ADMAT2012
 PDEs for multiphase advanced materials

Cortona, September 17-21, 2012

Recent results on a singular and possibly degenerate Cahn-Hilliard type system

> Gianni Gilardi (Pavia)

1 - The equations

Model by P. Podio Guidugli (Ric. Mat. 2006)

- $\Omega=$ body $\subset \mathbb{R}^{3}$ and $\Gamma=$ boundary of Ω
- Ω open, bounded, connected, and smooth
- $\mu=$ chemical potential and $\rho=$ order parameter

$$
\begin{aligned}
& 2 \rho \partial_{t} \mu+\mu \partial_{t} \rho-\kappa \Delta \mu=0 \quad \text { and } \quad \mu \geq 0 \quad \text { in } \Omega \times(0, T) \\
& 0<\rho<1 \quad \text { and } \quad-\Delta \rho+f^{\prime}(\rho)=\mu \quad \text { in } \Omega \times(0, T) \\
& \partial_{n} \mu=\partial_{n} \rho=0 \quad \text { on } \Gamma \times(0, T) \\
& \left.\mu\right|_{t=0}=\mu_{0} \quad \text { and }\left.\quad \rho\right|_{t=0}=\rho_{0} \quad \text { in } \Omega
\end{aligned}
$$

- $\quad f=f_{1}+f_{2}$ double well potential on $(0,1)$
f_{1} convex singular at end-points, f_{2} smooth in $[0,1]$

2 - The equations (cont'd)

Two "viscosity terms" have been added

- $\varepsilon>0$ and $\delta>0$

$$
\begin{aligned}
& (\varepsilon+2 \rho) \partial_{t} \mu+\mu \partial_{t} \rho-\kappa \Delta \mu=0 \\
& \delta \partial_{t} \rho-\Delta \rho+f^{\prime}(\rho)=\mu
\end{aligned}
$$

- The case $\varepsilon=0$ could be considered with some care while $\delta=0$ leads to ill-posedness, namely
- infinitely many (even smooth) solutions
- no uniqueness and no control on time regularity
- the Cauchy condition for μ should be reformulated
- think of suitably selected solutions
- completely open problem !!!
- From now on, $\delta=1$

3 - History

Series of papers with P. Colli, J. Sprekels, P. Podio-Guidugli
[1] SIAM-JAM'11 - [2] DCDS-S t.a. - [3] CMT t.a. - [4] MJM t.a.

- Main assumption on the potential: $f=f_{1}+f_{2}$ with
f_{1} convex and smooth in $(0,1), f_{2}$ smooth on $[0,1]$
$\lim _{\rho \backslash 0} f_{1}^{\prime}(\rho)=-\infty \quad$ and $\quad \lim _{\rho / 1} f_{1}^{\prime}(\rho)=+\infty$
e.g., the logarithmic double well potential
or an even more singular multiple well potential
- Existence for fixed $\varepsilon>0 \quad$ [1]
- Uniqueness for $\varepsilon>0$: provided $\mu, f^{\prime}(\rho)$ are bdd
- Sufficient conditions for such a boundedness [1]

4 - History (cont'd)

- Asymptotics as $\varepsilon \rightarrow 0$: suitable reformulation for $\varepsilon=0$
- Longtime behavior for both cases $\varepsilon>0$ and $\varepsilon=0 \quad$ [1-2]
- Distributed optimal control problem with $\varepsilon>0$ [3]

$$
(\varepsilon+2 \rho) \partial_{t} \mu+\mu \partial_{t} \rho-\kappa \Delta \mu=\underset{\uparrow}{u}
$$

Neumann BC as before

- Boundary optimal control problem with $\varepsilon>0$ [4]

$$
\begin{aligned}
& (\varepsilon+2 \rho) \partial_{t} \mu+\mu \partial_{t} \rho-\kappa \Delta \mu=0 \\
& \text { 3rd type BC: } \quad \partial_{n} \mu=\alpha(u-\mu), \quad \alpha>0
\end{aligned}
$$

5 - Fresh news and plan of the talk

Three new papers with P. Colli, J. Sprekels, P. Podio-Guidugli on well-posedness: generalizations in several directions $* * *$

- 1st paper, the most important one: submitted *
- 2nd paper: to appear in BUMI, in memory of E. Magenes *
- 3rd paper: in preparation *

