

Weierstrass Institute for Applied Analysis and Stochastics

Optimal control of multifrequency induction hardening

Dietmar Hömberg joint work with Thomas Petzold (WIAS) and Elisabetta Rocca (Universita' degli Studi di Milano)

Mohrenstrasse 39 · 10117 Berlin · Germany · Tel. +49 30 20372 0 · www.wias-berlin.de September 18, 2012

Content

1 Background

- 2 A model for induction hardening
- **3** Well-posedness of state system, optimality conditions
- **4** Numerical realization
- **5** Examples
- **6** Summary and perspective

- Induction hardening is a classical method for heat treatment of steel
- Procedure: Well-directed heating by electromagnetic waves and subsequent quenching of the surface

- Induction hardening is a classical method for heat treatment of steel
- Procedure: Well-directed heating by electromagnetic waves and subsequent quenching of the surface

- Induction hardening is a classical method for heat treatment of steel
- Procedure: Well-directed heating by electromagnetic waves and subsequent quenching of the surface

- Induction hardening is a classical method for heat treatment of steel
- Procedure: Well-directed heating by electromagnetic waves and subsequent quenching of the surface

- Advantage: Very fast and energy-efficient process
- Drawback: Difficult to generate desired close to contour hardening profile for complex work pieces such as gears

New approach: Multi-frequency induction hardening

- · Simultaneous supply of medium- and high frequency power on one induction coil
- Close to contour hardening profile for gears and other complex-shaped parts

Multifrequency induction hardening · September 18, 2012 · Page 4 (40)

The Me-Fre-Sim Consortium

- Weierstraß Institut Berlin
- A. Schmidt, Universität Bremen (ZeTeM)
- R.W.H. Hoppe, Universität Augsburg (LAM)
- F. Hoffmann, IWT Bremen
- EFD Induction GmbH
- ZF Friedrichshafen AG

supported by BMBF program "Mathematics for innovations in industry and services"

Aims:

- Simulation of the process to reduce costly experiments
- Optimization of the process (Computation of optimal process parameters)

Three effects:

- Heat transfer
- Heat source Joule heating (Maxwell's equations)
- Phase transformations

A model for induction hardening

Maxwell's equations

$$\operatorname{curl} \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t}$$
$$\operatorname{div} \boldsymbol{B} = 0$$
$$\operatorname{curl} \boldsymbol{H} = \boldsymbol{J} + \frac{\partial \boldsymbol{D}}{\partial t}$$
$$\operatorname{div} \boldsymbol{D} = \rho$$

Material equations

$$D = \varepsilon E$$
 $B = \mu H$ $J = \sigma E$

- *H* magnetic field *B* magnetic induction
- E electric field D electric displacement field
- $oldsymbol{J}$ current density ho charge density
- σ, μ, ε electric conductivity, magnetic permeability, electric permittivity

• Magnetic vector potential $oldsymbol{A}$

$$B = \operatorname{curl} A$$

• Electric scalar potential ϕ

$$\boldsymbol{E} = -\operatorname{grad} \phi - \frac{\partial \boldsymbol{A}}{\partial t}$$

• Neglecting the electric displacement ($|\partial D/\partial t| \ll |J|$)

$$\sigma \frac{\partial \boldsymbol{A}}{\partial t} + \operatorname{curl} \frac{1}{\mu} \operatorname{curl} \boldsymbol{A} + \sigma \operatorname{grad} \phi = 0 \quad \text{on} \quad D$$
$$-\operatorname{div} \sigma \operatorname{grad} \phi = 0 \quad \text{on} \quad \Omega$$

• Potential A is not unique, gauging condition necessary (div A = 0)

• Introduction of boundary conditions on ∂D

- 1 Perfect electric conductor ${m E} imes n = 0$
- **2** Perfect magnetic conductor $\boldsymbol{H} \times n = 0$

