A variational approach to a Cahn-Hilliard model in a domain with non-permeable walls

> Stefania Gatti Università di Modena e Reggio Emilia

joint work with Laurence Cherfils (La Rochelle) and Alain Miranville (Poitiers)

PDEs for multiphase advanced materials, ADMAT2012 Cortona, September 18th, 2012

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- The Cahn-Hilliard model : phase-field u (pure-phases $u = \pm 1$)
 - $\Omega \subset \mathbb{R}^3$ bounded with smooth $\partial \Omega = \Gamma$, $\lambda \ge 0$

$$\begin{cases} \partial_t u - \Delta \mu = 0, & \text{in } \Omega \\ \mu = -\Delta u + f(u) - \lambda u, & \text{in } \Omega \end{cases}$$

Physically relevant instance

$$f(s) - \lambda s = -\theta_c s + \frac{\theta}{2} \ln \frac{1+s}{1-s}, \quad s \in (-1,1), \quad \theta_c > \theta > 0$$

• f singular at ± 1

$$f \in C^2(-1,1)$$
 $\lim_{s \to \pm 1} f(s) = \pm \infty$ $\lim_{s \to \pm 1} f'(s) = +\infty$

• f monotone increasing in (-1, 1) $f'(s) \ge 0$

- The Cahn-Hilliard model : phase-field u (pure-phases $u = \pm 1$)
 - $\Omega \subset \mathbb{R}^3$ bounded with smooth $\partial \Omega = \Gamma, \quad \lambda \ge 0$

$$\begin{cases} \partial_t u - \Delta \mu = 0, & \text{in } \Omega \\ \mu = -\Delta u + f(u) - \lambda u, & \text{in } \Omega \end{cases}$$

Physically relevant instance

$$f(s) - \lambda s = -\theta_c s + \frac{\theta}{2} \ln \frac{1+s}{1-s}, \quad s \in (-1,1), \quad \theta_c > \theta > 0$$

• f singular at ± 1

$$f \in C^2(-1,1)$$
 $\lim_{s \to \pm 1} f(s) = \pm \infty$ $\lim_{s \to \pm 1} f'(s) = +\infty$

• f monotone increasing in (-1, 1) $f'(s) \ge 0$

- The Cahn-Hilliard model : phase-field u (pure-phases $u = \pm 1$)
 - $\Omega \subset \mathbb{R}^3$ bounded with smooth $\partial \Omega = \Gamma, \quad \lambda \ge 0$

$$\begin{cases} \partial_t u - \Delta \mu = 0, & \text{in } \Omega \\ \mu = -\Delta u + f(u) - \lambda u, & \text{in } \Omega \end{cases}$$

Physically relevant instance

$$f(s) - \lambda s = -\theta_c s + \frac{\theta}{2} \ln \frac{1+s}{1-s}, \quad s \in (-1,1), \quad \theta_c > \theta > 0$$

• f singular at ± 1

$$f \in C^2(-1,1)$$
 $\lim_{s \to \pm 1} f(s) = \pm \infty$ $\lim_{s \to \pm 1} f'(s) = +\infty$

• f monotone increasing in (-1, 1) $f'(s) \ge 0$

- The Cahn-Hilliard model : phase-field u (pure-phases $u = \pm 1$)
 - $\Omega \subset \mathbb{R}^3$ bounded with smooth $\partial \Omega = \Gamma, \quad \lambda \ge 0$

$$\begin{cases} \partial_t u - \Delta \mu = 0, & \text{in } \Omega \\ \mu = -\Delta u + f(u) - \lambda u, & \text{in } \Omega \end{cases}$$

Physically relevant instance

$$f(s) - \lambda s = -\theta_c s + \frac{\theta}{2} \ln \frac{1+s}{1-s}, \quad s \in (-1,1), \quad \theta_c > \theta > 0$$

• f singular at ± 1

$$f \in C^2(-1,1)$$
 $\lim_{s \to \pm 1} f(s) = \pm \infty$ $\lim_{s \to \pm 1} f'(s) = +\infty$

• f monotone increasing in (-1, 1) $f'(s) \ge 0$

Further assumptions : f(0) = 0 and $f''(s) \begin{cases} \ge 0, & s \ge 0 \\ \le 0, & s \le 0 \end{cases}$

- The two-phase system is confined in a non-permeable vessel
 → dynamic boundary conditions
 - Some mass on the boundary (add surface free energy)

Comply with conservation of total mass.

If
$$U(t) = (u(t), u(t)|_{\Gamma})$$
 starts at $U(0) = (u(0), u(0)|_{\Gamma})$

$$\int_{\Omega} u(t)dx + \int_{\Gamma} u|_{\Gamma}(t)d\Sigma = \int_{\Omega} u(0)dx + \int_{\Gamma} u(0)|_{\Gamma}d\Sigma$$

$$\begin{cases} \partial_{t}u - \Delta\mu = 0 \quad \text{in} \quad \Omega\\ \mu = -\Delta u + f(u) - \lambda u \quad \text{in} \quad \Omega\\ \partial_{t}u|_{\Gamma} - \Delta_{\Gamma}\mu|_{\Gamma} + \partial_{n}\mu = 0 \quad \text{on} \quad \Gamma\\ \mu|_{\Gamma} = -\Delta_{\Gamma}u|_{\Gamma} + g(u|_{\Gamma}) + \partial_{n}u \quad \text{on} \quad \Gamma \quad g \in C^{2}[-1, 1] \end{cases}$$

- The two-phase system is confined in a non-permeable vessel
 → dynamic boundary conditions
 - ◄ Some mass on the boundary (add surface free energy)

$$Comply with conservation of total mass.$$
If $U(t) = (u(t), u(t)|_{\Gamma})$ starts at $U(0) = (u(0), u(0)|_{\Gamma})$

$$\int_{\Omega} u(t)dx + \int_{\Gamma} u|_{\Gamma}(t)d\Sigma = \int_{\Omega} u(0)dx + \int_{\Gamma} u(0)|_{\Gamma}d\Sigma$$

$$\begin{cases} \partial_{t}u - \Delta\mu = 0 & \text{in } \Omega \\ \mu = -\Delta u + f(u) - \lambda u & \text{in } \Omega \\ \partial_{t}u|_{\Gamma} - \Delta_{\Gamma}\mu|_{\Gamma} + \partial_{n}\mu = 0 & \text{on } \Gamma \\ \mu|_{\Gamma} = -\Delta_{\Gamma}u|_{\Gamma} + g(u|_{\Gamma}) + \partial_{n}u & \text{on } \Gamma \qquad g \in C^{2}[-1, 1] \end{cases}$$

- The two-phase system is confined in a non-permeable vessel
 → dynamic boundary conditions
 - ◄ Some mass on the boundary (add surface free energy)

Comply with conservation of total mass.

If
$$U(t) = (u(t), u(t)|_{\Gamma})$$
 starts at $U(0) = (u(0), u(0)|_{\Gamma})$

$$\int_{\Omega} u(t)dx + \int_{\Gamma} u|_{\Gamma}(t)d\Sigma = \int_{\Omega} u(0)dx + \int_{\Gamma} u(0)|_{\Gamma}d\Sigma$$

$$\begin{cases} \partial_{t}u - \Delta\mu = 0 \quad \text{in} \quad \Omega \\ \mu = -\Delta u + f(u) - \lambda u \quad \text{in} \quad \Omega \\ \partial_{t}u|_{\Gamma} - \Delta_{\Gamma}\mu|_{\Gamma} + \partial_{n}\mu = 0 \quad \text{on} \quad \Gamma \\ \mu|_{\Gamma} = -\Delta_{\Gamma}u|_{\Gamma} + g(u|_{\Gamma}) + \partial_{n}u \quad \text{on} \quad \Gamma \quad g \in C^{2}[-1, 1] \end{cases}$$

- The two-phase system is confined in a non-permeable vessel
 → dynamic boundary conditions
 - ◄ Some mass on the boundary (add surface free energy)

Comply with conservation of total mass.

If
$$U(t) = (u(t), u(t)|_{\Gamma})$$
 starts at $U(0) = (u(0), u(0)|_{\Gamma})$

$$\int_{\Omega} u(t)dx + \int_{\Gamma} u|_{\Gamma}(t)d\Sigma = \int_{\Omega} u(0)dx + \int_{\Gamma} u(0)|_{\Gamma}d\Sigma$$

$$\begin{cases} \partial_{t}u - \Delta\mu = 0 \quad \text{in } \Omega \\ \mu = -\Delta u + f(u) - \lambda u \quad \text{in } \Omega \\ \partial_{t}u|_{\Gamma} - \Delta_{\Gamma}\mu|_{\Gamma} + \partial_{n}\mu = 0 \quad \text{on } \Gamma \\ \mu|_{\Gamma} = -\Delta_{\Gamma}u|_{\Gamma} + g(u|_{\Gamma}) + \partial_{n}u \quad \text{on } \Gamma \qquad g \in C^{2}[-1, 1] \end{cases}$$

- The two-phase system is confined in a non-permeable vessel
 → dynamic boundary conditions
 - ◄ Some mass on the boundary (add surface free energy)

Comply with conservation of total mass.

If
$$U(t) = (u(t), u(t)|_{\Gamma})$$
 starts at $U(0) = (u(0), u(0)|_{\Gamma})$

$$\int_{\Omega} u(t)dx + \int_{\Gamma} u|_{\Gamma}(t)d\Sigma = \int_{\Omega} u(0)dx + \int_{\Gamma} u(0)|_{\Gamma}d\Sigma$$

$$\begin{cases} \partial_{t}u - \Delta\mu = 0 \quad \text{in} \quad \Omega\\ \mu = -\Delta u + f(u) - \lambda u \quad \text{in} \quad \Omega\\ \partial_{t}u|_{\Gamma} - \Delta_{\Gamma}\mu|_{\Gamma} + \partial_{n}\mu = 0 \quad \text{on} \quad \Gamma\\ \mu|_{\Gamma} = -\Delta_{\Gamma}u|_{\Gamma} + g(u|_{\Gamma}) + \partial_{n}u \quad \text{on} \quad \Gamma \quad g \in C^{2}[-1, 1] \end{cases}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Ruiz Goldstein-Miranville-Schimperna 2011

Cherfils - G.- Miranville 2012 This talk

- The two-phase system is confined in a non-permeable vessel
 → dynamic boundary conditions
 - ◄ Some mass on the boundary (add surface free energy)

Comply with conservation of total mass.

If
$$U(t) = (u(t), u(t)|_{\Gamma})$$
 starts at $U(0) = (u(0), u(0)|_{\Gamma})$

$$\int_{\Omega} u(t)dx + \int_{\Gamma} u|_{\Gamma}(t)d\Sigma = \int_{\Omega} u(0)dx + \int_{\Gamma} u(0)|_{\Gamma}d\Sigma$$

$$\begin{cases} \partial_{t}u - \Delta\mu = 0 \quad \text{in} \quad \Omega\\ \mu = -\Delta u + f(u) - \lambda u \quad \text{in} \quad \Omega\\ \partial_{t}u|_{\Gamma} - \Delta_{\Gamma}\mu|_{\Gamma} + \partial_{n}\mu = 0 \quad \text{on} \quad \Gamma\\ \mu|_{\Gamma} = -\Delta_{\Gamma}u|_{\Gamma} + g(u|_{\Gamma}) + \partial_{n}u \quad \text{on} \quad \Gamma \quad g \in C^{2}[-1, 1] \end{cases}$$

 $(\bigstar) (u_0, u_0|_{\Gamma}) \in (-1, 1) \times (-1, 1) \Rightarrow (u(t), u(t)|_{\Gamma}) \in (-1, 1) \times (-1, 1)$

Without (★) possible ∄ of classical solutions [Miranville-Zelik 2010]

Strong singularities of *u* close to the boundary may be produced

The jumps in the normal derivatives close to the boundary prevent the existence of solution in the sense of distribution

- Ruiz Goldstein-Miranville-Schimperna 2011
- Most general assumptions on f and g
- Weak formulation of the problem (Duality techniques)
- Existence of global attractor only if $\exists p_0 \in (0,2)$: $|f'(s)| \le c(1+|f(s)|^{p_0})$
- Cherfils G.- Miranville 2012 This talk
- $\blacktriangleleft f$ singular (even logarithmic)
- Variational formulation of the problem

(★) $(u_0, u_0|_{\Gamma}) \in (-1, 1) \times (-1, 1) \Rightarrow (u(t), u(t)|_{\Gamma}) \in (-1, 1) \times (-1, 1)$ Without (★) possible \nexists of classical solutions [Miranville-Zelik 2010]

