ADMAT2012 PDEs for multiphase advanced materials

Cortona, September 17 - 21, 2012

Recent results on a singular and possibly degenerate Cahn-Hilliard type system

Gianni Gilardi (Pavia)

1 - The equations

Model by P. Podio Guidugli (Ric. Mat. 2006)

- $\bullet \quad \Omega = \mathsf{body} \subset \mathbb{R}^3 \quad \text{ and } \quad \Gamma = \mathsf{boundary} \text{ of } \Omega$
- Ω open, bounded, connected, and smooth
- $\mu =$ chemical potential and ho = order parameter

$$\begin{aligned} &2\rho\partial_t\mu + \mu\partial_t\rho - \kappa\Delta\mu = 0 \quad \text{and} \quad \mu \ge 0 \quad \text{in } \Omega \times (0,T) \\ &0 < \rho < 1 \quad \text{and} \quad -\Delta\rho + f'(\rho) = \mu \quad \text{in } \Omega \times (0,T) \\ &\partial_n\mu = \partial_n\rho = 0 \quad \text{on } \Gamma \times (0,T) \\ &\mu|_{t=0} = \mu_0 \quad \text{and} \quad \rho|_{t=0} = \rho_0 \quad \text{in } \Omega \end{aligned}$$

• $f = f_1 + f_2$ double well potential on (0, 1) f_1 convex singular at end-points, f_2 smooth in [0, 1]

2 - The equations (cont'd)

Two "viscosity terms" have been added

• $\varepsilon > 0$ and $\delta > 0$

$$(\varepsilon + 2\rho)\partial_t\mu + \mu\partial_t\rho - \kappa\Delta\mu = 0$$

$$\delta\partial_t\rho - \Delta\rho + f'(\rho) = \mu$$

- The case $\varepsilon = 0$ could be considered with some care while $\delta = 0$ leads to ill-posedness, namely
- infinitely many (even smooth) solutions
- no uniqueness and no control on time regularity
- the Cauchy condition for μ should be reformulated
- think of suitably selected solutions
- completely open problem !!!
- From now on, $\delta = 1$

3 - History

Series of papers with P. Colli, J. Sprekels, P. Podio-Guidugli [1] SIAM-JAM'11 - [2] DCDS-S t.a. - [3] CMT t.a. - [4] MJM t.a.

• Main assumption on the potential: $f = f_1 + f_2$ with

 f_1 convex and smooth in (0,1), f_2 smooth on [0,1] $\lim_{\rho \searrow 0} f'_1(\rho) = -\infty$ and $\lim_{\rho \nearrow 1} f'_1(\rho) = +\infty$

e.g., the logarithmic double well potential or an even more singular multiple well potential

- Existence for fixed $\varepsilon > 0$ [1]
- Uniqueness for $\varepsilon > 0$: provided μ , $f'(\rho)$ are bdd [1]
- Sufficient conditions for such a boundedness [1]

4 - History (cont'd)

- Asymptotics as $\varepsilon \to 0$: suitable reformulation for $\varepsilon = 0$ [2]
- Longtime behavior for both cases $\varepsilon > 0$ and $\varepsilon = 0$ [1-2]
- Distributed optimal control problem with $\varepsilon > 0$ [3]

$$(\varepsilon + 2\rho)\partial_t \mu + \mu\partial_t \rho - \kappa \Delta \mu = \underset{\uparrow}{u}$$

Neumann BC as before

• Boundary optimal control problem with $\varepsilon > 0$ [4]

$$(\varepsilon + 2\rho)\partial_t\mu + \mu\partial_t\rho - \kappa\Delta\mu = 0$$

3rd type BC: $\partial_n\mu = \alpha(\underbrace{u}_{\uparrow} - \mu), \quad \alpha > 0$

5 - Fresh news and plan of the talk

Three new papers with P. Colli, J. Sprekels, P. Podio-Guidugli on well-posedness: generalizations in several directions ***

- 1st paper, the most important one: submitted *
- 2nd paper: to appear in BUMI, in memory of E. Magenes *
- 3rd paper: in preparation *

More papers in preparation involving P. Krejčí as a new co-author

- Time discretization (future \rightarrow full discretization and numerics)
- Asyptotics as $\sigma \rightarrow 0$ in the modified 2nd equation

 $\partial_t
ho - \sigma \Delta
ho + f'(
ho) = \mu$ (in fact a more general full problem)

and relations with hysteresis

Plan of the talk

the above generalizations * * *

6 - First generalization

• The above system with a fixed $\varepsilon > 0$, thus $\varepsilon = 1$

$$(1+2\rho)\partial_t\mu + \mu\partial_t\rho - \kappa\Delta\mu = 0$$

 $\partial_t\rho - \Delta\rho + f'(\rho) = \mu$

becomes

$$(1 + 2g(\rho))\partial_t \mu + \mu \partial_t g(\rho) - \kappa \Delta \mu = 0$$

$$\partial_t \rho - \Delta \rho + f'(\rho) = \mu g'(\rho)$$

with $g : \mathbb{R} \to \mathbb{R}$ nonnegative on dom f (+ something else) (in the above situation we had $g(\rho) = \rho$ and dom f = (0, 1)).