(1) leads to

$$\boldsymbol{A} \times \boldsymbol{n} = 0$$

(2) leads to

$$\mu^{-1} \operatorname{curl} \boldsymbol{A} \times \boldsymbol{n} = 0$$

Conditions for the scalar potential

$$\sigma \operatorname{grad} \phi \cdot \boldsymbol{n} = 0 \text{ on } \partial \Omega$$

 $\llbracket \sigma \operatorname{grad} \phi \cdot \boldsymbol{n} \rrbracket = 0 \text{ and } \llbracket \phi \rrbracket = U_0 \text{ on } \Gamma$

Eliminating the scalar potential

- For a given coil geometry (here a torus with rectangular cross-section), the source current density $J = \sigma \operatorname{grad} \phi$ can be precomputed analytically
- From $\operatorname{div} \sigma \operatorname{grad} \phi = 0$ one obtains in cylindrical coordinates

 $\phi = C_1 \varphi$ and consequently $\boldsymbol{J} = \sigma C_1 \left(0, 1/r, 0 \right)_{(r,\varphi,z)}^T$

where $C_1 = U_0/(2\pi)$ for a given voltage

Eliminating the scalar potential

- For a given coil geometry (here a torus with rectangular cross-section), the source current density $J = \sigma \operatorname{grad} \phi$ can be precomputed analytically
- From $\operatorname{div} \sigma \operatorname{grad} \phi = 0$ one obtains in cylindrical coordinates

$$\phi = C_1 \varphi$$
 and consequently $\boldsymbol{J} = \sigma C_1 \left(0, 1/r, 0
ight)_{(r,\varphi,z)}^T$

where $C_1 = U_0/(2\pi)$ for a given voltage

For a given source current in the coil C₁ is computed from

$$\int_{\Gamma} \boldsymbol{J} \cdot \boldsymbol{n} \, \mathrm{d}a = I_{\mathsf{coil}}$$

In cartesian coordinates one obtains for a given source current

$$\boldsymbol{J} = \frac{I_{\text{coil}}}{\log(r_A/r_I)h} \begin{pmatrix} -y/(x^2 + y^2) \\ x/(x^2 + y^2) \\ 0 \end{pmatrix}$$

• Rate laws relate phase fraction z and temperature θ

• Rate laws relate phase fraction z and temperature θ

Multifrequency induction hardening · September 18, 2012 · Page 11 (40)

• Rate laws relate phase fraction z and temperature θ

• Rate laws relate phase fraction z and temperature θ

Rate equations for phase fraction of austenite z := z₁

$$\begin{split} \dot{z}(t) &= f(\theta,z) = [z_{\text{eq}}(\theta)-z]_+ g(\theta) \\ z(0) &= 0 \end{split}$$

Summary

- Model consists of vector-potential formulation of Maxwell's equation, heat equation and rate law for phase fractions
- Source term J can be used as control for optimization

$$\begin{split} \sigma \frac{\partial \boldsymbol{A}}{\partial t} + \operatorname{curl} \frac{1}{\mu} \operatorname{curl} \boldsymbol{A} &= \boldsymbol{J} & \text{on } \boldsymbol{D} \\ c_p \rho \frac{\partial \theta}{\partial t} - \operatorname{div} \kappa \operatorname{grad} \boldsymbol{\theta} &= \sigma \left| \frac{\partial \boldsymbol{A}}{\partial t} \right|^2 - \rho L \frac{\partial z}{\partial t} & \text{in } \boldsymbol{\Sigma} \\ \dot{z}(t) &= [z_{\mathsf{eq}}(\theta) - z]_+ g(\theta) & \text{in } \boldsymbol{\Sigma} \\ z(0) &= 0 \end{split}$$

where

$$J = u(t)J_0$$
 and $J_0 = \left(-y/(x^2 + y^2), x/(x^2 + y^2), 0\right)^T$

- Resistance heating
 - heat source $h = \sigma |\nabla \varphi|^2, \quad \longrightarrow$ thermistor problem
 - Cimatti, Prodi (1988); Howison, Rodrigues, Shillor (1993); Antonsev Chipot (1994), H., Khludnev, Sokolowski (2001); H., Meyer, Rehberg (2010)

