A variational approach to a Cahn-Hilliard model in a domain with non-permeable walls

Stefania Gatti
Università di Modena e Reggio Emilia

joint work with
Laurence Cherfils (La Rochelle) and Alain Miranville (Poitiers)

PDEs for multiphase advanced materials, ADMAT2012
Cortona, September 18th, 2012

Our model

- The Cahn-Hilliard model : phase-field u (pure-phases $u= \pm 1$) $\Omega \subset \mathbb{R}^{3}$ bounded with smooth $\partial \Omega=\Gamma, \quad \lambda \geq 0$

$$
\left\{\begin{array}{l}
\partial_{t} u-\Delta \mu=0, \quad \text { in } \Omega \\
\mu=-\Delta u+f(u)-\lambda u, \quad \text { in } \Omega
\end{array}\right.
$$

Physically relevant instance

- f singular at ± 1

Our model

- The Cahn-Hilliard model : phase-field u (pure-phases $u= \pm 1$) $\Omega \subset \mathbb{R}^{3}$ bounded with smooth $\partial \Omega=\Gamma, \quad \lambda \geq 0$

$$
\left\{\begin{array}{l}
\partial_{t} u-\Delta \mu=0, \quad \text { in } \Omega \\
\mu=-\Delta u+f(u)-\lambda u, \quad \text { in } \Omega
\end{array}\right.
$$

Physically relevant instance

$$
f(s)-\lambda s=-\theta_{c} s+\frac{\theta}{2} \ln \frac{1+s}{1-s}, \quad s \in(-1,1), \quad \theta_{c}>\theta>0
$$

- f singular at ± 1

$$
f \in C^{2}(-1,1) \quad \lim _{s \rightarrow \pm 1} f(s)= \pm \infty
$$

Our model

- The Cahn-Hilliard model : phase-field u (pure-phases $u= \pm 1$) $\Omega \subset \mathbb{R}^{3}$ bounded with smooth $\partial \Omega=\Gamma, \quad \lambda \geq 0$

$$
\left\{\begin{array}{l}
\partial_{t} u-\Delta \mu=0, \quad \text { in } \Omega \\
\mu=-\Delta u+f(u)-\lambda u, \quad \text { in } \Omega
\end{array}\right.
$$

Physically relevant instance

$$
f(s)-\lambda s=-\theta_{c} s+\frac{\theta}{2} \ln \frac{1+s}{1-s}, \quad s \in(-1,1), \quad \theta_{c}>\theta>0
$$

- f singular at ± 1

$$
f \in C^{2}(-1,1) \quad \lim _{s \rightarrow \pm 1} f(s)= \pm \infty \quad \lim _{s \rightarrow \pm 1} f^{\prime}(s)=+\infty
$$

Our model

- The Cahn-Hilliard model : phase-field u (pure-phases $u= \pm 1$) $\Omega \subset \mathbb{R}^{3}$ bounded with smooth $\partial \Omega=\Gamma, \quad \lambda \geq 0$

$$
\left\{\begin{array}{l}
\partial_{t} u-\Delta \mu=0, \quad \text { in } \Omega \\
\mu=-\Delta u+f(u)-\lambda u, \quad \text { in } \Omega
\end{array}\right.
$$

Physically relevant instance

$$
f(s)-\lambda s=-\theta_{c} s+\frac{\theta}{2} \ln \frac{1+s}{1-s}, \quad s \in(-1,1), \quad \theta_{c}>\theta>0
$$

- f singular at ± 1

$$
f \in C^{2}(-1,1) \quad \lim _{s \rightarrow \pm 1} f(s)= \pm \infty \quad \lim _{s \rightarrow \pm 1} f^{\prime}(s)=+\infty
$$

- f monotone increasing in $(-1,1) \quad f^{\prime}(s) \geq 0$

Further assumptions : $\quad f(0)=0 \quad$ and $\quad f^{\prime \prime}(s) \begin{cases}\geq 0, & s \geq 0 \\ \leq 0, & s \leq 0\end{cases}$

Our problem : boundary conditions

- The two-phase system is confined in a non-permeable vessel \rightarrow dynamic boundary conditions

4 Some mass on the boundary (add surface free energy)
< Comply with conservation of total mass.
If $U(t)=\left(u(t),\left.u(t)\right|_{\Gamma}\right)$ starts at $U(0)=\left(u(0),\left.u(0)\right|_{\Gamma}\right)$

- Ruiz Goldstein-Miranville-Schimperna 2011
- Cherfils - G.- Miranville 2012 This talk

Our problem : boundary conditions

- The two-phase system is confined in a non-permeable vessel \rightarrow dynamic boundary conditions
- Some mass on the boundary (add surface free energy)

4 Comply with conservation of total mass.

- Ruiz Goldstein-Miranville-Schimperna 2011 - Cherfils - G - Miranville 2012 This talk

Our problem : boundary conditions

- The two-phase system is confined in a non-permeable vessel \rightarrow dynamic boundary conditions

4 Some mass on the boundary (add surface free energy)
Comply with conservation of total mass.
If $U(t)=\left(u(t),\left.u(t)\right|_{\Gamma}\right)$ starts at $U(0)=\left(u(0),\left.u(0)\right|_{\Gamma}\right)$
$\int_{\Omega} u(t) d x+\left.\int_{\Gamma} u\right|_{\Gamma}(t) d \Sigma=\int_{\Omega} u(0) d x+\left.\int_{\Gamma} u(0)\right|_{\Gamma} d \Sigma$
$\left(\partial_{t} u-\Delta \mu=0\right.$ in Ω

- Ruiz Goldstein-Miranville-Schimperna 2011
- Cherfils - G.- Miranville 2012 This talk

Our problem : boundary conditions

- The two-phase system is confined in a non-permeable vessel \rightarrow dynamic boundary conditions

4 Some mass on the boundary (add surface free energy)
Comply with conservation of total mass.
If $U(t)=\left(u(t),\left.u(t)\right|_{\Gamma}\right)$ starts at $U(0)=\left(u(0),\left.u(0)\right|_{\Gamma}\right)$
$\int_{\Omega} u(t) d x+\left.\int_{\Gamma} u\right|_{\Gamma}(t) d \Sigma=\int_{\Omega} u(0) d x+\left.\int_{\Gamma} u(0)\right|_{\Gamma} d \Sigma$

$$
\left\{\begin{array}{l}
\partial_{t} u-\Delta \mu=0 \quad \text { in } \Omega \\
\mu=-\Delta u+f(u)-\lambda u \quad \text { in } \quad \Omega \\
\\
\left.\partial_{t} u\right|_{\Gamma}-\left.\Delta_{\Gamma} \mu\right|_{\Gamma}+\partial_{n} \mu=0 \quad \text { on } \\
\left.\mu\right|_{\Gamma}=-\left.\Delta_{\Gamma} u\right|_{\Gamma}+g\left(\left.u\right|_{\Gamma}\right)+\partial_{\boldsymbol{n}} u \quad \text { on } \quad \Gamma \quad g \in C^{2}[-1,1]
\end{array}\right.
$$

Our problem : boundary conditions

- The two-phase system is confined in a non-permeable vessel \rightarrow dynamic boundary conditions
4 Some mass on the boundary (add surface free energy)
Comply with conservation of total mass.
If $U(t)=\left(u(t),\left.u(t)\right|_{\Gamma}\right)$ starts at $U(0)=\left(u(0),\left.u(0)\right|_{\Gamma}\right)$
$\int_{\Omega} u(t) d x+\left.\int_{\Gamma} u\right|_{\Gamma}(t) d \Sigma=\int_{\Omega} u(0) d x+\left.\int_{\Gamma} u(0)\right|_{\Gamma} d \Sigma$

$$
\left\{\begin{array}{l}
\partial_{t} u-\Delta \mu=0 \quad \text { in } \Omega \\
\mu=-\Delta u+f(u)-\lambda u \quad \text { in } \quad \Omega \\
\\
\left.\partial_{t} u\right|_{\Gamma}-\left.\Delta_{\Gamma} \mu\right|_{\Gamma}+\partial_{n} \mu=0 \quad \text { on } \\
\left.\mu\right|_{\Gamma}=-\left.\Delta_{\Gamma} u\right|_{\Gamma}+g\left(\left.u\right|_{\Gamma}\right)+\partial_{\boldsymbol{n}} u \text { on } \quad \Gamma \quad g \in C^{2}[-1,1]
\end{array}\right.
$$

- Ruiz Goldstein-Miranville-Schimperna 2011

Our problem : boundary conditions

- The two-phase system is confined in a non-permeable vessel \rightarrow dynamic boundary conditions
4 Some mass on the boundary (add surface free energy)
Comply with conservation of total mass.
If $U(t)=\left(u(t),\left.u(t)\right|_{\Gamma}\right)$ starts at $U(0)=\left(u(0),\left.u(0)\right|_{\Gamma}\right)$
$\int_{\Omega} u(t) d x+\left.\int_{\Gamma} u\right|_{\Gamma}(t) d \Sigma=\int_{\Omega} u(0) d x+\left.\int_{\Gamma} u(0)\right|_{\Gamma} d \Sigma$

$$
\left\{\begin{array}{l}
\partial_{t} u-\Delta \mu=0 \quad \text { in } \Omega \\
\mu=-\Delta u+f(u)-\lambda u \quad \text { in } \quad \Omega \\
\\
\left.\partial_{t} u\right|_{\Gamma}-\left.\Delta_{\Gamma} \mu\right|_{\Gamma}+\partial_{n} \mu=0 \quad \text { on } \\
\left.\mu\right|_{\Gamma}=-\left.\Delta_{\Gamma} u\right|_{\Gamma}+g\left(\left.u\right|_{\Gamma}\right)+\partial_{\boldsymbol{n}} u \quad \text { on } \quad \Gamma \quad g \in C^{2}[-1,1]
\end{array}\right.
$$

- Ruiz Goldstein-Miranville-Schimperna 2011
- Cherfils - G.- Miranville 2012 This talk

Singular f and dynamic b.c. $\rightarrow \nexists$ classical solution?

Existence of classical solutions requires
$(\star)\left(u_{0},\left.u_{0}\right|_{\Gamma}\right) \in(-1,1) \times(-1,1) \Rightarrow\left(u(t),\left.u(t)\right|_{\Gamma}\right) \in(-1,1) \times(-1,1)$ Without (\star) possible \nexists of classical solutions [Miranville-Zelik 2010] Strong singularities of u close to the boundary may be produced The jumps in the normal derivatives close to the boundary prevent the existence of solution in the sense of distribution

- Ruiz Goldstein-Miranville-Schimperna 2011
\measuredangle Most general assumptions on f and g
Weak formulation of the problem (Duality techniques)
« Existence of global attractor only if $\exists p_{0} \in(0,2)$
- Cherfils - G.- Miranville 2012 This talk
$\triangleleft f$ singular (even logarithmic)
«Variational formulation of the problem
« Asymptotic Analysis without any further assumption on f (up to
exponential attractors)

Singular f and dynamic b.c. $\rightarrow \nexists$ classical solution?
Existence of classical solutions requires
$(\star)\left(u_{0},\left.u_{0}\right|_{\Gamma}\right) \in(-1,1) \times(-1,1) \Rightarrow\left(u(t),\left.u(t)\right|_{\Gamma}\right) \in(-1,1) \times(-1,1)$ Without (\star) possible \nexists of classical solutions [Miranville-Zelik 2010]
Strong singularities of u close to the boundary may be produced The jumps in the normal derivatives close to the boundary prevent the existence of solution in the sense of distribution - Ruiz Goldstein-Miranville-Schimperna 2011 \measuredangle Most general assumptions on f and g ↔ Weak formulation of the problem (Duality techniques) \triangleleft Existence of global attractor only if $\exists p_{0} \in(0,2)$ - Cherfils - G.- Miranville 2012 This talk $\measuredangle f$ singular (even logarithmic) \triangleleft Variational formulation of the problem A Asymptotic Analysis without any further assumption on f (up to

Singular f and dynamic b.c. $\rightarrow \nexists$ classical solution?