Strong singularities of *u* close to the boundary may be produced

The jumps in the normal derivatives close to the boundary prevent the existence of solution in the sense of distribution

- Ruiz Goldstein-Miranville-Schimperna 2011
- Most general assumptions on f and g
- Weak formulation of the problem (Duality techniques)
- Existence of global attractor only if $\exists p_0 \in (0,2)$: $|f'(s)| \le c(1+|f(s)|^{p_0})$
- Cherfils G.- Miranville 2012 This talk
- $\blacktriangleleft f$ singular (even logarithmic)
- Variational formulation of the problem

 $(\bigstar) (u_0, u_0|_{\Gamma}) \in (-1, 1) \times (-1, 1) \Rightarrow (u(t), u(t)|_{\Gamma}) \in (-1, 1) \times (-1, 1)$

Without (★) possible ∄ of classical solutions [Miranville-Zelik 2010]

Strong singularities of *u* close to the boundary may be produced

The jumps in the normal derivatives close to the boundary prevent the existence of solution in the sense of distribution

- Ruiz Goldstein-Miranville-Schimperna 2011
- Most general assumptions on f and g
- Weak formulation of the problem (Duality techniques)
- Existence of global attractor only if $\exists p_0 \in (0,2)$: $|f'(s)| \le c(1+|f(s)|^{p_0})$
- Cherfils G.- Miranville 2012 This talk
- $\blacktriangleleft f$ singular (even logarithmic)
- Variational formulation of the problem

 $(\bigstar) (u_0, u_0|_{\Gamma}) \in (-1, 1) \times (-1, 1) \Rightarrow (u(t), u(t)|_{\Gamma}) \in (-1, 1) \times (-1, 1)$

Without (★) possible ∄ of classical solutions [Miranville-Zelik 2010]

Strong singularities of *u* close to the boundary may be produced

The jumps in the normal derivatives close to the boundary prevent the existence of solution in the sense of distribution

- Ruiz Goldstein-Miranville-Schimperna 2011
- Most general assumptions on f and g
- Weak formulation of the problem (Duality techniques)
- Existence of global attractor only if $\exists p_0 \in (0,2)$: $|f'(s)| \le c(1+|f(s)|^{p_0})$
- Cherfils G.- Miranville 2012 This talk
- $\blacktriangleleft f$ singular (even logarithmic)
- Variational formulation of the problem

 $(\bigstar) (u_0, u_0|_{\Gamma}) \in (-1, 1) \times (-1, 1) \Rightarrow (u(t), u(t)|_{\Gamma}) \in (-1, 1) \times (-1, 1)$

Without (★) possible ∄ of classical solutions [Miranville-Zelik 2010]

Strong singularities of *u* close to the boundary may be produced

The jumps in the normal derivatives close to the boundary prevent the existence of solution in the sense of distribution

- Ruiz Goldstein-Miranville-Schimperna 2011
- \blacktriangleleft Most general assumptions on f and g
- ◄ Weak formulation of the problem (Duality techniques)
- Existence of global attractor only if $\exists p_0 \in (0,2)$: $|f'(s)| \le c(1+|f(s)|^{p_0})$
- Cherfils G.- Miranville 2012 This talk
- $\blacktriangleleft f$ singular (even logarithmic)
- Variational formulation of the problem

 $(\bigstar) (u_0, u_0|_{\Gamma}) \in (-1, 1) \times (-1, 1) \Rightarrow (u(t), u(t)|_{\Gamma}) \in (-1, 1) \times (-1, 1)$

Without (★) possible ∄ of classical solutions [Miranville-Zelik 2010]

Strong singularities of *u* close to the boundary may be produced

The jumps in the normal derivatives close to the boundary prevent the existence of solution in the sense of distribution

- Ruiz Goldstein-Miranville-Schimperna 2011
- \blacktriangleleft Most general assumptions on f and g
- ◄ Weak formulation of the problem (Duality techniques)
- Existence of global attractor only if $\exists p_0 \in (0,2)$: $|f'(s)| \le c(1+|f(s)|^{p_0})$
- Cherfils G.- Miranville 2012 This talk
- $\blacktriangleleft f$ singular (even logarithmic)
- Variational formulation of the problem

 $(\bigstar) (u_0, u_0|_{\Gamma}) \in (-1, 1) \times (-1, 1) \Rightarrow (u(t), u(t)|_{\Gamma}) \in (-1, 1) \times (-1, 1)$

Without (★) possible ∄ of classical solutions [Miranville-Zelik 2010]

Strong singularities of *u* close to the boundary may be produced

The jumps in the normal derivatives close to the boundary prevent the existence of solution in the sense of distribution

- Ruiz Goldstein-Miranville-Schimperna 2011
- \blacktriangleleft Most general assumptions on f and g
- ◄ Weak formulation of the problem (Duality techniques)
- ◄ Existence of global attractor only if $\exists p_0 \in (0,2)$: $|f'(s)| \le c(1 + |f(s)|^{p_0})$
- Cherfils G.- Miranville 2012 This talk
- $\blacktriangleleft f$ singular (even logarithmic)
- Variational formulation of the problem

 $(\bigstar) (u_0, u_0|_{\Gamma}) \in (-1, 1) \times (-1, 1) \Rightarrow (u(t), u(t)|_{\Gamma}) \in (-1, 1) \times (-1, 1)$

Without (★) possible ∄ of classical solutions [Miranville-Zelik 2010]

Strong singularities of *u* close to the boundary may be produced

The jumps in the normal derivatives close to the boundary prevent the existence of solution in the sense of distribution

- Ruiz Goldstein-Miranville-Schimperna 2011
- \blacktriangleleft Most general assumptions on f and g
- ◄ Weak formulation of the problem (Duality techniques)
- ◄ Existence of global attractor only if $\exists p_0 \in (0,2)$: $|f'(s)| \le c(1+|f(s)|^{p_0})$
- Cherfils G.- Miranville 2012 This talk
- $\blacktriangleleft f$ singular (even logarithmic)
- Variational formulation of the problem

 $(\bigstar) (u_0, u_0|_{\Gamma}) \in (-1, 1) \times (-1, 1) \Rightarrow (u(t), u(t)|_{\Gamma}) \in (-1, 1) \times (-1, 1)$

Without (★) possible ∄ of classical solutions [Miranville-Zelik 2010]

Strong singularities of *u* close to the boundary may be produced

The jumps in the normal derivatives close to the boundary prevent the existence of solution in the sense of distribution

- Ruiz Goldstein-Miranville-Schimperna 2011
- \blacktriangleleft Most general assumptions on f and g
- ◄ Weak formulation of the problem (Duality techniques)
- ◄ Existence of global attractor only if $\exists p_0 \in (0,2)$: $|f'(s)| \le c(1+|f(s)|^{p_0})$
- Cherfils G.- Miranville 2012 This talk
- $\blacktriangleleft f$ singular (even logarithmic)
- Variational formulation of the problem

 $(\bigstar) (u_0, u_0|_{\Gamma}) \in (-1, 1) \times (-1, 1) \Rightarrow (u(t), u(t)|_{\Gamma}) \in (-1, 1) \times (-1, 1)$

Without (★) possible ∄ of classical solutions [Miranville-Zelik 2010]

Strong singularities of *u* close to the boundary may be produced

The jumps in the normal derivatives close to the boundary prevent the existence of solution in the sense of distribution

- Ruiz Goldstein-Miranville-Schimperna 2011
- \blacktriangleleft Most general assumptions on f and g
- ◄ Weak formulation of the problem (Duality techniques)
- ◄ Existence of global attractor only if $\exists p_0 \in (0,2)$: $|f'(s)| \le c(1+|f(s)|^{p_0})$
- Cherfils G.- Miranville 2012 This talk
- $\blacktriangleleft f$ singular (even logarithmic)
- ◄ Variational formulation of the problem

 $(\bigstar) (u_0, u_0|_{\Gamma}) \in (-1, 1) \times (-1, 1) \Rightarrow (u(t), u(t)|_{\Gamma}) \in (-1, 1) \times (-1, 1)$

Without (★) possible ∄ of classical solutions [Miranville-Zelik 2010]

Strong singularities of *u* close to the boundary may be produced

The jumps in the normal derivatives close to the boundary prevent the existence of solution in the sense of distribution

- Ruiz Goldstein-Miranville-Schimperna 2011
- \blacktriangleleft Most general assumptions on f and g
- ◄ Weak formulation of the problem (Duality techniques)
- ◄ Existence of global attractor only if $\exists p_0 \in (0,2)$: $|f'(s)| \le c(1+|f(s)|^{p_0})$
- Cherfils G.- Miranville 2012 This talk
- $\blacktriangleleft f$ singular (even logarithmic)
- ◄ Variational formulation of the problem

Literature

Cahn-Hilliard

Elliott-Zheng, Nicolaenko-Scheurer, Nicolaenko-Scheurer-Temam, Novick-Cohen, Brochet-Hilhorst-Novick Cohen, Brochet-Hilhorst-Chen Alt-Pawlow, Kenmochi-Niezgodka-Pawlow, Rybka-Hoffmann, Colli-Gilardi-Grasselli-Schimperna...

• Singular Cahn-Hilliard

Elliott-Luckhaus, Elliott-Garcke, Debussche-Dettori, Abels-Wielke, Li-Zhong, Miranville-Zelik,...

• Cahn-Hilliard with dynamic boundary conditions

Racke-Zheng, Chill-Fašangová-Prüss, Prüss-Racke-Zheng, Miranville-Zelik...

• Singular Cahn-Hilliard with dynamic boundary conditions

Gilardi-Miranville-Schimperna, Miranville-Zelik, Ruiz Goldstein-Miranville-Schimperna

Review on Singular Cahn Hilliard with different boundary conditions : Cherfils-Miranville-Zelik

Variational solutions

Approximate singular (P) by regular (P_N) (\leftarrow replace f with f_N) $\exists ! U_N$ solution to (P_N), Lipschitz continuous dependence on the initial data at any fixed time, a priori estimates, smoothing, dissipativity uniformly in N

 $\exists U_{N_k} \to U$ but *U* is NOT classical solution what solution is *U*? The **monotonicity** of $f_N \uparrow$ and $f \uparrow$ allows to associate (P_N) with (V_N) and (P) with (V)Since U_N solves $(V_N) \Rightarrow U$ is (the variational) solution to (V)

- ② Relation between variational and classical solutions
- Symptotic analysis for variational solutions

Variational solutions

Approximate singular (P) by regular (P_N) (\leftarrow replace f with f_N) $\exists ! U_N$ solution to (P_N), Lipschitz continuous dependence on the initial data at any fixed time, a priori estimates, smoothing, dissipativity uniformly in N

 $\exists U_{N_k} \to U$ but *U* is NOT classical solution what solution is *U*? The **monotonicity** of $f_N \uparrow$ and $f \uparrow$ allows to associate (P_N) with (V_N) and (P) with (V)Since U_N solves $(V_N) \Rightarrow U$ is (the variational) solution to (V)

Provide the second s

Asymptotic analysis for variational solutions

Variational solutions

Approximate singular (P) by regular (P_N) (\leftarrow replace f with f_N) $\exists ! U_N$ solution to (P_N), Lipschitz continuous dependence on the initial data at any fixed time, a priori estimates, smoothing, dissipativity uniformly in N

 $\exists U_{N_k} \to U$ but *U* is NOT classical solution what solution is *U*? The **monotonicity** of $f_N \uparrow$ and $f \uparrow$ allows to associate (P_N) with (V_N) and (P) with (V)Since U_N solves $(V_N) \Rightarrow U$ is (the variational) solution to (V)

- Relation between variational and classical solutions
- Symptotic analysis for variational solutions

Variational solutions

Approximate singular (*P*) by regular (*P_N*) (\leftarrow replace *f* with *f_N*)

 $\exists ! U_N$ solution to (P_N) , Lipschitz continuous dependence on the initial data at any fixed time, a priori estimates, smoothing, dissipativity uniformly in N

 $\exists U_{N_k} \to U$ but *U* is NOT classical solution what solution is *U*? The **monotonicity** of $f_N \uparrow$ and $f \uparrow$ allows to associate (P_N) with (V_N) and (P) with (V)Since U_N solves $(V_N) \Rightarrow U$ is (the variational) solution to (V)

- Provide the second s
- S Asymptotic analysis for variational solutions

Variational solutions

Approximate singular (P) by regular (P_N) (\leftarrow replace f with f_N) $\exists !U_N$ solution to (P_N), Lipschitz continuous dependence on the initial data at any fixed time, a priori estimates, smoothing, dissipativity uniformly in N

 $\exists U_{N_k} \to U$ but *U* is NOT classical solution what solution is *U*? The **monotonicity** of $f_N \uparrow$ and $f \uparrow$ allows to associate (P_N) with (V_N) and (P) with (V)Since U_N solves $(V_N) \Rightarrow U$ is (the variational) solution to (V)

- Provide the second s
- Symptotic analysis for variational solutions

Variational solutions

Approximate singular (P) by regular (P_N) (\leftarrow replace f with f_N) $\exists !U_N$ solution to (P_N), Lipschitz continuous dependence on the initial data at any fixed time, a priori estimates, smoothing, dissipativity uniformly in N

$\exists U_{N_k} \to U$ but *U* is NOT classical solution what solution is *U*?