Resistance heating

- heat source $h = \sigma |\nabla \varphi|^2, \quad \longrightarrow$ thermistor problem

- Cimatti, Prodi (1988); Howison, Rodrigues, Shillor (1993); Antonsev Chipot (1994), H., Khludnev, Sokolowski (2001); H., Meyer, Rehberg (2010)
- Induction heating time domain heat source $h = \sigma(\theta) |\nabla \varphi + A_t|^2$
 - Bossavit, Rodrigues (1994); H., Sokolowski (2003); H. (2004),

- Resistance heating
 - heat source $h = \sigma |\nabla \varphi|^2, \quad \longrightarrow$ thermistor problem
 - Cimatti, Prodi (1988); Howison, Rodrigues, Shillor (1993); Antonsev Chipot (1994), H., Khludnev, Sokolowski (2001); H., Meyer, Rehberg (2010)
- Induction heating time domain heat source $h = \sigma(\theta) |\nabla \varphi + A_t|^2$
 - Bossavit, Rodrigues (1994); H., Sokolowski (2003); H. (2004),
- Induction heating frequency domain
 - F. Bachinger, U. Langer, J. Schöberl: Numerical analysis of nonlinear multiharmonic eddy current problems. Numer. Math. 100(2005)
 - Druet, Klein, Sprekels, Tröltzsch, Yousept: Optimal control of 3D state-constrained induction heating problems with nonlocal radiation effects SICON 49 (2011)
 - Tröltzsch, F.; Yousept, I.: PDE–constrained optimization of time-dependent 3D electromagnetic induction heating by alternating voltages. ESAIM: M2AN 46 (2012)

Preliminaries

Constitutive assumptions

$$\sigma(x,z) = \begin{cases} 0, & x \in D \setminus G, \\ \sigma_w(z), & x \in \Sigma, \\ \sigma_i, & x \in \Omega, \end{cases} \quad \mu(x,z) = \begin{cases} \mu_0, & x \in D \setminus G, \\ \mu_w(z), & x \in \Sigma, \\ \mu_i, & x \in \Omega, \end{cases}$$

solution space for vector potential

$$\mathbf{X} = \left\{ v \in \mathbf{L}^2(D) \, \middle| \, \operatorname{curl} v \in \mathbf{L}^2(D) \,, \, \operatorname{div} v = 0 \,, n \times v \, \middle|_{\partial D} = 0 \right\}$$

• assume $\partial D \in C^{1,1}$ then ${f X}$, equipped with the norm

$$\|v\|_{\mathbf{X}} = \|\operatorname{curl} v\|_{\mathbf{L}^2(D)},$$

is a closed subspace of $\mathbf{H}^1(D)$

• regularity of initial and boundary conditions $g \in L^{\infty}(0,T; L^{\infty}(\partial \Sigma)); A_0 \in \mathbf{X} \cap \mathbf{H}^3(D), \theta_0 \in W^{2,5/3}(\Sigma)$

Weak formulation of state system

(P): Find a triple (A, θ, z) satisfying

$$\begin{split} \int_{G} \sigma(x,z) A_t \cdot v \, \mathrm{d}x + \int_{D} \frac{1}{\mu(x,z)} \operatorname{curl} A \cdot \operatorname{curl} v \, \mathrm{d}x &= \int_{\Omega} J_0(x) u(t) \cdot v \, \mathrm{d}x \\ \text{for all } v \in \mathbf{X}, \text{ a.e. in } (0,T) \,, \end{split}$$

$$\theta_t - \Delta \theta = -L(\theta,z) z_t + \sigma(x,z) |A_t|^2 \quad \text{a.e. in } Q\,,$$

$$z_t = \frac{1}{\tau(\theta)} \left(z_{eq}(\theta) - z \right)^+$$
 a.e. in Q ,

$$\begin{split} &\frac{\partial\theta}{\partial\nu}+\theta=g \quad \text{a.e. on } \partial\Sigma\times(0,T)\,,\\ &A(0)=A_0, \quad \text{a.e. in } D, \quad \theta(0)=\theta_0, \quad z(0)=0 \quad \text{a.e. in } \Sigma \end{split}$$

