Alma Ticinensis Universitas • Università di Pavia
Dipartimento di Matematica "Felice Casorati"

On a phase field system interconnecting the Green and Naghdi types

Giacomo CANEVARI

Reporting on a joint work with Pierluigi COLLI

Multiphase for ADvanced MATerials
Cortona, September 20 ${ }^{\text {th }}, 2012$

Description of Problem $\mathbf{P}_{\alpha, \beta}$

$$
\begin{array}{cc}
\partial_{t}^{2} w-\alpha \Delta \partial_{t} w-\beta \Delta w+\partial_{t} u=f & \text { on }[0, T] \times \Omega \\
\partial_{t} u-\Delta u+\gamma(u)+g(u) \ni \partial_{t} w & \text { on }[0, T] \times \Omega \\
\partial_{n} w=0, \quad \partial_{n} u=0 \quad \text { on }[0, T] \times \partial \Omega \\
w(0, \cdot)=w_{0}, \quad \partial_{t} w(0, \cdot)=v_{0}, \quad u(0, \cdot)=u_{0} \quad \text { on } \Omega . \tag{4}
\end{array}
$$

- $\Omega \subseteq \mathbb{R}^{3}$ is a bounded smooth domain, $T>0$ a finite time;
- u is the phase variable;
- w is the thermal displacement: if θ is the temperature, then by definition

$$
w(t, x)=w_{0}(x)+\int_{0}^{t} \theta(s, x) d s \quad \text { for }(t, x) \in[0, T] \times \Omega ;
$$

- $\alpha, \beta>0$ are parameters, $\gamma \subseteq \mathbb{R}^{2}$ is a maximal monotone graph, g a Lipschitz-continuous function on \mathbb{R}, f a given source term.
- Let
$\phi: \mathbb{R} \longrightarrow[0,+\infty]$ be a proper l.s.c. convex function,

$$
\phi(0)=0, \quad \partial \phi=\gamma,
$$

and let G be a smooth function s.t. $G^{\prime}=g$. If we define the free energy

$$
\psi(\theta, u)=\int_{\Omega}\left\{\frac{1}{2}|\nabla u|^{2}+\phi(u)+G(u)-\frac{1}{2} \theta^{2}-\theta u\right\}
$$

then the equation (2) follows from

$$
\partial_{t} u+d_{u} \psi(\theta, u)=0 .
$$

- The equation (1) expresses the energetic balance

$$
\partial_{t}(\theta+u)+\operatorname{div} \mathbf{q}=f,
$$

where $\theta+u=-d_{\theta} \psi(\theta, u)$ is the enthalpy and \mathbf{q} the thermal flux.

Some examples for the bulk potential $\phi+G$:

- the Caginalp "double well" potential

$$
\phi(u)+G(u)=\left(1-u^{2}\right)^{2}, \quad u \in \mathbb{R} ;
$$

- the logaritmic potential, defined on $(-1,1)$ by

$$
\gamma(u)=\log (1+u)-\log (1-u), \quad g(u)=-2 u ;
$$

- the "double obstacle" potential, s.t.

$$
\gamma=\partial \mathcal{I}_{[-1,1]}, \quad g(u)=-2 u
$$

Some constitutive assumptions for the thermal flux \mathbf{q}, according to the Green and Naghdi's theory, in the linearized versions:

- Type I (Fourier)

$$
\mathbf{q}=-\alpha \nabla \partial_{t} w, \quad \alpha>0
$$

- Type II (Gurtin-Pipkin)

$$
\mathbf{q}=-\beta \nabla w, \quad \beta>0
$$

- Type III

$$
\mathbf{q}=-\alpha \nabla \partial_{t} w-\beta \nabla w, \quad \alpha, \beta>0 .
$$

In this work, we consider:

Problem $\mathbf{P}_{\alpha, \beta}$	Type III
Limit as $\beta \searrow 0$	Type I
Limit as $\alpha \searrow 0$	Type II

References

- For the original Caginalp model, see Caginalp, 1986, and Caginalp, Nishiura, 1991.
- For the Green and Naghdi's theory, see Green and Naghdi, 1991, 1992, 1993, and 1995.
- For the use of non-smooth potentials in thermodynamics, see Frémond, 2002.
- For some generalizations of the Caginalp model, involving type II and III laws and logarithmic potentials, see Miranville, Quintanilla, 2009 (two papers), 2010, and 2011.
- For the study of Problem \mathbf{P}_{β}, see Colli, Gilardi, Grasselli, 1997 (two papers).
- For the asymptotics on phase field problem, see, e.g., Bonetti, 1999.
- The subject of this talk is studied in G.C., Colli, 2012 and t.a.