Existence of classical solutions requires
$(\star)\left(u_{0},\left.u_{0}\right|_{\Gamma}\right) \in(-1,1) \times(-1,1) \Rightarrow\left(u(t),\left.u(t)\right|_{\Gamma}\right) \in(-1,1) \times(-1,1)$ Without (\star) possible \nexists of classical solutions [Miranville-Zelik 2010] Strong singularities of u close to the boundary may be produced The jumps in the normal derivatives close to the boundary prevent the existence of solution in the sense of distribution
\qquad

Singular f and dynamic b.c. $\rightarrow \nexists$ classical solution?

Existence of classical solutions requires
$(\star)\left(u_{0},\left.u_{0}\right|_{\Gamma}\right) \in(-1,1) \times(-1,1) \Rightarrow\left(u(t),\left.u(t)\right|_{\Gamma}\right) \in(-1,1) \times(-1,1)$ Without (\star) possible \nexists of classical solutions [Miranville-Zelik 2010] Strong singularities of u close to the boundary may be produced The jumps in the normal derivatives close to the boundary prevent the existence of solution in the sense of distribution

- Ruiz Goldstein-Miranville-Schimperna 2011
\triangleleft Most general assumptions on f and g
¢ Weak formulation of the problem (Duality techniques)
\square

Singular f and dynamic b.c. $\rightarrow \nexists$ classical solution?

Existence of classical solutions requires
$(\star)\left(u_{0},\left.u_{0}\right|_{\Gamma}\right) \in(-1,1) \times(-1,1) \Rightarrow\left(u(t),\left.u(t)\right|_{\Gamma}\right) \in(-1,1) \times(-1,1)$ Without (\star) possible \nexists of classical solutions [Miranville-Zelik 2010] Strong singularities of u close to the boundary may be produced The jumps in the normal derivatives close to the boundary prevent the existence of solution in the sense of distribution

- Ruiz Goldstein-Miranville-Schimperna 2011
\longleftarrow Most general assumptions on f and g
\square
\square

Singular f and dynamic b.c. $\rightarrow \nexists$ classical solution?

Existence of classical solutions requires
$(\star)\left(u_{0},\left.u_{0}\right|_{\Gamma}\right) \in(-1,1) \times(-1,1) \Rightarrow\left(u(t),\left.u(t)\right|_{\Gamma}\right) \in(-1,1) \times(-1,1)$ Without (\star) possible \nexists of classical solutions [Miranville-Zelik 2010] Strong singularities of u close to the boundary may be produced The jumps in the normal derivatives close to the boundary prevent the existence of solution in the sense of distribution

- Ruiz Goldstein-Miranville-Schimperna 2011
\longleftarrow Most general assumptions on f and g
4 Weak formulation of the problem (Duality techniques)

Singular f and dynamic b.c. $\rightarrow \nexists$ classical solution?

Existence of classical solutions requires
$(\star)\left(u_{0},\left.u_{0}\right|_{\Gamma}\right) \in(-1,1) \times(-1,1) \Rightarrow\left(u(t),\left.u(t)\right|_{\Gamma}\right) \in(-1,1) \times(-1,1)$ Without (\star) possible \nexists of classical solutions [Miranville-Zelik 2010] Strong singularities of u close to the boundary may be produced The jumps in the normal derivatives close to the boundary prevent the existence of solution in the sense of distribution

- Ruiz Goldstein-Miranville-Schimperna 2011
\longleftarrow Most general assumptions on f and g
4 Weak formulation of the problem (Duality techniques)
\longleftarrow Existence of global attractor only if $\exists p_{0} \in(0,2):\left|f^{\prime}(s)\right| \leq c\left(1+|f(s)|^{p_{0}}\right)$
¢ f singular (even logarithmic)
- Variational formulation of the problem

4 Asymptotic Analysis without any further assumption on f (up to

Singular f and dynamic b.c. $\rightarrow \nexists$ classical solution?

Existence of classical solutions requires
$(\star)\left(u_{0},\left.u_{0}\right|_{\Gamma}\right) \in(-1,1) \times(-1,1) \Rightarrow\left(u(t),\left.u(t)\right|_{\Gamma}\right) \in(-1,1) \times(-1,1)$ Without (\star) possible \nexists of classical solutions [Miranville-Zelik 2010] Strong singularities of u close to the boundary may be produced The jumps in the normal derivatives close to the boundary prevent the existence of solution in the sense of distribution

- Ruiz Goldstein-Miranville-Schimperna 2011
\longleftarrow Most general assumptions on f and g
4 Weak formulation of the problem (Duality techniques)
\measuredangle Existence of global attractor only if $\exists p_{0} \in(0,2):\left|f^{\prime}(s)\right| \leq c\left(1+|f(s)|^{p_{0}}\right)$
- Cherfils - G.- Miranville 2012 This talk

Singular f and dynamic b.c. $\rightarrow \nexists$ classical solution?

Existence of classical solutions requires
$(\star)\left(u_{0},\left.u_{0}\right|_{\Gamma}\right) \in(-1,1) \times(-1,1) \Rightarrow\left(u(t),\left.u(t)\right|_{\Gamma}\right) \in(-1,1) \times(-1,1)$ Without (\star) possible \nexists of classical solutions [Miranville-Zelik 2010] Strong singularities of u close to the boundary may be produced The jumps in the normal derivatives close to the boundary prevent the existence of solution in the sense of distribution

- Ruiz Goldstein-Miranville-Schimperna 2011
\longleftarrow Most general assumptions on f and g
4 Weak formulation of the problem (Duality techniques)
4 Existence of global attractor only if $\exists p_{0} \in(0,2):\left|f^{\prime}(s)\right| \leq c\left(1+|f(s)|^{p_{0}}\right)$
- Cherfils - G.- Miranville 2012 This talk
$\measuredangle f$ singular (even logarithmic)

Singular f and dynamic b.c. $\rightarrow \nexists$ classical solution?

Existence of classical solutions requires
$(\star)\left(u_{0},\left.u_{0}\right|_{\Gamma}\right) \in(-1,1) \times(-1,1) \Rightarrow\left(u(t),\left.u(t)\right|_{\Gamma}\right) \in(-1,1) \times(-1,1)$ Without (\star) possible \nexists of classical solutions [Miranville-Zelik 2010]
Strong singularities of u close to the boundary may be produced
The jumps in the normal derivatives close to the boundary prevent the existence of solution in the sense of distribution

- Ruiz Goldstein-Miranville-Schimperna 2011
\longleftarrow Most general assumptions on f and g
4 Weak formulation of the problem (Duality techniques)
4 Existence of global attractor only if $\exists p_{0} \in(0,2):\left|f^{\prime}(s)\right| \leq c\left(1+|f(s)|^{p_{0}}\right)$
- Cherfils - G.- Miranville 2012 This talk
$\measuredangle f$ singular (even logarithmic)
«Variational formulation of the problem

Singular f and dynamic b.c. $\rightarrow \nexists$ classical solution?

Existence of classical solutions requires
$(\star)\left(u_{0},\left.u_{0}\right|_{\Gamma}\right) \in(-1,1) \times(-1,1) \Rightarrow\left(u(t),\left.u(t)\right|_{\Gamma}\right) \in(-1,1) \times(-1,1)$ Without (\star) possible \nexists of classical solutions [Miranville-Zelik 2010]
Strong singularities of u close to the boundary may be produced
The jumps in the normal derivatives close to the boundary prevent the existence of solution in the sense of distribution

- Ruiz Goldstein-Miranville-Schimperna 2011

4 Most general assumptions on f and g
4 Weak formulation of the problem (Duality techniques)
4 Existence of global attractor only if $\exists p_{0} \in(0,2):\left|f^{\prime}(s)\right| \leq c\left(1+|f(s)|^{p_{0}}\right)$

- Cherfils - G.- Miranville 2012 This talk
$\measuredangle f$ singular (even logarithmic)
4Variational formulation of the problem
\measuredangle Asymptotic Analysis without any further assumption on f (up to exponential attractors)

Literature

- Cahn-Hilliard

Elliott-Zheng, Nicolaenko-Scheurer, Nicolaenko-Scheurer-Temam, Novick-Cohen, Brochet-Hilhorst-Novick Cohen, Brochet-Hilhorst-Chen Alt-Pawlow, Kenmochi-Niezgodka-Pawlow, Rybka-Hoffmann, Colli-Gilardi-Grasselli-Schimperna...

- Singular Cahn-Hilliard

Elliott-Luckhaus, Elliott-Garcke, Debussche-Dettori, Abels-Wielke, Li-Zhong, Miranville-Zelik,...

- Cahn-Hilliard with dynamic boundary conditions

Racke-Zheng, Chill-Fašangová-Prüss, Prüss-Racke-Zheng, Miranville-Zelik...

- Singular Cahn-Hilliard with dynamic boundary conditions

Gilardi-Miranville-Schimperna, Miranville-Zelik, Ruiz Goldstein-Miranville-Schimperna
Review on Singular Cahn Hilliard with different boundary conditions :
Cherfils-Miranville-Zelik

Our results

(1) Variational solutions

Approximate singular (P) by regular $\left(P_{N}\right)\left(\leftarrow\right.$ replace f with $\left.f_{N}\right)$
$\exists!U_{N}$ solution to $\left(P_{N}\right)$, Lipschitz continuous dependence on the initial data at any fixed time, a priori estimates, smoothing, dissipativity uniformly in N
$\exists U_{N_{k}} \rightarrow U$ but U is NOT classical solution what solution is U ? The monotonicity of $f_{N} \uparrow$ and $f \uparrow$ allows to associate $\left(P_{N}\right)$ with $\left(V_{N}\right)$ and (P) with (V)
Since U_{N} solves $\left(V_{N}\right) \Rightarrow U$ is (the variational) solution to (V)
(2) Relation between variational and classical solutions
© Asymptotic analysis for variational solutions
For any fixed total mass $I \in(-1,1) \quad \exists \mathcal{A}_{I}$ regular global attractor and $\exists \mathcal{E}_{I}$ exponential attractor \Rightarrow Bound on the fractal dimension of \mathcal{A}_{I}

Our results

(1) Variational solutions

Approximate singular (P) by regular $\left(P_{N}\right)\left(\leftarrow\right.$ replace f with $\left.f_{N}\right)$
\exists ! U_{N} solution to $\left(P_{N}\right)$, Lipschitz continuous dependence on the initial data at any fixed time, a priori estimates, smoothing, dissipativity uniformly in N
$\exists U_{N_{k}} \rightarrow U$ but U is NOT classical solution what solution is U ? The monotonicity of $f_{N} \uparrow$ and $f \uparrow$ allows to associate $\left(P_{N}\right)$ with (V_{N}) and (P) with (V)
Since U_{N} solves $\left(V_{N}\right) \Rightarrow U$ is (the variational) solution to (V)
(2) Relation between variational and classical solutions
©
Asymptotic analysis for variational solutions
For any fixed total mass $I \in(-1,1) \quad \exists \mathcal{A}_{I}$ regular global attractor and $\exists \mathcal{E}_{I}$ exponential attractor \Rightarrow Bound on the fractal dimension of \mathcal{A}_{I}