Theorem 1:

(P) has a solution (A,θ,z) satisfying

$$|A||_{H^2(0,T;\mathbf{L}^2(D))\cap W^{1,\infty}(0,T;\mathbf{X})} + ||\operatorname{curl} A||_{L^\infty(0,T;\mathbf{L}^6(D))}$$

 $+ \|\theta\|_{W^{1,5/3}(0,T;L^{5/3}(\Sigma))\cap L^{5/3}(0,T;W^{2,5/3}(\Sigma))\cap L^{2}(0,T;H^{1}(\Sigma))\cap L^{\infty}(Q)}$

$$+ \|z\|_{W^{1,\infty}(0,T;W^{1,\infty}(\Sigma))} \le S$$

where the the constant S depends on the data of the problem.

Stability

Theorem 2:

Let (A_i, θ_i, z_i) (i = 1, 2) be two triples of solutions corresponding to data $(A_{0,i}, \theta_{0,i}, u_i)$, then, there exists a positive constant C = C(S) such that

$$\begin{split} \|(A_1 - A_2)(t)\|_{\mathbf{L}^2(D)}^2 + \|\operatorname{curl}(A_1 - A_2)\|_{\mathbf{L}^2(D \times (0,T))}^2 \\ &+ \|\partial_t (A_1 - A_2)(t)\|_{\mathbf{L}^2(D)}^2 + \|\operatorname{curl}(\partial_t (A_1 - A_2))\|_{\mathbf{L}^2(D \times (0,T))}^2 \\ &+ \|(\theta_1 - \theta_2)(t)\|_{L^2(\Sigma)}^2 + \|\theta_1 - \theta_2\|_{L^2(0,T;H^1(\Sigma))}^2 \\ &+ \|(z_1 - z_2)(t)\|_{H^1(\Sigma)}^2 + \|\partial_t (z_1 - z_2)\|_{L^2(0,T;H^1(\Sigma))}^2 \\ &\leq C \left(\|A_{0,1} - A_{0,2}\|_{\mathbf{X}}^2 + \|(\partial_t (A_1 - A_2))(0)\|_{\mathbf{L}^2(D)}^2 + \|\theta_{0,1} - \theta_{0,2}\|_{L^2(\Sigma)}^2 \\ &+ \|u_1 - u_2\|_{H^1(0,T)}^2\right) \quad \text{for all } t \in [0,T] \,. \end{split}$$

cost functional

$$J(A, \theta, z; u) = \frac{\beta_1}{2} \int_{0}^{T} \int_{\Sigma} (\theta(x, t) - \theta_d(x, t))^2 dx dt + \frac{\beta_2}{2} \int_{\Sigma} (z(x, T) - z_d)^2 dx + \frac{\beta_3}{2} ||u||_{H^1(0, T)}^2$$

cost functional

$$\begin{aligned} J(A,\theta,z;u) &= \frac{\beta_1}{2} \int_{0}^{T} \int_{\Sigma} (\theta(x,t) - \theta_d(x,t))^2 dx dt + \\ &= \frac{\beta_2}{2} \int_{\Sigma} (z(x,T) - z_d)^2 dx + \frac{\beta_3}{2} \|u\|_{H^1(0,T)}^2 \end{aligned}$$

• control problem (CP) $\min J(A, \theta, z; u)$ such that A, θ, z satisfies (P) and $u \in \mathcal{U}_{ad} \subset H^1(0, T)$

cost functional

$$J(A, \theta, z; u) = \frac{\beta_1}{2} \int_{0}^{T} \int_{\Sigma} (\theta(x, t) - \theta_d(x, t))^2 dx dt + \frac{\beta_2}{2} \int_{\Sigma} (z(x, T) - z_d)^2 dx + \frac{\beta_3}{2} ||u||_{H^1(0, T)}^2$$