The **monotonicity** of $f_N \uparrow$ and $f \uparrow$ allows to associate (P_N) with (V_N) and (P) with (V)Since U_N solves $(V_N) \Rightarrow U$ is (the variational) solution to (V)

- Provide the second s
- S Asymptotic analysis for variational solutions

Variational solutions

Approximate singular (P) by regular (P_N) (\leftarrow replace f with f_N)

 $\exists ! U_N$ solution to (P_N) , Lipschitz continuous dependence on the initial data at any fixed time, a priori estimates, smoothing, dissipativity uniformly in N

 $\exists U_{N_k} \to U$ but *U* is NOT classical solution what solution is *U*? The **monotonicity** of $f_N \uparrow$ and $f \uparrow$ allows to associate (P_N) with (V_N) and (P) with (V)Since U_N solves $(V_N) \Rightarrow U$ is (the variational) solution to (V)

- 2 Relation between variational and classical solutions
- S Asymptotic analysis for variational solutions

Variational solutions

Approximate singular (P) by regular (P_N) (\leftarrow replace f with f_N)

 $\exists ! U_N$ solution to (P_N) , Lipschitz continuous dependence on the initial data at any fixed time, a priori estimates, smoothing, dissipativity uniformly in N

 $\exists U_{N_k} \to U$ but *U* is NOT classical solution what solution is *U*? The **monotonicity** of $f_N \uparrow$ and $f \uparrow$ allows to associate (P_N) with (V_N) and (P) with (V)Since U_N solves $(V_N) \Rightarrow U$ is (the variational) solution to (V)

- 2 Relation between variational and classical solutions
- S Asymptotic analysis for variational solutions

• Let
$$U = (u, u|_{\Gamma})$$
 and $\mathbf{M} = (\mu, \mu|_{\Gamma})$
 $m(U) = \frac{1}{|\Omega| + |\Gamma|} \left(\int_{\Omega} u dx + \int_{\Gamma} u|_{\Gamma} d\Sigma \right)$ and $\langle U \rangle = (m(U), m(U))$
 $\begin{cases} \partial_t U + \mathbf{A} \mathbf{M} = 0 \\ \mathbf{M} = \mathbf{A} U + \mathbf{f}(U) \\ U(0) = U_0 \end{cases}$
 $\mathbf{f}(U) = \begin{cases} f(u) - \lambda u & \text{in } \Omega \\ g(\psi) & \text{on } \Gamma \end{cases}$

• A is invertible with compact A^{-1} on functions with null mass $(\partial U + A(\mathbf{M} - \mathbf{M})) = 0$ $(A^{-1}\partial U + \mathbf{M} - \mathbf{M}) = 0$

$$\begin{cases} \partial_t U + \mathbf{A}(\mathbf{M} - \langle \mathbf{M} \rangle) = 0 \\ \mathbf{M} = \mathbf{A}U + \mathbf{f}(U) \\ U(0) = U_0 \end{cases} \rightarrow \begin{cases} \mathbf{A}^{-t} \partial_t U + \mathbf{M} - \langle \mathbf{M} \rangle = 0 \\ \mathbf{M} = \mathbf{A}U + \mathbf{f}(U) \\ U(0) = U_0 \end{cases}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• Let
$$U = (u, u|_{\Gamma})$$
 and $\mathbf{M} = (\mu, \mu|_{\Gamma})$
 $m(U) = \frac{1}{|\Omega| + |\Gamma|} \left(\int_{\Omega} u dx + \int_{\Gamma} u|_{\Gamma} d\Sigma \right)$ and $\langle U \rangle = (m(U), m(U))$
 $\begin{cases} \partial_t U + \mathbf{A} \mathbf{M} = 0 \\ \mathbf{M} = \mathbf{A} U + \mathbf{f}(U) \\ U(0) = U_0 \end{cases}$
 $\mathbf{f}(U) = \begin{cases} f(u) - \lambda u & \text{in } \Omega \\ g(\psi) & \text{on } \Gamma \end{cases}$

• A is invertible with compact A^{-1} on functions with null mass

$$\begin{cases} \partial_t U + \mathbf{A}(\mathbf{M} - \langle \mathbf{M} \rangle) = 0 \\ \mathbf{M} = \mathbf{A}U + \mathbf{f}(U) \\ U(0) = U_0 \end{cases} \rightarrow \begin{cases} \mathbf{A}^{-1} \partial_t U + \mathbf{M} - \langle \mathbf{M} \rangle = 0 \\ \mathbf{M} = \mathbf{A}U + \mathbf{f}(U) \\ U(0) = U_0 \end{cases}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

• Let
$$U = (u, u|_{\Gamma})$$
 and $\mathbf{M} = (\mu, \mu|_{\Gamma})$
 $m(U) = \frac{1}{|\Omega| + |\Gamma|} \left(\int_{\Omega} u dx + \int_{\Gamma} u|_{\Gamma} d\Sigma \right)$ and $\langle U \rangle = (m(U), m(U))$
 $\begin{cases} \partial_t U + \mathbf{A}\mathbf{M} = 0\\ \mathbf{M} = \mathbf{A}U + \mathbf{f}(U)\\ U(0) = U_0 \end{cases}$
 $\mathbf{f}(U) = \begin{cases} f(u) - \lambda u & \text{in } \Omega\\ g(\psi) & \text{on } \Gamma \end{cases}$

• A is invertible with compact A^{-1} on functions with null mass

$$\begin{cases} \partial_t U + \mathbf{A}(\mathbf{M} - \langle \mathbf{M} \rangle) = 0 \\ \mathbf{M} = \mathbf{A}U + \mathbf{f}(U) \\ U(0) = U_0 \end{cases} \rightarrow \begin{cases} \mathbf{A}^{-1} \partial_t U + \mathbf{M} - \langle \mathbf{M} \rangle = 0 \\ \mathbf{M} = \mathbf{A}U + \mathbf{f}(U) \\ U(0) = U_0 \end{cases}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

• Let
$$U = (u, u|_{\Gamma})$$
 and $\mathbf{M} = (\mu, \mu|_{\Gamma})$
 $m(U) = \frac{1}{|\Omega| + |\Gamma|} \left(\int_{\Omega} u dx + \int_{\Gamma} u|_{\Gamma} d\Sigma \right)$ and $\langle U \rangle = (m(U), m(U))$
 $\begin{cases} \partial_t U + \mathbf{A} \mathbf{M} = 0\\ \mathbf{M} = \mathbf{A} U + \mathbf{f}(U)\\ U(0) = U_0 \end{cases}$
 $\mathbf{f}(U) = \begin{cases} f(u) - \lambda u & \text{in } \Omega\\ g(\psi) & \text{on } \Gamma \end{cases}$

• A is invertible with compact A^{-1} on functions with null mass

$$\begin{cases} \partial_t U + \mathbf{A}(\mathbf{M} - \langle \mathbf{M} \rangle) = 0 \\ \mathbf{M} = \mathbf{A}U + \mathbf{f}(U) \\ U(0) = U_0 \end{cases} \rightarrow \begin{cases} \mathbf{A}^{-1} \partial_t U + \mathbf{M} - \langle \mathbf{M} \rangle = 0 \\ \mathbf{M} = \mathbf{A}U + \mathbf{f}(U) \\ U(0) = U_0 \end{cases}$$

Exploit monotonicity

$$\langle \mathbf{A}^{-1} \partial_t U, U - V \rangle + \langle \mathbf{A}U, U - V \rangle + L \langle \mathbf{A}^{-1}U, U - V \rangle + \langle \mathbf{f}(U), U - V \rangle = L \langle \mathbf{A}^{-1}U, U - V \rangle$$

 $\exists \sigma > 0 \ \exists L > 0: \ \langle \mathbf{A}U, U \rangle + \langle \mathbf{f}(U), U \rangle + L \| \mathbf{A}^{-1/2}U \|^{2}$ $= \underbrace{\| \nabla u \|_{\Omega}^{2} + \| \nabla_{\Gamma}\psi \|_{\Gamma}^{2} - \sigma \| \psi \|_{\Gamma}^{2} - \lambda \| u \|_{\Omega}^{2} + L \| \mathbf{A}^{-1/2}U \|^{2}}_{\text{coercive } B(U,U) \ge \| U \|_{\mathcal{H}^{1}}^{2}/2}$ $+ \underbrace{(f(u), u)_{\Omega} + (g(\psi) + \sigma \psi, \psi)_{\Gamma}}_{\exists \sigma > 0: \text{ monotone increasing}} \quad \text{for } U: \ m(U) = 0$

Exploit monotonicity

$$\langle \mathbf{A}^{-1} \partial_t U, U - V \rangle + \langle \mathbf{A}U, U - V \rangle + L \langle \mathbf{A}^{-1}U, U - V \rangle + \langle \mathbf{f}(U), U - V \rangle = L \langle \mathbf{A}^{-1}U, U - V \rangle$$

 $\exists \sigma > 0 \ \exists L > 0 : \langle \mathbf{A}U, U \rangle + \langle \mathbf{f}(U), U \rangle + L \| \mathbf{A}^{-1/2} U \|^{2}$ $= \underbrace{\| \nabla u \|_{\Omega}^{2} + \| \nabla_{\Gamma} \psi \|_{\Gamma}^{2} - \sigma \| \psi \|_{\Gamma}^{2} - \lambda \| u \|_{\Omega}^{2} + L \| \mathbf{A}^{-1/2} U \|^{2}}_{\text{coercive } B(U,U) \ge \| U \|_{\mathcal{H}^{1}}^{2} / 2}$ $+ \underbrace{(f(u), u)_{\Omega} + (g(\psi) + \sigma \psi, \psi)_{\Gamma}}_{\exists \sigma > 0: \text{ monotone increasing}} \quad \text{for } U: \ m(U) = 0$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Exploit monotonicity

$$\langle \mathbf{A}^{-1} \partial_t U, U - V \rangle + \langle \mathbf{A}U, U - V \rangle + L \langle \mathbf{A}^{-1}U, U - V \rangle + \langle \mathbf{f}(U), U - V \rangle = L \langle \mathbf{A}^{-1}U, U - V \rangle$$

 $\exists \sigma > 0 \ \exists L > 0: \ \langle \mathbf{A}U, U \rangle + \langle \mathbf{f}(U), U \rangle + L \| \mathbf{A}^{-1/2} U \|^{2}$ $= \underbrace{\| \nabla u \|_{\Omega}^{2} + \| \nabla_{\Gamma} \psi \|_{\Gamma}^{2} - \sigma \| \psi \|_{\Gamma}^{2} - \lambda \| u \|_{\Omega}^{2} + L \| \mathbf{A}^{-1/2} U \|^{2}}_{\text{coercive } B(U,U) \ge \| U \|_{\mathcal{H}^{1}}^{2}/2}$ $+ \underbrace{(f(u), u)_{\Omega} + (g(\psi) + \sigma \psi, \psi)_{\Gamma}}_{\exists \sigma > 0: \text{ monotone increasing}} \quad \text{for } U: \ m(U) = 0$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The variational inequality

Since

$$B(U, U - V) \ge B(V, U - V) \forall U, V$$
 such that $m(U) = m(V)$
and

$$(f(u), u - v)_{\Omega} + (g(\psi) + \sigma \psi, \psi - w)_{\Gamma} \ge (f(v), u - v)_{\Omega} + (g(w) + \sigma w, \psi - w)_{\Gamma} \qquad U = (u, \psi) \ V = (v, w)$$

$$\begin{cases} \langle \mathbf{A}^{-1}\partial_t U, U - V \rangle + B(V, U - V) + \langle f(v), u - v \rangle_{\Omega} \\ + (g(w) + \sigma w, \psi - w)_{\Gamma} \leq L \langle U - \langle U \rangle, \mathbf{A}^{-1}(U - V) \rangle \\ \text{for a.a. } t > 0 \ \forall V = (v, v|_{\Gamma}) \in \mathcal{H}^1 \quad \text{such that} \\ m(V) = m(U_0) \quad \text{and} \quad f(v) \in L^1(\Omega) \end{cases}$$

