Free Energies and Phase Transitions in Materials with Hysteresis

Claudio Giorgi*

Alessia Berti[†] and Elena Vuk^{*}

* Dipartimento di Matematica, Università di Brescia
 [†] Facoltà di Ingegneria, Università e-Campus

PDEs for Advanced Materials

ADMAT 2012

Cortona, September 17-21 2012

- A lot of physical an biological phenomena exhibits hysteresis (elasto-plasticity, ferromagnetism, biochemical oscillators,...)
- Many mathematical models for hysteresis have been proposed in the literature, most of which are devoted to ferromagnetic bodies (Coleman-Hodgdon, Jiles-Atherton, Preisach,...)
- But few of them describes the temperature-induced phase transition between the non-hysteretic (paramagnetic) and the hysteretic (ferromagnetic) regimes.

- A lot of physical an biological phenomena exhibits hysteresis (elasto-plasticity, ferromagnetism, biochemical oscillators,...)
- Many mathematical models for hysteresis have been proposed in the literature, most of which are devoted to ferromagnetic bodies (Coleman-Hodgdon, Jiles-Atherton, Preisach,...)
- But few of them describes the temperature-induced phase transition between the non-hysteretic (paramagnetic) and the hysteretic (ferromagnetic) regimes.

🗇 🕨 🖌 🖻 🕨 🖌 🚍 🕨

- A lot of physical an biological phenomena exhibits hysteresis (elasto-plasticity, ferromagnetism, biochemical oscillators,...)
- Many mathematical models for hysteresis have been proposed in the literature, most of which are devoted to ferromagnetic bodies (Coleman-Hodgdon, Jiles-Atherton, Preisach,...)
- But few of them describes the temperature-induced phase transition between the non-hysteretic (paramagnetic) and the hysteretic (ferromagnetic) regimes.

- Fabrizio, –, Morro, Phase transition in ferromagnetism, Internat. J. Engrg. Sci., 47 (2009) 821–839.
- Berti A., –, Vuk, Free energies and pseudo-elastic transitions for Shape Memory Alloys, DCDS–S in honor to M.Frémond, to appear.
- Berti A., -, Vuk, Hysteresis and thermally-induced transitions in ferromagnetic materials, in preparation

<回> < E> < E>

- Fabrizio, –, Morro, Phase transition in ferromagnetism, Internat. J. Engrg. Sci., 47 (2009) 821–839.
- Berti A., –, Vuk, Free energies and pseudo-elastic transitions for Shape Memory Alloys, DCDS–S in honor to M.Frémond, to appear.
- Berti A., -, Vuk, Hysteresis and thermally-induced transitions in ferromagnetic materials, in preparation

・ 同 ト ・ ヨ ト ・ ヨ ト

- Fabrizio, –, Morro, Phase transition in ferromagnetism, Internat. J. Engrg. Sci., 47 (2009) 821–839.
- Berti A., –, Vuk, Free energies and pseudo-elastic transitions for Shape Memory Alloys, DCDS–S in honor to M.Frémond, to appear.
- Berti A., –, Vuk, Hysteresis and thermally-induced transitions in ferromagnetic materials, in preparation

- Fabrizio, –, Morro, Phase transition in ferromagnetism, Internat. J. Engrg. Sci., 47 (2009) 821–839.
- Berti A., –, Vuk, Free energies and pseudo-elastic transitions for Shape Memory Alloys, DCDS–S in honor to M.Frémond, to appear.
- Berti A., -, Vuk, Hysteresis and thermally-induced transitions in ferromagnetic materials, in preparation

伺 とう ほう うちょう

• Transitions without hysteresis.

Pressure-induced liquid/vapor transition (first order)

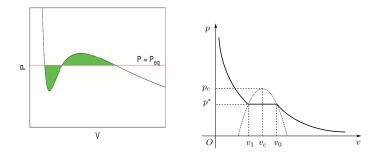
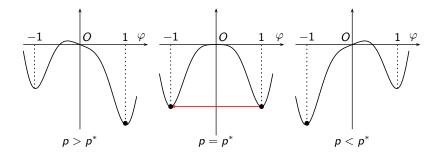


Figure: Maxwell construction of the Amagat-Andrews diagram

• Transitions without hysteresis.