- control problem (CP) $\min J(A, \theta, z; u)$ such that A, θ, z satisfies (P) and $u \in \mathcal{U}_{ad} \subset H^1(0, T)$
- Theorem:

(CP) has a solution $u \in \mathcal{U}_{ad}$

Optimal control problem – II

• adjoint system

$$\begin{aligned} -\sigma\alpha_t - \operatorname{curl}\left(\frac{1}{\mu}\operatorname{curl}\alpha\right) - \sigma'(x,z)z_t\alpha &= -2(\sigma A_t\vartheta)_t \\ &-\vartheta_t - k\Delta\vartheta + f_\theta(\theta,z)\vartheta &= f_\theta\zeta + \beta_1(\theta - \theta_d) \\ -\zeta_t - f_z(\theta,z)\zeta + \sigma'A_t \cdot \alpha - \sigma'|A_t|^2\vartheta &= \frac{\mu'}{\mu^2}\operatorname{curl}A \cdot \operatorname{curl}\alpha - f_z\vartheta \\ &\alpha \times n = 0 \quad \text{in } \partial D \times (0,T) \\ &k\frac{\partial\vartheta}{\partial\nu} + \kappa\vartheta = 0 \quad \text{in } \partial\Sigma \times (0,T) \\ &\vartheta(T) &= 0, \ \zeta(T) = z(x,T) - z_d(x) \quad \text{in } \Sigma \\ &\alpha(T) &= 0 \quad \text{in } D \end{aligned}$$

Multifrequency induction hardening · September 18, 2012 · Page 19 (40)

Optimal control problem – II

• adjoint system

$$\begin{aligned} &-\sigma\alpha_t - \operatorname{curl}\left(\frac{1}{\mu}\operatorname{curl}\alpha\right) - \sigma'(x,z)z_t\alpha &= -2(\sigma A_t\vartheta)_t \\ &-\vartheta_t - k\Delta\vartheta + f_\theta(\theta,z)\vartheta &= f_\theta\zeta + \beta_1(\theta - \theta_d) \\ &-\zeta_t - f_z(\theta,z)\zeta + \sigma'A_t \cdot \alpha - \sigma'|A_t|^2\vartheta &= \frac{\mu'}{\mu^2}\operatorname{curl}A \cdot \operatorname{curl}\alpha - f_z\vartheta \\ &\alpha \times n &= 0 \quad \text{in } \partial D \times (0,T) \\ &k\frac{\partial\vartheta}{\partial\nu} + \kappa\vartheta &= 0 \quad \text{in } \partial\Sigma \times (0,T) \\ &\vartheta(T) &= 0, \ \zeta(T) = z(x,T) - z_d(x) \quad \text{in } \Sigma \\ &\alpha(T) &= 0 \quad \text{in } D \end{aligned}$$

• variational inequality

$$\int_{0}^{T} \Big(\beta_{3}\bar{u}(t) - \int_{D} \alpha(x,t) \cdot J(x,t)dx\Big)(u-\bar{u})dt \\ + \int_{0}^{T} \beta_{3}u'(t)(u'(t) - \bar{u}'(t))dt \ge 0 \quad \text{ for all } u \in \mathcal{U}_{ad} \subset H^{1}(0,T)$$

• Multiple time scales

Magnetic vector potential and heat conductance live on different time scales (Averaging method)

• Multiple time scales

Magnetic vector potential and heat conductance live on different time scales (Averaging method)

Skin effect

Eddy currents are distributed in a small surface layer of the workpiece (Adaptive mesh generation)

• Multiple time scales

Magnetic vector potential and heat conductance live on different time scales (Averaging method)

• Skin effect

Eddy currents are distributed in a small surface layer of the workpiece (Adaptive mesh generation)