(V)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The variational inequality

Since

$$B(U, U - V) \ge B(V, U - V) \forall U, V$$
 such that $m(U) = m(V)$

$$\begin{aligned} &(f(u), u - v)_{\Omega} + (g(\psi) + \sigma \psi, \psi - w)_{\Gamma} \geq \\ &(f(v), u - v)_{\Omega} + (g(w) + \sigma w, \psi - w)_{\Gamma} \qquad U = (u, \psi) \ V = (v, w) \end{aligned}$$

$$\begin{cases} \langle \mathbf{A}^{-1}\partial_{t}U, U - V \rangle + B(V, U - V) + \langle f(v), u - v \rangle_{\Omega} \\ + (g(w) + \sigma w, \psi - w)_{\Gamma} \leq L \langle U - \langle U \rangle, \mathbf{A}^{-1}(U - V) \rangle \\ \text{for a.a. } t > 0 \ \forall V = (v, v|_{\Gamma}) \in \mathcal{H}^{1} \text{ such that} \\ m(V) = m(U_{0}) \quad \text{and} \quad f(v) \in L^{1}(\Omega) \end{cases}$$

(V)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The variational inequality

Since

$$B(U, U - V) \ge B(V, U - V) \forall U, V$$
 such that $m(U) = m(V)$

$$(f(u), u - v)_{\Omega} + (g(\psi) + \sigma \psi, \psi - w)_{\Gamma} \ge$$

$$(f(v), u - v)_{\Omega} + (g(w) + \sigma w, \psi - w)_{\Gamma} \qquad U = (u, \psi) \ V = (v, w)$$

 \Rightarrow

$$(V) \begin{cases} \langle \mathbf{A}^{-1}\partial_{t}U, U-V \rangle + B(V, U-V) + \langle f(v), u-v \rangle_{\Omega} \\ + (g(w) + \sigma w, \psi - w)_{\Gamma} \leq L \langle U - \langle U \rangle, \mathbf{A}^{-1}(U-V) \rangle \\ \text{for a.a. } t > 0 \ \forall V = (v, v|_{\Gamma}) \in \mathcal{H}^{1} \text{ such that} \\ m(V) = m(U_{0}) \quad \text{and} \quad f(v) \in L^{1}(\Omega) \end{cases}$$

Our notion of a variational solution

- $\forall U_0 \quad U(t) = (u(t), \psi(t))$ is a variational solution if $U(0) = U_0$ and
 - $\diamond \quad u(t)|_{\Gamma} = \psi(t) \qquad \text{and} \qquad m(U(t)) = m(U_0) \quad \text{for a.a.} \quad t > 0$
 - $\diamond \quad -1 < u(x,t) < 1, \quad \text{for almost all} \quad (x,t) \in \Omega \times [0,\infty)$
 - $\diamond \quad U \in C([0,+\infty), {\mathcal{H}^1}^*) \cap L^2([0,T], \mathcal{H}^1), \, \forall \, T > 0,$
 - $\diamond \quad f(u) \in L^1(\Omega \times [0,T]), \quad \text{for any} \quad T > 0$
 - $\diamond \quad \partial_t U \in L^2([\tau,T],{\mathcal{H}^1}^*): \quad \langle \partial_t U, 1 \rangle_{{\mathcal{H}^1}^*,{\mathcal{H}^1}} = 0 \quad \forall \, \tau \in (0,T], \quad \forall T > 0,$
 - $\diamond \quad U(t) \text{ satisfies } (V):$

$$\begin{split} \langle \mathbf{A}^{-1} \partial_t U, U - V \rangle + B(V, U - V) + \langle f(v), u - v \rangle_{\Omega} \\ + \langle g(v|_{\Gamma}) + \sigma v|_{\Gamma}, \psi - v|_{\Gamma} \rangle_{\Gamma} \leq L \langle U - \langle U \rangle, \mathbf{A}^{-1}(U - V) \rangle \\ \text{for a.a. } t > 0, \ \forall V = (v, v|_{\Gamma}) \in \mathcal{H}^1 \quad \text{such that} \\ m(V) = m(U_0) \quad \text{and} \quad f(v) \in L^1(\Omega) \end{split}$$

- $\exists U_{N_k} \to U$ but $U(t) = (u(t), \psi(t))$ is NOT necessarily a classical solution, since *u* may reach ± 1 on regions of $\Gamma \times \mathbb{R}^+$ with positive measure. The normal derivative may have discontinuities
- $u \in L^{\infty}((\tau, T]; \mathbf{W}^{2,1}(\Omega))$ for any $0 < \tau < T$ $\Rightarrow \exists [\partial_n u]_{int} := \partial_n u_{|\Gamma} \in L^{\infty}([\tau, T], L^1(\Gamma))$
- $U_{N_k} \rightarrow U$, the a priori estimates and the dynamic boundary condition

$$\Rightarrow \qquad \exists [\partial_n u]_{ext} := \lim_{N_k \to +\infty} \partial_n u_{N_k \mid \Gamma} \in L^{\infty}([\tau, T], L^2(\Gamma))$$

$$\begin{cases} \partial_t u - \Delta \mu = 0 & \text{in } L^2_{loc}(\Omega \times (\tau, T)) \\ \mu = -\Delta u + f(u) - \lambda u & \text{in } L^2_{loc}(\Omega \times (\tau, T)) \\ u(t)|_{\Gamma} = \psi(t), \quad t > 0 \\ \partial_t \psi - \Delta_{\Gamma} \mu|_{\Gamma} = -\partial_n \mu, \quad \text{in } L^2_{loc}(\Gamma \times (\tau, T)) \\ \mu|_{\Gamma} = -\Delta_{\Gamma} \psi + g(\psi) + [\partial_n u]_{ext} \quad \text{on } \Gamma, \quad T > \tau > 0 \end{cases}$$

- $\exists U_{N_k} \to U$ but $U(t) = (u(t), \psi(t))$ is NOT necessarily a classical solution, since *u* may reach ± 1 on regions of $\Gamma \times \mathbb{R}^+$ with positive measure. The normal derivative may have discontinuities
- $u \in L^{\infty}((\tau, T]; W^{2,1}(\Omega))$ for any $0 < \tau < T$ $\Rightarrow \exists [\partial_n u]_{int} := \partial_n u_{|\Gamma} \in L^{\infty}([\tau, T], L^1(\Gamma))$
- $U_{N_k} \rightarrow U$, the a priori estimates and the dynamic boundary condition

$$\Rightarrow \qquad \exists [\partial_n u]_{ext} := \lim_{N_k \to +\infty} \partial_n u_{N_k \mid \Gamma} \in L^{\infty}([\tau, T], L^2(\Gamma))$$

$$\begin{cases} \partial_t u - \Delta \mu = 0 & \text{in } L^2_{loc}(\Omega \times (\tau, T)) \\ \mu = -\Delta u + f(u) - \lambda u & \text{in } L^2_{loc}(\Omega \times (\tau, T)) \\ u(t)|_{\Gamma} = \psi(t), \quad t > 0 \\ \partial_t \psi - \Delta_{\Gamma} \mu|_{\Gamma} = -\partial_n \mu, \quad \text{in } L^2_{loc}(\Gamma \times (\tau, T)) \\ \mu|_{\Gamma} = -\Delta_{\Gamma} \psi + g(\psi) + [\partial_n u]_{ext} \quad \text{on } \Gamma, \quad T > \tau > 0 \end{cases}$$

- $\exists U_{N_k} \to U$ but $U(t) = (u(t), \psi(t))$ is NOT necessarily a classical solution, since *u* may reach ± 1 on regions of $\Gamma \times \mathbb{R}^+$ with positive measure. The normal derivative may have discontinuities
- $u \in L^{\infty}((\tau, T]; W^{2,1}(\Omega))$ for any $0 < \tau < T$ $\Rightarrow \exists [\partial_n u]_{int} := \partial_n u_{|\Gamma} \in L^{\infty}([\tau, T], L^1(\Gamma))$
- $U_{N_k} \rightarrow U$, the a priori estimates and the dynamic boundary condition

$$\Rightarrow \qquad \exists [\partial_n u]_{ext} := \lim_{N_k \to +\infty} \partial_n u_{N_k \mid \Gamma} \in L^{\infty}([\tau, T], L^2(\Gamma))$$

$$\begin{cases} \partial_t u - \Delta \mu = 0 \quad \text{in } L^2_{loc}(\Omega \times (\tau, T)) \\ \mu = -\Delta u + f(u) - \lambda u \quad \text{in } L^2_{loc}(\Omega \times (\tau, T)) \\ u(t)|_{\Gamma} = \psi(t), \quad t > 0 \\ \partial_t \psi - \Delta_{\Gamma} \mu|_{\Gamma} = -\partial_n \mu, \quad \text{in } L^2_{loc}(\Gamma \times (\tau, T)) \\ \mu|_{\Gamma} = -\Delta_{\Gamma} \psi + g(\psi) + [\partial_n u]_{ext} \quad \text{on } \Gamma, \quad T > \tau > 0 \end{cases}$$

• Unfortunately $[\partial_n u]_{int}$ is not necessarily equal to $[\partial_n u]_{ext}$.

- $\exists U_{N_k} \to U$ but $U(t) = (u(t), \psi(t))$ is NOT necessarily a classical solution, since *u* may reach ± 1 on regions of $\Gamma \times \mathbb{R}^+$ with positive measure. The normal derivative may have discontinuities
- $u \in L^{\infty}((\tau, T]; W^{2,1}(\Omega))$ for any $0 < \tau < T$ $\Rightarrow \exists [\partial_n u]_{int} := \partial_n u_{|\Gamma} \in L^{\infty}([\tau, T], L^1(\Gamma))$
- $U_{N_k} \rightarrow U$, the a priori estimates and the dynamic boundary condition

$$\Rightarrow \qquad \exists [\partial_n u]_{ext} := \lim_{N_k \to +\infty} \partial_n u_{N_k \mid \Gamma} \in L^{\infty}([\tau, T], L^2(\Gamma))$$

$$\begin{cases} \partial_t u - \Delta \mu = 0 & \text{in } L^2_{loc}(\Omega \times (\tau, T)) \\ \mu = -\Delta u + f(u) - \lambda u & \text{in } L^2_{loc}(\Omega \times (\tau, T)) \\ u(t)|_{\Gamma} = \psi(t), \quad t > 0 \\ \partial_t \psi - \Delta_{\Gamma} \mu|_{\Gamma} = -\partial_n \mu, \quad \text{in } L^2_{loc}(\Gamma \times (\tau, T)) \\ \mu|_{\Gamma} = -\Delta_{\Gamma} \psi + g(\psi) + [\partial_n u]_{ext} \quad \text{on } \Gamma, \quad T > \tau > 0 \end{cases}$$

- $\exists U_{N_k} \to U$ but $U(t) = (u(t), \psi(t))$ is NOT necessarily a classical solution, since *u* may reach ± 1 on regions of $\Gamma \times \mathbb{R}^+$ with positive measure. The normal derivative may have discontinuities
- $u \in L^{\infty}((\tau, T]; \mathbf{W}^{2,1}(\Omega))$ for any $0 < \tau < T$ $\Rightarrow \exists [\partial_n u]_{int} := \partial_n u_{|\Gamma} \in L^{\infty}([\tau, T], \mathbf{L}^1(\Gamma))$
- $U_{N_k} \rightarrow U$, the a priori estimates and the dynamic boundary condition

$$\Rightarrow \qquad \exists [\partial_n u]_{ext} := \lim_{N_k \to +\infty} \partial_n u_{N_k \mid \Gamma} \in L^{\infty}([\tau, T], L^2(\Gamma))$$

$$\begin{cases} \partial_t u - \Delta \mu = 0 \quad \text{in } L^2_{loc}(\Omega \times (\tau, T)) \\ \mu = -\Delta u + f(u) - \lambda u \quad \text{in } L^2_{loc}(\Omega \times (\tau, T)) \\ u(t)|_{\Gamma} = \psi(t), \quad t > 0 \\ \partial_t \psi - \Delta_{\Gamma} \mu|_{\Gamma} = -\partial_n \mu, \quad \text{in } L^2_{loc}(\Gamma \times (\tau, T)) \\ \mu|_{\Gamma} = -\Delta_{\Gamma} \psi + g(\psi) + [\partial_n u]_{ext} \quad \text{on } \Gamma, \quad T > \tau > 0 \end{cases}$$

