα, uα, ξα) −→ (w, u, ξ) , (12)

holds in some sense, where (w, u, ξ) is a solution of Problem Pβ :

∂2
t w− β∆w + ∂tu = f on [0, T]× Ω

∂tu−∆u + ξ + g(u) = ∂tw on [0, T]× Ω

u ∈ D(γ) , ξ ∈ γ(u) a.e. on [0, T]× Ω

∂nw = 0 , ∂nu = 0 on [0, T]× ∂Ω

w(·, 0) = w0 , ∂tw(·, 0) = v0 , u(·, 0) = u0 on Ω .

The well–posedness of Problem Pβ is already proved in literature.
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• Assuming (5)–(6), we can prove the weak convergence in (12).
• Under stronger hypotheses, we infer the strong convergence, with

an estimate on the convergence error.

Theorem (First error estimate as α↘ 0)

If we assume (5)–(6), as well as

f ∈ L2 (0, T; H) + L1 (0, T; V)

w0 ∈W , v0 ∈ V , u0 ∈ V , φ(u0) ∈ L1(Ω) ,

then there exists a constant c, independent of α, s.t.

‖wα − w‖W1,∞(0, T; H)∩L∞(0, T; V)+

‖uα − u‖L∞(0, T; H)∩L2(0, T; V) ≤ cα1/2 .
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• For the proof, it is convenient to introduce the new variable

y(t, x) :=

∫ t

0
u(s, x) ds + w(t, x) for (t, x) ∈ [0, T]× Ω .

• We obtain better estimates on the convergence error when

γ : R −→ R is a single–valued,
locally Lipschitz–continuous function

(13)

(e.g.: the Caginalp “double well” potential).
• If (13) holds, we can prove regularity results for Problems Pα, β

and Pβ , with α–independent estimates on the solution.
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Theorem (Second error estimate as α↘ 0)

In addition to (13), we require

f ∈W2, 1 (0, T; H) + W1, 1 (0, T; V)

w0 ∈W , v0 ∈W , u0 ∈ H3(Ω) ∩W , α∆v0 + β∆v0 + f (0) ∈ V .

Then, there exists a constant c, independent of α, which fulfills

‖wα − w‖W1,∞(0, T; H)∩L∞(0, T; V)+

‖uα − u‖H1(0, T; H)∩L∞(0, T; V)∩L2(0, T; W) ≤ cα

‖wα − w‖W1,∞(0, T; V)∩L∞(0, T; W) ≤ cα1/2 .
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Final remarks

• All the results hold true when Ω ⊆ R3 is, for instance, a convex
polyhedron.

• Problem Pα, β can be exploited to approximate Problem Pβ , via an
artificial viscosity method. The convergence results as α↘ 0 can
therefore be interpreted as estimates on the consistency error.

• Possible generalizations of this model:
- Non linear coupling of θ and u in the free energy functional

ψ(θ, u) =
∫
Ω

{1
2
|∇u|2 + φ(u) + G(u)− 1

2
θ2 − h(u)θ

}
;

- Non linearized versions of the Green and Nagdhi’s constitutive
hypotheses.
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