Nonlinear material data

Magnetic permeability depends on temperature and magnetic field ${\it H}$ (Linearization)

Multiple time scales

Magnetic vector potential and heat conductance live on different time scales (Averaging method)

Skin effect

Eddy currents are distributed in a small surface layer of the workpiece (Adaptive mesh generation)

Nonlinear material data

Magnetic permeability depends on temperature and magnetic field ${\it H}$ (Linearization)

• (Dis-)Continuity of vector fields

 $A \in H(curl)$ requires special class of finite elements (Nédélec elements)

Multiple time scales

Magnetic vector potential and heat conductance live on different time scales (Averaging method)

Skin effect

Eddy currents are distributed in a small surface layer of the workpiece (Adaptive mesh generation)

Nonlinear material data

Magnetic permeability depends on temperature and magnetic field ${\it H}$ (Linearization)

• (Dis-)Continuity of vector fields

 $A \in H(curl)$ requires special class of finite elements (Nédélec elements)

• 3D

Time consuming simulation in 3D (Model reduction to tackle optimal control problem numerically)

Numerical realization – multiple time scales

- Time scale for Maxwell's equation governed by frequency of source current: $f \approx 10 \ {\rm kHz} 100 \ {\rm kHz}$, consequetly $\tau \sim 10^{-5} {\rm s}$
- Time scale for heat equation governed by heat diffusion:

$$\tau \sim \frac{c_p \rho \mathsf{L}^2}{k} \approx 1 \; \mathrm{s}$$

Numerical realization – multiple time scales

- Time scale for Maxwell's equation governed by frequency of source current: $f \approx 10 \ {\rm kHz} 100 \ {\rm kHz}$, consequetly $\tau \sim 10^{-5} {\rm s}$
- Time scale for heat equation governed by heat diffusion:

$$\tau \sim \frac{c_p \rho \mathsf{L}^2}{k} pprox 1 \ \mathrm{s}$$

- Alternating computation:
 - Solve for A with fixed temperature on fast time-scale
 - Compute Joule heat by averaging electric energy $Q = \frac{1}{T} \int_0^T \sigma \left| \frac{\partial A}{\partial t} \right|^2 dt$
 - Solve heat equation with fixed magnetic potential on slow time-scale (one time step)
 - Update \boldsymbol{A} since σ and μ change with temperature

Skin effect

- Tendency of AC current to distribute near the surface of a conductor
- Current density decreases exponentially with growing depth
- Skin depth δ depends on frequency and material

$$\delta = \frac{1}{\sqrt{\pi f \mu \sigma}}$$

Skin effect

- Tendency of AC current to distribute near the surface of a conductor
- Current density decreases exponentially with growing depth
- Skin depth δ depends on frequency and material

$$\delta = \frac{1}{\sqrt{\pi f \mu \sigma}}$$

- Eddy current region must be resolved by computational grid
- Residual based error estimator allows adaptive grid refinement [Beck, Hiptmair, Hoppe, Wohlmuth 2000])

Material data depend on temperature

Electrical conductivity $\sigma(T)$ Thermal conductivity $\kappa(T)$ Density $\rho(T)$ Specific heat capacity $c_p(T)$

• Nonlinear relation between magnetic induction B and magnetic field H: Magnetization curve $B = f(\theta, H) = \mu(\theta, H)H$

- Instead of solving the complete nonlinear system, we assume that only a time averaged value of the permeability affects the magnetic field
- (i) Solve for the magnetic field with constant relative permeability $\hat{\mu}_r$

- Instead of solving the complete nonlinear system, we assume that only a time averaged value of the permeability affects the magnetic field
- (i) Solve for the magnetic field with constant relative permeability $\hat{\mu}_r$
- (ii) The magnetic field is periodic, this induces a periodic permeability

 $\mu(\boldsymbol{\theta}(t,x),\boldsymbol{H}(x,t)) = \mu_0 \mu_{\rm r}(\boldsymbol{\theta}(t,x),\boldsymbol{H}(x,t))$