Our results

(1) Variational solutions

Approximate singular (P) by regular $\left(P_{N}\right)\left(\leftarrow\right.$ replace f with $\left.f_{N}\right)$
\exists ! U_{N} solution to $\left(P_{N}\right)$, Lipschitz continuous dependence on the initial data at any fixed time, a priori estimates, smoothing, dissipativity uniformly in N
$\exists U_{N_{k}} \rightarrow U$ but U is NOT classical solution what solution is U ? The monotonicity of $f_{N} \uparrow$ and $f \uparrow$ allows to associate (P_{N}) with (V_{N}) and Since U_{N} solves $\left(V_{N}\right) \Rightarrow U$ is (the variational) solution to (V)
(2) Relation between variational and classical solutions
(3) Asymptotic analysis for variational solutions

For any fixed total mass $I \in(-1,1) \quad \exists \mathcal{A}_{I}$ regular global attractor and $\exists \mathcal{E}_{I}$ exponential attractor \Rightarrow Bound on the fractal dimension of \mathcal{A}_{I}

Our results

(1) Variational solutions

Approximate singular (P) by regular $\left(P_{N}\right)\left(\leftarrow \operatorname{replace} f\right.$ with $\left.f_{N}\right)$
$\exists!U_{N}$ solution to $\left(P_{N}\right)$, Lipschitz continuous dependence on the initial data at any fixed time, a priori estimates, smoothing, dissipativity
$\exists U_{N_{k}} \rightarrow U$ but U is NOT classical solution what solution is U ?
The monotonicity of $f_{N} \uparrow$ and $f \uparrow$ allows to associate $\left(P_{N}\right)$ with $\left(V_{N}\right)$ and Since U_{N} solves $\left(V_{N}\right) \Rightarrow U$ is (the variational) solution to (V)
(2) Relation between variational and classical solutions
(3) Asymptotic analysis for variational solutions

> For any fixed total mass $I \in(-1,1) \quad \exists \mathcal{A}_{I}$ regular global attractor and $\exists \mathcal{E}_{I}$ exponential attractor \Rightarrow Bound on the fractal dimension of \mathcal{A}_{I}

Our results

(1) Variational solutions

Approximate singular (P) by regular $\left(P_{N}\right)\left(\leftarrow \operatorname{replace} f\right.$ with $\left.f_{N}\right)$
$\exists!U_{N}$ solution to $\left(P_{N}\right)$, Lipschitz continuous dependence on the initial data at any fixed time, a priori estimates, smoothing, dissipativity uniformly in N
$\exists U_{N_{k}} \rightarrow U$ but U is NOT classical solution what solution is U ? The monotonicity of $f_{N} \uparrow$ and and Since U_{N} solves $\left(V_{N}\right) \Rightarrow U$ is (the variational) solution to
(2) Relation between variational and classical solutions
(3) Asymptotic analysis for variational solutions

Our results

(1) Variational solutions

Approximate singular (P) by regular $\left(P_{N}\right)\left(\leftarrow \operatorname{replace} f\right.$ with $\left.f_{N}\right)$
\exists ! U_{N} solution to $\left(P_{N}\right)$, Lipschitz continuous dependence on the initial data at any fixed time, a priori estimates, smoothing, dissipativity uniformly in N
$\exists U_{N_{k}} \rightarrow U$ but U is NOT classical solution what solution is U ?
The monotonicity of $f_{N} \uparrow$ and and Since U_{N} solves (V_{N}) $\Rightarrow U$ is (the variational) solution to (V)
(2) Relation between variational and classical solutions
(3) Asymptotic analysis for variational solutions

Our results

(1) Variational solutions

Approximate singular (P) by regular $\left(P_{N}\right)\left(\leftarrow \operatorname{replace} f\right.$ with $\left.f_{N}\right)$ $\exists!U_{N}$ solution to $\left(P_{N}\right)$, Lipschitz continuous dependence on the initial data at any fixed time, a priori estimates, smoothing, dissipativity uniformly in N
$\exists U_{N_{k}} \rightarrow U$ but U is NOT classical solution what solution is U ? The monotonicity of $f_{N} \uparrow$ and $f \uparrow$ allows to associate $\left(P_{N}\right)$ with $\left(V_{N}\right)$ and (P) with (V)
Since U_{N} solves $\left(V_{N}\right) \Rightarrow U$ is (the variational) solution to (V)
(2) Relation between variational and classical solutions
(3) Asymptotic analysis for variational solutions

Our results

(1) Variational solutions

Approximate singular (P) by regular $\left(P_{N}\right)\left(\leftarrow \operatorname{replace} f\right.$ with $\left.f_{N}\right)$ $\exists!U_{N}$ solution to $\left(P_{N}\right)$, Lipschitz continuous dependence on the initial data at any fixed time, a priori estimates, smoothing, dissipativity uniformly in N
$\exists U_{N_{k}} \rightarrow U$ but U is NOT classical solution what solution is U ? The monotonicity of $f_{N} \uparrow$ and $f \uparrow$ allows to associate $\left(P_{N}\right)$ with $\left(V_{N}\right)$ and (P) with (V) Since U_{N} solves $\left(V_{N}\right) \Rightarrow U$ is (the variational) solution to (V)
(2) Relation between variational and classical solutions
(3) Asymptotic analysis for variational solutions

For any fixed total mass $I \in(-1,1) \quad \exists \mathcal{A}_{I}$ regular global attractor and $\exists \mathcal{E}_{I}$ exponential attractor \Rightarrow Bound on the fractal dimension of \mathcal{A}_{I}

Abstract problem

- Let $U=\left(u,\left.u\right|_{\Gamma}\right)$ and $\mathbf{M}=\left(\mu,\left.\mu\right|_{\Gamma}\right)$

$$
m(U)=\frac{1}{|\Omega|+|\Gamma|}\left(\int_{\Omega} u d x+\left.\int_{\Gamma} u\right|_{\Gamma} d \Sigma\right) \text { and }\langle U\rangle=(m(U), m(U))
$$

- \mathbf{A} is invertible with compact \mathbf{A}^{-1} on functions with null mass

Abstract problem

- Let $U=\left(u,\left.u\right|_{\Gamma}\right)$ and $\mathbf{M}=\left(\mu,\left.\mu\right|_{\Gamma}\right)$

$$
\left\{\begin{array}{l}
\partial_{t} U+\mathbf{A M}=0 \\
\mathbf{M}=\mathbf{A} U+\mathbf{f}(U) \\
U(0)=U_{0}
\end{array}\right.
$$

$$
\mathbf{f}(U)=\left\{\begin{array}{llc}
f(u)-\lambda u & \text { in } & \Omega \\
g(\psi) & \text { on } & \Gamma
\end{array}\right.
$$

- \mathbf{A} is invertible with compact \mathbf{A}^{-1} on functions with null mass

Abstract problem

- Let $U=\left(u,\left.u\right|_{\Gamma}\right)$ and $\mathbf{M}=\left(\mu,\left.\mu\right|_{\Gamma}\right)$
$m(U)=\frac{1}{|\Omega|+|\Gamma|}\left(\int_{\Omega} u d x+\left.\int_{\Gamma} u\right|_{\Gamma} d \Sigma\right)$ and $\langle U\rangle=(m(U), m(U))$
$\left\{\begin{array}{l}\partial_{t} U+\mathbf{A M}=0 \\ \mathbf{M}=\mathbf{A} U+\mathbf{f}(U) \\ U(0)=U_{0}\end{array}\right.$
$\mathbf{f}(U)= \begin{cases}f(u)-\lambda u & \text { in } \Omega \\ g(\psi) & \text { on } \Gamma\end{cases}$
- \mathbf{A} is invertible with compact \mathbf{A}^{-1} on functions with null mass
\square
$U(0)=U_{0}$

Abstract problem

- Let $U=\left(u,\left.u\right|_{\Gamma}\right)$ and $\mathbf{M}=\left(\mu,\left.\mu\right|_{\Gamma}\right)$

$$
\begin{aligned}
& m(U)=\frac{1}{|\Omega|+|\Gamma|}\left(\int_{\Omega} u d x+\left.\int_{\Gamma} u\right|_{\Gamma} d \Sigma\right) \text { and }\langle U\rangle=(m(U), m(U)) \\
& \left\{\begin{array}{l}
\partial_{t} U+\mathbf{A M}=0 \\
\mathbf{M}=\mathbf{A} U+\mathbf{f}(U) \\
U(0)=U_{0}
\end{array} \quad \mathbf{f}(U)= \begin{cases}f(u)-\lambda u & \text { in } \Omega \\
g(\psi) & \text { on } \quad \Gamma\end{cases} \right.
\end{aligned}
$$

- \mathbf{A} is invertible with compact \mathbf{A}^{-1} on functions with null mass

$$
\left\{\begin{array} { l }
{ \partial _ { t } U + \mathbf { A } (\mathbf { M } - \langle \mathbf { M } \rangle) = 0 } \\
{ \mathbf { M } = \mathbf { A } U + \mathbf { f } (U) } \\
{ U (0) = U _ { 0 } }
\end{array} \quad \rightarrow \left\{\begin{array}{l}
\mathbf{A}^{-1} \partial_{t} U+\mathbf{M}-\langle\mathbf{M}\rangle=0 \\
\mathbf{M}=\mathbf{A} U+\mathbf{f}(U) \\
U(0)=U_{0}
\end{array}\right.\right.
$$

Exploit monotonicity

$$
\left\{\begin{array}{ll}
\mathbf{A}^{-1} \partial_{t} U+\mathbf{M}-\langle\mathbf{M}\rangle=0 & \times U-V \\
\mathbf{M}=\mathbf{A} U+\mathbf{f}(U) & \times U-V \\
U(0)=U_{0} &
\end{array} \quad V: \quad m(V)=m(U)\right.
$$

Exploit monotonicity

$$
\left\{\begin{array}{ll}
\mathbf{A}^{-1} \partial_{t} U+\mathbf{M}-\langle\mathbf{M}\rangle=0 & \times U-V \\
\mathbf{M}=\mathbf{A} U+\mathbf{f}(U) & \times U-V \\
U(0)=U_{0} &
\end{array} \quad V: \quad m(V)=m(U)\right.
$$

$$
\begin{aligned}
& \left\langle\mathbf{A}^{-1} \partial_{t} U, U-V\right\rangle \\
& +\langle\mathbf{A} U, U-V\rangle+L\left\langle\mathbf{A}^{-1} U, U-V\right\rangle+\langle\mathbf{f}(U), U-V\rangle \\
& =L\left\langle\mathbf{A}^{-1} U, U-V\right\rangle
\end{aligned}
$$

Exploit monotonicity

$$
\begin{cases}\mathbf{A}^{-1} \partial_{t} U+\mathbf{M}-\langle\mathbf{M}\rangle=0 & \times U-V \\ \mathbf{M}=\mathbf{A} U+\mathbf{f}(U) & \times U-V \quad V: \quad m(V)=m(U) \\ U(0)=U_{0} & \end{cases}
$$

$$
\begin{aligned}
& \left\langle\mathbf{A}^{-1} \partial_{t} U, U-V\right\rangle \\
& +\langle\mathbf{A} U, U-V\rangle+L\left\langle\mathbf{A}^{-1} U, U-V\right\rangle+\langle\mathbf{f}(U), U-V\rangle \\
& =L\left\langle\mathbf{A}^{-1} U, U-V\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
\exists \sigma>0 \exists L>0: & \langle\mathbf{A} U, U\rangle+\langle\mathbf{f}(U), U\rangle+L\left\|\mathbf{A}^{-1 / 2} U\right\|^{2} \\
& =\underbrace{\|\nabla u\|_{\Omega}^{2}+\left\|\nabla_{\Gamma} \psi\right\|_{\Gamma}^{2}-\sigma\|\psi\|_{\Gamma}^{2}-\lambda\|u\|_{\Omega}^{2}+L\left\|\mathbf{A}^{-1 / 2} U\right\|^{2}}_{\text {coercive } B(U, U) \geq\|U\|_{\mathcal{H}^{1}}^{2} / 2} \\
& +\underbrace{(f(u), u)_{\Omega}+(g(\psi)+\sigma \psi, \psi)_{\Gamma}}_{\exists \sigma>0: \text { monotone increasing }} \quad \text { for } U: m(U)=0
\end{aligned}
$$