More papers in preparation involving P. Krejčí as a new co-author

- Time discretization (future \rightarrow full discretization and numerics)
- Asyptotics as $\sigma \rightarrow 0$ in the modified 2 nd equation

$$
\partial_{t} \rho-\sigma \Delta \rho+f^{\prime}(\rho)=\mu \quad \text { (in fact a more general full problem) }
$$

and relations with hysteresis

Plan of the talk

- the above generalizations $* * *$

6 - First generalization

- The above system with a fixed $\varepsilon>0$, thus $\varepsilon=1$

$$
\begin{aligned}
& (1+2 \rho) \partial_{t} \mu+\mu \partial_{t} \rho-\kappa \Delta \mu=0 \\
& \partial_{t} \rho-\Delta \rho+f^{\prime}(\rho)=\mu
\end{aligned}
$$

becomes

$$
\begin{aligned}
& (1+2 g(\rho)) \partial_{t} \mu+\mu \partial_{t} g(\rho)-\kappa \Delta \mu=0 \\
& \partial_{t} \rho-\Delta \rho+f^{\prime}(\rho)=\mu g^{\prime}(\rho)
\end{aligned}
$$

with $g: \mathbb{R} \rightarrow \mathbb{R}$ nonnegative on $\operatorname{dom} f \quad(+$ something else) (in the above situation we had $\mathrm{g}(\rho)=\rho$ and $\operatorname{dom} \mathrm{f}=(0,1)$).

7 - First generalization (cont'd)

Easy generalization from the mathematical point of view ! However, interesting in modeling.

For a given μ, the equation for ρ reads Allen-Cahn

$$
\partial_{\mathrm{t}} \rho-\Delta \rho+\frac{\partial}{\partial \rho} \mathrm{F}_{\mu}(\rho)=0 \quad \text { with } \quad \mathrm{F}_{\mu}(\rho):=\mathrm{f}(\rho)-\mu \mathrm{g}(\rho)
$$

- Already with $\mathrm{g}(\rho)=\rho, \mathrm{F}_{\mu}$ is not symmetric for a symmetric f (the preferred well depends on μ).
- In the more general case we consider, new situations occur. For instance, the choice $f_{2}=\mu_{\mathrm{c}} \mathrm{g}$ with some critical value μ_{c} leads to

$$
\mathrm{F}_{\mu}(\rho)=\mathrm{f}_{1}(\rho)+\left(\mu_{\mathrm{c}}-\mu\right) \mathrm{g}(\rho)
$$

and one can construct double-well/convex potentials F_{μ} according to the sign of $\mu_{\mathrm{c}}-\mu$.

8 - Second generalization: general potentials

 Aim: replace f by a much more general double well potential, e.g.,$$
\mathrm{f}(\rho)=\mathrm{I}(\rho)-\rho^{2}
$$

where I is the indicator function of $[-1,1]$
or a smooth potential on the whole of \mathbb{R}, like $f(\rho)=\left(1-\rho^{2}\right)^{2}$.

- OK for existence, while trouble for uniqueness !

Preliminary observation on the old uniqueness proof.
(1) $\quad(1+2 \rho) \partial_{\mathrm{t}} \mu+\mu \partial_{\mathrm{t}} \rho-\kappa \Delta \mu=0$
(2) $\quad \partial_{\mathrm{t}} \rho-\Delta \rho+\mathrm{f}_{1}^{\prime}(\rho)+\mathrm{f}_{2}^{\prime}(\rho)=\mu$

Pick two solutions $\left(\mu_{\mathrm{i}}, \rho_{\mathrm{i}}\right), \mathrm{i}=1,2$.
Natural trial: use monotonicity of f_{1}^{\prime}, i.e.,

$$
\int_{\mathrm{Q}_{\mathrm{t}}}\left((2)_{1}-(2)_{2}\right) \times\left(\rho_{1}-\rho_{2}\right)+\int_{\mathrm{Q}_{\mathrm{t}}}\left((1)_{1}-(1)_{2}\right) \times\left(?_{1}-?_{2}\right)
$$

where $?_{\mathrm{i}}$ are suitably chosen and $\mathrm{Q}_{\mathrm{t}}=\Omega \times(0, \mathrm{t})$.

9 - Second generalization: general potentials (cont'd)

- Natural test functions ? i, e.g., μ_{i} led to mess and we got lost !!!
- New trial:

$$
\int_{Q_{t}}\left((1)_{1}-(1)_{2}\right) \times\left(\mu_{1}-\mu_{2}\right)+\int_{Q_{t}}\left((2)_{1}-(2)_{2}\right) \times\left(\partial_{\mathrm{t}} \rho_{1}-\partial_{\mathrm{t}} \rho_{2}\right) .
$$

Thus the whole of $\mathrm{f}^{\prime}(\rho)$ moved to the right hand side.