- Instead of solving the complete nonlinear system, we assume that only a time averaged value of the permeability affects the magnetic field
- (i) Solve for the magnetic field with constant relative permeability $\hat{\mu}_r$
- (ii) The magnetic field is periodic, this induces a periodic permeability

$$\mu(\boldsymbol{\theta}(t,x),\boldsymbol{H}(x,t)) = \mu_0 \mu_{\mathrm{r}}(\boldsymbol{\theta}(t,x),\boldsymbol{H}(x,t))$$

 (iii) Averaging over one period yields an effective permeability that depends on space, but is independent of the magnetic field. According to [Clain et al, 1992], a harmonic mean value performs best, i.e.,

$$\frac{1}{\mu_{\mathrm{r,av}}(x)} = \frac{1}{T} \int_0^T \frac{1}{\mu_{\mathrm{r}}(\boldsymbol{\theta}(t,x),\boldsymbol{H}(x,t))} \,\mathrm{d}t$$

$H(\operatorname{curl})$ -conforming finite element approximation

- Due to physical nature of magnetic and electric fields, $H({\rm curl})$ is the natural vector space
- Less smoothness then H¹ (only tangential continuity)
- The triple $\{K, \mathcal{P}, \mathcal{N}\}$ denotes the *Nédélec element of 1st kind* with

$$\begin{split} & K \subset \mathbb{R}^3 \quad \text{tetrahedron} \\ & \mathcal{P} = \left\{ \boldsymbol{u} = \boldsymbol{a} + \boldsymbol{b} \times x \quad \forall \ \boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^3 \right\} \\ & \mathcal{N} = \left\{ M_e \ : \ M_e(\boldsymbol{u}) = \int_e \boldsymbol{u} \cdot \boldsymbol{t} \, \mathrm{d}l \quad \forall \ e \text{ edges of } K, \forall \boldsymbol{u} \in \mathbb{R}^3 \right\} \end{split}$$

K element domain, ${\mathcal P}$ polynomial space, ${\mathcal N}$ degrees of freedom

There holds

$$P^0(K) \subset \mathcal{P} \subset P^1(K)$$
 and $\operatorname{curl} \mathcal{P} = P^0(K)$

- Non-trivial large kernel of the curl-operator challenging for iterative solution of discretized Maxwell problems
 - \longrightarrow suitable preconditioner for Maxwell's equation required

Example 1

- Disc heated with HF and MF
- Adaptive grid
- Austenite profile
- Temperature profile

Parameters for simulation:

- Source current in induction coil $I_0 = 5000 \text{ A}$ at f = 100 kHz
- Heating time 1.0 s
- Nonlinear data for $\sigma, c_p, \rho, \kappa, \mu_r$
- Adaptive grid with approx. 50000 DOF

Figure: Adaptive grids

Multifrequency induction hardening · September 18, 2012 · Page 27 (40)

Example 1, HF: temperature and growth of austenite

Temperature, time= 1.000

(Video: austenite.mp4)

Figure: temperature and austenite growth at high frequency

Multifrequency induction hardening · September 18, 2012 · Page 28 (40)

Example 1, HF: temperature and growth of austenite

Temperature, time= 1.000

(Video: austenite.mp4)

Figure: temperature and austenite growth at high frequency

Multifrequency induction hardening · September 18, 2012 · Page 28 (40)

Example 1, HF vs. MF: Adaptive grid

- Source current in induction coil $I_0 = 5000 \text{ A}$ at f = 10 kHz
- Heating time 1.0 s
- Nonlinear data for $\sigma, c_p, \rho, \kappa, \mu_r$
- Adaptive grid with approx. 50000 DOF

Figure: Comparison of the adaptive grid between HF (left) and MF (right)

Multifrequency induction hardening · September 18, 2012 · Page 29 (40)

Example 1, HF vs. MF: Temperature

Temperature, time= 1.000

Temperature, time= 1.000

Figure: Comparison of the temperature profile after 1s between HF (left) and MF (right)

