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What is induction hardening

• Induction hardening is a classical method for

heat treatment of steel

• Procedure: Well-directed heating by

electromagnetic waves and subsequent

quenching of the surface
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What is induction hardening

• Induction hardening is a classical method for

heat treatment of steel

• Procedure: Well-directed heating by

electromagnetic waves and subsequent

quenching of the surface

Advantage: Very fast and energy-efficient process

Drawback: Difficult to generate desired close to contour hardening profile for
complex work pieces such as gears
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New approach: Multi-frequency induction hardening

• Simultaneous supply of medium- and high frequency power on one induction coil

• Close to contour hardening profile for gears and other complex-shaped parts
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Modeling of induction heating

Aims:

• Simulation of the process to reduce costly experiments

• Optimization of the process (Computation of optimal process parameters)

Three effects:

• Heat transfer

• Heat source Joule heating (Maxwell’s equations)

• Phase transformations
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A model for induction hardening

• Maxwell’s equations

curlE = −∂B
∂t

divB = 0

curlH = J +
∂D

∂t

divD = ρ

• Material equations

D = εE B = µH J = σE

H magnetic field B magnetic induction

E electric field D electric displacement field

J current density ρ charge density

σ, µ, ε electric conductivity, magnetic permeability, electric permittivity
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The magnetic field

• Magnetic vector potential A

B = curlA

• Electric scalar potential φ

E = − gradφ− ∂A

∂t

• Neglecting the electric displacement (|∂D/∂t| � |J |)

σ
∂A

∂t
+ curl

1

µ
curlA + σ gradφ = 0 on D

−div σ gradφ = 0 on Ω

• Potential A is not unique, gauging condition necessary (divA = 0)
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Boundary conditions

• Introduction of boundary conditions on ∂D

1 Perfect electric conductor E × n = 0

2 Perfect magnetic conductor H × n = 0

(1) leads to

A× n = 0

(2) leads to

µ−1 curlA× n = 0

• Conditions for the scalar potential

σ gradφ ·n = 0 on ∂Ω

Jσ gradφ ·nK = 0 and JφK = U0 on Γ
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Eliminating the scalar potential

• For a given coil geometry (here a torus with rectangular cross-section), the

source current density J = σ gradφ can be precomputed analytically

• From div σ gradφ = 0 one obtains in cylindrical coordinates

φ = C1ϕ and consequently J = σC1 (0, 1/r, 0)
T
(r,ϕ,z)

where C1 = U0/(2π) for a given voltage

• For a given source current in the coil C1 is computed from∫
Γ

J ·nda = Icoil

• In cartesian coordinates one obtains for a given source current

J =
Icoil

log(rA/rI)h


−y/(x2 + y2)

x/(x2 + y2)

0
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Phase fractions

• Rate laws relate phase fraction z and temperature θ

z0 ferrite,

pearlite,

martensite

z0(t0) = 1

heating−−−→

z0 initial com-

position

z1 austenite

z0 + z1 = 1

cooling−−−→

z0 initial com-

position

z1 austenite

z2 ferrite

z3 pearlite

z4 martensite∑
zi = 1

• Rate equations for phase fraction of austenite z := z1

ż(t) = f(θ, z) = [zeq(θ)− z]+g(θ)

z(0) = 0
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Summary

• Model consists of vector-potential formulation of

Maxwell’s equation, heat equation and rate law for

phase fractions

• Source term J can be used as control for optimization

σ
∂A

∂t
+ curl

1

µ
curlA = J on D

cpρ
∂θ

∂t
− div κ grad θ = σ

∣∣∣∣∂A∂t
∣∣∣∣2 − ρL∂z∂t in Σ

ż(t) = [zeq(θ)− z]+g(θ) in Σ

z(0) = 0

where

J = u(t)J0 and J0 =
(
−y/(x2 + y2), x/(x2 + y2), 0

)T
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Analysis and control of Joule heating models – a few references

• Resistance heating

• heat source h = σ|∇ϕ|2, −→ thermistor problem
• Cimatti, Prodi (1988); Howison, Rodrigues, Shillor (1993); Antonsev Chipot

(1994), H., Khludnev, Sokolowski (2001); H., Meyer, Rehberg (2010)