The variational inequality

Since

$$
B(U, U-V) \geq B(V, U-V) \forall U, V \quad \text { such that } \quad m(U)=m(V)
$$

and

$$
\begin{aligned}
& (f(u), u-v)_{\Omega}+(g(\psi)+\sigma \psi, \psi-w)_{\Gamma} \geq \\
& (f(v), u-v)_{\Omega}+(g(w)+\sigma w, \psi-w)_{\Gamma} \quad U=(u, \psi) V=(v, w)
\end{aligned}
$$

The variational inequality

Since

$$
B(U, U-V) \geq B(V, U-V) \forall U, V \quad \text { such that } \quad m(U)=m(V)
$$

and

$$
\begin{aligned}
& (f(u), u-v)_{\Omega}+(g(\psi)+\sigma \psi, \psi-w)_{\Gamma} \geq \\
& (f(v), u-v)_{\Omega}+(g(w)+\sigma w, \psi-w)_{\Gamma} \quad U=(u, \psi) V=(v, w)
\end{aligned}
$$

The variational inequality

Since

$$
B(U, U-V) \geq B(V, U-V) \forall U, V \text { such that } \quad m(U)=m(V)
$$

and

$$
\begin{aligned}
& (f(u), u-v)_{\Omega}+(g(\psi)+\sigma \psi, \psi-w)_{\Gamma} \geq \\
& (f(v), u-v)_{\Omega}+(g(w)+\sigma w, \psi-w)_{\Gamma}
\end{aligned} \quad U=(u, \psi) V=(v, w)
$$

$$
(V)\left\{\begin{array}{l}
\left\langle\mathbf{A}^{-1} \partial_{t} U, U-V\right\rangle+B(V, U-V)+\langle f(v), u-v\rangle_{\Omega} \\
\quad+(g(w)+\sigma w, \psi-w)_{\Gamma} \leq L\left\langle U-\langle U\rangle, \mathbf{A}^{-1}(U-V)\right\rangle \\
\text { for a.a. } t>0 \forall V=\left(v,\left.v\right|_{\Gamma}\right) \in \mathcal{H}^{1} \quad \text { such that } \\
m(V)=m\left(U_{0}\right) \quad \text { and } \quad f(v) \in L^{1}(\Omega)
\end{array}\right.
$$

Our notion of a variational solution

$\forall U_{0} \quad U(t)=(u(t), \psi(t))$ is a variational solution if $U(0)=U_{0}$ and
$\diamond u(t)_{\mid \Gamma}=\psi(t)$ and $\quad m(U(t))=m\left(U_{0}\right)$ for a.a. $t>0$
$\diamond-1<u(x, t)<1, \quad$ for almost all $(x, t) \in \Omega \times[0, \infty)$
$\diamond \quad U \in C\left([0,+\infty), \mathcal{H}^{1^{*}}\right) \cap L^{2}\left([0, T], \mathcal{H}^{1}\right), \forall T>0$,
$\diamond f(u) \in L^{1}(\Omega \times[0, T]), \quad$ for any $\quad T>0$
$\diamond \quad \partial_{t} U \in L^{2}\left([\tau, T], \mathcal{H}^{1^{*}}\right): \quad\left\langle\partial_{t} U, 1\right\rangle_{\mathcal{H}^{1^{*}}, \mathcal{H}^{1}}=0 \quad \forall \tau \in(0, T], \quad \forall T>0$,
$\diamond \quad U(t)$ satisfies (V) :

$$
\begin{aligned}
& \left\langle\mathbf{A}^{-1} \partial_{t} U, U-V\right\rangle+B(V, U-V)+\langle f(v), u-v\rangle_{\Omega} \\
& +\left\langle g\left(\left.v\right|_{\Gamma}\right)+\left.\sigma v\right|_{\Gamma}, \psi-\left.v\right|_{\Gamma}\right\rangle_{\Gamma} \leq L\left\langle U-\langle U\rangle, \mathbf{A}^{-1}(U-V)\right\rangle
\end{aligned}
$$

for a.a. $t>0, \forall V=\left(v,\left.v\right|_{\Gamma}\right) \in \mathcal{H}^{1} \quad$ such that

$$
m(V)=m\left(U_{0}\right) \quad \text { and } \quad f(v) \in L^{1}(\Omega)
$$

Relation between variational and classical solutions

- $\exists U_{N_{k}} \rightarrow U$ but $U(t)=(u(t), \psi(t))$ is NOT necessarily a classical solution, since u may reach ± 1 on regions of $\Gamma \times \mathbb{R}^{+}$with positive measure. The normal derivative may have discontinuities

- $U_{N_{k}} \rightarrow U$, the a priori estimates and the dynamic boundary condition

- Unfortunately $\left[\partial_{n} u\right]_{\text {int }}$ is not necessarily equal to $\left[\partial_{n} u\right]_{\text {ext }}$.

Relation between variational and classical solutions

- $\exists U_{N_{k}} \rightarrow U$ but $U(t)=(u(t), \psi(t))$ is NOT necessarily a classical solution, since u may reach ± 1 on regions of $\Gamma \times \mathbb{R}^{+}$with positive measure. The normal derivative may have discontinuities
- $u \in L^{\infty}\left((\tau, T] ; W^{2,1}(\Omega)\right)$ for any $0<\tau<T$
- $U_{N_{k}} \rightarrow U$, the a priori estimates and the dynamic boundary condition $\Rightarrow \quad \exists\left[\partial_{n} u\right]_{\text {ext }}:=\quad \lim \quad \partial_{n} u_{N_{k \mid \Gamma}} \in L^{\infty}\left([\tau, T], L^{2}(\Gamma)\right)$

Relation between variational and classical solutions

- $\exists U_{N_{k}} \rightarrow U$ but $U(t)=(u(t), \psi(t))$ is NOT necessarily a classical solution, since u may reach ± 1 on regions of $\Gamma \times \mathbb{R}^{+}$with positive measure. The normal derivative may have discontinuities
- $u \in L^{\infty}\left((\tau, T] ; W^{2,1}(\Omega)\right)$ for any $0<\tau<T$
$\Rightarrow \exists\left[\partial_{n} u\right]_{\text {int }}:=\partial_{n} u_{\mid \Gamma} \in L^{\infty}\left([\tau, T], L^{1}(\Gamma)\right)$
- $U_{N_{k}} \rightarrow U$, the a priori estimates and the dynamic boundary condition

Relation between variational and classical solutions

- $\exists U_{N_{k}} \rightarrow U$ but $U(t)=(u(t), \psi(t))$ is NOT necessarily a classical solution, since u may reach ± 1 on regions of $\Gamma \times \mathbb{R}^{+}$with positive measure. The normal derivative may have discontinuities
- $u \in L^{\infty}\left((\tau, T] ; W^{2,1}(\Omega)\right)$ for any $0<\tau<T$
$\Rightarrow \exists\left[\partial_{n} u\right]_{\text {int }}:=\partial_{n} u_{\mid \Gamma} \in L^{\infty}\left([\tau, T], L^{1}(\Gamma)\right)$
- $U_{N_{k}} \rightarrow U$, the a priori estimates and the dynamic boundary condition

$$
\Rightarrow \quad \exists\left[\partial_{n} u\right]_{e x t}:=\lim _{N_{k} \rightarrow+\infty} \partial_{n} u_{N_{k} \mid \Gamma} \in L^{\infty}\left([\tau, T], L^{2}(\Gamma)\right)
$$

Relation between variational and classical solutions

- $\exists U_{N_{k}} \rightarrow U$ but $U(t)=(u(t), \psi(t))$ is NOT necessarily a classical solution, since u may reach ± 1 on regions of $\Gamma \times \mathbb{R}^{+}$with positive measure. The normal derivative may have discontinuities
- $u \in L^{\infty}\left((\tau, T] ; W^{2,1}(\Omega)\right)$ for any $0<\tau<T$
$\Rightarrow \exists\left[\partial_{n} u\right]_{\text {int }}:=\partial_{n} u_{\mid \Gamma} \in L^{\infty}\left([\tau, T], L^{1}(\Gamma)\right)$
- $U_{N_{k}} \rightarrow U$, the a priori estimates and the dynamic boundary condition

$$
\Rightarrow \quad \exists\left[\partial_{n} u\right]_{e x t}:=\lim _{N_{k} \rightarrow+\infty} \partial_{n} u_{N_{k} \mid \Gamma} \in L^{\infty}\left([\tau, T], L^{2}(\Gamma)\right)
$$

$$
\left\{\begin{array}{l}
\partial_{t} u-\Delta \mu=0 \quad \text { in } L_{l o c}^{2}(\Omega \times(\tau, T)) \\
\mu=-\Delta u+f(u)-\lambda u \quad \text { in } L_{l o c}^{2}(\Omega \times(\tau, T)) \\
\left.u(t)\right|_{\Gamma}=\psi(t), \quad t>0 \\
\partial_{t} \psi-\left.\Delta_{\Gamma} \mu\right|_{\Gamma}=-\partial_{n} \mu, \quad \text { in } L_{l o c}^{2}(\Gamma \times(\tau, T)) \\
\left.\mu\right|_{\Gamma}=-\Delta_{\Gamma} \psi+g(\psi)+\left[\partial_{n} u\right]_{\text {ext }} \quad \text { on } \Gamma, \quad T>\tau>0
\end{array}\right.
$$

Relation between variational and classical solutions

- $\exists U_{N_{k}} \rightarrow U$ but $U(t)=(u(t), \psi(t))$ is NOT necessarily a classical solution, since u may reach ± 1 on regions of $\Gamma \times \mathbb{R}^{+}$with positive measure. The normal derivative may have discontinuities
- $u \in L^{\infty}\left((\tau, T] ; W^{2,1}(\Omega)\right)$ for any $0<\tau<T$
$\Rightarrow \exists\left[\partial_{n} u\right]_{\text {int }}:=\partial_{n} u_{\mid \Gamma} \in L^{\infty}\left([\tau, T], L^{1}(\Gamma)\right)$
- $U_{N_{k}} \rightarrow U$, the a priori estimates and the dynamic boundary condition

$$
\Rightarrow \quad \exists\left[\partial_{n} u\right]_{e x t}:=\lim _{N_{k} \rightarrow+\infty} \partial_{n} u_{N_{k} \mid \Gamma} \in L^{\infty}\left([\tau, T], L^{2}(\Gamma)\right)
$$

$$
\left\{\begin{array}{l}
\partial_{t} u-\Delta \mu=0 \quad \text { in } L_{l o c}^{2}(\Omega \times(\tau, T)) \\
\mu=-\Delta u+f(u)-\lambda u \quad \text { in } L_{l o c}^{2}(\Omega \times(\tau, T)) \\
\left.u(t)\right|_{\Gamma}=\psi(t), \quad t>0 \\
\partial_{t} \psi-\left.\Delta_{\Gamma} \mu\right|_{\Gamma}=-\partial_{n} \mu, \quad \text { in } L_{l o c}^{2}(\Gamma \times(\tau, T)) \\
\left.\mu\right|_{\Gamma}=-\Delta_{\Gamma} \psi+g(\psi)+\left[\partial_{n} u\right]_{\text {ext }} \quad \text { on } \Gamma, \quad T>\tau>0
\end{array}\right.
$$

- Unfortunately $\left[\partial_{n} u\right]_{\text {int }}$ is not necessarily equal to $\left[\partial_{n} u\right]_{\text {ext }}$.