Thermodynamic potential ψ (double-well shaped) $\varphi = -1$ vapor, $\varphi = 1$ liquid



• Transitions with hysteresis:

1 – Stress-induced austenite/martensite transition Shape memory alloys (pseudo-elastic regime: $\theta > \theta_c$)

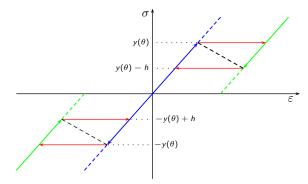


Figure: Stable (solid) and unstable (dashed) equilibrium branches.

• Transitions with hysteresis:

1 – Stress-induced austenite/martensite transition Shape memory alloys (pseudo-elastic regime: $\theta > \theta_c$)

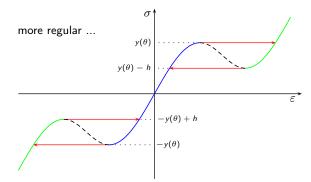
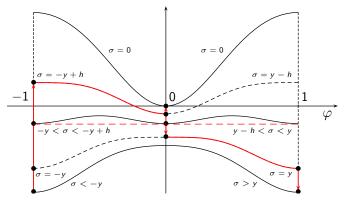


Figure: Stable (solid) and unstable (dashed) equilibrium branches.

• Transitions with hysteresis:

 $\begin{array}{l} 1-{\rm Stress-induced \ {\rm austenite}/martensite \ transition} \\ {\rm Thermodynamic \ potential} \ \psi \ ({\rm double-well \ shaped}) \\ \varphi = 0 \ {\rm austenite}, \ \varphi = \pm 1 \ {\rm martensite} \end{array}$



Free Energies and Phase Transitions in Materials with Hysteresis

• Transitions with hysteresis:

2 – *H*-induced transition (H = external field) Ferromagnetic materials (ferromagnetic regime: $\theta < \theta_c$)

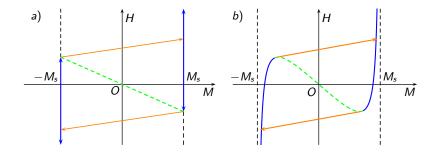


Figure: The major hysteresis loop: a) bilinear and b) Langevin.

• Transitions with hysteresis:

2 – *H*-induced transition ($\tilde{H} = \text{internal field}$) Ferromagnetic materials (ferromagnetic regime: $\theta < \theta_c$)

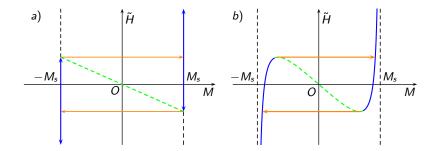


Figure: The major hysteresis loop: a) bilinear and b) Langevin.

Duhem's rate-independent models are considered

$$\frac{dM}{dH} = \mathcal{F}(M, H, \operatorname{sgn} \dot{H}), \qquad \operatorname{sgn} P = \begin{cases} +1 & \text{if } P > 0, \\ 0 & \text{if } P = 0, \\ -1 & \text{if } P < 0. \end{cases}$$

M - magnetization, H - applied magnetic field, $\chi = dM/dH$ - magnetic susceptibility

- ② The role of skeleton curve description is emphasized.
- The minimum (Gibbs) free energy representation is obtained: it is proved to be uniquely determined by the skeleton curve.
- The Ginzburg-Landau framework for phase transitions in materials with hysteresis is derived.

1. Some simple Duhem's models

1 – Bilinear model

$$\frac{dM}{dH} = \begin{cases} \chi & \text{if} \quad M = f_b(H) , \ |M| < M_s, \text{ or} \\ M = f_b(H) , \ |M| = M_s \text{ and } M \operatorname{sgn} \dot{H} < 0, \text{ or} \\ M \neq f_b(H) \text{ and } [f_b(H) - M] \operatorname{sgn} \dot{H} > 0, \\ 0 & \text{otherwise.} \end{cases}$$

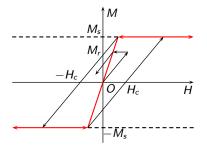


Figure: Major loop and hysteresis path (arrowhead) in the bilinear model (skeleton curve $f = f_b$ is red).