- This uses just the regularity of f^{\prime} and might work only if

$$
\left|\left(\mathrm{f}^{\prime}\left(\rho_{1}\right)-\mathrm{f}^{\prime}\left(\rho_{2}\right)\right)\left(\rho_{1}-\rho_{2}\right)\right| \leq \mathrm{c}\left|\rho_{1}-\rho_{2}\right|^{2} \quad \text { i.e. }
$$

ρ_{i} bounded away from 0 and 1

- This is true for logarithmic-type potentials and false if $f=$ indicator + concave
- Now: new uniqueness proof that makes the natural trial work (hence, with any multiple well potential)
- Trick: rewrite eq'n (1) for μ in a different form
- Assumptions on the potential:

$$
\begin{aligned}
& \mathrm{f}=\mathrm{f}_{1}+\mathrm{f}_{2} \\
& \mathrm{f}_{1}: \mathbb{R} \rightarrow[0,+\infty] \quad \text { convex, proper, I.s.c. } \\
& \mathrm{f}_{2}: \mathbb{R} \rightarrow \mathbb{R} \quad \text { smooth with } \mathrm{f}_{2}^{\prime} \text { Lipschitz }
\end{aligned}
$$

Examples

$$
\begin{aligned}
& \text { all the above log-type potentials, } \quad \mathrm{f}(\rho)=\left(1-\rho^{2}\right)^{2} \\
& \mathrm{f}(\rho)=\mathrm{I}(\rho)-\rho^{2}, \quad \mathrm{I}=\text { indicator funct' of }[-1,1], \quad \text { etc }
\end{aligned}
$$

11 - Second generalization: general potentials (cont'd) Recall 1st eq'n (with $\kappa=1$ w.l.o.g.)

$$
\text { (1) } \quad(1+2 \mathrm{~g}(\rho)) \partial_{\mathrm{t}} \mu+\mu \partial_{\mathrm{t}} \mathrm{~g}(\rho)-\Delta \mu=0
$$

Multiply (1) by $\alpha(\rho)$, look for a Leibniz rule in the first two terms, get an ODE for α, and see that $\alpha=(1+2 \mathrm{~g})^{-1 / 2}$ works.

Hence, we rewrite (1) in the new form

$$
\partial_{\mathrm{t}}(\mu / \alpha(\rho))-\alpha(\rho) \Delta \mu=0 \quad \text { where } \quad \alpha(\rho):=(1+2 \mathrm{~g}(\rho))^{-1 / 2}
$$

and $\mu / \alpha(\rho)$ is the new unkonwn function in place of μ, i.e.,

$$
\partial_{\mathrm{t} \mathrm{Z}}-\alpha(\rho) \Delta(\alpha(\rho) \mathrm{z})=0 \quad \text { and } \quad \mu:=\alpha(\rho) \mathrm{z}
$$

More precisely, we account for the Neumann BC as follows

$$
\begin{align*}
& \int_{\Omega}\left(\partial_{\mathrm{t}} \mathrm{z}\right) \mathrm{v}+\int_{\Omega} \nabla(\alpha(\rho) \mathrm{z}) \cdot \nabla(\alpha(\rho) \mathrm{v})=0 \\
& \quad \text { for every } \mathrm{v} \in \mathrm{H}^{1}(\Omega) \text { and a.e. in }(0, \mathrm{~T})
\end{align*}
$$

12 - Second generalization: general potentials (cont'd)

New system
$\begin{array}{cc}\left(1^{\prime}\right) & \int_{\Omega}\left(\partial_{\mathrm{t}} \mathrm{z}\right) \mathrm{v}+\int_{\Omega} \nabla(\alpha(\rho) \mathrm{z}) \cdot \nabla(\alpha(\rho) \mathrm{v})=0 \\ \text { for every } \mathrm{v} \in \mathrm{H}^{1}(\Omega) \text { and a.e. in }(0, \mathrm{~T}) \\ \text { (2) } & \partial_{\mathrm{t}} \rho-\Delta \rho+\mathrm{f}^{\prime}(\rho)=\mu \mathrm{g}^{\prime}(\rho) \quad+\text { Neumann } \mathrm{BC}\end{array}$
and Cauchy conditions, where $\mu:=\alpha(\rho) \mathrm{z}$ in (2).
Pick two sol's $\left(\mathrm{z}_{\mathrm{i}}, \rho_{\mathrm{i}}\right)$ and set $\mathrm{z}:=\mathrm{z}_{1}-\mathrm{z}_{2}$ and $\rho:=\rho_{1}-\rho_{2}$. Then

$$
\left.\int_{0}^{\mathrm{t}}\left(\left(1^{\prime}\right)_{1}-\left(1^{\prime}\right)_{2}\right)\right|_{\mathrm{V}=\mathrm{z}} \mathrm{ds}+\mathrm{M} \int_{\mathrm{Q}_{\mathrm{t}}}\left((2)_{1}-(2)_{2}\right) \rho
$$

where M is suitably big and chosen later on in the proof.