Sufficient condition for U to be classical

$$
\begin{gathered}
\text { If }(\star) \quad|u(x, t)|<1 \quad \text { a.e. in } \Gamma \times \mathbb{R}^{+} \quad \Rightarrow \quad\left[\partial_{n} u\right]_{\text {int }}=\left[\partial_{n} u\right]_{e x t} \\
\Rightarrow \quad U \text { classical solution }
\end{gathered}
$$

Sufficient condition for U to be classical

$$
\text { If (} \begin{gathered}
|u(x, t)|<1 \\
\Rightarrow \text { a.e. in } \Gamma \times \mathbb{R}^{+} \Rightarrow\left[\partial_{n} u\right]_{\text {int }}=\left[\partial_{n} u\right]_{\text {ext }} \\
\Rightarrow U \text { classical solution }
\end{gathered}
$$

If (■) $\lim _{s \rightarrow \pm 1} F(s)=+\infty \quad\left(F^{\prime}=f\right) \quad \Rightarrow \quad(\boldsymbol{\star}) \quad$ holds true

Sufficient condition for U to be classical

$$
\text { If (} \begin{gathered}
|u(x, t)|<1 \\
\Rightarrow \text { a.e. in } \Gamma \times \mathbb{R}^{+} \Rightarrow\left[\partial_{n} u\right]_{\text {int }}=\left[\partial_{n} u\right]_{\text {ext }} \\
\Rightarrow U \quad \text { classical solution }
\end{gathered}
$$

$$
\text { If } \quad(\square) \quad \lim _{s \rightarrow \pm 1} F(s)=+\infty \quad\left(F^{\prime}=f\right) \quad \Rightarrow \quad(\star) \quad \text { holds true }
$$

Property (■) holds true if f is strongly singular at $\pm 1 \Rightarrow$ No logarithmic functional

The semigroup

Let $U=(u, \psi)$

$$
\Phi=\left\{U \in L^{\infty}(\Omega) \times L^{\infty}(\Gamma):\|u\|_{L^{\infty}(\Omega)},\|\psi\|_{L^{\infty}(\Gamma)} \leq 1, m(U) \in(-1,1)\right\}
$$

The semigroup

Let $U=(u, \psi)$

$$
\begin{gathered}
\Phi=\left\{U \in L^{\infty}(\Omega) \times L^{\infty}(\Gamma):\|u\|_{L^{\infty}(\Omega)},\|\psi\|_{L^{\infty}(\Gamma)} \leq 1, m(U) \in(-1,1)\right\} \\
\Phi_{I}=\{U \in \Phi: \quad m(U)=I\}, \quad I \in(-1,1) \\
\mathcal{H}^{1}=H^{1}(\Omega) \times H^{1}(\Gamma) \subset \mathcal{L}^{2}=L^{2}(\Omega) \times L^{2}(\Gamma) \subset\left(\mathcal{H}^{1}\right)^{*}
\end{gathered}
$$

$S(t):\left(\Phi_{I}, \mathcal{H}^{1^{*}}\right) \rightarrow\left(\Phi_{I}, \mathcal{H}^{1^{*}}\right) \quad$ closed semigroup
$U_{0} \mapsto U(t) \quad$ solution to the variational problem (V)
$\left(S(t), \Phi_{I}\right)$ admits a compact absorbing set $\Rightarrow \quad \exists . A_{I} \quad\left(\Phi_{I}, \mathcal{H}^{1^{*}}\right)$-global attractor

The semigroup

Let $U=(u, \psi)$

$$
\begin{gathered}
\Phi=\left\{U \in L^{\infty}(\Omega) \times L^{\infty}(\Gamma):\|u\|_{L^{\infty}(\Omega)},\|\psi\|_{L^{\infty}(\Gamma)} \leq 1, m(U) \in(-1,1)\right\} \\
\Phi_{I}=\{U \in \Phi: \quad m(U)=I\}, \quad I \in(-1,1) \\
\mathcal{H}^{1}=H^{1}(\Omega) \times H^{1}(\Gamma) \subset \mathcal{L}^{2}=L^{2}(\Omega) \times L^{2}(\Gamma) \subset\left(\mathcal{H}^{1}\right)^{*}
\end{gathered}
$$

closed semigroup

$U_{0} \mapsto U(t) \quad$ solution to the variational problem (V)
$\left(S(t), \Phi_{I}\right)$ admits a compact absorbing set

The semigroup

Let $U=(u, \psi)$

$$
\begin{gathered}
\Phi=\left\{U \in L^{\infty}(\Omega) \times L^{\infty}(\Gamma):\|u\|_{L^{\infty}(\Omega)},\|\psi\|_{L^{\infty}(\Gamma)} \leq 1, m(U) \in(-1,1)\right\} \\
\Phi_{I}=\{U \in \Phi: \quad m(U)=I\}, \quad I \in(-1,1) \\
\mathcal{H}^{1}=H^{1}(\Omega) \times H^{1}(\Gamma) \subset \mathcal{L}^{2}=L^{2}(\Omega) \times L^{2}(\Gamma) \subset\left(\mathcal{H}^{1}\right)^{*}
\end{gathered}
$$

$S(t):\left(\Phi_{I}, \mathcal{H}^{1^{*}}\right) \rightarrow\left(\Phi_{I}, \mathcal{H}^{1^{*}}\right) \quad$ closed semigroup

$$
U_{0} \mapsto U(t) \quad \text { solution to the variational problem }(V)
$$

$\left(S(t), \Phi_{I}\right)$ admits a compact absorbing set $\Rightarrow \quad \exists \mathcal{A}_{I} \quad\left(\Phi_{I}, \mathcal{H}^{1^{*}}\right)$ - global attractor

The semigroup

Let $U=(u, \psi)$

$$
\begin{gathered}
\Phi=\left\{U \in L^{\infty}(\Omega) \times L^{\infty}(\Gamma):\|u\|_{L^{\infty}(\Omega)},\|\psi\|_{L^{\infty}(\Gamma)} \leq 1, m(U) \in(-1,1)\right\} \\
\Phi_{I}=\{U \in \Phi: \quad m(U)=I\}, \quad I \in(-1,1) \\
\mathcal{H}^{1}=H^{1}(\Omega) \times H^{1}(\Gamma) \subset \mathcal{L}^{2}=L^{2}(\Omega) \times L^{2}(\Gamma) \subset\left(\mathcal{H}^{1}\right)^{*}
\end{gathered}
$$

$S(t):\left(\Phi_{I}, \mathcal{H}^{1^{*}}\right) \rightarrow\left(\Phi_{I}, \mathcal{H}^{1^{*}}\right) \quad$ closed semigroup
$U_{0} \mapsto U(t) \quad$ solution to the variational problem (V)
$\left(S(t), \Phi_{I}\right)$ admits a compact absorbing set
$\Rightarrow \quad \exists \mathcal{A}_{I} \quad\left(\Phi_{I}, \mathcal{H}^{1^{*}}\right)$ - global attractor

The semigroup

Let $U=(u, \psi)$

$$
\begin{gathered}
\Phi=\left\{U \in L^{\infty}(\Omega) \times L^{\infty}(\Gamma):\|u\|_{L^{\infty}(\Omega)},\|\psi\|_{L^{\infty}(\Gamma)} \leq 1, m(U) \in(-1,1)\right\} \\
\Phi_{I}=\{U \in \Phi: \quad m(U)=I\}, \quad I \in(-1,1) \\
\mathcal{H}^{1}=H^{1}(\Omega) \times H^{1}(\Gamma) \subset \mathcal{L}^{2}=L^{2}(\Omega) \times L^{2}(\Gamma) \subset\left(\mathcal{H}^{1}\right)^{*}
\end{gathered}
$$

$S(t):\left(\Phi_{I}, \mathcal{H}^{1^{*}}\right) \rightarrow\left(\Phi_{I}, \mathcal{H}^{1^{*}}\right) \quad$ closed semigroup

$$
U_{0} \mapsto U(t) \quad \text { solution to the variational problem }(V)
$$

$\left(S(t), \Phi_{I}\right)$ admits a compact absorbing set
$\Rightarrow \quad \exists \mathcal{A}_{I} \quad\left(\Phi_{I}, \mathcal{H}^{1^{*}}\right)$ - global attractor
\mathcal{A}_{I} bounded in $C^{\alpha}(\Omega) \times C^{\alpha}(\Gamma)$ has finite fractal dimension

Exponential attractors

- [Eden, Foias, Nicolaenko, Temam 1994]

We are dealing with variational solutions
How can we prove the existence of an exponential attractor ?
Main Idea [Efendiev-Zelik 2008]. [Miranville-Zelik 2010] :

- close to $\pm 1 \quad f^{\prime}$ goes to $+\infty$
$\Rightarrow f^{\prime}(1-s)$ and $f^{\prime}(-1+s)$ as large as we want if $s>0$ is small enough
- far from ± 1 standard parabolic smoothing property

To exploit this idea, we need a local procedure.

- $\exists \mathbb{B}_{0}$ compact, absorbing and positively invariant, where, in particular, uniform bounds for the solutions hold true and $\left.u\right|_{\Gamma}=\psi$.
- $\left\{B_{\mathcal{H}^{1 *}}\left(U_{0}, \rho\right)\right\}_{z_{0} \in \mathbb{B}_{0}}$ are an open covering of \mathbb{B}_{0}, for any $0<\rho \leq \rho_{0} \ll 1$ \Rightarrow we work on a finite number of balls

Exponential attractors

- [Eden, Foias, Nicolaenko, Temam 1994]

We are dealing with variational solutions
How can we prove the existence of an exponential attractor?
Main Idea [Efendiev-Zelik 2008], [Miranville-Zelik 2010] :

- close to $\pm 1 \quad f^{\prime}$ goes to $+\infty$
$\Rightarrow f^{\prime}(1-s)$ and $f^{\prime}(-1+s)$ as large as we want if $s>0$ is small enough
- far from ± 1 standard parabolic smoothing property

To exploit this idea, we need a local procedure.

- $\exists \mathbb{B}_{0}$ compact, absorbing and positively invariant, where, in particular, uniform bounds for the solutions hold true and $\left.u\right|_{\Gamma}=\psi$.
- $\left\{B_{\mathcal{H}^{1}}\left(U_{0}, \rho\right)\right\}_{z_{0} \in \mathbb{B}_{n}}$ are an open covering of \mathbb{B}_{0}, for any $0<\rho \leq \rho_{0} \ll 1$ \Rightarrow we work on a finite number of balls

Exponential attractors

- [Eden, Foias, Nicolaenko, Temam 1994]

We are dealing with variational solutions
How can we prove the existence of an exponential attractor ?
Main Idea [Efendiev-Zelik 2008], [Miranville-Zelik 2010] :

- close to $\pm 1 \quad f^{\prime}$ goes to $+\infty$
$\Rightarrow f^{\prime}(1-s)$ and $f^{\prime}(-1+s)$ as large as we want if $s>0$ is small enough
- far from ± 1 standard parabolic smoothing property

To exploit this idea, we need a local procedure.