1. Some simple Duhem's models

2 – Coleman & Hodgdon model (with a bilinear skeleton f_b)

$$\frac{dM}{dH} = \alpha[f(H) - M] \operatorname{sgn} \dot{H} + g(H).$$

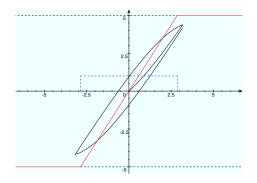


Figure: The Coleman-Hodgdon model (skeleton curve $f = f_b$ in red and fatness $g = g_b$ in blue.

1. Some simple Duhem's models

3 – Coleman & Hodgdon model (with a Langevin skeleton f_L)

$$\frac{dM}{dH} = \alpha[f(H) - M] \operatorname{sgn} \dot{H} + g(H).$$

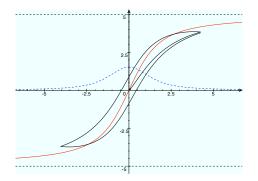


Figure: The Coleman-Hodgdon model (skeleton curve $f = f_L$ in red and fatness $g = g_L$ in blue.

The role of the skeleton curve

• The slope of the skeleton curve at *H* = 0 depends on the temperature:

$$\chi|_{H=0} = \chi_s(\theta) = \frac{\chi_0(\theta)}{1 + \gamma \chi_0(\theta)}, \quad \chi_0(\theta) = \frac{C}{\theta}, \ \gamma = \alpha - \frac{\theta_c}{C},$$

- In the limit of high temperatures $\chi_s(\theta) \approx C/(\theta \theta_c)$ (Curie-Weiss law)
- There is a critical temperature, θ_c , and a critical slope, $\chi_s(\theta_c) = 1/\alpha$, at which transition to hysteresis occurs.
- Soft materials: $\lim_{ heta
 ightarrow 0} \chi_s(heta) = 1/\gamma > 0$,
- Hard materials: $\lim_{\theta \to 0} \chi_s(\theta) = 1/\gamma < 0$,

🗇 🕨 🖌 🖻 🕨 🔺 🖻

The role of the skeleton curve

• The slope of the skeleton curve at *H* = 0 depends on the temperature:

$$\chi|_{H=0} = \chi_s(\theta) = \frac{\chi_0(\theta)}{1 + \gamma \chi_0(\theta)}, \quad \chi_0(\theta) = \frac{C}{\theta}, \ \gamma = \alpha - \frac{\theta_c}{C},$$

- In the limit of high temperatures $\chi_s(\theta) \approx C/(\theta \theta_c)$ (Curie-Weiss law)
- There is a critical temperature, θ_c , and a critical slope, $\chi_s(\theta_c) = 1/\alpha$, at which transition to hysteresis occurs.
- Soft materials: $\lim_{ heta
 ightarrow 0} \chi_s(heta) = 1/\gamma > 0$,
- Hard materials: $\lim_{ heta
 ightarrow 0} \chi_s(heta) = 1/\gamma < 0$,

The role of the skeleton curve

• The slope of the skeleton curve at *H* = 0 depends on the temperature:

$$\chi|_{H=0} = \chi_{s}(\theta) = \frac{\chi_{0}(\theta)}{1 + \gamma \chi_{0}(\theta)}, \quad \chi_{0}(\theta) = \frac{C}{\theta}, \ \gamma = \alpha - \frac{\theta_{c}}{C},$$

- In the limit of high temperatures $\chi_s(\theta) \approx C/(\theta \theta_c)$ (Curie-Weiss law)
- There is a critical temperature, θ_c , and a critical slope, $\chi_s(\theta_c) = 1/\alpha$, at which transition to hysteresis occurs.
- Soft materials: $\lim_{\theta \to 0} \chi_s(\theta) = 1/\gamma > 0$,
- Hard materials: $\lim_{\theta \to 0} \chi_s(\theta) = 1/\gamma < 0$,

伺い イヨン イヨン

The role of the skeleton curve

• The slope of the skeleton curve at *H* = 0 depends on the temperature:

$$\chi|_{H=0} = \chi_{s}(\theta) = \frac{\chi_{0}(\theta)}{1 + \gamma \chi_{0}(\theta)}, \quad \chi_{0}(\theta) = \frac{C}{\theta}, \ \gamma = \alpha - \frac{\theta_{c}}{C},$$