• Induction heating – time domain heat source h = σ(θ)|∇ϕ+At|2

• Bossavit, Rodrigues (1994); H., Sokolowski (2003); H. (2004),

• Induction heating – frequency domain

• F. Bachinger, U. Langer, J. Schöberl: Numerical analysis of nonlinear

multiharmonic eddy current problems. Numer. Math. 100(2005)
• Druet, Klein, Sprekels, Tröltzsch, Yousept: Optimal control of 3D

state-constrained induction heating problems with nonlocal radiation

effects SICON 49 (2011)
• Tröltzsch, F.; Yousept, I.: PDE–constrained optimization of time-dependent

3D electromagnetic induction heating by alternating voltages. ESAIM:

M2AN 46 (2012)
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Preliminaries

• Constitutive assumptions

σ(x, z) =


0, x ∈ D \G ,
σw(z), x ∈ Σ ,

σi, x ∈ Ω ,

µ(x, z) =


µ0, x ∈ D \G ,
µw(z), x ∈ Σ ,

µi, x ∈ Ω ,

• solution space for vector potential

X =
{
v ∈ L2(D)

∣∣∣ curl v ∈ L2(D) , div v = 0 , n× v
∣∣∣
∂D

= 0
}

• assume ∂D ∈ C1,1 then X, equipped with the norm

‖v‖X = ‖ curl v‖L2(D) ,

is a closed subspace of H1(D)

• regularity of initial and boundary conditions

g ∈ L∞(0, T ;L∞(∂Σ)); A0 ∈ X ∩H3(D), θ0 ∈W 2,5/3(Σ)
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Weak formulation of state system

(P): Find a triple (A, θ, z) satisfying

∫
G

σ(x, z)At · vdx+

∫
D

1

µ(x, z)
curlA · curl vdx =

∫
Ω

J0(x)u(t) · vdx

for all v ∈ X, a.e. in (0, T ) ,

θt −∆θ = −L(θ, z)zt + σ(x, z)|At|2 a.e. in Q ,

zt =
1

τ(θ)
(zeq(θ)− z)+ a.e. in Q ,

∂θ

∂ν
+ θ = g a.e. on ∂Σ× (0, T ) ,

A(0) = A0, a.e. in D, θ(0) = θ0, z(0) = 0 a.e. in Σ
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Existence of a weak solution

Theorem 1:

(P) has a solution (A, θ, z) satisfying

‖A‖H2(0,T ;L2(D))∩W 1,∞(0,T ;X) + ‖ curlA‖L∞(0,T ;L6(D))

+‖θ‖W 1,5/3(0,T ;L5/3(Σ))∩L5/3(0,T ;W 2,5/3(Σ))∩L2(0,T ;H1(Σ))∩L∞(Q)

+‖z‖W 1,∞(0,T ;W 1,∞ (Σ)) ≤ S

where the the constant S depends on the data of the problem.
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Stability

Theorem 2:

Let (Ai, θi, zi) (i = 1, 2) be two triples of solutions corresponding to data

(A0,i, θ0,i, ui), then, there exists a positive constant C = C(S) such that

‖(A1 −A2)(t)‖2L2(D) + ‖ curl(A1 −A2)‖2L2(D×(0,T ))

+ ‖∂t(A1 −A2)(t)‖2L2(D) + ‖ curl(∂t(A1 −A2))‖2L2(D×(0,T ))

+ ‖(θ1 − θ2)(t)‖2L2(Σ) + ‖θ1 − θ2‖2L2(0,T ;H1(Σ))

+ ‖(z1 − z2)(t)‖2H1(Σ) + ‖∂t(z1 − z2)‖2L2(0,T ;H1(Σ))

≤ C
(
‖A0,1 −A0,2‖2X + ‖(∂t(A1 −A2))(0)‖2L2(D) + ‖θ0,1 − θ0,2‖2L2(Σ)

+‖u1 − u2‖2H1(0,T )

)
for all t ∈ [0, T ] .
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Optimal control problem – I

• cost functional

J(A, θ, z;u) =
β1

2

T∫
0

∫
Σ

(θ(x, t)− θd(x, t))2dxdt+

β2

2

∫
Σ

(z(x, T )− zd)2dx+
β3

2
‖u‖2H1(0,T )

• control problem (CP)
min J(A, θ, z;u)

such that A, θ, z satisfies (P) and u ∈ Uad ⊂ H1(0, T )