- $\exists \mathbb{B}_{0}$ compact, absorbing and positively invariant, where, in particular, uniform bounds for the solutions hold true and $\left.u\right|_{\Gamma}=\psi$.
- $\left\{B_{\mathcal{H}^{1 *}}\left(U_{0}, \rho\right)\right\}_{z_{0} \in \mathbb{B}_{0}}$ are an open covering of \mathbb{B}_{0}, for any $0<\rho \leq \rho_{0} \ll 1$
\Rightarrow we work on a finite number of balls

Exponential attractors

- [Eden, Foias, Nicolaenko, Temam 1994]

We are dealing with variational solutions
How can we prove the existence of an exponential attractor?
Main Idea [Efendiev-Zelik 2008], [Miranville-Zelik 2010] :

- close to $\pm 1 \quad f^{\prime}$ goes to $+\infty$
$\Rightarrow f^{\prime}(1-s)$ and $f^{\prime}(-1+s)$ as large as we want if $s>0$ is small enough
- far from ± 1 standard parabolic smoothing property

To exploit this idea, we need a local procedure.

- $\exists \mathbb{B}_{0}$ compact, absorbing and positively invariant, where, in particular, uniform bounds for the solutions hold true and $\left.u\right|_{\Gamma}=\psi$.
- $\left\{B_{\mathcal{H}^{1 *}}\left(U_{0}, \rho\right)\right\}_{z_{0} \in \mathbb{B}_{0}}$ are an open covering of \mathbb{B}_{0}, for any $0<\rho \leq \rho_{0} \ll 1$
\Rightarrow we work on a finite number of balls

Exponential attractors

- [Eden, Foias, Nicolaenko, Temam 1994]

We are dealing with variational solutions
How can we prove the existence of an exponential attractor?
Main Idea [Efendiev-Zelik 2008], [Miranville-Zelik 2010] :

- close to $\pm 1 \quad f^{\prime}$ goes to $+\infty$
$\Rightarrow f^{\prime}(1-s)$ and $f^{\prime}(-1+s)$ as large as we want if $s>0$ is small enough
- far from ± 1 standard parabolic smoothing property

To exploit this idea, we need a local procedure.

- $\exists \mathbb{B}_{0}$ compact, absorbing and positively invariant, where, in particular, uniform bounds for the solutions hold true and $\left.u\right|_{\Gamma}=\psi$.

Exponential attractors

- [Eden, Foias, Nicolaenko, Temam 1994]

We are dealing with variational solutions
How can we prove the existence of an exponential attractor?
Main Idea [Efendiev-Zelik 2008], [Miranville-Zelik 2010] :

- close to $\pm 1 \quad f^{\prime}$ goes to $+\infty$
$\Rightarrow f^{\prime}(1-s)$ and $f^{\prime}(-1+s)$ as large as we want if $s>0$ is small enough
- far from ± 1 standard parabolic smoothing property

To exploit this idea, we need a local procedure.

- $\exists \mathbb{B}_{0}$ compact, absorbing and positively invariant, where, in particular, uniform bounds for the solutions hold true and $\left.u\right|_{\Gamma}=\psi$. \Rightarrow we work on a finite number of balls

Exponential attractors

- [Eden, Foias, Nicolaenko, Temam 1994]

We are dealing with variational solutions
How can we prove the existence of an exponential attractor?
Main Idea [Efendiev-Zelik 2008], [Miranville-Zelik 2010] :

- close to $\pm 1 \quad f^{\prime}$ goes to $+\infty$
$\Rightarrow f^{\prime}(1-s)$ and $f^{\prime}(-1+s)$ as large as we want if $s>0$ is small enough
- far from ± 1 standard parabolic smoothing property To exploit this idea, we need a local procedure.
- $\exists \mathbb{B}_{0}$ compact, absorbing and positively invariant, where, in particular, uniform bounds for the solutions hold true and $\left.u\right|_{\Gamma}=\psi$. \Rightarrow we work on a finite number of balls

Exponential attractors

- [Eden, Foias, Nicolaenko, Temam 1994]

We are dealing with variational solutions
How can we prove the existence of an exponential attractor?
Main Idea [Efendiev-Zelik 2008], [Miranville-Zelik 2010] :

- close to $\pm 1 \quad f^{\prime}$ goes to $+\infty$
$\Rightarrow f^{\prime}(1-s)$ and $f^{\prime}(-1+s)$ as large as we want if $s>0$ is small enough
- far from ± 1 standard parabolic smoothing property

To exploit this idea, we need a local procedure.

- $\exists \mathbb{B}_{0}$ compact, absorbing and positively invariant, where, in particular, uniform bounds for the solutions hold true and $\left.u\right|_{\Gamma}=\psi$.

Exponential attractors

- [Eden, Foias, Nicolaenko, Temam 1994]

We are dealing with variational solutions
How can we prove the existence of an exponential attractor?
Main Idea [Efendiev-Zelik 2008], [Miranville-Zelik 2010] :

- close to $\pm 1 \quad f^{\prime}$ goes to $+\infty$
$\Rightarrow f^{\prime}(1-s)$ and $f^{\prime}(-1+s)$ as large as we want if $s>0$ is small enough
- far from ± 1 standard parabolic smoothing property

To exploit this idea, we need a local procedure.

- $\exists \mathbb{B}_{0}$ compact, absorbing and positively invariant, where, in particular, uniform bounds for the solutions hold true and $\left.u\right|_{\Gamma}=\psi$.
- $\left\{B_{\mathcal{H}^{1^{*}}}\left(U_{0}, \rho\right)\right\}_{z_{0} \in \mathbb{B}_{0}}$ are an open covering of \mathbb{B}_{0}, for any $0<\rho \leq \rho_{0} \ll 1$ \Rightarrow we work on a finite number of balls

Main Idea

- \mathbb{B}_{0} is such that $\|u\|_{C^{\alpha}(\Omega \times[0, T])} \leq R, \forall T \geq 0$
- This and Lipschitz continuous dependence, interpolation \Rightarrow $\forall U_{0} \in \mathbb{B}_{0}, \forall \delta \in(0,1), \exists T(\delta)>0, \exists \rho_{0}(\delta)>0$ such that $\forall \rho \in\left(0, \rho_{0}\right), \forall U(0) \in B_{\mathcal{H} 1^{*}}\left(U_{0}, \rho\right), \forall t \in\lceil 0, T\rceil S(t) U(0)=(u(t), \psi(t))$ satisfies

$$
\begin{array}{ll}
|u(x, t)| \geq 1-4 \delta, \quad x \in \bar{\Omega}_{2 \delta}\left(U_{0}\right)=\{x \in \Omega: & \left.\left|u_{0}(x)\right|>1-2 \delta\right\} \\
|u(x, t)| \leq 1-\delta / 4, \quad x \in \Omega_{\delta}\left(U_{0}\right)=\{x \in \Omega: & \left.\left|u_{0}(x)\right|<1-\delta\right\}
\end{array}
$$

- $\forall \delta \in(0,1) \exists \theta: \Omega \rightarrow[0,1] \quad$ such that $\quad \theta(x)= \begin{cases}0, & x \in \bar{\Omega}_{\delta}\left(U_{0}\right) \\ 1, & x \in \Omega_{2 \delta}\left(U_{0}\right)\end{cases}$
- $f^{\prime}(u(x, t)) \geq \Lambda(\delta) . \quad x \in \bar{\Omega}_{2 \delta}\left(U_{0}\right), \quad t \in[0, T\rceil$ contraction
- $|\theta(x) u(x, t)|=|u(x, t)|_{\Omega_{2 \delta}\left(U_{0}\right)} \mid \leq 1-\delta / 4, \quad t \in[0, T] \quad$ smoothing

Main Idea

- \mathbb{B}_{0} is such that $\|u\|_{C^{\alpha}(\Omega \times[0, T])} \leq R, \forall T \geq 0$
- This and Lipschitz continuous dependence, interpolation \Rightarrow $\forall U_{0} \in \mathbb{B}_{0}, \forall \delta \in(0,1), \exists T(\delta)>0, \exists \rho_{0}(\delta)>0$ such that $\forall \rho \in\left(0, \rho_{0}\right), \forall U(0) \in B_{\mathcal{H}^{1 *}}\left(U_{0}, \rho\right), \forall t \in[0, T] S(t) U(0)=(u(t), \psi(t))$ satisfies

$$
\begin{array}{ll}
|u(x, t)| \geq 1-4 \delta, \quad x \in \bar{\Omega}_{2 \delta}\left(U_{0}\right)=\left\{x \in \Omega: \quad\left|u_{0}(x)\right|>1-2 \delta\right\} \\
|u(x, t)| \leq 1-\delta / 4, \quad x \in \Omega_{\delta}\left(U_{0}\right)=\{x \in \Omega: & \left.\left|u_{0}(x)\right|<1-\delta\right\}
\end{array}
$$

Main Idea

- \mathbb{B}_{0} is such that $\|u\|_{C^{\alpha}(\Omega \times[0, T])} \leq R, \forall T \geq 0$
- This and Lipschitz continuous dependence, interpolation \Rightarrow
$\forall U_{0} \in \mathbb{B}_{0}, \forall \delta \in(0,1), \exists T(\delta)>0, \exists \rho_{0}(\delta)>0$ such that $\forall \rho \in\left(0, \rho_{0}\right), \forall U(0) \in B_{\mathcal{H}^{1 *}}\left(U_{0}, \rho\right), \forall t \in[0, T] S(t) U(0)=(u(t), \psi(t))$ satisfies

$$
\begin{array}{ll}
|u(x, t)| \geq 1-4 \delta, & x \in \bar{\Omega}_{2 \delta}\left(U_{0}\right)=\{x \in \Omega: \\
|u(x, t)| \leq 1-\delta / 4, & \left.x \in \Omega_{\delta}(x) \mid>1-2 \delta\right\} \\
\left.\mid U_{0}\right)=\{x \in \Omega: & \left.\left|u_{0}(x)\right|<1-\delta\right\}
\end{array}
$$

- $\forall \delta \in(0,1) \exists \theta: \Omega \rightarrow[0,1]$ such that $\quad \theta(x)= \begin{cases}0, & x \in \bar{\Omega}_{\delta}\left(U_{0}\right) \\ 1, & x \in \Omega_{2 \delta}\left(U_{0}\right)\end{cases}$

Main Idea

- \mathbb{B}_{0} is such that $\|u\|_{C^{\alpha}(\Omega \times[0, T])} \leq R, \forall T \geq 0$
- This and Lipschitz continuous dependence, interpolation \Rightarrow
$\forall U_{0} \in \mathbb{B}_{0}, \forall \delta \in(0,1), \exists T(\delta)>0, \exists \rho_{0}(\delta)>0$ such that $\forall \rho \in\left(0, \rho_{0}\right), \forall U(0) \in B_{\mathcal{H}^{1 *}}\left(U_{0}, \rho\right), \forall t \in[0, T] S(t) U(0)=(u(t), \psi(t))$ satisfies

$$
\begin{array}{ll}
|u(x, t)| \geq 1-4 \delta, \quad x \in \bar{\Omega}_{2 \delta}\left(U_{0}\right)=\left\{x \in \Omega: \quad\left|u_{0}(x)\right|>1-2 \delta\right\} \\
|u(x, t)| \leq 1-\delta / 4, \quad x \in \Omega_{\delta}\left(U_{0}\right)=\left\{x \in \Omega: \quad\left|u_{0}(x)\right|<1-\delta\right\}
\end{array}
$$

- $\forall \delta \in(0,1) \exists \theta: \Omega \rightarrow[0,1] \quad$ such that $\quad \theta(x)= \begin{cases}0, & x \in \bar{\Omega}_{\delta}\left(U_{0}\right) \\ 1, & x \in \Omega_{2 \delta}\left(U_{0}\right)\end{cases}$
- $f^{\prime}(u(x, t)) \geq \Lambda(\delta), \quad x \in \bar{\Omega}_{2 \delta}\left(U_{0}\right), \quad t \in[0, T] \quad$ contraction