- In the limit of high temperatures $\chi_s(\theta) \approx C/(\theta \theta_c)$ (Curie-Weiss law)
- There is a critical temperature, θ_c , and a critical slope, $\chi_s(\theta_c) = 1/\alpha$, at which transition to hysteresis occurs.
- Soft materials: $\lim_{\theta \to 0} \chi_s(\theta) = 1/\gamma > 0$,
- Hard materials: $\lim_{\theta \to 0} \chi_s(\theta) = 1/\gamma < 0$,

2.1 - The role of the skeleton curve: the bilinear case

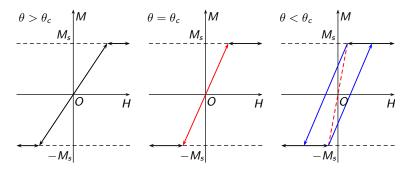


Figure: The bilinear-model transition: the critical slope (in red).

2.2 - The role of the skeleton curve: the Langevin case

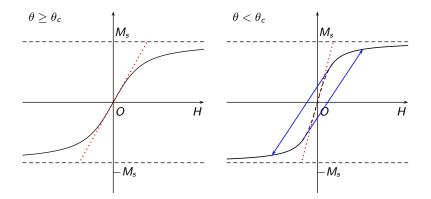


Figure: The Langevin-model transition: the slope $\chi|_{H=0}$ (dotted red).

2.3 - The role of the skeleton curve: soft and hard ferromagnetics

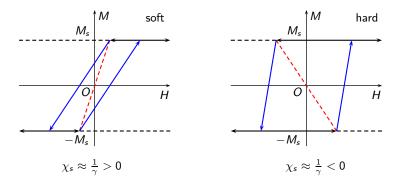


Figure: The bilinear-model transition: the skeleton slope when $\theta \approx 0$ (in red).

• Internal magnetic field $\tilde{\mathbf{H}}$ (Brown, 1963):

 $\tilde{\mathbf{H}} = \mathbf{H} - \mathbf{A}\mathbf{M},$

 \mathbbm{A} is a positive-definite tensor which depends on the shape and the anisotropy of the material.

• Along a fixed direction (eigenvector)

$$\tilde{H} = H - \alpha M$$
, $\alpha > 0$

Paramagnetic relation (Coey, 2009)

$$M = f(\tilde{H}, \theta) = f(H - \alpha M, \theta), \qquad f(0, \cdot) = 0.$$

and

$$\chi(H,\theta) = \partial_{\tilde{H}}f(\tilde{H},\theta)$$

• Internal magnetic field \tilde{H} (Brown, 1963):

 $\tilde{\mathbf{H}} = \mathbf{H} - \mathbf{A}\mathbf{M},$

 \mathbbm{A} is a positive-definite tensor which depends on the shape and the anisotropy of the material.

• Along a fixed direction (eigenvector)

$$\tilde{H} = H - \alpha M$$
, $\alpha > 0$

• Paramagnetic relation (Coey, 2009)

$$M = f(\tilde{H}, \theta) = f(H - \alpha M, \theta), \qquad f(0, \cdot) = 0.$$

and

$$\chi(H,\theta) = \partial_{\tilde{H}}f(\tilde{H},\theta)$$

• Internal magnetic field \tilde{H} (Brown, 1963):

 $\tilde{\mathbf{H}} = \mathbf{H} - \mathbf{A}\mathbf{M},$

 \mathbbm{A} is a positive-definite tensor which depends on the shape and the anisotropy of the material.