Study of Problem $\mathbf{P}_{\alpha, \beta}$

Set

$$
\begin{gathered}
V=H^{1}(\Omega), \quad H=L^{2}(\Omega), \\
W=\left\{v \in H^{2}(\Omega): \partial_{n} v=0 \text { on } \partial \Omega\right\} .
\end{gathered}
$$

Problem $\mathbf{P}_{\alpha, \beta}$. Finding (w, u, ξ) which satisfies, for all $v \in V$ and a.a. $t \in[0, T]$,

$$
\begin{gathered}
w \in W^{2,1}\left(0, T ; V^{\prime}\right) \cap W^{1, \infty}(0, T ; H) \cap H^{1}(0, T ; V) \\
u \in H^{1}\left(0, T ; V^{\prime}\right) \cap C^{0}([0, T] ; H) \cap L^{2}(0, T ; V) \\
\xi \in L^{2}([0, T] \times \Omega), \quad u \in D(\gamma) \text { and } \xi \in \gamma(u) \text { a.e. } \\
\left\langle\partial_{t}^{2} w(t), v\right\rangle+\alpha\left(\nabla \partial_{t} w(t)+\beta \nabla w(t), \nabla v\right)_{H}+\left\langle\partial_{t} u(t), v\right\rangle=\langle f(t), v\rangle \\
\left\langle\partial_{t} u(t), v\right\rangle+(\nabla u(t), \nabla v)_{H}+(\xi(t)+g(u)(t), v)_{H}=\left(\partial_{t} w(t), v\right)_{H} .
\end{gathered}
$$

We assume

$$
\begin{array}{ll}
f \in L^{2}\left(0, T ; V^{\prime}\right)+L^{1}(0, T ; H) \\
w_{0} \in V, & v_{0} \in H, \quad u_{0} \in H, \quad \phi\left(u_{0}\right) \in L^{1}(\Omega) . \tag{6}
\end{array}
$$

Theorem (Existence and uniqueness for Problem $\mathbf{P}_{\alpha, \beta}$)
Under the assumptions (5)-(6), Problem $\mathbf{P}_{\alpha, \beta}$ admits a unique solution.
The proof is based on

- the Faedo-Galerkin approximation scheme;
- the Yosida regularization of γ :

$$
\gamma_{\varepsilon}=\frac{1}{\varepsilon}\left\{\operatorname{Id}-(\operatorname{Id}+\varepsilon \gamma)^{-1}\right\}, \quad 0<\varepsilon \leq 1
$$

Theorem (Regularity and strong solution)

If the hypotheses

$$
\begin{array}{ll}
& f \in L^{2}(0, T ; H)+L^{1}(0, T ; V) \\
w_{0} \in W, & v_{0} \in V, \quad u_{0} \in V, \quad \phi\left(u_{0}\right) \in L^{1}(\Omega), \tag{8}
\end{array}
$$

hold, then the solution (w, u, ξ) of Problem $\mathbf{P}_{\alpha, \beta}$ fulfills

$$
\begin{gather*}
w \in W^{2,1}(0, T ; H) \cap W^{1, \infty}(0, T ; V) \cap H^{1}(0, T ; W) \\
 \tag{4}\\
\quad u \in H^{1}(0, T ; H) \cap C^{0}([0, T] ; V) \cap L^{2}(0, T ; W)
\end{gather*}
$$

and, in particular, it is a strong solution, i.e., it satisfies the equations (1)pointwise a.e.

The two results above hold true when $\Omega \subseteq \mathbb{R}^{N}$, for all $N \geq 1$. On the other hand, the assumption $N \leq 3$ will be exploited in the sequel.

Theorem (L^{∞} estimates)

Let $\gamma^{0}(s)$ denote the unique element of $\gamma(s)$ having minimal modulus, for all $s \in \mathbb{R}$. In addition to (7)-(8), we assume

$$
\begin{equation*}
u_{0} \in W, \quad u_{0} \in D(\gamma) \quad \text { q.o., } \quad \gamma^{0}\left(u_{0}\right) \in H ; \tag{9}
\end{equation*}
$$

then, we have

$$
u \in W^{1, \infty}(0, T ; H) \cap H^{1}(0, T ; V) \cap L^{\infty}(0, T ; W)
$$

and, in particular, $u \in C^{0}([0, T] \times \bar{\Omega})$. Furthermore, if the assumptions

$$
\begin{gather*}
f \in L^{\infty}(0, T ; H)+L^{r}(0, T ; V) \quad \text { for some } r>4 / 3 \tag{10}\\
\gamma^{0}\left(u_{0}\right) \in L^{\infty}(\Omega) \tag{11}
\end{gather*}
$$

hold, then

$$
\partial_{t} w \in L^{\infty}((0, T) \times \Omega), \quad \xi \in L^{\infty}((0, T) \times \Omega) .
$$

Limit as $\beta \searrow 0$

In this section $\alpha>0$ is fixed. We denote by $\left(w_{\beta}, u_{\beta}, \xi_{\beta}\right)$ the solution of Problem $\mathbf{P}_{\alpha, \beta}$.