Main Idea

- \mathbb{B}_{0} is such that $\|u\|_{C^{\alpha}(\Omega \times[0, T])} \leq R, \forall T \geq 0$
- This and Lipschitz continuous dependence, interpolation \Rightarrow
$\forall U_{0} \in \mathbb{B}_{0}, \forall \delta \in(0,1), \exists T(\delta)>0, \exists \rho_{0}(\delta)>0$ such that $\forall \rho \in\left(0, \rho_{0}\right), \forall U(0) \in B_{\mathcal{H}^{1 *}}\left(U_{0}, \rho\right), \forall t \in[0, T] S(t) U(0)=(u(t), \psi(t))$ satisfies

$$
\begin{array}{ll}
|u(x, t)| \geq 1-4 \delta, & x \in \bar{\Omega}_{2 \delta}\left(U_{0}\right)=\{x \in \Omega: \\
|u(x, t)| \leq 1-\delta / 4, & \left.x \in \Omega_{\delta}(x) \mid>1-2 \delta\right\} \\
\left.U_{0}\right)=\{x \in \Omega: & \left.\left|u_{0}(x)\right|<1-\delta\right\}
\end{array}
$$

- $\forall \delta \in(0,1) \exists \theta: \Omega \rightarrow[0,1] \quad$ such that $\quad \theta(x)= \begin{cases}0, & x \in \bar{\Omega}_{\delta}\left(U_{0}\right) \\ 1, & x \in \Omega_{2 \delta}\left(U_{0}\right)\end{cases}$
- $f^{\prime}(u(x, t)) \geq \Lambda(\delta), \quad x \in \bar{\Omega}_{2 \delta}\left(U_{0}\right), \quad t \in[0, T] \quad$ contraction
- $|\theta(x) u(x, t)|=|u(x, t)|_{\Omega_{2 \delta}\left(U_{0}\right)} \mid \leq 1-\delta / 4, \quad t \in[0, T] \quad$ smoothing

Construction of an exponential attractor

Theorem (Málek-Prážak 2002, Efendiev-Zelik 2008)
Let $X, \mathbb{H}_{1}, \mathbb{H}$ be Banach spaces with $\mathbb{H}_{1} \Subset \mathbb{H}, \mathbb{B}_{0} \Subset X$ such that $\mathbb{S B}_{0} \subset \mathbb{B}_{0}$

and $\forall U_{0}$	$\in \mathbb{B}_{0} \forall \rho \in\left(0, \rho_{0}\right) \exists \mathbb{K}_{U_{0}}: B_{X}\left(U_{0}, \rho\right) \rightarrow \mathbb{H}_{1}$ such that						
(•)	$\left\\|\mathbb{K}_{U_{0}}\left(U_{1}\right)-\mathbb{K}_{U_{0}}\left(U_{2}\right)\right\\|_{\mathbb{H}_{1}} \leq c\left\\|U_{1}-U_{2}\right\\|_{X}, \quad U_{1}, U_{2} \in B_{X}\left(U_{0}, \rho\right)$						
$(\bullet) \quad \exists \gamma \in(0,1) \quad$ such that, for any $\quad U_{1}, U_{2} \in B_{X}\left(U_{0}, \rho\right)$							
	$\left\\|S U_{1}-\mathbb{S} U_{2}\right\\|_{X} \leq \gamma\left\\|U_{1}-U_{2}\right\\| x+c\left\\|\mathbb{K}_{U_{0}}\left(U_{1}\right)-\mathbb{K}_{U_{0}}\left(U_{2}\right)\right\\|_{\mathbb{H}}$						

$\Rightarrow \exists \mathcal{E}^{d}$ discrete exponential attractor with basin \mathbb{B}_{0} endowed with the X-topology.

$$
\mathbb{K}_{U_{0}}: B_{\mathcal{H}^{1^{*}}}\left(U_{0}, \rho\right) \rightarrow \mathcal{L}^{2} \quad \text { is } \quad \mathbb{K}_{U_{0}} U=(\theta u(\cdot), 0)
$$

Construction of an exponential attractor

Theorem (Málek-Prážak 2002, Efendiev-Zelik 2008)
Let $X, \mathbb{H}_{1}, \mathbb{H}$ be Banach spaces with $\mathbb{H}_{1} \Subset \mathbb{H}, \mathbb{B}_{0} \Subset X$ such that $\mathbb{S B}_{0} \subset \mathbb{B}_{0}$ and $\forall U_{0} \in \mathbb{B}_{0} \forall \rho \in\left(0, \rho_{0}\right) \exists \mathbb{K}_{U_{0}}: B_{X}\left(U_{0}, \rho\right) \rightarrow \mathbb{H}_{1}$ such that

$\Rightarrow \exists \mathcal{E}^{d}$ discrete exponential attractor with basin \mathbb{B}_{0} endowed with the

\square

Construction of an exponential attractor

Theorem (Málek-Prážak 2002, Efendiev-Zelik 2008)

Let $X, \mathbb{H}_{1}, \mathbb{H}$ be Banach spaces with $\mathbb{H}_{1} \Subset \mathbb{H}, \mathbb{B}_{0} \Subset X$ such that $\mathbb{S B}_{0} \subset \mathbb{B}_{0}$ and $\forall U_{0} \in \mathbb{B}_{0} \forall \rho \in\left(0, \rho_{0}\right) \exists \mathbb{K}_{U_{0}}: B_{X}\left(U_{0}, \rho\right) \rightarrow \mathbb{H}_{1}$ such that
$(\bullet)\left\|\mathbb{K}_{U_{0}}\left(U_{1}\right)-\mathbb{K}_{U_{0}}\left(U_{2}\right)\right\|_{\mathbb{H}_{1}} \leq c\left\|U_{1}-U_{2}\right\|_{X}, \quad U_{1}, U_{2} \in B_{X}\left(U_{0}, \rho\right)$
(•) $\exists \gamma \in(0,1) \quad$ such that, for any $\quad U_{1}, U_{2} \in B_{X}\left(U_{0}, \rho\right)$

$$
\left\|\mathbb{S} U_{1}-\mathbb{S} U_{2}\right\|_{X} \leq \gamma\left\|U_{1}-U_{2}\right\|_{X}+c\left\|\mathbb{K}_{U_{0}}\left(U_{1}\right)-\mathbb{K}_{U_{0}}\left(U_{2}\right)\right\|_{\mathbb{H}}
$$

$\Rightarrow \exists \mathcal{E}^{d}$ discrete exponential attractor with basin \mathbb{B}_{0} endowed with the X-topology.

Construction of an exponential attractor

Theorem (Málek-Prážak 2002, Efendiev-Zelik 2008)

Let $X, \mathbb{H}_{1}, \mathbb{H}$ be Banach spaces with $\mathbb{H}_{1} \Subset \mathbb{H}, \mathbb{B}_{0} \Subset X$ such that $\mathbb{S B}_{0} \subset \mathbb{B}_{0}$ and $\forall U_{0} \in \mathbb{B}_{0} \forall \rho \in\left(0, \rho_{0}\right) \exists \mathbb{K}_{U_{0}}: B_{X}\left(U_{0}, \rho\right) \rightarrow \mathbb{H}_{1}$ such that
$(\bullet)\left\|\mathbb{K}_{U_{0}}\left(U_{1}\right)-\mathbb{K}_{U_{0}}\left(U_{2}\right)\right\|_{\mathbb{H}_{1}} \leq c\left\|U_{1}-U_{2}\right\|_{X}, \quad U_{1}, U_{2} \in B_{X}\left(U_{0}, \rho\right)$
$(\bullet) \exists \gamma \in(0,1) \quad$ such that, for any $\quad U_{1}, U_{2} \in B_{X}\left(U_{0}, \rho\right)$

$$
\left\|\mathbb{S} U_{1}-\mathbb{S} U_{2}\right\|_{X} \leq \gamma\left\|U_{1}-U_{2}\right\|_{X}+c\left\|\mathbb{K}_{U_{0}}\left(U_{1}\right)-\mathbb{K}_{U_{0}}\left(U_{2}\right)\right\|_{\mathbb{H}}
$$

$\Rightarrow \exists \mathcal{E}^{d}$ discrete exponential attractor with basin \mathbb{B}_{0} endowed with the X-topology.
$X=\mathcal{H}^{1^{*}}, \mathbb{S}=S(T(\delta))$ where δ small enough, $\rho \in\left(0, \rho_{0}(\delta)\right)$ and $T=T(\delta)$

Construction of an exponential attractor

Theorem (Málek-Prážak 2002, Efendiev-Zelik 2008)

Let $X, \mathbb{H}_{1}, \mathbb{H}$ be Banach spaces with $\mathbb{H}_{1} \Subset \mathbb{H}, \mathbb{B}_{0} \Subset X$ such that $\mathbb{S B}_{0} \subset \mathbb{B}_{0}$ and $\forall U_{0} \in \mathbb{B}_{0} \forall \rho \in\left(0, \rho_{0}\right) \exists \mathbb{K}_{U_{0}}: B_{X}\left(U_{0}, \rho\right) \rightarrow \mathbb{H}_{1}$ such that
$(\bullet)\left\|\mathbb{K}_{U_{0}}\left(U_{1}\right)-\mathbb{K}_{U_{0}}\left(U_{2}\right)\right\|_{\mathbb{H}_{1}} \leq c\left\|U_{1}-U_{2}\right\|_{X}, \quad U_{1}, U_{2} \in B_{X}\left(U_{0}, \rho\right)$
(•) $\exists \gamma \in(0,1) \quad$ such that, for any $\quad U_{1}, U_{2} \in B_{X}\left(U_{0}, \rho\right)$

$$
\left\|\mathbb{S} U_{1}-\mathbb{S} U_{2}\right\|_{X} \leq \gamma\left\|U_{1}-U_{2}\right\|_{X}+c\left\|\mathbb{K}_{U_{0}}\left(U_{1}\right)-\mathbb{K}_{U_{0}}\left(U_{2}\right)\right\|_{\mathbb{H}}
$$

$\Rightarrow \exists \mathcal{E}^{d}$ discrete exponential attractor with basin \mathbb{B}_{0} endowed with the X-topology.
$X=\mathcal{H}^{1^{*}}, \mathbb{S}=S(T(\delta))$ where δ small enough, $\rho \in\left(0, \rho_{0}(\delta)\right)$ and $T=T(\delta)$

$$
\begin{gathered}
\mathbb{K}_{U_{0}}: B_{\mathcal{H}^{1^{*}}}\left(U_{0}, \rho\right) \rightarrow \mathcal{L}^{2} \quad \text { is } \quad \mathbb{K}_{U_{0}} U=(\theta u(\cdot), 0) \\
\mathbb{H}_{1}=L^{2}\left([0, T], \mathcal{H}^{1}\right) \cap H^{1}\left([0, T], \mathcal{H}^{3^{*}}\right) \Subset \mathbb{H}=L^{2}\left([0, T], \mathcal{L}^{2}\right)
\end{gathered}
$$

Theorem

For any $U_{0} \in \mathbb{B}_{0} \exists \delta \in(0,1), T(\delta)>0, \rho_{0}(\delta)>0: \forall \rho \in\left(0, \rho_{0}\right)$

$$
\begin{aligned}
& \left\|\mathbb{K}_{U_{0}}\left(U_{1}\right)-\mathbb{K}_{U_{0}}\left(U_{2}\right)\right\|_{\mathbb{H}_{1}} \leq c\left\|U_{1}-U_{2}\right\|_{\mathcal{H}^{1^{*}}}, \quad \forall U_{1}, U_{2} \in B_{\mathcal{H}^{1^{*}}}\left(U_{0}, \rho\right) \\
& \left\|S(T) U_{1}-S(T) U_{2}\right\|_{\mathcal{H}^{1 *}}^{2} \leq e^{-\beta T}\left\|U_{1}-U_{2}\right\|_{\mathcal{H}^{1^{*}}}^{2}+c\left\|\mathbb{K}_{U_{0}}\left(U_{1}\right)-\mathbb{K}_{U_{0}}\left(U_{2}\right)\right\|_{\mathbb{H}}^{2}
\end{aligned}
$$

for some $\beta>0$ and for any $U_{1}, U_{2} \in B_{\mathcal{H}^{1 *}}\left(U_{0}, \rho\right)$, where

$$
\mathbb{K}_{U_{0}} U:=(\theta u(\cdot), 0)
$$

Then $\exists \mathcal{E}_{I}^{d}$ discrete exponential attractor with basin \mathbb{B}_{0} endowed with the $\mathcal{H}^{1^{*}}$-topology.