- $\exists U_{N_k} \to U$ but $U(t) = (u(t), \psi(t))$ is NOT necessarily a classical solution, since *u* may reach ± 1 on regions of $\Gamma \times \mathbb{R}^+$ with positive measure. The normal derivative may have discontinuities
- $u \in L^{\infty}((\tau, T]; \mathbf{W}^{2,1}(\Omega))$ for any $0 < \tau < T$ $\Rightarrow \exists [\partial_n u]_{int} := \partial_n u_{|\Gamma} \in L^{\infty}([\tau, T], \mathbf{L}^1(\Gamma))$
- $U_{N_k} \rightarrow U$, the a priori estimates and the dynamic boundary condition

$$\Rightarrow \qquad \exists [\partial_n u]_{ext} := \lim_{N_k \to +\infty} \partial_n u_{N_k \mid \Gamma} \in L^{\infty}([\tau, T], L^2(\Gamma))$$

$$\begin{cases} \partial_t u - \Delta \mu = 0 \quad \text{in } L^2_{loc}(\Omega \times (\tau, T)) \\ \mu = -\Delta u + f(u) - \lambda u \quad \text{in } L^2_{loc}(\Omega \times (\tau, T)) \\ u(t)|_{\Gamma} = \psi(t), \quad t > 0 \\ \partial_t \psi - \Delta_{\Gamma} \mu|_{\Gamma} = -\partial_{\mathbf{n}} \mu, \quad \text{in } L^2_{loc}(\Gamma \times (\tau, T)) \\ \mu|_{\Gamma} = -\Delta_{\Gamma} \psi + g(\psi) + [\partial_{\mathbf{n}} u]_{ext} \quad \text{on } \Gamma, \quad T > \tau > 0 \end{cases}$$

Sufficient condition for U to be classical

If $(\bigstar) |u(x,t)| < 1$ a.e. in $\Gamma \times \mathbb{R}^+ \Rightarrow [\partial_n u]_{int} = [\partial_n u]_{ext}$ $\Rightarrow U$ classical solution If $(\blacksquare) \lim_{s \to \pm 1} F(s) = +\infty$ $(F' = f) \Rightarrow (\bigstar)$ holds true

Property (\blacksquare) holds true if *f* is strongly singular at $\pm 1 \Rightarrow$ No logarithmic functional

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Sufficient condition for U to be classical

If $(\bigstar) |u(x,t)| < 1$ a.e. in $\Gamma \times \mathbb{R}^+ \Rightarrow [\partial_n u]_{int} = [\partial_n u]_{ext}$ $\Rightarrow U$ classical solution If (\blacksquare) $\lim_{s \to \pm 1} F(s) = +\infty$ $(F' = f) \Rightarrow (\bigstar)$ holds true operty (\blacksquare) holds true if f is strongly singular at $\pm 1 \Rightarrow$ No logarithmic

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Sufficient condition for U to be classical

If
$$(\bigstar) |u(x,t)| < 1$$
 a.e. in $\Gamma \times \mathbb{R}^+ \Rightarrow [\partial_n u]_{int} = [\partial_n u]_{ext}$
 $\Rightarrow U$ classical solution
If $(\blacksquare) \lim_{s \to \pm 1} F(s) = +\infty \quad (F' = f) \Rightarrow \quad (\bigstar)$ holds true

Property (\square) holds true if *f* is strongly singular at $\pm 1 \Rightarrow$ No logarithmic functional

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Let $U = (u, \psi)$ $\Phi = \{U \in L^{\infty}(\Omega) \times L^{\infty}(\Gamma) : \|u\|_{L^{\infty}(\Omega)}, \|\psi\|_{L^{\infty}(\Gamma)} \leq 1, m(U) \in (-1, 1)\}$ $\Phi_{I} = \{U \in \Phi : m(U) = I\}, \qquad I \in (-1, 1)$ $\mathcal{H}^{1} = H^{1}(\Omega) \times H^{1}(\Gamma) \subset \mathcal{L}^{2} = L^{2}(\Omega) \times L^{2}(\Gamma) \subset (\mathcal{H}^{1})^{*}$

$$\begin{split} \mathcal{S}(t) &: (\Phi_I, \mathcal{H}^{1^*}) \to (\Phi_I, \mathcal{H}^{1^*}) \quad \text{closed semigroup} \\ & U_0 \mapsto U(t) \quad \text{ solution to the variational problem } (V) \\ & (\mathcal{S}(t), \Phi_I) \text{ admits a compact absorbing set} \\ & \Rightarrow \quad \exists \mathcal{A}_I \quad (\Phi_I, \mathcal{H}^{1^*}) - \text{global attractor} \\ & \mathcal{A}_I \text{ bounded in } C^{\alpha}(\Omega) \times C^{\alpha}(\Gamma) \text{ has finite fractal dimension} \end{split}$$

Let $U = (u, \psi)$ $\Phi = \{U \in L^{\infty}(\Omega) \times L^{\infty}(\Gamma) : \|u\|_{L^{\infty}(\Omega)}, \|\psi\|_{L^{\infty}(\Gamma)} \leq 1, m(U) \in (-1, 1)\}$ $\Phi_{I} = \{U \in \Phi : m(U) = I\}, \quad I \in (-1, 1)$ $\mathcal{H}^{1} = H^{1}(\Omega) \times H^{1}(\Gamma) \subset \mathcal{L}^{2} = L^{2}(\Omega) \times L^{2}(\Gamma) \subset (\mathcal{H}^{1})^{*}$ $S(t) : (\Phi_{I}, \mathcal{H}^{1^{*}}) \rightarrow (\Phi_{I}, \mathcal{H}^{1^{*}}) \quad \text{closed semigroup}$

 $U_0 \mapsto U(t)$ solution to the variational problem (V)

 $(S(t), \Phi_I)$ admits a compact absorbing set

 $\Rightarrow \exists \mathcal{A}_I \quad (\Phi_I, \mathcal{H}^{1^*}) - \text{global attractor}$

 \mathcal{A}_I bounded in $C^{\alpha}(\Omega) \times C^{\alpha}(\Gamma)$ has finite fractal dimension

Let $U = (u, \psi)$ $\Phi = \{U \in L^{\infty}(\Omega) \times L^{\infty}(\Gamma) : \|u\|_{L^{\infty}(\Omega)}, \|\psi\|_{L^{\infty}(\Gamma)} \leq 1, m(U) \in (-1, 1)\}$ $\Phi_{I} = \{U \in \Phi : m(U) = I\}, \qquad I \in (-1, 1)$ $\mathcal{H}^{1} = H^{1}(\Omega) \times H^{1}(\Gamma) \subset \mathcal{L}^{2} = L^{2}(\Omega) \times L^{2}(\Gamma) \subset (\mathcal{H}^{1})^{*}$ $S(t) : (\Phi_{I}, \mathcal{H}^{1^{*}}) \rightarrow (\Phi_{I}, \mathcal{H}^{1^{*}}) \quad \text{closed semigroup}$

 $U_0 \mapsto U(t)$ solution to the variational problem (V)

 $(S(t), \Phi_I)$ admits a compact absorbing set

 $\Rightarrow \exists \mathcal{A}_I \quad (\Phi_I, \mathcal{H}^{1^*}) - \text{global attractor}$

 \mathcal{A}_I bounded in $C^{\alpha}(\Omega) \times C^{\alpha}(\Gamma)$ has finite fractal dimension

Let $U = (u, \psi)$ $\Phi = \{U \in L^{\infty}(\Omega) \times L^{\infty}(\Gamma) : \|u\|_{L^{\infty}(\Omega)}, \|\psi\|_{L^{\infty}(\Gamma)} \leq 1, m(U) \in (-1, 1)\}$ $\Phi_{I} = \{U \in \Phi : m(U) = I\}, \qquad I \in (-1, 1)$ $\mathcal{H}^{1} = H^{1}(\Omega) \times H^{1}(\Gamma) \subset \mathcal{L}^{2} = L^{2}(\Omega) \times L^{2}(\Gamma) \subset (\mathcal{H}^{1})^{*}$

 $S(t): (\Phi_I, \mathcal{H}^{1^*}) \to (\Phi_I, \mathcal{H}^{1^*}) \quad \text{closed semigroup}$ $U_0 \mapsto U(t) \quad \text{solution to the variational problem (V)}$ $(S(t), \Phi_I) \text{ admits a compact absorbing set}$ $\Rightarrow \quad \exists \mathcal{A}_I \quad (\Phi_I, \mathcal{H}^{1^*}) - \text{global attractor}$ $\mathcal{A}_I \text{ bounded in } C^{\alpha}(\Omega) \times C^{\alpha}(\Gamma) \text{ has finite fractal dimension}$

Let $U = (u, \psi)$ $\Phi = \{U \in L^{\infty}(\Omega) \times L^{\infty}(\Gamma) : ||u||_{L^{\infty}(\Omega)}, ||\psi||_{L^{\infty}(\Gamma)} \leq 1, m(U) \in (-1, 1)\}$ $\Phi_{I} = \{U \in \Phi : m(U) = I\}, \qquad I \in (-1, 1)$ $\mathcal{H}^{1} = H^{1}(\Omega) \times H^{1}(\Gamma) \subset \mathcal{L}^{2} = L^{2}(\Omega) \times L^{2}(\Gamma) \subset (\mathcal{H}^{1})^{*}$

$$\begin{split} S(t) : (\Phi_I, \mathcal{H}^{1^*}) &\to (\Phi_I, \mathcal{H}^{1^*}) \quad \text{closed semigroup} \\ U_0 &\mapsto U(t) \quad \text{solution to the variational problem } (V) \\ (S(t), \Phi_I) \text{ admits a compact absorbing set} \\ &\Rightarrow \quad \exists \mathcal{A}_I \quad (\Phi_I, \mathcal{H}^{1^*}) - \text{global attractor} \\ \mathcal{A}_I \text{ bounded in } C^{\alpha}(\Omega) \times C^{\alpha}(\Gamma) \text{ has finite fractal dimension} \end{split}$$

Let $U = (u, \psi)$ $\Phi = \{U \in L^{\infty}(\Omega) \times L^{\infty}(\Gamma) : ||u||_{L^{\infty}(\Omega)}, ||\psi||_{L^{\infty}(\Gamma)} \leq 1, m(U) \in (-1, 1)\}$ $\Phi_{I} = \{U \in \Phi : m(U) = I\}, \qquad I \in (-1, 1)$ $\mathcal{H}^{1} = H^{1}(\Omega) \times H^{1}(\Gamma) \subset \mathcal{L}^{2} = L^{2}(\Omega) \times L^{2}(\Gamma) \subset (\mathcal{H}^{1})^{*}$

 $S(t): (\Phi_I, \mathcal{H}^{1^*}) \to (\Phi_I, \mathcal{H}^{1^*}) \quad \text{closed semigroup}$ $U_0 \mapsto U(t) \quad \text{solution to the variational problem } (V)$ $(S(t), \Phi_I) \text{ admits a compact absorbing set}$ $\Rightarrow \quad \exists \mathcal{A}_I \quad (\Phi_I, \mathcal{H}^{1^*}) - \text{global attractor}$ $\mathcal{A}_I \text{ bounded in } C^{\alpha}(\Omega) \times C^{\alpha}(\Gamma) \text{ has finite fractal dimension}$

• [Eden, Foias, Nicolaenko, Temam 1994]

We are dealing with variational solutions

How can we prove the existence of an exponential attractor?

Main Idea [Efendiev-Zelik 2008], [Miranville-Zelik 2010] :

• close to $\pm 1 \quad f'$ goes to $+\infty$

 \Rightarrow f'(1-s) and f'(-1+s) as large as we want if s > 0 is small enough

• far from ± 1 standard parabolic smoothing property

To exploit this idea, we need a local procedure.

• $\exists \mathbb{B}_0$ compact, absorbing and positively invariant, where, in particular, uniform bounds for the solutions hold true and $u|_{\Gamma} = \psi$.

• $\{B_{\mathcal{H}^{1*}}(U_0, \rho)\}_{z_0 \in \mathbb{B}_0}$ are an open covering of \mathbb{B}_0 , for any $0 < \rho \le \rho_0 \ll 1$ \Rightarrow we work on a finite number of balls

• [Eden, Foias, Nicolaenko, Temam 1994] We are dealing with variational solutions

How can we prove the existence of an exponential attractor?

Main Idea [Efendiev-Zelik 2008], [Miranville-Zelik 2010] :

• close to
$$\pm 1 \quad f'$$
 goes to $+\infty$

 \Rightarrow f'(1-s) and f'(-1+s) as large as we want if s > 0 is small enough

• far from ± 1 standard parabolic smoothing property

To exploit this idea, we need a local procedure.