Question. We ask whether, as $\beta \searrow 0$, there is any convergence

$$
\left(w_{\beta}, u_{\beta}, \xi_{\beta}\right) \longrightarrow(w, u, \xi)
$$

where (w, u, ξ) is a solution of Problem \mathbf{P}_{α} :

$$
\begin{gathered}
\partial_{t}^{2} w-\alpha \Delta \partial_{t} w+\partial_{t} u=f \quad \text { on }[0, T] \times \Omega \\
\partial_{t} u-\Delta u+\xi+g(u)=\partial_{t} w \\
u \in D(\gamma), \quad \xi \in \gamma(u) \quad \text { on }[0, T] \times \Omega \\
\partial_{n} w=0, \quad \partial_{n} u=0 \quad \text { on }[0, T] \times \Omega \\
w(\cdot, 0)=w_{0}, \quad \partial_{t} w(\cdot, 0)=v_{0}, \quad u(\cdot, 0)=u_{0} \quad \text { on } \Omega .
\end{gathered}
$$

Theorem (First error estimate as $\beta \searrow 0$)

Under the assumptions (5)-(6), Problem \mathbf{P}_{α} has a unique solution; that is, there exists a unique triplet (w, u, ξ) fulfilling

$$
\begin{gathered}
w \in W^{2,1}\left(0, T ; V^{\prime}\right) \cap W^{1, \infty}(0, T ; H) \cap H^{1}(0, T ; V) \\
u \in H^{1}\left(0, T ; V^{\prime}\right) \cap C^{0}([0, T] ; H) \cap L^{2}(0, T ; V) \\
\xi \in L^{2}([0, T] \times \Omega), \quad u \in D(\gamma) \text { and } \xi \in \gamma(u) \text { a.e. } \\
\left\langle\partial_{t}^{2} w(t), v\right\rangle+\alpha\left(\nabla \partial_{t} w(t), \nabla v\right)_{H}+\left\langle\partial_{t} u(t), v\right\rangle=\langle f(t), v\rangle \\
\left\langle\partial_{t} u(t), v\right\rangle+(\nabla u(t), \nabla v)_{H}+(\xi(t)+g(u)(t), v)_{H}=\left(\partial_{t} w(t), v\right)_{H}
\end{gathered}
$$

for all $v \in V$ and a.a. $t \in[0, T]$. Furthermore, there is a constant c independent of β s.t.

$$
\left\|w_{\beta}-w\right\|_{H^{1}(0, T ; H) \cap L^{\infty}(0, T ; V)}+\left\|u_{\beta}-u\right\|_{L^{\infty}(0, T ; H) \cap L^{2}(0, T ; V)} \leq c \beta .
$$

We have better estimates on the convergence error when γ is a single-valued, smooth function (e.g.: "double-well" or logarithmic potential).

Theorem (Second error estimate as $\beta \searrow 0$)
Suppose that $\gamma: D(\gamma) \longrightarrow \mathbb{R}$ is a single-valued, locally Lipschitz-continuous function, and that f and the initial data fulfill the strongest hypotheses. Then, the estimate

$$
\begin{aligned}
& \left\|w_{\beta}-w\right\|_{W^{1}, \infty(0, T ; V) \cap H^{1}(0, T ; W)}+ \\
& \quad\left\|u_{\beta}-u\right\|_{H^{1}(0, T ; H) \cap L^{\infty}(0, T ; V) \cap L^{2}(0, T ; W)} \leq c \beta
\end{aligned}
$$

holds true, for some constant c independent of β.

Limit as $\alpha \searrow 0$

Let us fix $\beta>0$ once and for all. We denote by $\left(w_{\alpha}, u_{\alpha}, \xi_{\alpha}\right)$ the solution of Problem $\mathbf{P}_{\alpha, \beta}$.