7 - First generalization (cont'd)

Easy generalization from the mathematical point of view ! However, interesting in modeling.

For a given μ , the equation for ρ reads Allen-Cahn

$$\partial_{\mathrm{t}}
ho-\Delta
ho+rac{\partial}{\partial
ho}\mathrm{F}_{\mu}(
ho)=\mathsf{0} \quad ext{with} \quad \mathrm{F}_{\mu}(
ho):=\mathrm{f}(
ho)-\mu\,\mathrm{g}(
ho)$$

• Already with $g(\rho) = \rho$, F_{μ} is not symmetric for a symmetric f (the preferred well depends on μ).

• In the more general case we consider, new situations occur. For instance, the choice $f_2 = \mu_c g$ with some critical value μ_c leads to

$$F_{\mu}(\rho) = f_1(\rho) + \left(\mu_c - \mu\right) g(\rho)$$

and one can construct double-well/convex potentials F_{μ} according to the sign of $\mu_{c} - \mu$.

8 - Second generalization: general potentials

Aim: replace ${\bf f}$ by a much more general double well potential, e.g.,

$$\begin{split} f(\rho) &= I(\rho) - \rho^2 \\ \text{where I is the indicator function of } [-1,1] \end{split}$$

or a smooth potential on the whole of \mathbb{R} , like $f(\rho) = (1 - \rho^2)^2$.

• OK for existence, while trouble for uniqueness ! Preliminary observation on the old uniqueness proof.

(1)
$$(1+2\rho)\partial_t\mu + \mu\partial_t\rho - \kappa\Delta\mu = 0$$

(2) $\partial_t\rho - \Delta\rho + f'_1(\rho) + f'_2(\rho) = \mu$

Pick two solutions (μ_i, ρ_i), i = 1, 2.

Natural trial: use monotonicity of f'_1 , i.e.,

$$\int_{Q_{t}} \left((2)_{1} - (2)_{2} \right) \times \left(\rho_{1} - \rho_{2} \right) + \int_{Q_{t}} \left((1)_{1} - (1)_{2} \right) \times (?_{1} - ?_{2})$$

where $?_i$ are suitably chosen and $Q_t = \Omega \times (0, t)$.

9 - Second generalization: general potentials (cont'd)

- Natural test functions $?_i, \text{ e.g.}, \mu_i$ led to mess and we got lost !!!
- New trial:

$$\int_{Q_{t}} ((1)_{1} - (1)_{2}) \times (\mu_{1} - \mu_{2}) + \int_{Q_{t}} ((2)_{1} - (2)_{2}) \times (\partial_{t} \rho_{1} - \partial_{t} \rho_{2}).$$

Thus the whole of $f'(\rho)$ moved to the right hand side.

• This uses just the regularity of f^\prime and might work only if

$$\begin{split} |\big(f'(\rho_1)-f'(\rho_2)\big)(\rho_1-\rho_2)| &\leq c|\rho_1-\rho_2|^2 \quad \text{i.e.}\\ \rho_i \text{ bounded away from 0 and 1} \end{split}$$

• This is true for logarithmic-type potentials and false if f = indicator + concave

10 - Second generalization: general potentials (cont'd)

- Now: new uniqueness proof that makes the natural trial work (hence, with any multiple well potential)
- Trick: rewrite eq'n (1) for μ in a different form
- Assumptions on the potential:

$$\begin{split} &f=f_1+f_2\\ &f_1:\mathbb{R}\to [0,+\infty]\quad \text{convex, proper, I.s.c.}\\ &f_2:\mathbb{R}\to\mathbb{R}\quad \text{smooth with }f_2' \text{ Lipschitz} \end{split}$$

Examples

all the above log-type potentials, $f(\rho) = (1 - \rho^2)^2$ $f(\rho) = I(\rho) - \rho^2$, I = indicator funct' of [-1, 1], etc

(日) (同) (三) (三) (三) (○) (○)

11 - Second generalization: general potentials (cont'd) Recall 1st eq'n (with $\kappa = 1$ w.l.o.g.)

(1)
$$(1+2g(\rho))\partial_t\mu+\mu\partial_tg(\rho)-\Delta\mu=0$$

Multiply (1) by $\alpha(\rho)$, look for a Leibniz rule in the first two terms, get an ODE for α , and see that $\alpha = (1 + 2g)^{-1/2}$ works.