Example 2

- Gear heated with HF and MF
- Adaptive grid
- Austenite profile
- Temperature profile

Example 2, HF: Adaptive grid

Figure: Adaptive grids

Example 2, HF: temperature

Temperature, time= 1.200

(Video: temperature.mp4)

Figure: temperature evolution at high frequency

Multifrequency induction hardening · September 18, 2012 · Page 33 (40)

Example 2, HF: temperature

Temperature, time= 1.200

(Video: temperature.mp4)

Figure: temperature evolution at high frequency

Multifrequency induction hardening · September 18, 2012 · Page 33 (40)

Example 2, HF: growth of austenite

Phase fraction austenite, time= 1.200

(Video: austenite.mp4)

Figure: austenite evolution at high frequency

Multifrequency induction hardening · September 18, 2012 · Page 34 (40)

Example 2, HF: growth of austenite

Phase fraction austenite, time= 1.200

(Video: austenite.mp4)

Figure: austenite evolution at high frequency

Multifrequency induction hardening · September 18, 2012 · Page 34 (40)

Example 2, MF: temperature

Temperature, time= 1.070

(Video: temperature.mp4)

Figure: temperature evolution at medium frequency

Multifrequency induction hardening · September 18, 2012 · Page 35 (40)

Example 2, MF: temperature

Temperature, time= 1.070

(Video: temperature.mp4)

Figure: temperature evolution at medium frequency

Multifrequency induction hardening · September 18, 2012 · Page 35 (40)

Example 2, MF: growth of austenite

Phase fraction austenite, time= 1.070

(Video: austenite.mp4)

Figure: austenite evolution at medium frequency

Multifrequency induction hardening · September 18, 2012 · Page 36 (40)

Example 2, MF: growth of austenite

Phase fraction austenite, time= 1.070

(Video: austenite.mp4)

Figure: austenite evolution at medium frequency

Multifrequency induction hardening · September 18, 2012 · Page 36 (40)

Comparison with experiments for disk shaped work piece

		inductor curr. [A]		simulation	Experiment		
diameter [mm]	frequency [kHz]	MF	HF	after 1 s	max. temp. nach 1 s	converter curr. [A]	
47,7	11,5	4800		1145	970-987	572-573	(9:1)
42	11,5	4800		678	687-700	573-575	
38,7	11,5	4800		553	537-550	572-575	
47,7	11,5	5157		1306			
42	11,5	5157		764			
38,7	11,5	5157		617			
47,7	200		1000	997	974-986	176-177	(10:1
42	200		1000	725	711-716	176	
38,7	200		1000	610	601-658	176-177	
47,7	200		1100	1066			
42	200		1100	817			
38,7	200		1100	702			

• Summary ...

- modelling of multifrequency induction hardening
- well-posedness of state system, derivation of optimality system
- first results of numerical simulations

• Summary ...

- modelling of multifrequency induction hardening
- well-posedness of state system, derivation of optimality system
- first results of numerical simulations

• ... and perspective

- add oscillator circuit model of machine
- numerical optimal control
- model reduction

• Summary ...

- modelling of multifrequency induction hardening
- well-posedness of state system, derivation of optimality system
- first results of numerical simulations

• ... and perspective

- · add oscillator circuit model of machine
- numerical optimal control
- model reduction
- industrial applications, e.g., helical gears

Thank you for your attention!

Multifrequency induction hardening · September 18, 2012 · Page 39 (40)

Phases in steel

• Different crystal structures in iron

 Austenite
 Ferrite
 Cementite

 Face centered cubic (fcc)
 Body centered cubic (bcc)
 Orthorombic (Fe₃C)

 Stable at high temperatures
 Stable at low temperature
 Metastable compound

Different phases with different mechanical properties

Austenite: high temperature phase Pearlite: lamellar mixture of ferrite and cementite soft and ductile Martensite: forms on rapid cooling hard and brittle