Question. As $\alpha \searrow 0$, we ask whether the convergence

$$
\begin{equation*}
\left(w_{\alpha}, u_{\alpha}, \xi_{\alpha}\right) \longrightarrow(w, u, \xi), \tag{12}
\end{equation*}
$$

holds in some sense, where (w, u, ξ) is a solution of Problem \mathbf{P}_{β} :

$$
\begin{gathered}
\partial_{t}^{2} w-\beta \Delta w+\partial_{t} u=f \quad \text { on }[0, T] \times \Omega \\
\partial_{t} u-\Delta u+\xi+g(u)=\partial_{t} w \\
u \in D(\gamma), \quad \xi \in \gamma(u) \\
\text { on }[0, T] \times \Omega \\
\partial_{n} w=0, \quad \partial_{n} u=0 \quad \text { on }[0, T] \times \partial \Omega \\
w(\cdot, 0)=w_{0}, \quad \partial_{t} w(\cdot, 0)=v_{0}, \quad u(\cdot, 0)=u_{0} \quad \text { on } \Omega .
\end{gathered}
$$

The well-posedness of Problem \mathbf{P}_{β} is already proved in literature.

- Assuming (5)-(6), we can prove the weak convergence in (12).
- Under stronger hypotheses, we infer the strong convergence, with an estimate on the convergence error.

Theorem (First error estimate as $\alpha \searrow 0$)
If we assume (5)-(6), as well as

$$
\begin{gathered}
f \in L^{2}(0, T ; H)+L^{1}(0, T ; V) \\
w_{0} \in W, \quad v_{0} \in V, \quad u_{0} \in V, \quad \phi\left(u_{0}\right) \in L^{1}(\Omega),
\end{gathered}
$$

then there exists a constant c, independent of α, s.t.

$$
\begin{aligned}
& \left\|w_{\alpha}-w\right\|_{W^{1, \infty}(0, T ; H) \cap L^{\infty}(0, T ; V)^{+}} \\
& \quad\left\|u_{\alpha}-u\right\|_{L^{\infty}(0, T ; H) \cap L^{2}(0, T ; V)} \leq c \alpha^{1 / 2}
\end{aligned}
$$

- For the proof, it is convenient to introduce the new variable

$$
y(t, x):=\int_{0}^{t} u(s, x) d s+w(t, x) \quad \text { for } \quad(t, x) \in[0, T] \times \Omega .
$$

- We obtain better estimates on the convergence error when

$$
\begin{equation*}
\gamma: \mathbb{R} \longrightarrow \mathbb{R} \text { is a single-valued, } \tag{13}
\end{equation*}
$$ locally Lipschitz-continuous function

(e.g.: the Caginalp "double well" potential).

- If (13) holds, we can prove regularity results for Problems $\mathbf{P}_{\alpha, \beta}$ and \mathbf{P}_{β}, with α-independent estimates on the solution.

Theorem (Second error estimate as $\alpha \searrow 0$)

In addition to (13), we require

$$
f \in W^{2,1}(0, T ; H)+W^{1,1}(0, T ; V)
$$

$$
w_{0} \in W, \quad v_{0} \in W, \quad u_{0} \in H^{3}(\Omega) \cap W, \quad \alpha \Delta v_{0}+\beta \Delta v_{0}+f(0) \in V
$$

Then, there exists a constant c, independent of α, which fulfills

$$
\begin{gathered}
\left\|w_{\alpha}-w\right\|_{W^{1}, \infty(0, T ; H) \cap L^{\infty}(0, T ; V)^{+}}+ \\
\quad\left\|u_{\alpha}-u\right\|_{H^{1}(0, T ; H) \cap L^{\infty}(0, T ; V) \cap L^{2}(0, T ; W)} \leq c \alpha \\
\left\|w_{\alpha}-w\right\|_{W^{1, \infty}(0, T ; V) \cap L^{\infty}(0, T ; W)} \leq c \alpha^{1 / 2}
\end{gathered}
$$

Final remarks

- All the results hold true when $\Omega \subseteq \mathbb{R}^{3}$ is, for instance, a convex polyhedron.
- Problem $\mathbf{P}_{\alpha, \beta}$ can be exploited to approximate Problem \mathbf{P}_{β}, via an artificial viscosity method. The convergence results as $\alpha \searrow 0$ can therefore be interpreted as estimates on the consistency error.
- Possible generalizations of this model:
- Non linear coupling of θ and u in the free energy functional

$$
\bar{\psi}(\theta, u)=\int_{\Omega}\left\{\frac{1}{2}|\nabla u|^{2}+\phi(u)+G(u)-\frac{1}{2} \theta^{2}-h(u) \theta\right\} ;
$$

- Non linearized versions of the Green and Nagdhi's constitutive hypotheses.