Then everything works.
However, the proof is rather technical!
In particular, it uses some further regularity of μ (and of z as a consequence), like

$$
(*) \quad \mu \in \mathrm{W}^{1,4}\left(0, \mathrm{~T} ; \mathrm{L}^{2}(\Omega)\right) \cap \mathrm{L}^{4}\left(0, \mathrm{~T} ; \mathrm{W}^{1,6}(\Omega)\right)
$$

besides boundedness.
More generally, we have proved that

$$
\mu \in \mathrm{W}^{1, \mathrm{p}}\left(0, \mathrm{~T} ; \mathrm{L}^{2}(\Omega)\right) \cap \mathrm{L}^{\mathrm{p}}\left(0, \mathrm{~T} ; \mathrm{H}^{2}(\Omega)\right) \quad \text { for } \mathrm{p} \in[1,+\infty)
$$

This implies $(*)$ since $\mathrm{H}^{1}(\Omega) \subset \mathrm{L}^{6}(\Omega)$, whence $\mathrm{H}^{2}(\Omega) \subset \mathrm{W}^{1,6}(\Omega)$.

14 - Third generalization: nonlinear const' law

The equation for μ

$$
(1+2 \mathrm{~g}(\rho)) \partial_{\mathrm{t}} \mu+\mu \partial_{\mathrm{t}} \mathrm{~g}(\rho)-\kappa \Delta \mu=0
$$

becomes
(1) $\quad(1+2 \mathrm{~g}(\rho)) \partial_{\mathrm{t}} \mu+\mu \partial_{\mathrm{t}} \mathrm{g}(\rho)-\operatorname{div}(\kappa(\mu, \rho) \nabla \mu)=0$
where $\kappa: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is smooth enough.
Main assumption: uniform parabolicity and bdd'ness, i.e.,

$$
0<\kappa_{*} \leq \kappa(\mu, \rho) \leq \kappa^{*} \quad \text { for every } \mu \text { and } \rho
$$

15 - Third generalization: nonlinear const' law (cont'd)

Theorem. Existence of a solution in a proper space.

- No uniqueness proof (we didn't try: too complicated)
- but uniqueness (and a continuous dependence inequality)
if $\kappa=\kappa(\mu)$ with κ Lipschitz
(1st eq'n rewritten, same trick as before)

16 - Fourth generalization: degeneracy

This with $\kappa=\kappa(\mu)$ (independent of ρ) and existence, only

- Aim: to allow $\kappa=\mu^{\mathrm{m}-1}$ with any exponent $\mathrm{m} \geq 1$ so that $\operatorname{div}(\kappa \nabla \mu) \approx \Delta \mu^{\mathrm{m}}$ like in the porous media eq' n

Too difficult due to unboundedness of κ !

- New aim: to allow a bdd version like $\kappa=\tanh \mu^{\mathrm{m}-1}$ with any exponent $\mathrm{m} \geq 1$
(slow diffusion only where μ is small)
- It works, provided that......... (see below)

Precisely, more degeneracy for small values of μ can be allowed

17 - Fourth generalization: degeneracy (cont'd)

Precise assumptions:

i) $\quad \kappa:[0,+\infty) \rightarrow \mathbb{R}$ is continuous
ii) there exist $\kappa_{*}, \kappa^{*}>0$ and $\mu_{*} \geq 0$ such that

$$
\kappa(\mu) \leq \kappa^{*} \quad \forall \mu \geq 0 \quad \text { and } \quad \kappa(\mu) \geq \kappa_{*} \quad \forall \mu \geq \mu_{*}
$$

iii) the function $[0,+\infty) \ni \mu \mapsto \mathrm{K}(\mu):=\int_{0}^{\mu} \kappa(\mathrm{s}) \mathrm{ds}$ is strictly increasing

Examples

- $\mu_{*}=0$: uniform parabolicity
- $\quad \kappa(\mu)=\tanh \mu^{\mathrm{m}-1}, \mathrm{~m}>1$: e.g., $\mu_{*}=1$ and $\kappa_{*}=\tanh 1$

Remarks: no monotonicity for κ, and iii) is equivalent to:
$\kappa \geq 0$ and the set $\left\{\mu \in\left[0, \mu_{*}\right]: \kappa(\mu)=0\right\}$ has an empty interior (i.e., a lot of degeneracy for small values of μ is possible)

