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Introduction Our model

Our model
The Cahn-Hilliard model : phase-field u (pure-phases u = ±1)
Ω ⊂ R3 bounded with smooth ∂Ω = Γ, λ ≥ 0{

∂tu−∆µ = 0, in Ω

µ = −∆u + f (u)− λu, in Ω

Physically relevant instance

f (s)− λs = −θcs +
θ

2
ln

1 + s
1− s

, s ∈ (−1, 1), θc > θ > 0

f singular at ±1

f ∈ C2(−1, 1) lim
s→±1

f (s) = ±∞ lim
s→±1

f ′(s) = +∞

f monotone increasing in (−1, 1) f ′(s) ≥ 0

Further assumptions : f (0) = 0 and f ′′(s)

{
≥ 0, s ≥ 0
≤ 0, s ≤ 0
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Introduction Our model

Our problem : boundary conditions

The two-phase system is confined in a non-permeable vessel
→ dynamic boundary conditions

J Some mass on the boundary (add surface free energy)

J Comply with conservation of total mass.
If U(t) = (u(t), u(t)|Γ) starts at U(0) = (u(0), u(0)|Γ)∫

Ω
u(t)dx +

∫
Γ

u|Γ(t)dΣ =

∫
Ω

u(0)dx +

∫
Γ

u(0)|ΓdΣ
∂tu−∆µ = 0 in Ω

µ = −∆u + f (u)− λu in Ω

∂tu|Γ −∆Γµ|Γ + ∂nµ = 0 on Γ

µ|Γ = −∆Γu|Γ + g(u|Γ) + ∂nu on Γ g ∈ C2[−1, 1]

Ruiz Goldstein-Miranville-Schimperna 2011

I Cherfils - G.- Miranville 2012 This talk
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Introduction Our model

Singular f and dynamic b.c.→ @ classical solution ?
Existence of classical solutions requires
(F) (u0, u0|Γ) ∈ (−1, 1)× (−1, 1)⇒ (u(t), u(t)|Γ) ∈ (−1, 1)× (−1, 1)

Without (F) possible @ of classical solutions [Miranville-Zelik 2010]
Strong singularities of u close to the boundary may be produced
The jumps in the normal derivatives close to the boundary prevent the
existence of solution in the sense of distribution
• Ruiz Goldstein-Miranville-Schimperna 2011
JMost general assumptions on f and g

JWeak formulation of the problem (Duality techniques)
J Existence of global attractor only if ∃p0 ∈ (0, 2) : |f ′(s)| ≤ c(1 + |f (s)|p0)

• Cherfils - G.- Miranville 2012 This talk
J f singular (even logarithmic)
J Variational formulation of the problem
J Asymptotic Analysis without any further assumption on f (up to
exponential attractors)
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Our results

Our results

1 Variational solutions

Approximate singular (P) by regular (PN) (← replace f with fN)

∃!UN solution to (PN), Lipschitz continuous dependence on the initial
data at any fixed time, a priori estimates, smoothing, dissipativity

uniformly in N

∃UNk → U but U is NOT classical solution what solution is U ?

The monotonicity of fN ↑ and f ↑ allows to associate (PN) with (VN)
and (P) with (V)
Since UN solves (VN)⇒ U is (the variational) solution to (V)

2 Relation between variational and classical solutions
3 Asymptotic analysis for variational solutions

For any fixed total mass I ∈ (−1, 1) ∃AI regular global attractor and
∃ EI exponential attractor⇒ Bound on the fractal dimension of AI
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Our variational problem

Abstract problem

Let U = (u, u|Γ) and M = (µ, µ|Γ)

m(U) =
1

|Ω|+ |Γ|

(∫
Ω

udx +

∫
Γ

u|ΓdΣ
)

and 〈U〉 = (m(U),m(U))
∂tU + AM = 0
M = AU + f(U)

U(0) = U0

f(U) =

{
f (u)− λu in Ω

g(ψ) on Γ

A is invertible with compact A−1 on functions with null mass
∂tU + A(M−〈M〉) = 0
M = AU + f(U)

U(0) = U0

→


A−1∂tU + M− 〈M〉 = 0
M = AU + f(U)

U(0) = U0
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Our variational problem

Exploit monotonicity
A−1∂tU + M− 〈M〉 = 0 ×U − V
M = AU + f(U) ×U − V
U(0) = U0

V : m(V) = m(U)

〈A−1∂tU,U − V〉
+ 〈AU,U − V〉+L〈A−1U,U − V〉+ 〈f(U),U − V〉
= L〈A−1U,U − V〉

∃σ > 0 ∃L > 0 : 〈AU,U〉+ 〈f(U),U〉+L‖A−1/2U‖2

= ‖∇u‖2
Ω + ‖∇Γψ‖2

Γ − σ‖ψ‖2
Γ − λ‖u‖2

Ω + L‖A−1/2U‖2︸ ︷︷ ︸
coercive B(U,U)≥‖U‖2

H1/2

+ (f (u), u)Ω + (g(ψ) + σψ, ψ)Γ︸ ︷︷ ︸
∃σ>0: monotone increasing

for U : m(U) = 0
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Our variational problem