Theorem

For any $U_{0} \in \mathbb{B}_{0} \exists \delta \in(0,1), T(\delta)>0, \rho_{0}(\delta)>0: \forall \rho \in\left(0, \rho_{0}\right)$

$$
\begin{aligned}
& \left\|\mathbb{K}_{U_{0}}\left(U_{1}\right)-\mathbb{K}_{U_{0}}\left(U_{2}\right)\right\|_{\mathbb{H}_{1}} \leq c\left\|U_{1}-U_{2}\right\|_{\mathcal{H}^{1^{*}}}, \quad \forall U_{1}, U_{2} \in B_{\mathcal{H}^{1^{*}}}\left(U_{0}, \rho\right) \\
& \left\|S(T) U_{1}-S(T) U_{2}\right\|_{\mathcal{H}^{1 *}}^{2} \leq e^{-\beta T}\left\|U_{1}-U_{2}\right\|_{\mathcal{H}^{1^{*}}}^{2}+c\left\|\mathbb{K}_{U_{0}}\left(U_{1}\right)-\mathbb{K}_{U_{0}}\left(U_{2}\right)\right\|_{\mathbb{H}}^{2}
\end{aligned}
$$

for some $\beta>0$ and for any $U_{1}, U_{2} \in B_{\mathcal{H}^{1 *}}\left(U_{0}, \rho\right)$, where

$$
\mathbb{K}_{U_{0}} U:=(\theta u(\cdot), 0)
$$

Then $\exists \mathcal{E}_{I}^{d}$ discrete exponential attractor with basin \mathbb{B}_{0} endowed with the $\mathcal{H}^{1^{*}}$-topology.

- $\|u(t)\|_{C^{\alpha}(\Omega \times[t, t+1])} \leq C_{T}, t \geq T$ and the Lipschitz continuous dependence

As usual, from \mathcal{E}_{I}^{d} we obtain the continuous exponential attractor \mathcal{E}_{I}

As usual, from \mathcal{E}_{I}^{d} we obtain the continuous exponential attractor \mathcal{E}_{I}

$$
\mathcal{E}_{I} \subset C^{\alpha}(\Omega) \times C^{\alpha}(\Gamma)
$$

As usual, from \mathcal{E}_{I}^{d} we obtain the continuous exponential attractor \mathcal{E}_{I}

$$
\mathcal{E}_{I} \subset C^{\alpha}(\Omega) \times C^{\alpha}(\Gamma)
$$

Transitivity of exponential attraction [Fabrie, Galusinski, Miranville, Zelik 2004]
(1) \mathbb{B}_{0} exponentially attracts the bounded sets in Φ_{I}
(C) \mathcal{E}_{I} exponentially attracts \mathbb{B}_{0}
(3) $\left\|S(t) U_{1}-S(t) U_{2}\right\|_{\mathcal{H}^{1^{*}}} \leq c e^{c t}\left\|U_{1}-U_{2}\right\|_{\mathcal{H}^{1^{*}}}, \quad \forall U_{1}, U_{2} \in \Phi_{I}$
\Rightarrow the basin of attraction of \mathcal{E}_{I} extends to Φ_{I}

As usual, from \mathcal{E}_{I}^{d} we obtain the continuous exponential attractor \mathcal{E}_{I}

$$
\mathcal{E}_{I} \subset C^{\alpha}(\Omega) \times C^{\alpha}(\Gamma)
$$

Transitivity of exponential attraction [Fabrie, Galusinski, Miranville, Zelik 2004]
(1) \mathbb{B}_{0} exponentially attracts the bounded sets in Φ_{I}
(2) \mathcal{E}_{I} exponentially attracts \mathbb{B}_{0}

As usual, from \mathcal{E}_{I}^{d} we obtain the continuous exponential attractor \mathcal{E}_{I}

$$
\mathcal{E}_{I} \subset C^{\alpha}(\Omega) \times C^{\alpha}(\Gamma)
$$

Transitivity of exponential attraction [Fabrie, Galusinski, Miranville, Zelik 2004]
(1) \mathbb{B}_{0} exponentially attracts the bounded sets in Φ_{I}
(2) \mathcal{E}_{I} exponentially attracts \mathbb{B}_{0}
(3) $\left\|S(t) U_{1}-S(t) U_{2}\right\|_{\mathcal{H}^{1^{*}}} \leq c e^{c t}\left\|U_{1}-U_{2}\right\|_{\mathcal{H}^{1^{*}}}, \quad \forall U_{1}, U_{2} \in \Phi_{I}$ \Rightarrow the basin of attraction of \mathcal{E}_{I} extends to Φ_{I}

As usual, from \mathcal{E}_{I}^{d} we obtain the continuous exponential attractor \mathcal{E}_{I}

$$
\mathcal{E}_{I} \subset C^{\alpha}(\Omega) \times C^{\alpha}(\Gamma)
$$

Transitivity of exponential attraction [Fabrie, Galusinski, Miranville, Zelik 2004]
(1) \mathbb{B}_{0} exponentially attracts the bounded sets in Φ_{I}
(2) \mathcal{E}_{I} exponentially attracts \mathbb{B}_{0}
(3) $\left\|S(t) U_{1}-S(t) U_{2}\right\|_{\mathcal{H}^{1^{*}}} \leq c e^{c t}\left\|U_{1}-U_{2}\right\|_{\mathcal{H}^{1^{*}}}, \quad \forall U_{1}, U_{2} \in \Phi_{I}$
\Rightarrow the basin of attraction of \mathcal{E}_{I} extends to Φ_{I}

As usual, from \mathcal{E}_{I}^{d} we obtain the continuous exponential attractor \mathcal{E}_{I}

$$
\mathcal{E}_{I} \subset C^{\alpha}(\Omega) \times C^{\alpha}(\Gamma)
$$

Transitivity of exponential attraction [Fabrie, Galusinski, Miranville, Zelik 2004]
(1) \mathbb{B}_{0} exponentially attracts the bounded sets in Φ_{I}
(2) \mathcal{E}_{I} exponentially attracts \mathbb{B}_{0}
(3) $\left\|S(t) U_{1}-S(t) U_{2}\right\|_{\mathcal{H}^{1^{*}}} \leq c e^{c t}\left\|U_{1}-U_{2}\right\|_{\mathcal{H}^{1^{*}}}, \quad \forall U_{1}, U_{2} \in \Phi_{I}$
\Rightarrow the basin of attraction of \mathcal{E}_{I} extends to Φ_{I}

As usual, from \mathcal{E}_{I}^{d} we obtain the continuous exponential attractor \mathcal{E}_{I}

$$
\mathcal{E}_{I} \subset C^{\alpha}(\Omega) \times C^{\alpha}(\Gamma)
$$

Transitivity of exponential attraction [Fabrie, Galusinski, Miranville, Zelik 2004]
(1) \mathbb{B}_{0} exponentially attracts the bounded sets in Φ_{I}
(2) \mathcal{E}_{I} exponentially attracts \mathbb{B}_{0}
(3) $\left\|S(t) U_{1}-S(t) U_{2}\right\|_{\mathcal{H}^{1^{*}}} \leq c e^{c t}\left\|U_{1}-U_{2}\right\|_{\mathcal{H}^{1^{*}}}, \quad \forall U_{1}, U_{2} \in \Phi_{I}$
\Rightarrow the basin of attraction of \mathcal{E}_{I} extends to Φ_{I}
$\Rightarrow \quad \mathcal{A}_{I} \subset \mathcal{E}_{I} \Rightarrow \quad \mathcal{A}_{I}$ has finite fractal dimension

An ill-posed CH equation

Assume $\quad f \in C^{1}(-1,1) \quad \lim _{r \rightarrow \pm 1} f(r)= \pm \infty \quad \lim _{r \rightarrow \pm 1} f^{\prime}(r)=\infty$

$$
f(0)=0 \quad f^{\prime} \geq 0 \quad g \in C^{2}[-1,1] \quad \lambda \geq 0
$$

If f is odd with $F(u)=\int_{0}^{u} f(s) d s$ such that $F(1)<\infty$ and $g=-K$ with large enough K
$\Rightarrow \nexists$ classical solution to $\left\{\begin{array}{l}-y^{\prime \prime}(x)+f(y)=0, \quad x \in(-1,1)(\lambda=0) \\ y^{\prime}(\pm 1)=K\end{array}\right.$

An ill-posed CH equation

Assume $\quad f \in C^{1}(-1,1) \quad \lim _{r \rightarrow \pm 1} f(r)= \pm \infty \quad \lim _{r \rightarrow \pm 1} f^{\prime}(r)=\infty$

$$
f(0)=0 \quad f^{\prime} \geq 0 \quad g \in C^{2}[-1,1] \quad \lambda \geq 0
$$

If f is odd with $F(u)=\int_{0}^{u} f(s) d s$ such that $F(1)<\infty$ and $g=-K$ with large enough K
$\Rightarrow \nexists$ classical solution to $\left\{\begin{array}{l}-y^{\prime \prime}(x)+f(y)=0, \quad x \in(-1,1)(\lambda=0) \\ y^{\prime}(\pm 1)=K\end{array}\right.$

- If K is not too large $\exists y_{K}$ odd, regular solution separated from ± 1

An ill-posed CH equation

Assume $\quad f \in C^{1}(-1,1) \quad \lim _{r \rightarrow \pm 1} f(r)= \pm \infty \quad \lim _{r \rightarrow \pm 1} f^{\prime}(r)=\infty$

$$
f(0)=0 \quad f^{\prime} \geq 0 \quad g \in C^{2}[-1,1] \quad \lambda \geq 0
$$

If f is odd with $F(u)=\int_{0}^{u} f(s) d s$ such that $F(1)<\infty$ and $g=-K$ with large enough K
$\Rightarrow \nexists$ classical solution to $\left\{\begin{array}{l}-y^{\prime \prime}(x)+f(y)=0, \quad x \in(-1,1)(\lambda=0) \\ y^{\prime}(\pm 1)=K\end{array}\right.$

- If K is not too large $\exists y_{K}$ odd, regular solution separated from ± 1
- If K is large enough $\Rightarrow y_{K} \equiv y_{+}$singular solution to
$\left\{\begin{array}{l}-y_{+}^{\prime \prime}(x)+f\left(y_{+}\right)=0, \quad x \in(-1,1) \\ y_{+}(-1)=-1 \quad y_{+}(1)=1\end{array} \quad \Rightarrow \quad y_{K}\right.$ can not be classical