18 - Fourth generalization: degeneracy (cont'd)

Trouble

(1) $(1+2 \mathrm{~g}(\rho)) \partial_{\mathrm{t}} \mu+\mu \partial_{\mathrm{t}} \mathrm{g}(\rho)-\operatorname{div}(\kappa(\mu) \nabla \mu)=0 \quad+\mathrm{BC}$

- Due to degeneracy, lack of information on $\nabla \mu$ where μ is small
- Consequence: lack of information on both $\partial_{\mathrm{t}} \mu$ and $\left.\partial_{\mathrm{n}} \mu\right|_{\Gamma}$
- Remedy: rewrite (1) in different form use $\nabla \mathrm{K}(\mu)$ (recall $\mathrm{K}^{\prime}=\kappa$) instead of $\kappa(\mu) \nabla \mu$ in eq'n and BC and change the first part of (1) and the IC, namely

$$
\begin{aligned}
\left(1^{\prime}\right) & \partial_{\mathrm{t}}((1+2 \mathrm{~g}(\rho)) \mu)-\mu \partial_{\mathrm{t}} \mathrm{~g}(\rho)-\Delta \mathrm{K}(\mu)=0 \\
\mathrm{BC}^{\prime} & \left.\partial_{\mathrm{n}} \mathrm{~K}(\mu)\right|_{\Gamma}=0 \quad \text { (in the variational sense) } \\
\mathrm{IC}^{\prime} & \left.((1+2 \mathrm{~g}(\rho)) \mu)\right|_{\mathrm{t}=0}=\left(1+2 \mathrm{~g}\left(\rho_{0}\right)\right) \mu_{0}
\end{aligned}
$$

19 - Fourth generalization: degeneracy (cont'd)

Full problem (+BC + IC):

$$
\begin{array}{ll}
\left(1^{\prime}\right) & \partial_{\mathrm{t}}((1+2 \mathrm{~g}(\rho)) \mu)-\mu \partial_{\mathrm{t}} \mathrm{~g}(\rho)-\Delta \mathrm{K}(\mu)=0 \\
(2) & \partial_{\mathrm{t}} \rho-\Delta \rho+\mathrm{f}^{\prime}(\rho)=\mu \mathrm{g}^{\prime}(\rho) \tag{2}
\end{array}
$$

Then, the expected regularity of $\mathrm{K}(\mu)$ is something like

$$
\mathrm{K}(\mu) \in \mathrm{L}^{2}\left(0, \mathrm{~T} ; \mathrm{H}^{1}(\Omega)\right)
$$

(since $\mathrm{v}=\mathrm{K}(\mu)$ should be an admissible test function) whence, we can ask that

$$
\partial_{\mathrm{t}}((1+2 \mathrm{~g}(\rho)) \mu) \in \mathrm{L}^{2}\left(0, \mathrm{~T} ;\left(\mathrm{H}^{1}(\Omega)\right)^{*}\right)
$$

Theorem. There exists a solution in a proper space.

- Recall: uniqueness OK if $\mu_{*}=0$ (uniform parab) and κ Lip

20 - Fourth generalization: degeneracy (cont'd)

A small detail on the existence proof parabolic regularization + time delay

$$
\begin{array}{cl}
\left(1^{\prime}\right)_{\tau} & \partial_{\mathrm{t}}((1+2 \mathrm{~g}(\rho)) \mu)-\mu \partial_{\mathrm{t}} \mathrm{~g}(\rho)-\Delta \widetilde{\mathrm{K}}(\mu)=0 \\
(2)_{\tau} & \partial_{\mathrm{t}} \rho-\Delta \rho+\mathrm{f}^{\prime}(\rho)=\mathrm{g}^{\prime}(\rho) \mathcal{I}_{\tau} \mu \\
\text { where } & \widetilde{\mathrm{K}}(\mu):=\int_{0}^{\mu}(\kappa(|\mathrm{s}|)+\tau) \mathrm{ds} \\
& \mathcal{I}_{\tau} \mu(\mathrm{t}):=\mu(\mathrm{t}-\tau) \text { for } \mathrm{t}>\tau \\
& \mathcal{I}_{\tau} \mu(\mathrm{t}):=\mu_{0} \quad \text { for } \mathrm{t}<\tau
\end{array}
$$

- existence for the approximating problem
- a priori estimates
- convergence as $\tau \searrow 0$ via compactness and monotonicity

Thank you for your attention

Gianni Gilardi

Coordinates \& info's: Go gle \rightarrow gianni gilardi $\rightarrow 1^{\text {st }}$ result is http://www-dimat.unipv.it/gilardi