The variational inequality
Since

B(U,U − V) ≥ B(V,U − V) ∀U,V such that m(U) = m(V)

and

(f (u), u− v)Ω + (g(ψ) + σψ, ψ − w)Γ ≥
(f (v), u− v)Ω + (g(w) + σw, ψ − w)Γ U = (u, ψ) V = (v,w)

⇒

(V)


〈A−1∂tU,U − V〉+ B(V,U − V) + 〈f (v), u− v〉Ω

+(g(w) + σw, ψ − w)Γ ≤ L〈U − 〈U〉,A−1(U − V)〉
for a.a. t > 0 ∀V = (v, v|Γ) ∈ H1 such that

m(V) = m(U0) and f (v) ∈ L1(Ω)
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Our variational problem

Our notion of a variational solution

∀U0 U(t) = (u(t), ψ(t)) is a variational solution if U(0) = U0 and

� u(t)|Γ = ψ(t) and m(U(t)) = m(U0) for a.a. t > 0

� −1 < u(x, t) < 1, for almost all (x, t) ∈ Ω× [0,∞)

� U ∈ C([0,+∞),H1∗) ∩ L2([0,T],H1), ∀T > 0,

� f (u) ∈ L1(Ω× [0,T]), for any T > 0

� ∂tU ∈ L2([τ,T],H1∗) : 〈∂tU, 1〉H1∗,H1 = 0 ∀ τ ∈ (0,T], ∀T > 0,
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〈A−1∂tU,U − V〉+ B(V,U − V) + 〈f (v), u− v〉Ω
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Our variational problem

Relation between variational and classical solutions
∃UNk → U but U(t) = (u(t), ψ(t)) is NOT necessarily a classical
solution, since u may reach ±1 on regions of Γ× R+ with positive
measure. The normal derivative may have discontinuities
u ∈ L∞((τ,T]; W2,1(Ω)) for any 0 < τ < T
⇒ ∃[∂nu]int := ∂nu|Γ ∈ L∞([τ,T],L1(Γ))

UNk → U, the a priori estimates and the dynamic boundary condition

⇒ ∃[∂nu]ext := lim
Nk→+∞

∂nuNk |Γ ∈ L∞([τ,T],L2(Γ))



∂tu−∆µ = 0 in L2
loc(Ω× (τ,T))

µ = −∆u + f (u)− λu in L2
loc(Ω× (τ,T))

u(t)|Γ = ψ(t), t > 0
∂tψ −∆Γµ|Γ = −∂nµ, in L2

loc(Γ× (τ,T))

µ|Γ = −∆Γψ + g(ψ) + [∂nu]ext on Γ, T > τ > 0
Unfortunately [∂nu]int is not necessarily equal to [∂nu]ext.
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Our variational problem

Sufficient condition for U to be classical

If (F) |u(x, t)| < 1 a.e. in Γ× R+ ⇒ [∂nu]int = [∂nu]ext

⇒ U classical solution

If (�) lim
s→±1

F(s) = +∞ (F′ = f ) ⇒ (F) holds true

Property (�) holds true if f is strongly singular at ±1⇒ No logarithmic
functional
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The semigroup

The semigroup

Let U = (u, ψ)

Φ = {U ∈ L∞(Ω)× L∞(Γ) : ‖u‖L∞(Ω), ‖ψ‖L∞(Γ) ≤ 1, m(U) ∈ (−1, 1)}

ΦI = {U ∈ Φ : m(U) = I}, I ∈ (−1, 1)

H1 = H1(Ω)× H1(Γ) ⊂ L2 = L2(Ω)× L2(Γ) ⊂ (H1)∗

S(t) : (ΦI,H1∗)→ (ΦI,H1∗) closed semigroup

U0 7→ U(t) solution to the variational problem (V)

(S(t),ΦI) admits a compact absorbing set

⇒ ∃AI (ΦI,H1∗)−global attractor

AI bounded in Cα(Ω)× Cα(Γ) has finite fractal dimension
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Exponential attractors

Exponential attractors

• [Eden, Foias, Nicolaenko, Temam 1994]
We are dealing with variational solutions
How can we prove the existence of an exponential attractor ?
Main Idea [Efendiev-Zelik 2008], [Miranville-Zelik 2010] :
• close to ±1 f ′ goes to +∞
⇒ f ′(1− s) and f ′(−1 + s) as large as we want if s > 0 is small enough
• far from ±1 standard parabolic smoothing property
To exploit this idea, we need a local procedure.
• ∃B0 compact, absorbing and positively invariant, where, in particular,
uniform bounds for the solutions hold true and u|Γ = ψ.
• {BH1∗(U0, ρ)}z0∈B0 are an open covering of B0, for any 0 < ρ ≤ ρ0 � 1
⇒ we work on a finite number of balls
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Exponential attractors