• Theorem:
(CP) has a solution u ∈ Uad
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Optimal control problem – II

• adjoint system
−σαt − curl

( 1

µ
curlα

)
− σ′(x, z)ztα = −2(σAtϑ)t

−ϑt − k∆ϑ+ fθ(θ, z)ϑ = fθζ + β1(θ − θd)

−ζt − fz(θ, z)ζ + σ′At ·α− σ′|At|2ϑ =
µ′

µ2
curlA · curlα− fzϑ

α× n = 0 in ∂D × (0, T )

k
∂ϑ

∂ν
+ κϑ = 0 in ∂Σ× (0, T )

ϑ(T ) = 0 , ζ(T ) = z(x, T )− zd(x) in Σ

α(T ) = 0 in D

• variational inequality
T∫

0

(
β3ū(t)−

∫
D

α(x, t) · J(x, t)dx
)

(u− ū)dt

+

T∫
0

β3u
′(t)(u′(t)− ū′(t))dt ≥ 0 for all u ∈ Uad ⊂ H1(0, T )
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(u− ū)dt

+

T∫
0

β3u
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Numerical simulation – challenges

• Multiple time scales

Magnetic vector potential and heat conductance live on different time scales

(Averaging method)

• Skin effect

Eddy currents are distributed in a small surface layer of the workpiece (Adaptive

mesh generation)

• Nonlinear material data

Magnetic permeability depends on temperature and magnetic field H

(Linearization)

• (Dis-)Continuity of vector fields

A ∈ H(curl) requires special class of finite elements (Nédélec elements)

• 3D

Time consuming simulation in 3D (Model reduction to tackle optimal control

problem numerically)
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Numerical realization – multiple time scales

• Time scale for Maxwell’s equation governed by frequency of source current:

f ≈ 10 kHz− 100 kHz, consequetly τ ∼ 10−5s

• Time scale for heat equation governed by heat diffusion:

τ ∼ cpρL
2

k
≈ 1 s

• Alternating computation:

• Solve for A with fixed temperature on fast time-scale
• Compute Joule heat by averaging electric energy Q = 1

T

∫ T
0
σ
∣∣∂A
∂t

∣∣2 dt

• Solve heat equation with fixed magnetic potential on slow time-scale (one

time step)
• Update A since σ and µ change with temperature
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Skin effect

• Tendency of AC current to distribute near the surface of a conductor
• Current density decreases exponentially with growing depth
• Skin depth δ depends on frequency and material

δ =
1√
πfµσ

• Eddy current region must be resolved by computational grid
• Residual based error estimator allows adaptive grid refinement [Beck, Hiptmair,

Hoppe, Wohlmuth 2000])
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Thermal and electrical conductivity, heat capacity and density

• Material data depend on temperature

Electrical conductivity σ(T )

Thermal conductivity κ(T )

Density ρ(T )

Specific heat capacity cp(T )

• Nonlinear relation between magnetic induction B and magnetic field H :

Magnetization curve B = f(θ,H) = µ(θ,H)H
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Nonlinear data: effective permeability

• Instead of solving the complete nonlinear system, we assume that only a time

averaged value of the permeability affects the magnetic field

(i) Solve for the magnetic field with constant relative permeability µ̂r

(ii) The magnetic field is periodic, this induces a periodic permeability

µ(θ(t, x),H(x, t)) = µ0µr(θ(t, x),H(x, t))

(iii) Averaging over one period yields an effective permeability that depends on

space, but is independent of the magnetic field. According to [Clain et al, 1992],

a harmonic mean value performs best, i.e.,

1

µr,av(x)
=

1

T

∫ T

0

1

µr(θ(t, x),H(x, t))
dt
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averaged value of the permeability affects the magnetic field

(i) Solve for the magnetic field with constant relative permeability µ̂r

(ii) The magnetic field is periodic, this induces a periodic permeability

µ(θ(t, x),H(x, t)) = µ0µr(θ(t, x),H(x, t))

(iii) Averaging over one period yields an effective permeability that depends on

space, but is independent of the magnetic field. According to [Clain et al, 1992],

a harmonic mean value performs best, i.e.,

1

µr,av(x)
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T
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µr(θ(t, x),H(x, t))
dt
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H(curl)-conforming finite element approximation