Hence, we rewrite (1) in the new form

$$\partial_{\mathrm{t}}ig(\mu/lpha(
ho)ig)-lpha(
ho)\Delta\mu=\mathsf{0} \quad ext{where} \quad lpha(
ho):=ig(1+2\mathrm{g}(
ho)ig)^{-1/2}$$

and $\mu/\alpha(\rho)$ is the new unkonwn function in place of μ , i.e.,

$$\partial_t z - \alpha(\rho) \Delta(\alpha(\rho) z) = 0$$
 and $\mu := \alpha(\rho) z$

More precisely, we account for the Neumann BC as follows

(1')
$$\int_{\Omega} (\partial_t z) v + \int_{\Omega} \nabla(\alpha(\rho) z) \cdot \nabla(\alpha(\rho) v) = 0$$

for every $v \in H^1(\Omega)$ and a.e. in $(0, T)$

12 - Second generalization: general potentials (cont'd)

New system

(1')
$$\int_{\Omega} (\partial_t z) v + \int_{\Omega} \nabla(\alpha(\rho) z) \cdot \nabla(\alpha(\rho) v) = 0$$

for every $v \in H^1(\Omega)$ and a.e. in $(0, T)$
(2) $\partial_t \rho - \Delta \rho + f'(\rho) = \mu g'(\rho) + \text{Neumann BC}$

and Cauchy conditions, where $\mu := \alpha(\rho) z$ in (2).

Pick two sol's (z_i,ρ_i) and set $z:=z_1-z_2$ and $\rho:=\rho_1-\rho_2.$ Then

$$\int_0^t \Bigl((1')_1 - (1')_2\Bigr) \big|_{\mathrm{V}\,=\,\mathrm{Z}}\,\mathrm{d}\mathrm{s} + \mathrm{M}\int_{\mathrm{Q}_t} \Bigl((2)_1 - (2)_2\Bigr)\,\rho$$

where M is suitably big and chosen later on in the proof.

13 - Second generalization: general potentials (cont'd)

Then everything works.

However, the proof is rather technical ! In particular, it uses some further regularity of μ (and of z as a consequence), like

$$(*) \qquad \mu \in \mathrm{W}^{1,4}(0,\mathrm{T};\mathrm{L}^2(\Omega)) \cap \mathrm{L}^4(0,\mathrm{T};\mathrm{W}^{1,6}(\Omega))$$

besides boundedness.

More generally, we have proved that

 $\mu\in \mathrm{W}^{1,\mathrm{p}}(0,\mathrm{T};\mathrm{L}^2(\Omega))\cap\mathrm{L}^\mathrm{p}(0,\mathrm{T};\mathrm{H}^2(\Omega))\quad\text{for }\mathrm{p}\in[1,+\infty)$

This implies (*) since $\mathrm{H}^{1}(\Omega) \subset \mathrm{L}^{6}(\Omega)$, whence $\mathrm{H}^{2}(\Omega) \subset \mathrm{W}^{1,6}(\Omega)$.

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ─ 差 − のへぐ

14 - Third generalization: nonlinear const' law

The equation for μ

$$(1+2g(\rho))\partial_{t}\mu+\mu\partial_{t}g(\rho)-\kappa\Delta\mu=0$$

becomes

(1)
$$(1+2g(\rho))\partial_t\mu+\mu\partial_t g(\rho)-\operatorname{div}(\kappa(\mu,\rho)\nabla\mu)=0$$

where $\kappa : \mathbb{R}^2 \to \mathbb{R}$ is smooth enough. Main assumption: uniform parabolicity and bdd'ness, i.e.,

 $0 < \kappa_* \leq \kappa(\mu,
ho) \leq \kappa^*$ for every μ and ho

15 - Third generalization: nonlinear const' law (cont'd)

Theorem. Existence of a solution in a proper space.

- No uniqueness proof (we didn't try: too complicated)
- but uniqueness (and a continuous dependence inequality) if κ = κ(μ) with κ Lipschitz
 (1st eq'n rewritten, same trick as before)

16 - Fourth generalization: degeneracy

This with $\kappa = \kappa(\mu)$ (independent of ρ) and existence, only

• Aim: to allow $\kappa = \mu^{m-1}$ with any exponent $m \ge 1$ so that $\operatorname{div}(\kappa \nabla \mu) \approx \Delta \mu^m$ like in the porous media eq'n

Too difficult due to unboundedness of κ !