• $\exists \mathbb{B}_0$ compact, absorbing and positively invariant, where, in particular, uniform bounds for the solutions hold true and $u|_{\Gamma} = \psi$.

• $\{B_{\mathcal{H}^{1*}}(U_0, \rho)\}_{z_0 \in \mathbb{B}_0}$ are an open covering of \mathbb{B}_0 , for any $0 < \rho \le \rho_0 \ll 1$ \Rightarrow we work on a finite number of balls

- [Eden, Foias, Nicolaenko, Temam 1994]
- We are dealing with variational solutions
- How can we prove the existence of an exponential attractor?
- Main Idea [Efendiev-Zelik 2008], [Miranville-Zelik 2010] :
- close to ± 1 f' goes to $+\infty$
- $\Rightarrow f'(1-s)$ and f'(-1+s) as large as we want if s > 0 is small enough
- far from ± 1 standard parabolic smoothing property
- To exploit this idea, we need a local procedure.
- $\exists \mathbb{B}_0$ compact, absorbing and positively invariant, where, in particular, uniform bounds for the solutions hold true and $u|_{\Gamma} = \psi$.
- $\{B_{\mathcal{H}^{1*}}(U_0, \rho)\}_{z_0 \in \mathbb{B}_0}$ are an open covering of \mathbb{B}_0 , for any $0 < \rho \le \rho_0 \ll 1$ \Rightarrow we work on a finite number of balls

- [Eden, Foias, Nicolaenko, Temam 1994]
- We are dealing with variational solutions
- How can we prove the existence of an exponential attractor?
- Main Idea [Efendiev-Zelik 2008], [Miranville-Zelik 2010] :
- close to $\pm 1 \quad f'$ goes to $+\infty$
- $\Rightarrow f'(1-s)$ and f'(-1+s) as large as we want if s > 0 is small enough
- far from ± 1 standard parabolic smoothing property
- To exploit this idea, we need a local procedure.
- $\exists \mathbb{B}_0$ compact, absorbing and positively invariant, where, in particular, uniform bounds for the solutions hold true and $u|_{\Gamma} = \psi$.
- $\{B_{\mathcal{H}^{1*}}(U_0, \rho)\}_{z_0 \in \mathbb{B}_0}$ are an open covering of \mathbb{B}_0 , for any $0 < \rho \le \rho_0 \ll 1$ \Rightarrow we work on a finite number of balls

- [Eden, Foias, Nicolaenko, Temam 1994]
- We are dealing with variational solutions
- How can we prove the existence of an exponential attractor?
- Main Idea [Efendiev-Zelik 2008], [Miranville-Zelik 2010] :
- close to ± 1 f' goes to $+\infty$
- $\Rightarrow f'(1-s)$ and f'(-1+s) as large as we want if s > 0 is small enough
- far from ± 1 standard parabolic smoothing property
- To exploit this idea, we need a local procedure.
- $\exists \mathbb{B}_0$ compact, absorbing and positively invariant, where, in particular, uniform bounds for the solutions hold true and $u|_{\Gamma} = \psi$.
- $\{B_{\mathcal{H}^{1*}}(U_0, \rho)\}_{z_0 \in \mathbb{B}_0}$ are an open covering of \mathbb{B}_0 , for any $0 < \rho \le \rho_0 \ll 1$ \Rightarrow we work on a finite number of balls

- [Eden, Foias, Nicolaenko, Temam 1994]
- We are dealing with variational solutions
- How can we prove the existence of an exponential attractor?
- Main Idea [Efendiev-Zelik 2008], [Miranville-Zelik 2010] :
- close to ± 1 f' goes to $+\infty$
- $\Rightarrow f'(1-s)$ and f'(-1+s) as large as we want if s > 0 is small enough
- far from ± 1 standard parabolic smoothing property

- $\exists \mathbb{B}_0$ compact, absorbing and positively invariant, where, in particular, uniform bounds for the solutions hold true and $u|_{\Gamma} = \psi$.
- $\{B_{\mathcal{H}^{1*}}(U_0, \rho)\}_{z_0 \in \mathbb{B}_0}$ are an open covering of \mathbb{B}_0 , for any $0 < \rho \le \rho_0 \ll 1$ \Rightarrow we work on a finite number of balls

- [Eden, Foias, Nicolaenko, Temam 1994]
- We are dealing with variational solutions
- How can we prove the existence of an exponential attractor?
- Main Idea [Efendiev-Zelik 2008], [Miranville-Zelik 2010] :
- close to ± 1 f' goes to $+\infty$
- $\Rightarrow f'(1-s)$ and f'(-1+s) as large as we want if s > 0 is small enough
- far from ± 1 standard parabolic smoothing property

- $\exists \mathbb{B}_0$ compact, absorbing and positively invariant, where, in particular, uniform bounds for the solutions hold true and $u|_{\Gamma} = \psi$.
- $\{B_{\mathcal{H}^{1*}}(U_0,\rho)\}_{z_0\in\mathbb{B}_0}$ are an open covering of \mathbb{B}_0 , for any $0 < \rho \le \rho_0 \ll 1$ \Rightarrow we work on a finite number of balls

- [Eden, Foias, Nicolaenko, Temam 1994]
- We are dealing with variational solutions
- How can we prove the existence of an exponential attractor?
- Main Idea [Efendiev-Zelik 2008], [Miranville-Zelik 2010] :
- close to ± 1 f' goes to $+\infty$
- $\Rightarrow f'(1-s)$ and f'(-1+s) as large as we want if s > 0 is small enough
- far from ± 1 standard parabolic smoothing property

- $\exists \mathbb{B}_0$ compact, absorbing and positively invariant, where, in particular, uniform bounds for the solutions hold true and $u|_{\Gamma} = \psi$.
- $\{B_{\mathcal{H}^{1*}}(U_0,\rho)\}_{z_0\in\mathbb{B}_0}$ are an open covering of \mathbb{B}_0 , for any $0 < \rho \le \rho_0 \ll 1$ \Rightarrow we work on a finite number of balls

- [Eden, Foias, Nicolaenko, Temam 1994]
- We are dealing with variational solutions
- How can we prove the existence of an exponential attractor?
- Main Idea [Efendiev-Zelik 2008], [Miranville-Zelik 2010] :
- close to ± 1 f' goes to $+\infty$
- $\Rightarrow f'(1-s)$ and f'(-1+s) as large as we want if s > 0 is small enough
- far from ± 1 standard parabolic smoothing property

- $\exists \mathbb{B}_0$ compact, absorbing and positively invariant, where, in particular, uniform bounds for the solutions hold true and $u|_{\Gamma} = \psi$.
- $\{B_{\mathcal{H}^{1*}}(U_0,\rho)\}_{z_0\in\mathbb{B}_0}$ are an open covering of \mathbb{B}_0 , for any $0 < \rho \le \rho_0 \ll 1$ \Rightarrow we work on a finite number of balls

- \mathbb{B}_0 is such that $||u||_{C^{\alpha}(\Omega \times [0,T])} \leq R, \forall T \geq 0$
- This and Lipschitz continuous dependence, interpolation $\Rightarrow \forall U_0 \in \mathbb{B}_0, \forall \delta \in (0, 1), \exists T(\delta) > 0, \exists \rho_0(\delta) > 0$ such that $\forall \rho \in (0, \rho_0), \forall U(0) \in B_{\mathcal{H}^{1*}}(U_0, \rho), \forall t \in [0, T] S(t)U(0) = (u(t), \psi(t))$ satisfies

 $|u(x,t)| \ge 1 - 4\delta, \quad x \in \overline{\Omega}_{2\delta}(U_0) = \{x \in \Omega : |u_0(x)| > 1 - 2\delta\} \\ |u(x,t)| \le 1 - \delta/4, \quad x \in \Omega_{\delta}(U_0) = \{x \in \Omega : |u_0(x)| < 1 - \delta\}$

• $\forall \delta \in (0,1) \exists \theta : \Omega \to [0,1]$ such that $\theta(x) = \begin{cases} 0, & x \in \overline{\Omega}_{\delta}(U_0) \\ 1, & x \in \Omega_{2\delta}(U_0) \end{cases}$

• $f'(u(x,t)) \ge \Lambda(\delta), \qquad x \in \overline{\Omega}_{2\delta}(U_0), \quad t \in [0,T]$ contraction

• $|\theta(x)u(x,t)| = |u(x,t)|_{\Omega_{2\delta}(U_0)}| \le 1 - \delta/4, \quad t \in [0,T]$ smoothing

- \mathbb{B}_0 is such that $||u||_{C^{\alpha}(\Omega \times [0,T])} \leq R, \forall T \geq 0$
- This and Lipschitz continuous dependence, interpolation $\Rightarrow \forall U_0 \in \mathbb{B}_0, \forall \delta \in (0, 1), \exists T(\delta) > 0, \exists \rho_0(\delta) > 0$ such that $\forall \rho \in (0, \rho_0), \forall U(0) \in B_{\mathcal{H}^{1*}}(U_0, \rho), \forall t \in [0, T] S(t)U(0) = (u(t), \psi(t))$ satisfies

$$\begin{aligned} |u(x,t)| &\ge 1 - 4\delta, \quad x \in \overline{\Omega}_{2\delta}(U_0) = \{ x \in \Omega : \quad |u_0(x)| > 1 - 2\delta \} \\ |u(x,t)| &\le 1 - \delta/4, \quad x \in \Omega_{\delta}(U_0) = \{ x \in \Omega : \quad |u_0(x)| < 1 - \delta \} \end{aligned}$$

• $\forall \delta \in (0,1) \exists \theta : \Omega \to [0,1]$ such that $\theta(x) = \begin{cases} 0, & x \in \overline{\Omega}_{\delta}(U_0) \\ 1, & x \in \Omega_{2\delta}(U_0) \end{cases}$

• $f'(u(x,t)) \ge \Lambda(\delta), \qquad x \in \overline{\Omega}_{2\delta}(U_0), \quad t \in [0,T]$ contraction

• $|\theta(x)u(x,t)| = |u(x,t)|_{\Omega_{2\delta}(U_0)}| \le 1 - \delta/4, \quad t \in [0,T]$ smoothing

- \mathbb{B}_0 is such that $||u||_{C^{\alpha}(\Omega \times [0,T])} \leq R, \forall T \geq 0$
- This and Lipschitz continuous dependence, interpolation $\Rightarrow \forall U_0 \in \mathbb{B}_0, \forall \delta \in (0, 1), \exists T(\delta) > 0, \exists \rho_0(\delta) > 0$ such that $\forall \rho \in (0, \rho_0), \forall U(0) \in B_{\mathcal{H}^{1*}}(U_0, \rho), \forall t \in [0, T] S(t)U(0) = (u(t), \psi(t))$ satisfies

$$\begin{aligned} |u(x,t)| &\ge 1 - 4\delta, \quad x \in \overline{\Omega}_{2\delta}(U_0) = \{ x \in \Omega : \quad |u_0(x)| > 1 - 2\delta \} \\ |u(x,t)| &\le 1 - \delta/4, \quad x \in \Omega_{\delta}(U_0) = \{ x \in \Omega : \quad |u_0(x)| < 1 - \delta \} \end{aligned}$$

• $\forall \delta \in (0,1) \exists \theta : \Omega \to [0,1]$ such that $\theta(x) = \begin{cases} 0, & x \in \overline{\Omega}_{\delta}(U_0) \\ 1, & x \in \Omega_{2\delta}(U_0) \end{cases}$

• $f'(u(x,t)) \ge \Lambda(\delta), \qquad x \in \overline{\Omega}_{2\delta}(U_0), \quad t \in [0,T]$ contraction

• $|\theta(x)u(x,t)| = |u(x,t)|_{\Omega_{2\delta}(U_0)}| \le 1 - \delta/4, \quad t \in [0,T]$ smoothing

- \mathbb{B}_0 is such that $||u||_{C^{\alpha}(\Omega \times [0,T])} \leq R, \forall T \geq 0$
- This and Lipschitz continuous dependence, interpolation $\Rightarrow \forall U_0 \in \mathbb{B}_0, \forall \delta \in (0, 1), \exists T(\delta) > 0, \exists \rho_0(\delta) > 0$ such that $\forall \rho \in (0, \rho_0), \forall U(0) \in B_{\mathcal{H}^{1*}}(U_0, \rho), \forall t \in [0, T] S(t)U(0) = (u(t), \psi(t))$ satisfies

$$\begin{aligned} |u(x,t)| &\ge 1 - 4\delta, \quad x \in \overline{\Omega}_{2\delta}(U_0) = \{ x \in \Omega : \quad |u_0(x)| > 1 - 2\delta \} \\ |u(x,t)| &\le 1 - \delta/4, \quad x \in \Omega_{\delta}(U_0) = \{ x \in \Omega : \quad |u_0(x)| < 1 - \delta \} \end{aligned}$$