• Along a fixed direction (eigenvector)

$$\tilde{H} = H - \alpha M$$
, $\alpha > 0$

• Paramagnetic relation (Coey, 2009)

$$M = f(\tilde{H}, \theta) = f(H - \alpha M, \theta), \qquad f(0, \cdot) = 0.$$

and

$$\chi(H,\theta) = \partial_{\tilde{H}}f(\tilde{H},\theta)$$

By reversing the paramagnetic relation we have

$$H = f^{-1}(M, \theta) + \alpha M$$

and then

$$M = \tilde{f}(H,\theta), \qquad \tilde{\chi}(H,\theta) = \partial_H \tilde{f}(H,\theta)$$
$$\chi_{|H=0} = \frac{\chi_s(\theta)}{1 - \alpha \chi_s(\theta)}, \qquad \alpha = \frac{1}{\chi_s(\theta_c)},$$

• The critical slope $\tilde{\chi}|_{H=0}$ at $\theta = \theta_c$ becomes a vertical line.

• In the limit of high temperatures $\tilde{\chi}(0,\theta) \approx C/(\theta - \theta_c)$ (Curie-Weiss law)

By reversing the paramagnetic relation we have

$$H = f^{-1}(M, \theta) + \alpha M$$

and then

$$M = \tilde{f}(H,\theta), \qquad \tilde{\chi}(H,\theta) = \partial_H \tilde{f}(H,\theta)$$
$$\tilde{\chi}|_{H=0} = \frac{\chi_s(\theta)}{1 - \alpha \chi_s(\theta)}, \qquad \alpha = \frac{1}{\chi_s(\theta_c)},$$

- The critical slope $\tilde{\chi}|_{H=0}$ at $\theta = \theta_c$ becomes a vertical line.
- In the limit of high temperatures $\tilde{\chi}(0,\theta) \approx C/(\theta \theta_c)$ (Curie-Weiss law)

By reversing the paramagnetic relation we have

$$H = f^{-1}(M, \theta) + \alpha M$$

and then

$$M = \tilde{f}(H,\theta), \qquad \tilde{\chi}(H,\theta) = \partial_H \tilde{f}(H,\theta)$$
$$\tilde{\chi}|_{H=0} = \frac{\chi_s(\theta)}{1 - \alpha \chi_s(\theta)}, \qquad \alpha = \frac{1}{\chi_s(\theta_c)},$$

- The critical slope $\tilde{\chi}|_{H=0}$ at $\theta = \theta_c$ becomes a vertical line.
- In the limit of high temperatures $\tilde{\chi}(0,\theta) \approx C/(\theta \theta_c)$ (Curie-Weiss law)

By reversing the paramagnetic relation we have

$$H = f^{-1}(M, \theta) + \alpha M$$

and then

$$M = \tilde{f}(H,\theta), \qquad \tilde{\chi}(H,\theta) = \partial_H \tilde{f}(H,\theta)$$
$$\tilde{\chi}|_{H=0} = \frac{\chi_s(\theta)}{1 - \alpha \chi_s(\theta)}, \qquad \alpha = \frac{1}{\chi_s(\theta_c)},$$

- The critical slope $\tilde{\chi}|_{H=0}$ at $\theta = \theta_c$ becomes a vertical line.
- In the limit of high temperatures $\tilde{\chi}(0,\theta) \approx C/(\theta \theta_c)$ (Curie-Weiss law)

Temperature-induced transitions in the $\tilde{H} - M$ plane

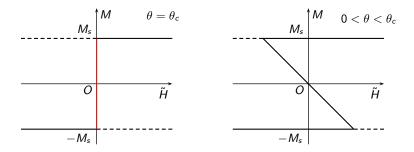


Figure: The graph of the bilinear skeleton curve referred to the internal field.

- 비 프 아 - 비 프

Temperature-induced transitions in the $\tilde{H} - M$ plane

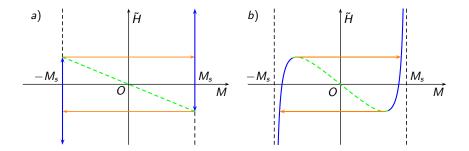


Figure: The major hysteresis loop when $0 < \theta < \theta_c$: a) bilinear and b) Langevin.