Main Idea

B0 is such that ‖u‖Cα(Ω×[0,T]) ≤ R, ∀T ≥ 0

This and Lipschitz continuous dependence, interpolation⇒
∀U0 ∈ B0, ∀δ ∈ (0, 1), ∃T(δ) > 0, ∃ρ0(δ) > 0 such that
∀ρ ∈ (0, ρ0), ∀U(0) ∈ BH1∗(U0, ρ), ∀t ∈ [0,T] S(t)U(0) = (u(t), ψ(t))
satisfies

|u(x, t)|≥ 1− 4δ, x ∈ Ω2δ(U0) = {x ∈ Ω : |u0(x)| > 1− 2δ}

|u(x, t)| ≤ 1− δ/4, x ∈ Ωδ(U0) = {x ∈ Ω : |u0(x)| < 1− δ}

∀δ ∈ (0, 1)∃θ : Ω→ [0, 1] such that θ(x) =

{
0, x ∈ Ωδ(U0)

1, x ∈ Ω2δ(U0)

f ′(u(x, t)) ≥ Λ(δ), x ∈ Ω2δ(U0), t ∈ [0,T] contraction

|θ(x)u(x, t)| =
∣∣u(x, t)|Ω2δ(U0)

∣∣ ≤ 1− δ/4, t ∈ [0,T] smoothing
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Exponential attractors

Construction of an exponential attractor
Theorem (Málek-Prážak 2002, Efendiev-Zelik 2008)
Let X, H1,H be Banach spaces with H1 b H, B0 b X such that SB0 ⊂ B0

and ∀U0 ∈ B0 ∀ρ ∈ (0, ρ0) ∃KU0 : BX(U0, ρ)→ H1 such that

(•) ‖KU0(U1)−KU0(U2)‖H1 ≤ c‖U1 − U2‖X, U1,U2 ∈ BX(U0, ρ)

(•) ∃γ ∈ (0, 1) such that, for any U1,U2 ∈ BX(U0, ρ)

‖SU1 − SU2‖X ≤ γ‖U1 − U2‖X + c‖KU0(U1)−KU0(U2)‖H

⇒ ∃Ed discrete exponential attractor with basin B0 endowed with the
X-topology.

X = H1∗, S = S(T(δ)) where δ small enough, ρ ∈ (0, ρ0(δ)) and T = T(δ)

KU0 : BH1∗(U0, ρ)→ L2 is KU0U = (θu(·), 0)

H1 = L2([0,T],H1) ∩ H1([0,T],H3∗) b H = L2([0,T],L2)
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Exponential attractors

Theorem
For any U0 ∈ B0 ∃δ ∈ (0, 1), T(δ) > 0, ρ0(δ) > 0 : ∀ρ ∈ (0, ρ0)

‖KU0(U1)−KU0(U2)‖H1 ≤ c‖U1 − U2‖H1∗ , ∀U1,U2 ∈ BH1∗(U0, ρ)

‖S(T)U1 − S(T)U2‖2
H1∗≤e−βT‖U1 − U2‖2

H1∗+ c‖KU0(U1)−KU0(U2)‖2
H

for some β > 0 and for any U1,U2 ∈ BH1∗(U0, ρ), where

KU0U := (θu(·), 0)

Then ∃Ed
I discrete exponential attractor with basin B0 endowed with the

H1∗−topology.

• ‖u(t)‖Cα(Ω×[t,t+1]) ≤ CT , t ≥ T and the Lipschitz continuous dependence
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Exponential attractors

As usual, from Ed
I we obtain the continuous exponential attractor EI

EI ⊂ Cα(Ω)× Cα(Γ)

Transitivity of exponential attraction [Fabrie, Galusinski, Miranville,
Zelik 2004]

1 B0 exponentially attracts the bounded sets in ΦI

2 EI exponentially attracts B0

3 ‖S(t)U1 − S(t)U2‖H1∗ ≤ cect‖U1 − U2‖H1∗ , ∀U1,U2 ∈ ΦI

⇒ the basin of attraction of EI extends to ΦI

⇒ AI ⊂ EI ⇒ AI has finite fractal dimension
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The example by Miranville and Zelik

An ill-posed CH equation

Assume f ∈ C1(−1, 1) lim
r→±1

f (r) = ±∞ lim
r→±1

f ′(r) =∞

f (0) = 0 f ′ ≥ 0 g ∈ C2[−1, 1] λ ≥ 0

If f is odd with F(u) =
∫ u

0 f (s)ds such that F(1) <∞ and g = −K with
large enough K

⇒ @classical solution to

{
−y′′(x) + f (y) = 0, x ∈ (−1, 1) (λ = 0)

y′(±1) = K

If K is not too large ∃yK odd, regular solution separated from ±1

If K is large enough⇒ yK ≡ y+ singular solution to{
−y′′+(x) + f (y+) = 0, x ∈ (−1, 1)

y+(−1) = −1 y+(1) = 1
⇒ yK can not be classical
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