- New aim: to allow a bdd version like $\kappa = \tanh \mu^{m-1}$ with any exponent $m \ge 1$ (slow diffusion only where μ is small)
- It works, provided that..... (see below)
 Precisely, more degeneracy for small values of μ can be allowed

17 - Fourth generalization: degeneracy (cont'd)

Precise assumptions:

$$\mathrm{i}) \qquad \kappa: [\mathsf{0},+\infty) o \mathbb{R} \quad \mathsf{is continuous}$$

ii) there exist $\kappa_*, \kappa^* > 0$ and $\mu_* \ge 0$ such that

 $\kappa(\mu) \leq \kappa^* \quad \forall \mu \geq \mathsf{0} \quad \text{and} \quad \kappa(\mu) \geq \kappa_* \quad \forall \mu \geq \mu_*$

iii) the function
$$[0, +\infty) \ni \mu \mapsto \mathbf{K}(\mu) := \int_0^{\mu} \kappa(s) \, ds$$

is strictly increasing

Examples

- $\mu_* = 0$: uniform parabolicity
- $\kappa(\mu) = \tanh \mu^{m-1}$, m>1: e.g., $\mu_* = 1$ and $\kappa_* = \tanh 1$

Remarks: no monotonicity for κ , and iii) is equivalent to: $\kappa \geq 0$ and the set $\{\mu \in [0, \mu_*] : \kappa(\mu) = 0\}$ has an empty interior (i.e., a lot of degeneracy for small values of μ is possible)

18 - Fourth generalization: degeneracy (cont'd) Trouble

(1) $(1+2g(\rho))\partial_t\mu + \mu\partial_t g(\rho) - \operatorname{div}(\kappa(\mu)\nabla\mu) = 0 + \mathsf{BC}$

- Due to degeneracy, lack of information on $\nabla \mu$ where μ is small
- Consequence: lack of information on both $\partial_t \mu$ and $\partial_n \mu|_{\Gamma}$
- Remedy: rewrite (1) in different form
 use ∇K(μ) (recall K' = κ) instead of κ(μ)∇μ in eq'n and BC and change the first part of (1) and the IC, namely
 - (1') $\partial_{\mathrm{t}}((1+2\mathrm{g}(\rho))\mu) \mu\partial_{\mathrm{t}}\mathrm{g}(\rho) \Delta\mathrm{K}(\mu) = 0$
 - $\mathrm{BC}' \qquad \partial_{\mathrm{n}} \mathrm{K}(\mu)|_{\Gamma} = 0 \qquad (\text{in the variational sense})$
 - IC' $((1+2g(\rho))\mu)|_{t=0} = (1+2g(\rho_0))\mu_0$

19 - Fourth generalization: degeneracy (cont'd) Full problem (+ BC + IC):

(1')
$$\frac{\partial_{t} ((1 + 2g(\rho)) \mu) - \mu \partial_{t} g(\rho) - \Delta K(\mu) = 0 }{\partial_{t} \rho - \Delta \rho + f'(\rho) = \mu g'(\rho) }$$

Then, the expected regularity of $K(\mu)$ is something like

 $\mathrm{K}(\mu) \in \mathrm{L}^{2}(0,\mathrm{T};\mathrm{H}^{1}(\Omega))$

(since $v = K(\mu)$ should be an admissible test function) whence, we can ask that

 $\partial_{\mathrm{t}} \big((1 + 2\mathrm{g}(\rho)) \, \mu \big) \in \mathrm{L}^2(0,\mathrm{T}; (\mathrm{H}^1(\Omega))^*)$

Theorem. There exists a solution in a proper space.

• Recall: uniqueness OK if $\mu_* = 0$ (uniform parab) and κ Lip

20 - Fourth generalization: degeneracy (cont'd)

A small detail on the existence proof parabolic regularization + time delay

$$\begin{aligned} (1')_{\tau} & \partial_{t} \left((1+2g(\rho)) \, \mu \right) - \mu \partial_{t} g(\rho) - \Delta \widetilde{K}(\mu) = 0 \\ (2)_{\tau} & \partial_{t} \rho - \Delta \rho + f'(\rho) = g'(\rho) \, \mathcal{T}_{\tau} \mu \\ \text{where} & \widetilde{K}(\mu) := \int_{0}^{\mu} \left(\kappa(|\mathbf{s}|) + \tau \right) \, \mathrm{ds} \\ & \mathcal{T}_{\tau} \mu(\mathbf{t}) := \mu(\mathbf{t} - \tau) \quad \text{for } \mathbf{t} > \tau \\ & \mathcal{T}_{\tau} \mu(\mathbf{t}) := \mu_{0} \quad \text{for } \mathbf{t} < \tau \end{aligned}$$

- existence for the approximating problem
- a priori estimates
- convergence as $\tau \searrow 0$ via compactness and monotonicity

Thank you for your attention Gianni Gilardi