• $\forall \delta \in (0,1) \exists \theta : \Omega \to [0,1]$ such that $\theta(x) = \begin{cases} 0, & x \in \overline{\Omega}_{\delta}(U_0) \\ 1, & x \in \Omega_{2\delta}(U_0) \end{cases}$

• $f'(u(x,t)) \ge \Lambda(\delta), \qquad x \in \overline{\Omega}_{2\delta}(U_0), \quad t \in [0,T]$ contraction

• $|\theta(x)u(x,t)| = |u(x,t)|_{\Omega_{2\delta}(U_0)}| \le 1 - \delta/4, \quad t \in [0,T]$ smoothing

- \mathbb{B}_0 is such that $||u||_{C^{\alpha}(\Omega \times [0,T])} \leq R, \forall T \geq 0$
- This and Lipschitz continuous dependence, interpolation $\Rightarrow \forall U_0 \in \mathbb{B}_0, \forall \delta \in (0, 1), \exists T(\delta) > 0, \exists \rho_0(\delta) > 0$ such that $\forall \rho \in (0, \rho_0), \forall U(0) \in B_{\mathcal{H}^{1*}}(U_0, \rho), \forall t \in [0, T] S(t)U(0) = (u(t), \psi(t))$ satisfies

$$\begin{aligned} |u(x,t)| &\ge 1 - 4\delta, \quad x \in \overline{\Omega}_{2\delta}(U_0) = \{ x \in \Omega : \quad |u_0(x)| > 1 - 2\delta \} \\ |u(x,t)| &\le 1 - \delta/4, \quad x \in \Omega_{\delta}(U_0) = \{ x \in \Omega : \quad |u_0(x)| < 1 - \delta \} \end{aligned}$$

• $\forall \delta \in (0,1) \exists \theta : \Omega \to [0,1]$ such that $\theta(x) = \begin{cases} 0, & x \in \overline{\Omega}_{\delta}(U_0) \\ 1, & x \in \Omega_{2\delta}(U_0) \end{cases}$

• $f'(u(x,t)) \ge \Lambda(\delta), \qquad x \in \overline{\Omega}_{2\delta}(U_0), \quad t \in [0,T]$ contraction

• $|\theta(x)u(x,t)| = |u(x,t)|_{\Omega_{2\delta}(U_0)}| \le 1 - \delta/4, \quad t \in [0,T]$ smoothing

Construction of an exponential attractor

Theorem (Málek-Prážak 2002, Efendiev-Zelik 2008)

Let X, \mathbb{H}_1 , \mathbb{H} be Banach spaces with $\mathbb{H}_1 \Subset \mathbb{H}$, $\mathbb{B}_0 \Subset X$ such that $\mathbb{SB}_0 \subset \mathbb{B}_0$ and $\forall U_0 \in \mathbb{B}_0 \ \forall \rho \in (0, \rho_0) \ \exists \mathbb{K}_{U_0} : B_X(U_0, \rho) \to \mathbb{H}_1$ such that

(•) $\|\mathbb{K}_{U_0}(U_1) - \mathbb{K}_{U_0}(U_2)\|_{\mathbb{H}_1} \le c \|U_1 - U_2\|_X, \quad U_1, U_2 \in B_X(U_0, \rho)$ (•) $\exists \gamma \in (0, 1)$ such that, for any $U_1, U_2 \in B_X(U_0, \rho)$

 $\|\mathbb{S}U_1 - \mathbb{S}U_2\|_X \le \gamma \|U_1 - U_2\|_X + c \|\mathbb{K}_{U_0}(U_1) - \mathbb{K}_{U_0}(U_2)\|_Y$

 $\Rightarrow \exists \mathcal{E}^d$ discrete exponential attractor with basin \mathbb{B}_0 endowed with the *X*-topology.

 $X = \mathcal{H}^{1^*}, \mathbb{S} = S(T(\delta)) \text{ where } \delta \text{ small enough, } \rho \in (0, \rho_0(\delta)) \text{ and } T = T(\delta)$ $\mathbb{K}_{U_0} : B_{\mathcal{H}^{1^*}}(U_0, \rho) \to \mathcal{L}^2 \quad \text{is} \quad \mathbb{K}_{U_0}U = (\theta u(\cdot), 0)$ $\mathbb{H}_1 = L^2([0, T], \mathcal{H}^1) \cap H^1([0, T], \mathcal{H}^{3^*}) \Subset \mathbb{H} = L^2([0, T], \mathcal{L}^2)$

Theorem (Málek-Prážak 2002, Efendiev-Zelik 2008)

Let X, \mathbb{H}_1 , \mathbb{H} be Banach spaces with $\mathbb{H}_1 \Subset \mathbb{H}$, $\mathbb{B}_0 \Subset X$ such that $\mathbb{SB}_0 \subset \mathbb{B}_0$ and $\forall U_0 \in \mathbb{B}_0 \ \forall \rho \in (0, \rho_0) \ \exists \mathbb{K}_{U_0} : B_X(U_0, \rho) \to \mathbb{H}_1$ such that

(•) $\|\mathbb{K}_{U_0}(U_1) - \mathbb{K}_{U_0}(U_2)\|_{\mathbb{H}_1} \le c \|U_1 - U_2\|_X, \quad U_1, U_2 \in B_X(U_0, \rho)$ (•) $\exists \gamma \in (0, 1)$ such that, for any $U_1, U_2 \in B_X(U_0, \rho)$ $\|\mathbb{S}U_1 - \mathbb{S}U_2\|_X \le \gamma \|U_1 - U_2\|_X + c \|\mathbb{K}_{U_0}(U_1) - \mathbb{K}_{U_0}(U_2)\|_{\mathbb{H}}$

 $\Rightarrow \exists \mathcal{E}^d$ discrete exponential attractor with basin \mathbb{B}_0 endowed with the *X*-topology.

 $X = \mathcal{H}^{1^*}, \mathbb{S} = S(T(\delta)) \text{ where } \delta \text{ small enough, } \rho \in (0, \rho_0(\delta)) \text{ and } T = T(\delta)$ $\mathbb{K}_{U_0} : B_{\mathcal{H}^{1^*}}(U_0, \rho) \to \mathcal{L}^2 \quad \text{is} \quad \mathbb{K}_{U_0}U = (\theta u(\cdot), 0)$ $\mathbb{H}_1 = L^2([0, T], \mathcal{H}^1) \cap H^1([0, T], \mathcal{H}^{3^*}) \Subset \mathbb{H} = L^2([0, T], \mathcal{L}^2)$

Theorem (Málek-Prážak 2002, Efendiev-Zelik 2008)

Let X, \mathbb{H}_1 , \mathbb{H} be Banach spaces with $\mathbb{H}_1 \Subset \mathbb{H}$, $\mathbb{B}_0 \Subset X$ such that $\mathbb{SB}_0 \subset \mathbb{B}_0$ and $\forall U_0 \in \mathbb{B}_0 \ \forall \rho \in (0, \rho_0) \ \exists \mathbb{K}_{U_0} : B_X(U_0, \rho) \to \mathbb{H}_1$ such that

(•)
$$\|\mathbb{K}_{U_0}(U_1) - \mathbb{K}_{U_0}(U_2)\|_{\mathbb{H}_1} \le c \|U_1 - U_2\|_X, \quad U_1, U_2 \in B_X(U_0, \rho)$$

(•) $\exists \gamma \in (0, 1)$ such that, for any $U_1, U_2 \in B_X(U_0, \rho)$
 $\|\mathbb{S}U_1 - \mathbb{S}U_2\|_X \le \gamma \|U_1 - U_2\|_X + c \|\mathbb{K}_{U_0}(U_1) - \mathbb{K}_{U_0}(U_2)\|_{\mathbb{H}}$

 $\Rightarrow \exists \mathcal{E}^d$ discrete exponential attractor with basin \mathbb{B}_0 endowed with the *X*-topology.

 $X = \mathcal{H}^{1*}, \mathbb{S} = S(T(\delta)) \text{ where } \delta \text{ small enough, } \rho \in (0, \rho_0(\delta)) \text{ and } T = T(\delta)$ $\mathbb{K}_{U_0} : B_{\mathcal{H}^{1*}}(U_0, \rho) \to \mathcal{L}^2 \quad \text{is} \quad \mathbb{K}_{U_0}U = (\theta u(\cdot), 0)$ $\mathbb{H}_1 = L^2([0, T], \mathcal{H}^1) \cap H^1([0, T], \mathcal{H}^{3*}) \Subset \mathbb{H} = L^2([0, T], \mathcal{L}^2)$

Theorem (Málek-Prážak 2002, Efendiev-Zelik 2008)

Let X, \mathbb{H}_1 , \mathbb{H} be Banach spaces with $\mathbb{H}_1 \Subset \mathbb{H}$, $\mathbb{B}_0 \Subset X$ such that $\mathbb{SB}_0 \subset \mathbb{B}_0$ and $\forall U_0 \in \mathbb{B}_0 \ \forall \rho \in (0, \rho_0) \ \exists \mathbb{K}_{U_0} : B_X(U_0, \rho) \to \mathbb{H}_1$ such that

(•)
$$\|\mathbb{K}_{U_0}(U_1) - \mathbb{K}_{U_0}(U_2)\|_{\mathbb{H}_1} \le c \|U_1 - U_2\|_X, \quad U_1, U_2 \in B_X(U_0, \rho)$$

(•) $\exists \gamma \in (0, 1)$ such that, for any $U_1, U_2 \in B_X(U_0, \rho)$
 $\|\mathbb{S}U_1 - \mathbb{S}U_2\|_X \le \gamma \|U_1 - U_2\|_X + c \|\mathbb{K}_{U_0}(U_1) - \mathbb{K}_{U_0}(U_2)\|_{\mathbb{H}}$

 $\Rightarrow \exists \mathcal{E}^d$ discrete exponential attractor with basin \mathbb{B}_0 endowed with the *X*-topology.

 $X = \mathcal{H}^{1^*}, \mathbb{S} = S(T(\delta)) \text{ where } \delta \text{ small enough, } \rho \in (0, \rho_0(\delta)) \text{ and } T = T(\delta)$ $\mathbb{K}_{U_0} : B_{\mathcal{H}^{1^*}}(U_0, \rho) \to \mathcal{L}^2 \quad \text{is} \quad \mathbb{K}_{U_0}U = (\theta u(\cdot), 0)$ $\mathbb{H}_1 = L^2([0, T], \mathcal{H}^1) \cap H^1([0, T], \mathcal{H}^{3^*}) \Subset \mathbb{H} = L^2([0, T], \mathcal{L}^2)$

Theorem (Málek-Prážak 2002, Efendiev-Zelik 2008)

Let X, \mathbb{H}_1 , \mathbb{H} be Banach spaces with $\mathbb{H}_1 \Subset \mathbb{H}$, $\mathbb{B}_0 \Subset X$ such that $\mathbb{SB}_0 \subset \mathbb{B}_0$ and $\forall U_0 \in \mathbb{B}_0 \ \forall \rho \in (0, \rho_0) \ \exists \mathbb{K}_{U_0} : B_X(U_0, \rho) \to \mathbb{H}_1$ such that

(•)
$$\|\mathbb{K}_{U_0}(U_1) - \mathbb{K}_{U_0}(U_2)\|_{\mathbb{H}_1} \le c \|U_1 - U_2\|_X, \quad U_1, U_2 \in B_X(U_0, \rho)$$

(•) $\exists \gamma \in (0, 1)$ such that, for any $U_1, U_2 \in B_X(U_0, \rho)$
 $\|\mathbb{S}U_1 - \mathbb{S}U_2\|_X \le \gamma \|U_1 - U_2\|_X + c \|\mathbb{K}_{U_0}(U_1) - \mathbb{K}_{U_0}(U_2)\|_{\mathbb{H}}$

 $\Rightarrow \exists \mathcal{E}^d$ discrete exponential attractor with basin \mathbb{B}_0 endowed with the *X*-topology.