Letting

$$m=rac{M}{M_s}, \qquad |m|\leq 1,$$

from the general theory (Fabrizio,-, Morro, 2009)

$$\dot{m} = -\omega\theta\,\delta_{m}\hat{\psi}_{G} = -\omega[\partial_{m}\hat{\psi}_{G} - \nabla\cdot\partial_{\nabla m}\hat{\psi}_{G}],$$

$$\begin{split} \hat{\psi}_{G} &= \frac{\psi_{G}}{\theta} - \text{rescaled Gibbs free energy,} \\ \psi_{G} &= \psi - \tilde{H}B = V(M,\theta) + \frac{1}{2}\kappa(\theta)|\nabla M|^{2} - \frac{1}{2}\mu_{0}\tilde{H}^{2} - \mu_{0}\tilde{H}M, \\ \dot{m} &= -\hat{\omega}\left[\partial_{M}V - \mu_{0}\tilde{H} - \theta\nabla\cdot(\hat{\kappa}\nabla M)\right], \qquad \hat{\kappa} = \frac{\kappa}{\theta}, \quad \hat{\omega} = \omega M_{s}. \end{split}$$

Assuming uniform fields ($\nabla M = \mathbf{0}$)

$$\dot{m} = -\hat{\omega} \left[\partial_M V - \mu_0 \tilde{H} \right] = -\hat{\omega} \, \partial_M \Phi,$$

where

$$\Phi(\tilde{H}, M, \theta) = V(M, \theta) - \mu_0 \tilde{H} M$$

can be identified with the Lagrangian density.

- Problem: the expression of V and Φ
- V can be uniquely determined from the skeleton curve: $dV = \mu_0 \tilde{H} dM = \mu_0 f^{-1}(M, \theta) dM$
- Φ can be uniquely identified (to within a function of H
) as the minimum Gibbs free energy Remark: Φ(0, M, θ) = V(M, θ)

通っ イヨッ イヨン

Convex potentials V: $\theta > \theta_c$, $\tilde{H} = 0$

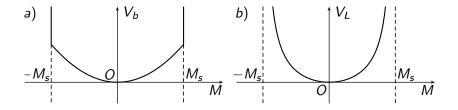


Figure: The graph of $V_b(\cdot, \theta)$ and $V_L(\cdot, \theta)$ when $\theta > \theta_c$.

Non-convex potentials V: $\theta < \theta_c$, $\tilde{H} = 0$

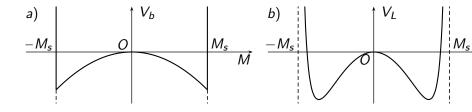


Figure: The graph of $V_b(\cdot, \theta)$ and $V_L(\cdot, \theta)$ when $0 < \theta < \theta_c$.

Convex potentials $\Phi: \theta > \theta_c, \quad \tilde{H} > 0$

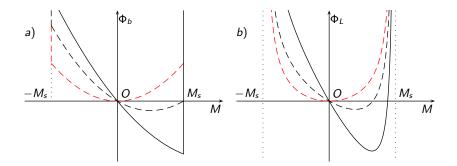


Figure: The graph of $\Phi_b(H, \cdot, \theta)$ and $\Phi_L(H, \cdot, \theta)$ at $\theta > \theta_c$ when $H = 2H^*$ (solid), $H = H^*/2$ (dashed), H = 0 (red dashed).

Non-convex potentials Φ : $\theta < \theta_c$, $|\tilde{H} > 0|$

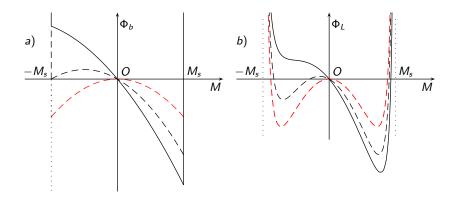


Figure: The graph of $\Phi_b(H, \cdot, \theta)$ and $\Phi_L(H, \cdot, \theta)$ at $\theta < \theta_c$ when $H = 2H^*$ (solid), $H = H^*/2$ (dashed), H = 0 (red dashed).

4 - The minimum Gibbs free energy density

Non-convex potentials:

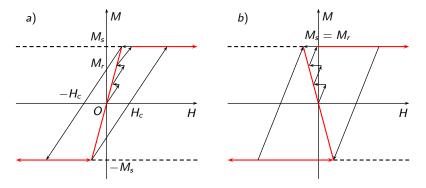


Figure: Minimum work expended: a) $\theta > \theta_c$ (convex) and b) $\theta < \theta_c$ (non-convex). The skeleton curves in red.