• Due to physical nature of magnetic and electric fields, H(curl) is the natural

vector space

• Less smoothness then H1 (only tangential continuity)

• The triple {K,P,N} denotes the Nédélec element of 1st kind with

K ⊂ R3 tetrahedron

P =
{
u = a + b× x ∀ a, b ∈ R3

}
N =

{
Me : Me(u) =

∫
e

u · tdl ∀ e edges of K, ∀u ∈ R3

}
K element domain, P polynomial space,N degrees of freedom

• There holds

P 0(K) ⊂ P ⊂ P 1(K) and curlP = P 0(K)

• Non-trivial large kernel of the curl-operator challenging for iterative solution of

discretized Maxwell problems

−→ suitable preconditioner for Maxwell’s equation required
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Example 1

• Disc heated with HF and MF

• Adaptive grid

• Austenite profile

• Temperature profile
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Example 1, HF: Adaptive grid

Parameters for simulation:

• Source current in induction coil I0 = 5000 A at f = 100 kHz

• Heating time 1.0 s

• Nonlinear data for σ, cp, ρ, κ, µr
• Adaptive grid with approx. 50000 DOF

Figure: Adaptive grids
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Example 1, HF: temperature and growth of austenite

(Video: austenite.mp4)

Figure: temperature and austenite growth at high frequency
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Example 1, HF: temperature and growth of austenite

(Video: austenite.mp4)

Figure: temperature and austenite growth at high frequency
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Example 1, HF vs. MF: Adaptive grid

• Source current in induction coil I0 = 5000 A at f = 10 kHz

• Heating time 1.0 s

• Nonlinear data for σ, cp, ρ, κ, µr
• Adaptive grid with approx. 50000 DOF

Figure: Comparison of the adaptive grid between HF (left) and MF (right)
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Example 1, HF vs. MF: Temperature

Figure: Comparison of the temperature profile after 1s between HF (left) and MF (right)
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Example 2

• Gear heated with HF and MF

• Adaptive grid

• Austenite profile

• Temperature profile
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Example 2, HF: Adaptive grid

Figure: Adaptive grids
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Example 2, HF: temperature

(Video: temperature.mp4)

Figure: temperature evolution at high frequency
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Example 2, HF: temperature

(Video: temperature.mp4)

Figure: temperature evolution at high frequency
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Example 2, HF: growth of austenite

(Video: austenite.mp4)

Figure: austenite evolution at high frequency
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Example 2, HF: growth of austenite

(Video: austenite.mp4)

Figure: austenite evolution at high frequency
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Example 2, MF: temperature

(Video: temperature.mp4)

Figure: temperature evolution at medium frequency
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Example 2, MF: temperature

(Video: temperature.mp4)

Figure: temperature evolution at medium frequency
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Example 2, MF: growth of austenite

(Video: austenite.mp4)

Figure: austenite evolution at medium frequency
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Example 2, MF: growth of austenite

(Video: austenite.mp4)

Figure: austenite evolution at medium frequency
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Comparison with experiments for disk shaped work piece
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• Summary . . .

• modelling of multifrequency induction hardening
• well-posedness of state system, derivation of optimality system
• first results of numerical simulations

• . . . and perspective

• add oscillator circuit model of machine
• numerical optimal control
• model reduction
• industrial applications, e.g., helical gears
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Thank you for your attention!

www.me-fre-sim.de
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Phases in steel

• Different crystal structures in iron

Austenite Ferrite Cementite

Face centered cubic (fcc) Body centered cubic (bcc) Orthorombic (Fe3C)

Stable at high temperatures Stable at low temperature Metastable compound

• Different phases with different mechanical properties

Austenite: high temperature phase

Pearlite: lamellar mixture of ferrite and cementite

soft and ductile

Martensite: forms on rapid cooling

hard and brittle

Multifrequency induction hardening · September 18, 2012 · Page 40 (40)


	Background
	Description of multi-frequency hardening

	A model for induction hardening
	Vector potential formulation of Maxwells equation
	Rate law for phase fractions
	Heat equation

	Well-posedness of state system, optimality conditions
	Numerical realization
	Challenges
	Multiple time scales
	Skin effect - adaptive grid generation
	Material data
	Finite elements for H(`39`42`"613A``45`47`"603Acurl)

	Examples
	Summary and perspective