 $X = \mathcal{H}^{1^*}, \mathbb{S} = S(T(\delta)) \text{ where } \delta \text{ small enough, } \rho \in (0, \rho_0(\delta)) \text{ and } T = T(\delta)$ $\mathbb{K}_{U_0} : B_{\mathcal{H}^{1^*}}(U_0, \rho) \to \mathcal{L}^2 \quad \text{is} \quad \mathbb{K}_{U_0}U = (\theta u(\cdot), 0)$ $\mathbb{H}_1 = L^2([0, T], \mathcal{H}^1) \cap H^1([0, T], \mathcal{H}^{3^*}) \Subset \mathbb{H} = L^2([0, T], \mathcal{L}^2)$

Theorem

For any $U_0 \in \mathbb{B}_0 \exists \delta \in (0,1), T(\delta) > 0, \rho_0(\delta) > 0 : \forall \rho \in (0,\rho_0)$

$$\|\mathbb{K}_{U_0}(U_1) - \mathbb{K}_{U_0}(U_2)\|_{\mathbb{H}_1} \le c \|U_1 - U_2\|_{\mathcal{H}^{1^*}}, \quad \forall U_1, U_2 \in B_{\mathcal{H}^{1^*}}(U_0, \rho)$$

$$\|S(T)U_1 - S(T)U_2\|_{\mathcal{H}^{1*}}^2 \le e^{-\beta T} \|U_1 - U_2\|_{\mathcal{H}^{1*}}^2 + c \|\mathbb{K}_{U_0}(U_1) - \mathbb{K}_{U_0}(U_2)\|_{\mathbb{H}}^2$$

for some $\beta > 0$ and for any $U_1, U_2 \in B_{\mathcal{H}^{1*}}(U_0, \rho)$, where

$$\mathbb{K}_{U_0}U:=(\boldsymbol{\theta}u(\cdot),0)$$

Then $\exists \mathcal{E}_{l}^{d}$ discrete exponential attractor with basin \mathbb{B}_{0} endowed with the \mathcal{H}^{1*} -topology.

• $||u(t)||_{C^{\alpha}(\Omega \times [t,t+1])} \leq C_T, t \geq T$ and the Lipschitz continuous dependence

▲□▶▲□▶▲□▶▲□▶ ■ のへの

Theorem

For any $U_0 \in \mathbb{B}_0 \exists \delta \in (0,1), T(\delta) > 0, \rho_0(\delta) > 0 : \forall \rho \in (0,\rho_0)$

$$\|\mathbb{K}_{U_0}(U_1) - \mathbb{K}_{U_0}(U_2)\|_{\mathbb{H}_1} \le c \|U_1 - U_2\|_{\mathcal{H}^{1*}}, \quad \forall U_1, U_2 \in B_{\mathcal{H}^{1*}}(U_0, \rho)$$
$$\|S(T)U_1 - S(T)U_2\|_{\mathcal{H}^{1*}}^2 \le e^{-\beta T} \|U_1 - U_2\|_{\mathcal{H}^{1*}}^2 + c \|\mathbb{K}_{U_0}(U_1) - \mathbb{K}_{U_0}(U_2)\|_{\mathbb{H}}^2$$

for some $\beta > 0$ and for any $U_1, U_2 \in B_{\mathcal{H}^{1*}}(U_0, \rho)$, where

$$\mathbb{K}_{U_0}U:=(\boldsymbol{\theta}\boldsymbol{u}(\cdot),0)$$

Then $\exists \mathcal{E}_{I}^{d}$ discrete exponential attractor with basin \mathbb{B}_{0} endowed with the \mathcal{H}^{1*} -topology.

• $||u(t)||_{C^{\alpha}(\Omega \times [t,t+1])} \leq C_T, t \geq T$ and the Lipschitz continuous dependence

$\mathcal{E}_I \subset C^{\alpha}(\Omega) \times C^{\alpha}(\Gamma)$

Transitivity of exponential attraction [Fabrie, Galusinski, Miranville, Zelik 2004]

(日)

- \mathbb{B}_0 exponentially attracts the bounded sets in Φ_I
- \mathcal{E}_I exponentially attracts \mathbb{B}_0
- $\|S(t)U_1 S(t)U_2\|_{\mathcal{H}^{1^*}} \le ce^{ct} \|U_1 U_2\|_{\mathcal{H}^{1^*}}, \quad \forall U_1, U_2 \in \Phi_I$
 - \Rightarrow the basin of attraction of \mathcal{E}_I extends to Φ_I
- $\Rightarrow \quad \mathcal{A}_I \subset \mathcal{E}_I \Rightarrow \quad \mathcal{A}_I \text{ has finite fractal dimension}$

$\mathcal{E}_I \subset C^{\alpha}(\Omega) \times C^{\alpha}(\Gamma)$

Transitivity of exponential attraction [Fabrie, Galusinski, Miranville, Zelik 2004]

(日)

- \mathbb{B}_0 exponentially attracts the bounded sets in Φ_I
- $\bigcirc \mathcal{E}_I$ exponentially attracts \mathbb{B}_0
- $||S(t)U_1 S(t)U_2||_{\mathcal{H}^{1^*}} \le ce^{ct} ||U_1 U_2||_{\mathcal{H}^{1^*}}, \quad \forall U_1, U_2 \in \Phi_I$
 - \Rightarrow the basin of attraction of \mathcal{E}_I extends to Φ_I
- $\Rightarrow \quad \mathcal{A}_I \subset \mathcal{E}_I \Rightarrow \quad \mathcal{A}_I \text{ has finite fractal dimension}$

 $\mathcal{E}_I \subset C^{\alpha}(\Omega) \times C^{\alpha}(\Gamma)$

Transitivity of exponential attraction [Fabrie, Galusinski, Miranville, Zelik 2004]

- **(**) \mathbb{B}_0 exponentially attracts the bounded sets in Φ_I
- ② \mathcal{E}_I exponentially attracts \mathbb{B}_0
- $\|S(t)U_1 S(t)U_2\|_{\mathcal{H}^{1^*}} \le ce^{ct} \|U_1 U_2\|_{\mathcal{H}^{1^*}}, \quad \forall U_1, U_2 \in \Phi_I$
 - \Rightarrow the basin of attraction of \mathcal{E}_I extends to Φ_I
- $\Rightarrow \quad \mathcal{A}_I \subset \mathcal{E}_I \Rightarrow \quad \mathcal{A}_I \text{ has finite fractal dimension}$

 $\mathcal{E}_I \subset C^{\alpha}(\Omega) \times C^{\alpha}(\Gamma)$

Transitivity of exponential attraction [Fabrie, Galusinski, Miranville, Zelik 2004]

- **(**) \mathbb{B}_0 exponentially attracts the bounded sets in Φ_I
- **2** \mathcal{E}_I exponentially attracts \mathbb{B}_0
- $\|S(t)U_1 S(t)U_2\|_{\mathcal{H}^{1^*}} \le ce^{ct} \|U_1 U_2\|_{\mathcal{H}^{1^*}}, \quad \forall U_1, U_2 \in \Phi_I$

 \Rightarrow the basin of attraction of \mathcal{E}_I extends to Φ_I

 $\mathcal{E}_I \subset C^{\alpha}(\Omega) \times C^{\alpha}(\Gamma)$

Transitivity of exponential attraction [Fabrie, Galusinski, Miranville, Zelik 2004]

- **(**) \mathbb{B}_0 exponentially attracts the bounded sets in Φ_I
- **2** \mathcal{E}_I exponentially attracts \mathbb{B}_0

 \Rightarrow the basin of attraction of \mathcal{E}_I extends to Φ_I

 $\mathcal{E}_I \subset C^{\alpha}(\Omega) \times C^{\alpha}(\Gamma)$

Transitivity of exponential attraction [Fabrie, Galusinski, Miranville, Zelik 2004]

- **(**) \mathbb{B}_0 exponentially attracts the bounded sets in Φ_I
- **2** \mathcal{E}_I exponentially attracts \mathbb{B}_0
- $||S(t)U_1 S(t)U_2||_{\mathcal{H}^{1^*}} \le ce^{ct} ||U_1 U_2||_{\mathcal{H}^{1^*}}, \quad \forall U_1, U_2 \in \Phi_I$

 \Rightarrow the basin of attraction of \mathcal{E}_I extends to Φ_I

 $\mathcal{E}_I \subset C^{\alpha}(\Omega) \times C^{\alpha}(\Gamma)$

Transitivity of exponential attraction [Fabrie, Galusinski, Miranville, Zelik 2004]

- **(**) \mathbb{B}_0 exponentially attracts the bounded sets in Φ_I
- **2** \mathcal{E}_I exponentially attracts \mathbb{B}_0
- $||S(t)U_1 S(t)U_2||_{\mathcal{H}^{1^*}} \le ce^{ct} ||U_1 U_2||_{\mathcal{H}^{1^*}}, \quad \forall U_1, U_2 \in \Phi_I$

 \Rightarrow the basin of attraction of \mathcal{E}_I extends to Φ_I

 $\mathcal{E}_I \subset \mathcal{C}^{\alpha}(\Omega) \times \mathcal{C}^{\alpha}(\Gamma)$

Transitivity of exponential attraction [Fabrie, Galusinski, Miranville, Zelik 2004]

- **(**) \mathbb{B}_0 exponentially attracts the bounded sets in Φ_I
- **2** \mathcal{E}_I exponentially attracts \mathbb{B}_0
- $\|S(t)U_1 S(t)U_2\|_{\mathcal{H}^{1^*}} \le ce^{ct} \|U_1 U_2\|_{\mathcal{H}^{1^*}}, \quad \forall U_1, U_2 \in \Phi_I$

 \Rightarrow the basin of attraction of \mathcal{E}_I extends to Φ_I

An ill-posed CH equation

Assume
$$f \in C^{1}(-1, 1)$$
 $\lim_{r \to \pm 1} f(r) = \pm \infty$ $\lim_{r \to \pm 1} f'(r) = \infty$
 $f(0) = 0$ $f' \ge 0$ $g \in C^{2}[-1, 1]$ $\lambda \ge 0$
if f is odd with $F(u) = \int_{0}^{u} f(s) ds$ such that $F(1) < \infty$ and $g = -K$ with arge enough K

$$\Rightarrow \nexists \text{classical solution to} \begin{cases} -y''(x) + f(y) = 0, & x \in (-1,1) \ (\lambda = 0) \\ y'(\pm 1) = K \end{cases}$$

• If *K* is not too large $\exists y_K$ odd, regular solution separated from ± 1

• If K is large enough $\Rightarrow y_K \equiv y_+$ singular solution to $\begin{cases}
-y''_+(x) + f(y_+) = 0, & x \in (-1, 1) \\
y_+(-1) = -1 & y_+(1) = 1
\end{cases} \Rightarrow y_K \text{ can not be classical}$

An ill-posed CH equation

Assume
$$f \in C^{1}(-1, 1)$$
 $\lim_{r \to \pm 1} f(r) = \pm \infty$ $\lim_{r \to \pm 1} f'(r) = \infty$
 $f(0) = 0$ $f' \ge 0$ $g \in C^{2}[-1, 1]$ $\lambda \ge 0$
If f is odd with $F(u) = \int_{0}^{u} f(s) ds$ such that $F(1) < \infty$ and $g = -K$ with arge enough K

$$\Rightarrow \nexists \text{classical solution to} \begin{cases} -y''(x) + f(y) = 0, & x \in (-1,1) \ (\lambda = 0) \\ y'(\pm 1) = \mathbf{K} \end{cases}$$

• If *K* is not too large $\exists y_K$ odd, regular solution separated from ± 1

• If K is large enough $\Rightarrow y_K \equiv y_+$ singular solution to $\begin{cases}
-y''_+(x) + f(y_+) = 0, & x \in (-1, 1) \\
y_+(-1) = -1 & y_+(1) = 1
\end{cases} \Rightarrow y_K \text{ can not be classical}$

An ill-posed CH equation

Assume
$$f \in C^{1}(-1, 1)$$
 $\lim_{r \to \pm 1} f(r) = \pm \infty$ $\lim_{r \to \pm 1} f'(r) = \infty$
 $f(0) = 0$ $f' \ge 0$ $g \in C^{2}[-1, 1]$ $\lambda \ge 0$
 ff is odd with $F(u) = \int_{0}^{u} f(s) ds$ such that $F(1) < \infty$ and $g = -K$ with arge enough K

⇒
$$\nexists$$
 classical solution to
$$\begin{cases} -y''(x) + f(y) = 0, & x \in (-1,1) \ (\lambda = 0) \\ y'(\pm 1) = K \end{cases}$$

- If *K* is not too large $\exists y_K$ odd, regular solution separated from ± 1
- If K is large enough $\Rightarrow y_K \equiv y_+$ singular solution to $\begin{cases}
 -y''_+(x) + f(y_+) = 0, & x \in (-1, 1) \\
 y_+(-1) = -1 & y_+(1) = 1
 \end{cases} \Rightarrow y_K \text{ can not be classical}$